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These notes will summarize recent work on the Ewald methods of Hummer, Pratt, and
Garcia extended to systems with point dipoles and induced point dipoles. In the HPG
papers from 1996 and 1998, self-energy corrections were discussed which led to remarkably
accurate predictions of ion solvation free energies with very few waters [1]. Other references
for these notes are our book [2], a paper by Darden et al. [3], and the paper by deLeeuw et
al. [4]. Also the books of Allen/Tildesley [5] and Frenkel/Smit [6], and papers by Adams
and McDonald [7] and Nymand and Linse [8].

1 The Ewald Potential

The Ewald potential of HPG is defined as

ψ(r) =
∑
n

erfc(η|r + nL|)
|r + nL|

+
4π

L3

∑
k 6=0

(
e−k

2/4η2

k2

)
eik·r − π

L3η2
(1)

This potential is periodic in the cubic lattice assumed here, and has several desirable prop-
erties as we’ll see. (The k values are chosen to satisfy the periodicity: k = 2πn/L.) This
potential is that due to a unit-charge ion and it’s neutralizing background, in periodic bound-
aries.

The complementary error function is

erfc(z) = 1− 2√
π

∫ z

0
e−u

2

du (2)

What properties does this potential have? First, the potential is the solution of the
Poisson equation

∇2ψ(r) = −4π
(
δ(r)− 1

V

)
(3)
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where V = L3. This is just a restatement of the fact that ψ(r) is the periodic potential due
to a unit charge plus a neutralizing background in PBC. Second, the integral of the potential
over the unit cell is zero: ∫

cell
ψ(r)dr = 0 (4)

Making the integral equal to a constant (zero here) yields a unique solution, and we will see
later that this choice is related to how we handle a net charge in the simulation box and
how we assemble the total electrostatic energy. In addition, the last (constant) term in the
potential makes the potential independent of the parameter η. So let’s go back and examine
these properties of the Ewald potential.

We first show that the integral of the Ewald potential over the cell is zero. The integral
of the middle term in ψ(r) is clearly zero due to the plane-wave nature of the integrand.
Thus we need to show ∫

cell

∑
n

erfc(η|r + nL|)
|r + nL|

dr =
π

η2
(5)

We can see that the integral over the real-space sum is equivalent to just extending the
integration out to infinity. Let’s say |x| = η|r|, so dx = η3dr. Then we need∫ ∫ ∫ ∞

−∞

erfc(|x|)
|x|

1

η2
dx =

π

η2
(6)

The integrand is spherically symmetric, and so we need

4π
∫ ∞

0

erfc(x)

x
x2dx = π (7)

or ∫ ∞
0

erfc(x)xdx = 1/4 (8)

We can use the IBP trick to show that this is true.
Next we show that the Ewald potential is independent of η. For this derivation, we will

use a mathematical identity called the theta transformation:

4η3

√
π

∑
n

e−η
2|r+nL|2 =

4π

L3

∑
k

e−k
2/4η2eik·r (9)

Now, take the derivative of the Ewald potential wrt η. For the real-space derivative, we find

∂ψRS(r)

∂η
= − 2√

π

∑
n

e−η
2|r+nL|2 (10)

and the momentum space part is

∂ψKS(r)

∂η
=

2π

L3η3

∑
k 6=0

e−k
2/4η2eik·r (11)

Finally, the derivative of the third term yields 2π/L3η3, but that can be viewed as just the
k = 0 term added to Eq. 11. The theta transformation then tells us that the net result is 0,
so the Ewald potential is independent of η.
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Let’s now show that the Ewald potential is the solution of the Poisson equation Eq. 3.
Consider the action of the Laplacian on the k-space part of the Ewald potential:

∇2
(

4π

L3

)∑
k 6=0

e−k
2/4η2

k2
eik·r = −

(
4π

L3

)∑
k 6=0

e−k
2/4η2eik·r (12)

= −
(

4π

L3

)∑
k

e−k
2/4η2eik·r +

4π

L3
(13)

= −
(

4η3

√
π

)∑
n

e−η
2|r+nL| +

4π

L3
(14)

The last step uses the theta transformation defined above. Now we need to look at the
Laplacian acting on the real-space sum. To do this we notice that all the terms in the sum
are spherically symmetric. That is, we can use the radial part of the Laplacian alone. We
can try this out for the n = 0 term:

