Heat Equation

Summary

In this lecture we begin our treatment of the heat equation $$ u_t - \Delta u = 0, $$ where the unknown function is $u=u(x,t)$ with $u\colon \mathbb{R}^n\times(0,\infty)$. We construct the fundamental solution using dilation symmetry of the heat operator and then give a representation for solutions of the initial-value problem (IVP) $$ \left\{ \begin{alignedat}{2} u_t -\Delta u &= 0\quad &&\text{in}~\mathbb{R}^n \times(0,\infty)\\ u&=g\quad&&\text{on}~\mathbb{R}^n \times \{t=0\} \end{alignedat} \right. $$ that is, we show that $$ u(x,t):=(\Phi * g)(x,t) $$ satisfies (IVP) and that $u \in C^{\infty}\left(\mathbb{R}^{n} \times(0, \infty)\right)$ provided $g\in C\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$.

We then move on to the treatment of the inhomogeneous problem and cover Duhamel’s principle.

Full Set of Lecture Notes

The notes for this lecture are available here (21 pages).

Previous
Next