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1 Introduction

The Cosmic Microwave Background (CMB) is residual light left over from the early
expansionary era of our universe. Encoded within it is information that reveals
the dynamics of the universe’s earliest stages. The Lambda-Cold Dark Matter
(ΛCDM) model of the universe predicts that the universe underwent a brief period
of extremely rapid expansion, also called inflation, shortly after the Big Bang. The
ΛCDM model has been generally successful in explaining much of the universe’s
large-scale behavior. To date, however, there remains no observed evidence of
inflation.

Inflation, if it occurred, would have produced two kinds of perturbations in the
pre-last scattering universe: Density waves and gravitational waves [8]. The tensor-
to-scalar ratio r represents the amplitude of the "primordial" gravitational waves
generated by inflation and serves as a key parameter in all models of inflation;
the particular model of inflation used has many important consequences for all of
astrophysics and particle physics. Certain models are only possible if r is within
a particular range of values, so valid models can be constrained by making precise
measurements of the value of r. One way of accomplishing this is by making
observations of the polarization of CMB light.

The waves produced by inflation would lead to anisotropies in the CMB signal, in
particular, density waves would produce a certain pattern of polarized light at last
scattering known as "E-modes"; these E-modes are readily visible and constitute
the vast majority of the CMB signal across the entire sky. Primordial gravitational
waves would produce a different pattern in the CMB signal known as "B-modes". In
particular, primordial gravitational waves are the only possible source of B-modes
in the CMB, should they exist. An observation of a B-mode signal of nearly
any strength that is confirmed to be of CMB origin would therefore be evidence
that primordial gravitational waves exist, and by extension, evidence that inflation
occurred. The exact strength of the CMB B-mode signal, relative to the E-mode
signal, would depend on the amplitude of primordial gravitational waves. So,
measurements of the B-mode signal serve as an indirect measurement of r, which
itself can be calculated from the power spectrum of the B-mode signal across the
CMB. Thus far, observational efforts have placed an upper-bound on r of 0.037
[5] . This has constrained many models of inflation, but many more are valid for
smaller r [1]. Lowering this upper-bound further will require even more precise
measurements of the polarization of the CMB.

The CMB-S4 project is an ongoing scientific collaboration to conduct precision ob-
servations of the CMB using a new generation of small aperture telescopes designed
to be ultra-sensitive to polarization. The most pressing challenge faced by these
new designs is the potential for systematic errors to affect observational precision.
Systematic errors in the polarization detectors, for example, misalignment of these
detectors from the expected angle, may lead to biased or imprecise measurements
of r, preventing a better upper-bound from being achieved. The current CMB-S4
target for the standard deviation (1-sigma) of the measurement of the upper-bound
r value is 5 × 10−4 [1].
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Figure 1: Design of the instrument model used for this simulation. One wafer is
simply one of the shown hexagonal formations. Credit: Sara Simon, CMB-S4

The goal of the research described within this paper is to establish the magnitude
to which polarization systematics affect the precision of measurements of r taken
by a proposed instrument model for CMB-S4, whether they create bias, and how
large that bias is. This is achieved by creating a simulation of observations of the
CMB affected by polarization systematics inside a small aperture telescope capable
of generating realistic maps of the sky as seen by the telescope with randomized
systematics. The small aperture instrument being simulated is shown in Figure 1;
it has nine optic tubes for observing polarized light at eight frequency bandpasses,
each tube has 12 wafers corresponding to it. These simulated maps then have their
power spectra calculated and input into a model-search function to calculate the r
value predicted by the simulated data. Finally, determination of bias will be made
by comparing the r value results for many systematic affected simulations to their
non-systematic affected counterparts. Each systematic affected simulation will
have a corresponding unaffected simulation that was generated with the same input
maps, allowing direct comparison of the shift in r on a simulation-by-simulation
basis.
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2 Methods And Activities

2.1 Map Generation

The simulations assume noise, dust, and synchrotron foreground emission are
present, no frequency bandpass systematics, and no atmospheric interference. The
theory power spectrum used to generate the CMB maps includes bandpowers from
gravitational lensing foregrounds, but the simulation does not attempt to perform
delensing analysis on the data. This will increase the standard deviation of r signif-
icantly. This is not considered problematic: Our analysis is focused on the bias on
r between systematic and non-systematic affected maps inside of each realization,
not the r values themselves. Thus, the shifts of r are the object of interest pro-
duced by these simulations, and a delensing analysis will not change the magnitude
of those shifts.