∇2 erfc(ηr)

r
=

1

r2

∂

∂r

(
r2 ∂

∂r

) [
1− 2√

π

∫ ηr
0 due−u

2
]

r
(15)

We note that dr = d(ηr)/η. Then, after a few steps, we end up with

∇2 erfc(ηr)

r
=

4η3

√
π

e−η
2r2 (16)

We get the same kind of expression for each term in the real-space sum, so this shows that
this term and the k-space term cancel exactly, leaving the neutralizing background in the
charge density. This is true for any point away from the location of the delta function δ(r).
For the n = 0 term, as we approach r → 0, then we can use Gauss’s law (see Jackson’s book
Classical Electrodynamics) to show that the delta function results from the Laplacian acting
on the potential at that point. So we’ve now shown that the Ewald potential satisfies the
Poisson equation for a discrete charge plus a neutralizing background in PBC.

2 Assembling the electrostatic energy

Given the Ewald potential discussed above, how do we construct the total electrostatic
potential energy for some configuration of charges? We know from electrostatics that the
energy is always

U =
1

2

∫
ρ(r)φ(r)dr (17)

where φ(r is the total electrostatic potential. Then, for the Ewald potential considered above,
we get

U =
1

2

∫
cell

[∑
i

qi

(
δ(r− ri)−

1

L3

)]∑
j

qjψ(r− rj)dr =
1

2

∑
i,j

qiqjψ(rij) (18)
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But this energy includes the interaction of each ion with itself, which gives an infinite contri-
bution to the total energy. We want the ions to interact with their periodic images outside
the cell, but not with themselves within the cell. Thus we subtract off that contribution:

U =
1

2

∑
i 6=j

qiqjψ(rij) +
1

2

∑
i

q2
i lim
r→0

(
ψ(r)− 1

r

)
(19)

Now what is this last (self) term equal to? Let’s first worry about the n = 0 term in the RS
part. Thus we want

lim
r→0

(
erfc(ηr)

r
− 1

r

)
= lim

r→0

1− 2√
π

∫ ηr
0 due−u

2

r
− 1

r

 (20)

= lim
r→0

1− 2√
π

∫ ηr
0 du(1− u2)

r
− 1

r

 (21)

= lim
r→0

1− 2√
π
[ηr − (ηr)3/3]

r
− 1

r

 (22)

= − 2η√
π

(23)

Now we can define a new quantity ξ such that

ξ

L
= lim

r→0

(
ψ(r)− 1

r

)
(24)

=
∑
n6=0

erfc(η|nL|)
|nL|

− 2η√
π

+
4π

L3

∑
k 6=0

e−k
2/4η2

k2
− π

L3η2
(25)

If we make L = 1, we find that ξ is independent of η and the sum converges to ξ = −2.837297
for a cubic lattice. We could derive similar self corrections for arbitrary lattice geometries.
Now we can write out the total potential energy as

U =
1

2

∑
i 6=j

qiqjψ(rij) +
ξ

2L

∑
i

q2
i (26)

We note that the total potential energy is also

U =
1

2

∑
i

qiφ
tot(ri) (27)

Now, what is the potential φtot(ri)? If we insert the formula for ξ and do some re-arranging,
we get

φtot(ri) =
N∑
j=1

qj


′∑
n

erfc(η|rij + nL|)
|rij + nL|

+
(

4π

L3

)∑
k 6=0

e−k
2/4η2

k2
eik·rij


− π

L3η2
Q− 2η√

π
qi (28)
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where the prime on the RS sum indicates the i = j term is omitted when n = 0. The total
energy assembled from this total potential is

U =
1

2

N∑
i,j=1

qiqj


′∑
n

erfc(η|rij + nL|)
|rij + nL|

+
(

4π

L3

)∑
k6=0

e−k
2/4η2

k2
eik·rij


− π

2L3η2
Q2 − η√

π

N∑
i=1

q2
i (29)

We see that when the total charge Q is zero, we get the usual textbook energy.
Consider the case that the net charge on the system is the charge on one ion that we are

interested in. Then Q = q, and we would like to know the change in total potential energy
when we mutate that charge, say from q0 to q1. If ∆q = q1 − q0, then we get

∆U = ∆qφ̂(ri) +
ξ

2L
(q2

1 − q2
0) (30)

where

φ̂(ri) =
N∑
j 6=i

qj

∑
n

erfc(η|rij + nL|)
|rij + nL|

+
(

4π

L3

)∑
k 6=0

e−k
2/4η2

k2
eik·rij

 (31)

We could include the −π/L3η2 correction in this potential, but for the case considered we
can show that this term cancels out in ∆U .

