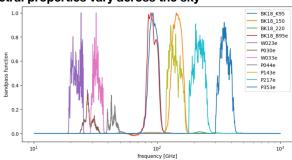
Modeling Galactic Foregrounds for Improved CMB B-mode Signal Analysis

Arya Papal, Department of Physics, University of Cincinnati



Why CMB?


- •The Cosmic Microwave Background (CMB) is relic radiation from the early universe, observed ~380,000 years after the Big Bang.
- •B-mode polarization in the CMB provides evidence for primordial gravitational waves, supporting cosmic inflation theories.
- •Detecting B-modes helps estimate the tensor-to-scalar ratio r, which is crucial for early-universe physics

Foregrounds:

- •Major polarized foregrounds: **Synchrotron** (low frequency) and **Thermal Dust Emission** (high frequency).
- •These foregrounds obscure faint B-mode signals (~nK level).
- •Traditional models assume constant dust parameters (e.g., β_D), but real observations show spatial variability.
- •Spatial variation causes frequency decorrelation, biasing r.

Simulated Map of Dust Spectral Index β_n demonstrates how dust spectral properties vary across the sky

Instrumental Bandpass Functions centered at different frequencies. This multi-frequency coverage is critical because it allows us to distinguish between the flat spectrum of the CMB and the frequency-dependent foregrounds like thermal dust.

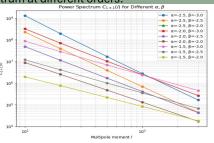
Moments Method - Theory:

Azzoni et al. (2020) introduced a power-spectrum-based formalism that accounts for spatial variations in spectral parameters like β_n .

The total cross-power spectrum between two frequencies v and v' can be expanded as: $C_l^{vv'} = C_l^{0x0} + C_l^{1x1} + C_l^{0x2}$

This expansion is then **propagated into the angular power spectrum**, yielding the following terms:

- Baseline spectrum $C_l^{0x0} = S_v(\beta_D) \cdot S_{vi}(\beta_D) \cdot C_l^{DD}$
- Curvature corrections due to second-order terms


$$C_l^{0x2} = \sum_{i=1}^{L} (S_v(\beta_D) \cdot \partial^2 S_{vi}(\beta_D) + \partial^2 S_v(\beta_D) \cdot S_{vi}(\beta_D)) \cdot C_l^{DD} \sigma^2$$

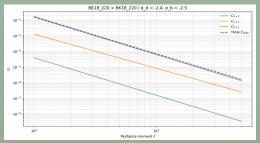
• Correlations of first-order spectral index fluctuations

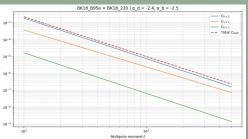
$$C_{l}^{1\times 1} = \sum \partial \, S_{v}(\beta_{D}) \cdot \partial S_{v'}(\beta_{D}) \sum_{l_{1}, l_{2}} \frac{(2l_{1}+1)(2l_{2}+1)}{4\pi} \begin{pmatrix} l & l_{1} & l_{2} \\ 0 & 0 & 0 \end{pmatrix} C_{l_{1}}^{DD} \cdot C_{l_{2}}^{\beta}$$

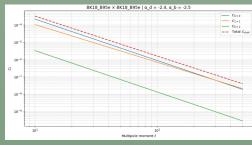
Here: S_v is the average dust spectral energy distribution (SED), modeled as: $S_v \propto (\frac{v}{v_0})^{\beta_D} \cdot \frac{B_v(T_D)}{B_{v'}(T_D)}$, here $B_v(T_D)$ being the Planck function and v_0 the pivot frequency

These components track how spectral variability in dust emission impacts the power spectrum at different orders.

Approximated Power-Law Formula for C_l^{1x1} :


To reduce computation time, we replaced the full Wigner 3j expression with this power-law approximation. The above plot shows the computed values of the moment term \mathcal{C}_l^{1x1} , plotted on a log-log scale against l. Each curve exhibits a straight-line trend in log-log space, indicating a clear **power-law behavior**. Thus, making approximations fast enough to use inside MCMC.


$$C_l^{1\chi 1} \approx A_D (\frac{l}{l*})^{\gamma_D}$$


Where we approximated expressions as a function of α_{β} and $\alpha_{D,r}$, then fitting a regression model using polynomial combinations.

- • A_D is the amplitude of the moment term at pivot multipole l* (80).
- γ_D is the effective slope of the moment term.

Dust Power Spectrum Decomposition Across BICEP/Keck Bandpasses

These plots show how the total dust spectrum is built from the C_l^{0x0} , C_l^{1x1} and C_l^{0x2} terms for a fixed choice of α_β and α_{D_i} and fitted values of A_D and A_β . The 1×1 component speeds up the calculation so that it can be used in a Markov Chain Monte Carlo analysis.

References:

- [1] S Azzoni et al. 2021. Phys Rev D 103(8):083517
- [2] M Kamionkowski and E D Kovetz. 2015. Annu Rev Astron Astrophys 54:227-269
- [3] D Samtleben, S Staggs, and B Winstein. 2007. Annu Rev Nucl Part Sci 57:245-283
- [4] W Hu and M White. 1997. New Astron 2(4):323-344
- [5] BICEP/Keck Collaboration. 2018. Phys Rev Lett 121(22):221301