Four sky map types are required for each simulation realization to produce a re-
alistic observation map: Foreground maps, CMB maps, noise maps, and inverse
variance maps. Additionally, CMB-S4 plans to make observations of the CMB at
eight frequency bandpasses identified as ideal for data collection; these bandpasses
occur around 30 GHz, 40 GHz, 85 GHz, 95 GHz, 145 GHz, 155 GHz, 220 GHz, and
270 GHz [1]. Each of these bandpasses have different associated noise and beam
size parameters, meaning that a new set of sky maps must be generated for each
separate bandpass. The resolution of these maps is given in a parameter called
NSIDE, which originates from HEALPix, a method for mapping 3D spherical maps
to 2D square pixels [6]. The NSIDE used for the simulations was 512, correspond-
ing to approximately 3.1 million pixels per sky map. All maps generated consist
of temperature (T), Q-polarization (Q), and U-polarization (U) components. The
Q and U polarization components are the only maps of real concern, the T maps
are kept but not used after generation as they are not necessary for the analysis.

Foreground maps are generated first using the PySM 3 (Python Sky Model 3)
package and stored in a separate array that is accessed by each realization [11].
Every realization will use these same foreground maps. After this is done, the
parameters of the systematic are chosen, which will be covered in the next section.

Figure 2: Foreground Map at 95GHz,
Q polarization. Note the characteris-
tic galactic band across the sky.

Figure 3: Foreground Map at 95GHz,
U polarization. Note the characteris-
tic galactic band across the sky.

Next, a CMB map is generated via the HealPy synfast function using theory spec-
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tra from the Planck FFP10 simulation suite [9][10]. These spectra represent the
intensity of fluctuation of values of Temperature, Q polarizaton, and U polariza-
tion above or below the dominant values of these measurables observed across the
CMB. This map is copied eight times, each copy is then modified with the appro-
priate beam size and noise level of one frequency bandpass, so that eight CMB
maps corresponding to simulated observations of the CMB only at each bandpass
are generated. These are saved at the end of the generation process.

Figure 4: CMB Map at 95 GHz, Q
polarization.

Figure 5: CMB Map at 40 GHz, Q
polarization.

Figure 6: CMB Map at 220 GHz, Q
polarization

Sky noise maps are generated in a similar manner using HealPy synfast albeit
using a theoretical power spectrum for noise modeling as input:

Cℓ = A(1 + ( ℓ

ℓknee

)α) (1)

Where A is the noise amplitude, ℓ is the multipole, ℓknee is the noise knee frequency,
and α is the spectral index of the noise. These parameters, with the exception of ℓ,
are set prior to the start of the simulation and depend on the frequency bandpass.
One initial map is generated from synfast per realization, then copied and adjusted
based on bandpass parameters to produce eight bandpass-specific noise maps. At
this point, inverse variance maps are introduced and applied to the noise maps,
CMB maps, and foreground maps. Like the foregrounds, these are also created
and saved before the simulation begins.
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Figure 7: Noise map at 30 GHz, Q polarization.

Inverse variance maps are imported from a separate simulation of the instrument
model’s observing area of the sky. That simulation emulated a ten-year observation
of a particular observing field by each wafer on the instrument model, and from
this data generated the inverse variance maps for each wafer. The observing field
simulated and used in this simulation corresponds to a previously-identified field
ideal for CMB-S4 observation at the South Pole [1]. These maps, when applied
to the generated noise, CMB, and foregrounds, weight the generated maps by the
inverse of the variance of data collected at that pixel, that is, the instrument noise.
Less time is spent by the instrument observing sky near the edge of the field,
this leads to high noise, so these pixels are downweighted, while near the center,
measurement is more consistent, so these pixels have higher weight. Effectively,
inverse variance maps represent the area that each wafer of the instrument model
can "see", and to what degree each portion of that area has been observed.

Figure 8: Inverse variance map of
95 GHz wafer near the center of the
instrument. Weights are dimension-
less, strength of weight indicated by
heatmap.

Figure 9: Inverse variance map of
95 GHz wafer near the edge of the
instrument. Weights are dimension-
less, strength of weight indicated by
heatmap.