The PDT expression for the change in free energy upon the mutation q0 → q1 is

β∆µex = − ln〈e−β∆U〉q0 (32)

If a second-order cumulant expansion is performed, you should get

β∆µex ≈ β∆q

[
〈φ̂〉q0 +

q0ξ

L

]
− β2

2
∆q2

[
〈(φ̂− 〈φ̂〉q0)2〉q0 −

ξ

βL

]
(33)

after some rearrangements. When these self-energy corrections are made, the electrostatic
part of the free energy converges for remarkably small system sizes (only 16 waters around a
sodium ion, for example). If the initial charge q0 is zero, then the formula for the free energy
change becomes

β∆µex = − ln〈e−βqφ̂〉q0 +
βξq2

2L
(34)

This finite-size shift is apparent in plots in Ch. 5 of our book.
Here we mention a couple more points from HPG’s 1998 paper concerning dielectric

corrections. They say

µtherm ≈ µelec +
1

2
q2

[
−ξ
ε

+
4π(ε− 1)R2

B

3εL3

]
(35)

where

µelec = µsim +
q2ξ

2L
(36)
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as we saw above. This continuum dielectric correction tends to be small. The only part of
any significance is to replace q2ξ/2L with q2ξ(1− 1/ε)/2L. This leads to about a 1% change
in the computed value, and we should consider using that formula.

We should also be aware of a surface correction which is related to the work of polarization
involving the cell total dipole moment. If we have charges and dipoles, and the surrounding
medium has a dielectric constant of εsur, the correction (from the net dipole due to charges
and dipoles in the box) to the total energy is

U sur =
2π

(2εsur + 1)V

(∑
i

qiri

)2

+ 2

(∑
i

qiri

)
·

∑
j

bfpj

+

(∑
i

pi

)2
 (37)

deLeeuw and coauthors make a big deal about this correction. It is claimed in the Ny-
mand/Linse paper that the best choice for charged and/or dipolar systems is ‘tinfoil’ bound-
ary conditions, that is εsur = ∞. Then the surface term drops out. We’ll assume that case
unless there is some compelling reason to change it.

3 Ewald summation for charges + dipoles (permanent

or induced)

We are interested in ions in water, for cases where both the water and ions are polarizable.
In the end we will assume that we have point dipoles which are induced, and no permanent
dipoles. The formulas are basically the same except for the case of induced dipoles there is
an additional term in the energy which is the work to create the polarization. But to start,
we’ll take fixed dipoles just to derive the formulas. The general rule is that we replace qi in
the HPG formula for the total energy with (qi + pi · ∇i). We also have to worry about any
possible new self energies arising from the point dipoles.

First, let’s look at some basic electrostatics for point dipoles. We can think of the
potential due to a point dipole as the limit of two charges which approach each other – the
charges are scaled up as the distance decreases so as to maintain a constant dipole moment
p =

∑
i qiri. Then the potential some distance from these two charges is

ψdip = ψ(r + a)− ψ(r) (38)

Let’s consider the Coulomb potential itself, and worry about PBC later. If we Taylor expand
ψ(r + a), we get

1

|r + a|
≈ 1

|r|
+ a · ∇

(
1

|r|

)
(39)

Taking the limit such that the dipole is fixed, we get

ψdip(r) = −p · ∇
(

1

|r|

)
=

p · r
r3

(40)

for the potential due to the dipole. So that’s where the dipole term comes from in the energy
expression. Now what charge density implies this potential? We can proceed as we would
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for a point charge. If we let the Laplacian act on this potential, it turns out that away from
the point dipole, we get zero. Then we can look at Gauss’s law in the form∫

∇ · EdV =
∫
E · nda = 4πQ (41)

Is there any net charge? What is the field from the dipole potential? If we take the derivative
of the dipole potential, we get

E =
3(p · n)n− p

r3
(42)

where here r is a unit vector in the direction of r. Now from the electrostatics of multipoles
(Jackson), we have

U = qφ(0)− p · E(0) + . . . (43)

so the interaction energy of two dipoles is

U =
p1 · p2 − 3(n · p1)(n · p2)

r3
(44)

We return to the Gauss’s law calculation

E · n = −p · n
r3

+ 3
p · n
r3

= 2
p · n
r3

(45)

Now we integrate this over the surface of a sphere (with the radius fixed) to get

2

r

∫ ∫
p · n sin θdθdφ = 0 (46)

Thus there is no delta function charge density like for the case of a point charge. But this
is obvious, there’s no net charge inside the sphere. What this means is that the hypothet-
ical point dipole should really be considered physically as the limit of two charges coming
together, maintaining a constant net dipole, as we discussed above.

