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Abstract

Attempting to separate the Cosmic Microwave Background (CMB)
from complicated foregrounds has always been a challenge. The cur-
rent methods require assumptions made on the foregrounds. A new
method, An Analytical Method of Blind separation of CMB B-Mode
from Foregrounds (ABS), to separate the CMB from complicated fore-
grounds has been proposed by Pengjie Zhang, Jun Zhang, and Le
Zhang. This method is attractive for many reasons. The main points
are it does not require one to make any assumptions on foregrounds
and it does not require a fitting procedure.

1 Introduction

This paper will illustrate the investigation of a new ABS to separate the
Cosmic Microwave Background from foregrounds. Separating the CMB from
foregrounds has always been a desire to those studying the CMB. The com-
mon methods require the researcher to make assumptions on the foregrounds.
The attractive aspect of this new method is that there are not any assump-
tions made on the foregrounds. This paper will be organized into four sec-
tions with a conclusion following. In the first section we will understand
the motivation behind separating foregrounds from the CMB. Then we will
attempt to understand how ABS works. Once we have an understanding of
this method we will test the method in various situations. Finally we will
see if ABS works for simulated data.



2 Motivation

When measuring the CMB it is impractical to have an uncontaminated CMB
signal without several interfering signals. All of these signals lumped together
are called foregrounds. For our purposes we will only implement synchrotron
and dust radiation into our simple model, and later we will add noise. In-
strumental noise also contributes to the observed data in the CMB, and the
proposed method has a way of dealing with noise. The blind separation of
CMB from foreground’s most critical point is that it does not make assump-
tions based on the foregrounds. This allows us to not worry about what
foregrounds are contributing and classify all of them together. Something
that is potentially interesting is testing if ABS can also be used to solve for
different foregrounds.

3 Theory

Before we dive into the mathematical theory behind ABS we must first un-
derstand the data it would be used on. When someone observes the CMB,
they collect data at different observing frequencies. For our case, we used
30, 40, 85, 95, 145, 155, 220, and 270 GHz. From these maps, we construct
an eight by eight symmetric matrix where the diagonal is mapsg™*mapsg and
the off diagonals are the cross multiplications. These matrices, as mentioned
before, have different components. We can view this matrix as:

Dy(1) = PP Dp(l) + DL (D) (1)

We will work in thermodynamic units making f; = 1. Our goal is to solve
equation 1 for Dg. We can find an analytical solution due to two facts; D;;
has only M + 1 eigenvectors and f; is known for each frequency. Using these
facts we can prove that there is the analytical solution:

M+1

Dp=(Y_ G (2)

Here G|, = f5-E®™ where E® is the u-th eigenvector of D;; and A, is the
corresponding eigenvalue. Even though this solution may not be straightfor-
ward to understand, it is easy to use. Luckily, accounting for noise is easily
done by making our cross bandpower matrix into:



Dj" = Dij + 0D (3)

Then to solve for Dy we require A, > o7, In later sections We will
investigate why and when this can work and still provide the correct answer.

4 Constructing a Model

Our first goal is to construct a simple model. We choose to exclude noise
to see if the analytical solution works in the most simple case. To do this
we constructed the different components of our cross bandpower matrix. We
had three different components: CMB, dust, and synchrotron. For the CMB
component, we generated one-hundred random numbers with the same vari-
ance, 0.13. This list of random numbers is the same for every frequency. Dust
and synchrotron scale differently with frequency. Dust has greater magni-
tude at higher frequencies than lower. Synchrotron has higher magnitude at
lower frequencies than higher. Before proceeding, we checked to make sure
we had the scaling of synchrotron and dust radiation correct.
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Now we proceed by constructing our dust and synchrotron maps. Again these
are a list of one-hundred random numbers with the variance equal to the
scaling factors. Using our three maps, CMB, dust, and synchrotron, we can
construct our cross bandpower matrix. To get an idea of the accuracy of the
algorithm previously discussed, we created 5000 cross bandpower matrices 5
times and plotted them.
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The values center around 0.017, which is our amplitude squared. Here we can
conclude that the algorithm works in the most simple cases. To understand
the algorithm more, we investigate the eigenvalues for all the eigenvectors.
Not to our surprise, there are three eigenvalues that are nonzero. This is
to be expected because there are three independent components, dust, syn-
chrotron, and CMB. Next, we investigate if the algorithm can work on more
complicated matrices.

4.1 Implementing Noise

First, we construct our noise maps. Again, we make a list of one-hundred
random numbers, this time for each frequency. The amplitude depends on the



frequency. We used the different noise amplitudes found during calibration
of instruments. This lead to the noise amplitudes being at least a couple
orders of magnitude lower than the CMB amplitude we chose. Adding our
new noise maps as another component in our cross bandpower matrix and
adjusting the algorithm to account for noise, we found that there were now
eight nonzero eigenvalues. However, five of the eigenvalues were a few orders
of magnitude lower than the other three. Naturally, requiring A\it > o only
left three eigenvalues, and we see the same problem as before. Doing the
same calculations, you can see the plot is very similar:
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We found that the algorithm works completely in the limit that the instru-
mental noise is a couple orders of magnitude lower than the CMB signal.
Sadly, it is not a given that the noise will be negligible compared to the
CMB signal. Testing when and how the algorithm breaks was interesting.
Not to our surprise, when the dust amplitudes were close to that of the
CMB, the algorithm did not work, nor did it produce anything useful, to
my knowledge. To my interest, though, the algorithm depended on some
frequencies more than others. For instance, if the noise amplitude at 30Hz
was the same order of magnitude as the CMB amplitude, it only skewed the



output by a little. However, when the noise amplitude at 155Hz was still an
order of 10 smaller than the CMB amplitude, the output was heavily skewed.
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Here you can see the different effects of changing the noise amplitude at 155Hz
and 30Hz.

5 Testing ABS on Simulated Data

We used data simulations for the CMB-S4 BICEP/Keck experiment. In
these simulations, we had observed data that consisted of a few foregrounds,
noise, and CMB. We used this as our D;’;’S. There were also simulations of
what the noise would be, dD}7*". If we could get the ABS method to work
on the simple foregrounds, there were also simulations of more complicated
foregrounds. There was also a file that contained the value of the CMB
amplitude. We constructed our matrices our of the data and applied the
algorithm to them using the eigenvalues of the noise matrix as the cutoff for
the eigenvalues of the D;’;’S. At first we used corresponding eigenvalues. For
example, if the first eigenvalue of D;’jbs was greater than the first eigenvalue of
5D§;75t we used the eigenvalue. If it was not, we did not. This result yielded
an answer, but it was not corrected according to the expected value.
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Simulated Data
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Here the expected number is 0.003uK2. We adjusted the cut-off value to see
its effect. Being too aggressive with the cut-off value would cause Dg to be
zero. Being too passive with the cut-off would cause Dp to be not what we
expect.

2
Au>0f

120 A

100 A

80

60

Number of Entries

40 1

201

= T T T T T T
0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 0.00150 0.00175
pk?

There was no clear indication that the values we were getting for Dp were
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related to the answer we were expecting. These results leave us to rethink
this algorithm or take a closer look at how the paper takes care of noise.

6 Conclusion

The ABS method seems really attractive in theory. The mathematics behind
the method is easily implemented and works efficiently. After some investi-
gation, it appears that we cannot construct good enough instruments to have
small enough noise levels. It would be interesting and perhaps beneficial to
see if we can obtain any useful information even when the noise levels are
too high.
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