Once inverse variance maps have been applied to each of the generated map types,
noise, CMB, and foreground maps are returned to units of microkelvin CMB by
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dividing out the inverse variance weights according to the following formula:

MF B =
MF B

weighted∑W
i=0 σ

−2
i

(2)

WhereM represents the T, Q, or U map of that frequency band, W is the number of
wafers in that band, and σ−2

i is the inverse variance. The maps are then combined
together per frequency bandpass into a single map representing the simulated sky
observation of the instrument in that band. The polarization component maps (Q,
U) are saved.

2.2 Systematic Simulation

Polarization systematics occur as a small unaccounted rotation of the instrument
polarization detectors off of the expected alignment. This causes the instrument to
incorrectly read some amount of incoming Q polarized light as U and vice-versa,
which is expected to cause E-mode to B-mode leakage further down the analy-
sis pipeline. The instrument model consists of nine collection tubes with twelve
wafers apiece, each tuned to one of the eight frequency bands. These wafers are
constructed separately then put together during final assembly, so the simulation
treats each wafer as a separate object with a possible randomized misalignment.
The possible misalignment of individual cells is considered to be much smaller than
the errors that might occur during assembly, so these are neglected. At the start
of every simulation, the standard deviation and mean of the random misalignment
is specified in degrees. These quantities are used in the numpy.random function to
generate a one-dimensional array of random numbers for each frequency bandpass,
with a length corresponding to the number of wafers in that bandpass. Each real-
ization of the simulation regenerates this array, ensuring no two realizations have
the same exact systematics applied to them. For the simulations analyzed as part
of the CMB-S4 project, our choice was to use a mean of 0 degrees and standard
deviations of 1 degree and 5 degrees.

The systematic itself is simulated as a randomized rotation of the generated CMB
and foreground maps. Noise maps do not have a systematic applied to them as this
would not create any meaningful difference in the observed data due to its fully
randomized nature. Each Q and U polarization map of the CMB and foreground
maps for each frequency bandpass are modified according to the following function:

QF B
syst = QF Bcos(2ψi) + UF Bsin(2ψi)

UF B
syst = −QF Bsin(2ψi) + UF Bcos(2ψi)

Where ψi is the angle of the systematic converted into radians, and i is the index of
the entry in that frequency bandpasses’s random number array, which corresponds
to the wafer that this map will be applied to. This is done separately for each map
type, so these maps are summed together afterward with the same noise maps as
the non-systematic affected maps to create a new set of simulated sky maps with
polarization systematics. Once again, the polarization component maps are saved.
This concludes the map generation step of the simulation.
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2.3 Power Spectra

Every T, Q, and U observational map of the sky can be decomposed into their
respective fields’ multipole moments derived from spherical harmonics, which can
then be represented by their power spectrum [8]. These power spectra are purely
functions of angular multipoles ℓ with the intensity of fluctuations represented by
the coefficient Cℓ, which describes the conjugate square of a particular multipole
moment.

δℓℓ′δmm′Cℓ = ⟨a∗
ℓmaℓm⟩ (3)

Multipole moments of T, E, and B fields fluctuate according to a Gaussian distri-
bution, but their square does not; this fact will become important during likelihood
analysis. Since E-mode and B-mode fields are typically used in CMB analysis, Q
and U maps are linearly transformed into E-mode and B-mode power spectra [8].
In this simulation, the Pseudo-Cℓ framework as implemented by NaMaster is used
for bandpower estimation [3].

This calculation is performed using the NaMaster package in Python, with addi-
tional help from the prototype S4BB package to streamline the calculation process
of power spectra for many realizations [4]. Primordial gravitational waves are pre-
dicted to affect B-mode power spectra at the ℓ = 102 level, or around degree-scale
on the sky, so the power spectra of the generated sky maps are only calculated
for ℓ in the range of 30 to 310 [8]. Noise tends to dominate at greater ℓ, which
represent smaller angular scales on the sky. See below.

Figure 10: Comparison of B-mode auto-spectra for the 95 GHz frequency band.
Plotted are the observation map spectra for non-systematic and systematic simu-
lations, as well as the theory spectrum input and the spectrum of their difference
map. Note the exponential increase in bandpowers toward greater ℓ values.