We want to assemble the total energy as we did before, but include all the chg-chg, chg-
dip, and dip-dip terms. And then we want to worry about possible self-interaction energies
that may arise. So our energy formula is

U =
1

2

∑
i 6=j

(qi + pi · ∇i)(qj − pj · ∇i)ψ(rij) + (self terms) (47)

Let’s first consider the potential due to a point dipole in PBC. We know that the potential
due to a single charge is

ψ(r) =
∑
n

erfc(η|r + nL|)
|r + nL|

+
4π

L3

∑
k 6=0

(
e−k

2/4η2

k2

)
eik·r − π

L3η2
(48)

Now we add a second charge, close to the first, with opposite sign. The potential at some
point is then the sum of the two Ewald potentials due to the additivity of electrostatics:

ψdip(r) =
∑
n

erfc(η|r + ∆r + nL|)
|r + ∆r + nL|

−
∑
n

erfc(η|r + nL|)
|r + nL|

+
4π

L3

∑
k 6=0

(
e−k

2/4η2

k2

)
eik·(r+∆r) − 4π

L3

∑
k 6=0

(
e−k

2/4η2

k2

)
eik·r (49)
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If we expand the two terms involving ∆r, assuming ∆r → 0, we can easily see that this
potential is equivalent to

ψdip(r) = −p · ∇ψ(r) (50)

which is the same as the expression for a single charge pair in free space, with the Ewald
potential substituted.

Now let’s go back to our energy expression, and put in the self terms:

U =
1

2

∑
i 6=j

(qi + pi · ∇i)(qj − pj · ∇i)ψ(rij)

+
1

2

∑
i

lim
r→0

[(
q2
i + (qipi − qipi) · ∇i − (pi · ∇i)(pi · ∇i)

)
ψ(ri)− (sing)

]
(51)

Note here we are ignoring the removal of intramolecular electrostatic interactions that is in
the 1998 paper of HPG. We can add those terms later. We will focus now on the last (self)
terms to see what happens with dipoles. The chg-chg part is the same of course. We’ll worry
about getting the correct signs at the end, and first focus on the differentiation operators
ignoring the signs.

We’ll proceed in steps, taking the first derivative, then the second. The application of
p ·∇ times the charge should yield any possible self-energy terms for the chg-dip case (where
a charge and a dipole exist on the same particle). The application of p · ∇ to the Ewald
potential gives

p · ∇ψ(r) = −
∑
n

p · (r + nL)

|r + nL|2

[
2η√
π

e−η
2|r+nL|2 +

erfc(η|r + nL|)
|r + nL|

]

+
4π

L3

∑
k 6=0

e−k
2/4η2

k2
eik·r(ip · k) (52)

For this chg-dip case we can ignore the charge as it is just a constant out front. Then we
have to let the vector r→ 0. For the n 6= 0 part of the RS sum and the k 6= 0 sum, we can
easily see that both of these are zero, since there is always a term to cancel any given term
in the sum. Then we need to focus on the n = 0 term, which is

lim
r→0

[
−p · r

r2

(
2η√
π

e−η
2r2 +

erfc(ηr)

r

)]
(53)

Expand the two terms inside the brackets, and we get

lim
r→0

[
−p · r

r2

(
2η√
π

(1− η2r2) +
1

r
− 2η√

π
+

2η3r2

3
√
π

)]

= lim
r→0

[
−p · r

(
1

r3
− 4η3

3
√
π

)]
(54)

We have to subtract off the 1/r2 singularity, but when that is done, the other term goes to
zero with r. Thus there is no self-term correction for the chg-dip part of the interaction.
Note also that (qipi − qipi) is 0, so maybe the above exercise was a waste.
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Next consider the dip-dip term. After we grind through the derivatives and dot products
for the (p ·∇)(p ·∇)ψ operation, we get (we’ll leave out the sum over dipoles and the factor
of 1/2 for now):

(p · ∇)(p · ∇)ψ =
∑
n

−|p|2

|r + nL|2

(
2η√
π

e−η
2|r+nL|2 +

erfc(η|r + nL|)
|r + nL|

)

+
∑
n

[p · (r + nL)]2

|r + nL|2

(
4η3

√
π

)
e−η

2|r+nL|2

+
∑
n

3[p · (r + nL)]2

|r + nL|4

(
2η√
π

)
e−η

2|r+nL|2

+
∑
n

3[p · (r + nL)]2

|r + nL|4
erfc(−η|r + nL|)
|r + nL|

−4π

L3

∑
k 6=0

e−k
2/4η2

k2
eik·r(p · k)2 (55)

We will also use the theta transformation for r = 0:

4η3

√
π

∑
n

e−η
2|nL|2 =

4π

L3

∑
k

e−k
2/4η2 (56)

which tells us that

4η3

√
π

∑
n6=0

e−η
2|nL|2 − 4π

L3

∑
k 6=0

e−k
2/4η2 = −

(
4η3

√
π
− 4π

L3

)
(57)

We will assume that the dipole vector lies on the x-axis, and that the approach of the
distance vector r→ 0 is perpendicular to that dipole direction. Now examine all the terms
in the above sums by first separating out the n = 0 term. Due to the assumption that the
approach direction is perpendicular to the dipole direction, all of the terms in the sum drop
out except the first (and putting in the correct sign now)

− lim
r→0

−|p|2

r2

(
2η√
π

e−η
2r2 +

erfc(ηr)

r

)
=
|p|2

r3
− 4η3

3
√
π
|p|2 (58)

For all of the rest of the terms, we just set r = 0 and analyze the resulting sums. It looks to
me like the terms

−
(

2η√
π

)∑
n6=0

|p|2|nL|2

|nL|4
e−η

2|nL|2 (59)

and (
2η√
π

)∑
n6=0

3(p · nL)2

|nL|4
e−η

2|nL|2 (60)

and the similar sums involving the erfc terms cancel. That leaves(
4η3

√
π

)∑
n6=0

(p · nL)2

|nL|2
e−η

2|nL|2 − 4π

L3

∑
k 6=0

e−k
2/4η2

k2
(p · k)2 (61)
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We can use the same trick to say that this expression is just

|p|2
(

4η3

3
√
π

)∑
n6=0

e−η
2|nL|2 − |p|2

(
4π

3L3

)∑
k 6=0

e−k
2/4η2 (62)

which yields

− 4η3

3
√
π
|p|2 +

4π

3L3
|p|2 (63)

using our theta transformation trick above.
After we change to the correct (negative) sign again, then the final outcome for the

dip-dip self energy is
|p|2

r3
− 4π

3L3
|p|2 (64)

We have to subtract off the first singular term and we’re left with the second term. Thus
for a system of charges and fixed dipoles, we get for the total electrostatic energy:

U =
1

2

∑
i 6=j

(qi + pi · ∇i)(qj − pj · ∇i)ψ(rij) +
ξ

2L

∑
i

q2
i −

2π

3L3

∑
i

|pi|2 (65)

If we consider a system with fixed dipoles pi and induced dipoles di, then the total energy
includes the work to induce the dipoles also:

U =
1

2

∑
i 6=j

(qi+(pi+di)·∇i)(qj−(pj+dj)·∇i)ψ(rij)+
ξ

2L

∑
i

q2
i−

2π

3L3

∑
i

|(pi+di)|2+
1

2

∑
i

|di|2

αi
(66)

where αi is the polarizability.
The final step in this is to try to relate this back to the discussion in Darden’s paper.

Also, we need to put in the ‘molecular corrections’ as in HPG. Darden and Linse have those
corrections included. Finally, we need to get the proper ∆U for this case.

We can see that the final result above is exactly the same as Darden’s result. We do this
by taking the i = j sums leading to the self energy and putting them back in the sums over
i and j. We’re left with the self term that came from the n = 0 RS term. The final result is:

U =
1

2

N∑
i,j=1

(qi + (pi + di) · ∇i)(qj − (pj + dj) · ∇i)

×


′∑
n

erfc(η|rij + nL|)
|rij + nL|

+
(

4π

L3

)∑
k 6=0

e−k
2/4η2

k2
eik·rij


− π

2L3η2
Q2 − η√

π

N∑
i=1

q2
i

− 2η3

3
√
π

∑
i

|(pi + di)|2 +
1

2

∑
i

|di|2

αi
(67)