The simulation performs calculations of E-mode and B-mode power spectra on
noise, CMB, and final observation maps and stores them as unique objects using
the S4BB package framework; these objects contain information about the map
type, spectra, and number of realizations stored. Each spectral object contains
the bandpower of 36 spectra, each bandpower is grouped into 14 bins comprising
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a range of 20 ℓ values per realization, representing the auto- and cross-spectra of
each frequency band. Noise in one frequency bandpass is generally assumed to be
independent of others, so cross-spectra of noise maps are set to 0.

Figure 11: Mean of simulated bandpowers across 45 realizations, no systematics
applied. Bandpowers in terms of Dℓ.

The spectra for the final observation maps represent the data that will be fit by
a model to calculate r. Noise and CMB spectra are calculated separately for use
in the creation of the bandpower covariance matrix, which is necessary for error
estimation and the maximum likelihood search function that will be used to fit
models to the data. Noise spectra are also used to calculate B-mode noise bias,
which is defined as the mean of the B-mode noise power spectra, per frequency
band, across all realizations. The noise bias of one ℓ bin in one frequency band is:

NBB
ℓ = 1

S

S∑
i=0

NBB
ℓi (4)

Where S is the number of realizations, and NBB
ℓi is the noise bandpower of simu-

lation i in a particular ℓ bin. This bias is used by the likelihood search function to
simulate a retrieval of true CMB signal bandpowers from a noise-affected data set
such as the simulated final observation maps.

This concludes the calculation of power spectra from generated maps. All spectral
objects are saved and used as inputs for likelihood analysis.

2.4 Maximum Likelihood Search and r Values

The calculation of r for each realization is accomplished through maximum like-
lihood search of the simulated data. This consists of two parts: calculation of a
bandpower covariance matrix, and the likelihood analysis itself.

The spectral objects containing noise spectra and CMB spectra are used to calcu-
late the bandpower covariance matrix, whose diagonal elements measure the vari-
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ance of each ℓ-bin bandpower in auto- and cross-spectra for all frequency bands.
While bandpowers are measured from a non-Gaussian distribution, a Gaussian
analogy is useful to understand the importance of the matrix. In Gaussian statis-
tics, chi-squared measures the difference between the model and expected data
points as compared to the expected variance of the data point:

χ2 =
N∑

i=0

(di −mi)2

σ2
i

(5)

Since the bandpower covariance matrix provides the expected variance of the data
point–in our simulation, this is the bandpower of a particular auto- or cross-
spectrum in a certain ℓ-bin–if the covariance matrix is only provided with the
bandpowers of one realization, then it is possible for some of the bandpower values
of that realization to be very close to the model value, returning a low variance. A
particularly low variance will greatly increase the contribution that data point has
to the value of chi-squared, possibly well beyond that of every other data point.
Since likelihood maximization in Gaussian statistics is effectively the minimization
of chi-squared, any maximum likelihood search algorithm will adjust the model pa-
rameters to best fit the low-variance data point over all others, since this has the
largest impact on chi-squared. This statistical bias can be remedied by providing
the matrix with more bandpowers from more realizations, decreasing the chance
that an uncharacteristic distribution of data values are taken. This necessitates a
high number of realizations, about 50-100, for the simulation to create a reasonably
accurate bandpower covariance matrix.

Next, the likelihood analysis takes 14-parameters for two separate models of dust
and synchrotron, and CMB emission to calculate expectation values of bandpowers.
It also takes the noise bias and the B-mode power spectra of simulated data, which
it uses to estimate the true B-mode power spectra of the CMB observed in that
realization. The model used for CMB signal is:

Dℓ = rDtens
ℓ + AlensD

lens
ℓ (6)

Where Dℓ represents the total bandpower observed, Dtens
ℓ is the bandpower con-

tribution from tensor perturbations (gravitational waves), and Dlens
ℓ is the band-

power contribution from lensed modes. Alens is a fixed parameter set to a value
of 1. The model for dust/synchrotron emission in foregrounds is provided from a
2018 BICEP/Keck collaboration paper[2]. As mentioned previously, bandpowers
are drawn from a non-Gaussian distribution. This is because the simulation is
measuring bandpowers in the low-ℓ range within a relatively small fraction of the
sky; if the observations were full-sky, the distribution would be Gaussian. Thus
the maximum likelihood search function utilizes the Hamamiche-Lewis likelihood
estimation function which finds −2log(L)for non-Gaussian data [7]. Noting that

−2log(L) = log( 1
L2 ) (7)

The maximum likelihood search seeks to minimize the Hamamiche-Lewis likeli-
hood, effectively maximizing the value of the likelihood squared. If successful, the
maximum likelihood function returns the values of the 14 parameters found for
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the best-fit model per realization, including r. This search is performed twice,
once on the non-systematic affected data, and once on the systematic-affected
data, realization-by-realization. This allows direct comparison of the shift in r
values inside one realization between systematic data and unaltered data. All final
parameter values are saved in numerical arrays.

3 Results

Analysis was performed on 45 simulations of a 5 degree systematic and 80 simu-
lations of a 1 degree systematic, each with a mean of 0 degrees. Data on the shift
in r values from systematic to non-systematic realizations is shown below.

Figure 12: Shift in r by magnitude, histogram of 45 realizations. Size of bins =
0.01.
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Figure 13: Bar chart of shift in r by realization, 45 realizations.

Figure 14: Shift in r by magnitude, histogram of 80 realizations. Size of bins =
0.0001.
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Figure 15: Bar chart of shift in r by realization, 80 realizations.

# of Realizations Systematic Mean σ(r)
45 OFF 0.0026 0.00368
45 ON; 5 degrees, mean 0 degrees 0.007 0.0451
80 OFF 0.00345 0.00346
80 ON; 1 degrees, mean 0 degrees 0.0024 0.0037

Table 1: Mean and standard deviation of measured r value distributions for 45
and 80 realizations.

# of Realizations Mean ∆r σ(∆r)
45 0.00436 0.045
80 -0.0011 0.0014

Table 2: Mean and standard deviation of shift in r value for 45 and 80 realizations.

A positive shift value indicates that the systematic best-fit r value is higher than
the non-systematic best-fit value for that realization, while a negative value in-
dicates the opposite. In the 45 simulation run, there appears to be no general
direction in the shifts; the primary difference between the data sets is the broad-
ening of the standard deviation. Notably, the non-systematic standard deviation
of r values is 7.2 times greater than the CMB-S4 science target for σ(r), while
the systematic standard deviation is almost 90 times. This would seem to indi-
cate that a random set of systematics with standard deviation of five degrees of
misalignment significantly impacts the precision of the instrument. However, the
80 simulation run has a clear negative direction in nearly all of its shifts, and the
standard deviation of the systematic affected r values is only slightly larger than
the non-systematic standard deviation.
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Obviously, a smaller systematic will lead to smaller shifts in r, which is reflected
in the distribution of shift values seen in the figures, but the standard deviation
of the systematic distributions with respect to the non-systematic ones should be
similar. It is possible that the 45 simulation run, being slightly below the range of
realizations needed to construct a proper bandpower covariance matrix, happened
to have a bad distribution of bandpowers which affected the maximum likelihood
search function. Why this would cause a significantly broader distribution of r
is unknown, and would require more analysis. Of greater interest are the results
from the 80 simulation run, as the systematic of 1 degree is currently the expected
level of polarization systematics inside this instrument model.

First, given the directionality of the shifts in the 80 simulation run, it is more useful
to look at the mean of the shift of r than the difference in standard deviations
between distributions, as both are quite similar. The reason for this is simple: If
there is an expected or desired standard deviation in the data, say 5×10−4, and in
a real observation a value is found that is far outside of the range of values covered
by 1-sigma, then that increases the error of the measurement to at least that value.
To get precise values, then, shifts due to systematics should be kept at a fraction of
the desired error; shifts that greatly exceed the desired error increase error beyond
the desired level. Returning to the data, the mean of the shifts is −1.1×10−3, which
is 2.2 times the CMB-S4 science target. This is decidedly excessive: According to
this data, systematics of even 1 degree standard deviation will prevent the science
target from being reached. However, it should be emphasized that the results
are very recent and have not undergone a full analysis to confirm that this is a
consistent effect due solely to polarization systematics.

The clear negative bias in these results is very interesting, if confirmed. In a real
experiment, negative r is impossible and has no physical meaning; recall that r
is a measurement of the amplitude of perturbations, which cannot be negative.
However, the simulation’s models implicitly assume it as a possibility as this sim-
plifies the analysis of bias in the data. If realistic steps were taken to ensure only
positive r were generated, the distribution of r seen in Figures 11 and 13 would
be decidedly non-normal, encountering a spike towards infinity as r approaches
0. This makes it difficult to calculate a meaningful mean and of course a value
for standard deviation. By allowing negative r, our simulation produces a more
normal distribution which can be analyzed with these values.

That still begs the question of what a negative bias in the simulated r means.
Negative values of r are made possible by the general form of the model of the data
assumed by the simulation. This model is used to simulate a realistic calculation
of true signal bandpowers from noisy data, such as in the simulated observational
maps that combine CMB, foregrounds, and noise. Noting from (2) that we can
replace the expression on the right hand side with the values that make up the
power spectrum in this model, the noise bandpowers and signal bandpowers:

⟨a∗
ℓmaℓm⟩ = 2

k
(Sℓ +Nℓ)2 (8)

Where k is the number of modes, Sℓ is the signal bandpower in a ℓ bin, and Nℓ is
the noise bandpower in a ℓ bin; in the simulations this is calculated as the mean
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of the B-mode noise spectra, called noise bias (see section 2.3). So, then:

Cℓ = 2
k

(Sℓ +Nℓ)2 (9)

And

Sℓ =
√
k

2Cℓ −Nℓ (10)

Therefore, if the noise bias exceeds the majority of simulated bandpowers in any
given realization, it leads to negative signal values, which themselves could lead
to negative values of r, as these are calculated by fitting models to the calculated
B-mode signal spectra. In effect, this means that negative r indicate a weaker
primordial B-mode signal that is hidden inside the noise of the observation. In a
real experiment, these would show up as a measurement of r = 0.00. If the system-
atic simulations have a consistent negative bias, then, that means the polarization
systematics decrease the likelihood of a positive detection of primordial B-modes,
or similarly, increase the likelihood of a false negative: Detection of no primordial
B-modes in a CMB where they do exist.

This is interesting primarily for one reason. As mentioned, the E-mode signal
dominates the CMB, and to date measurements have concluded that it must be at
least one hundred times stronger than any B-mode signal pattern. Earlier it was
hypothesized (see section 2.2) that if systematics are present, this should cause
misaligned sensors to read some of the much stronger E-mode signal as B-mode
signal; a leakage of E-modes to B-modes. In short, systematic affected simulations
should consistently find much stronger B-mode signals, and consequently higher
r, than their non-systematic counterparts. But our results seem to indicate the
opposite is happening, that polarization systematics are causing the instrument to
consistently observe weaker B-mode signals or no B-mode signals.

If these results are confirmed, the leakage of E-modes to B-modes may be far
weaker than first suspected, perhaps on the level of the reciprocal possibility of
B-modes leaking into E-modes due to the systematics. This leakage was assumed
to be negligible compared to its counterpart owing to the tiny magnitude of the
B-mode signal by comparison, and the fact that these simulations use CMB theory
spectra that assume r = 0. If it is approximately equal, this could be due to the
presence of lensing modes, though these modes should still be much weaker than
the general E-mode signal seen across the CMB.

4 Conclusion

It is possible there is a fault in the simulation itself that leads to this peculiar result.
The simulation and its results require more analysis before a definitive answer can
be made. In particular, there are multiple refinements and adjustments that could
be made to the simulation that could help explain the nature of the negative r bias
found in systematic simulations. One is simply running more realizations of the
simulation. This helps create a more accurate bandpower covariance matrix that
in turn forces the maximum likelihood search function to consider most data points
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equally when fitting the model. The simulation also may have overestimated noise
bias when considering only the mean of the noise spectra bandpowers; it is possible
a more refined definition of noise bias may be required. Finally, the addition of a
delensing correction, even if not strictly necessary, may be useful in determining if
lensed bandpowers were contributing significant amounts of B-modes to leak into
E-modes.

Given more time, a conclusive result on the effects of polarization systematics on
r could be made using these simulations. The next steps of this analysis require
implementing the suggested improvements to the simulation and looking for a
change in the results. For the moment, however, our preliminary results suggest
that polarization systematics at the level expected by CMB-S4 induce a significant
bias in r nearly twice the size of the science target, and that this bias is consistently
negative, meaning these systematics increase the likelihood of a false negative.
Both of these results would indicate that CMB-S4 needs to revise its tolerance
levels for polarization detector systematics to be more stringent.
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