This is precisely the same as Darden except for the omission of the intramolecular correction,
and the fact that we allow for a net charge Q in the system.
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4 One polarizable ion in water

Here we work out the case of one polarizable ion in water. Then there is no self-consistency
step for the polarization. We’ll just worry about calculating the energy change ∆U for two
processes 1) charge change of the ion from q + 0 to q1 and 2) polarizability change from α0

to α1. We’ll consider the ion to be the N + 1 particle.
The total electrostatic energy for this case is

U =
1

2

N+1∑
i 6=j

qiqjψ(rij) +
N∑
i=1

qid · ∇N+1ψ(ri,N+1)

+
ξ

2L

N+1∑
i=1

q2
i −

2π

3L3
|d|2 +

1

2

|d|2

α
(68)

If we just change the charge state of the single ion, keeping the polarizability constant, we
get back the same ∆U as we got before:

∆U = ∆qφ̂(ri) +
ξ

2L
(q2

1 − q2
0) (69)

Note that when we calculate a free energy, the sampling will change depending on the ion
polarizability, so the free energy may depend on the chosen α, but not the ∆U for a given
configuration.

Now what about if we keep the charge fixed but change the ion polarizability? Then the
ion-ion interactions don’t change, but the chg-dip, self, and charging terms do change:

∆U =
N∑
i=1

qi(d1 − d0) · ∇N+1ψ(ri,N+1)

− 2π

3L3
(|d1|2 − |d0|2)

+
1

2

(
|d1|2

α1

− |d0|2

α0

)
(70)

For this simple case d = αEN+1. I think the electric field at the N + 1 ion should look like

EN+1 = −
N∑
i=1

qi∇N+1ψ(ri,N+1) +
4π

3L3
d (71)

The first term is the field due to all the charges on the waters, and the second term is the
field from all the image dipoles. This comes from the energy of interaction of the dipole with
the field created by all the periodic images.

Since the induced dipole depends on the field at the ion, we can rearrange to get the net
field as

EN+1 =
(

4πα

3L3
− 1

)−1 N∑
i=1

qi∇N+1ψ(ri,N+1) (72)
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Then we can insert this formula in the above expression for ∆U to get

∆U = −1

2

[
α1

(1− 4πα1/3L3)
− α0

(1− 4πα0/3L3)

](
N∑
i=1

qi∇N+1ψ(ri,N+1)

)2

(73)

after some rearrangements. This has the appearance of a Clausius-Mossotti expression. We
can see that, if we increase the polarizability, then ∆U becomes more negative. The last
term is the square of the field of all the water charges at the location of the polarizable
ion. That term should be available from the computation of the forces during the dynamics.
Since the polarizability is of atomic size, and we divide by the system volume, the above
expression should be very close to

∆U = −1

2
[α1 − α0]

(
N∑
i=1

qi∇N+1ψ(ri,N+1)

)2

(74)

All of the ion-ion forces should be available from a standrad MD code. We’ll need to
either use a polarizable code to do the dynamics or write our own code for the charge induced
dipole forces between the waters and the polarizable ion. In these expressions we have a
standard induced point dipole, and haven’t included any Thole-type damping functions etc
as discussed by Ren/Ponder (JPCB v. 107 p. 5933 2003, Xantheas (JPCA v. 110 p. 4100
2006), and Masia (JCP v. 128 p. 184107 2008). This may create problems with ‘over-induced’
dipoles (polarization catastrophe), or may not since we don’t have a self-consistency step
here. We should be careful to examine the induced dipole distributions for the ion as did
Masia.

5 Total energy pieces

Let’s go back to Eq. (66) for the total energy of a system of charges and permanent and
induced dipoles. Here we’ll assume there are no induced dipoles, just to simplify the notation.
Consider the various parts of the total energy: chg-chg, chg-dip, and dip-dip.

The total energy is

U =
1

2

∑
i 6=j

(qi + pi · ∇i)(qj − pj · ∇i)ψ(rij) +
ξ

2L

∑
i

q2
i −

2π

3L3

∑
i

|pi|2 +
1

2

∑
i

|pi|2

αi
(75)

First let’s look at the chg-dip interactions:

1

2

∑
i 6=j

(qjpi · ∇i − qipj · ∇i)ψ(rij) (76)

In the end I get for this contribution

∑
i 6=j

{∑
n

qipj · (rij + nL)

|rij + nL|3

(
2η√
π
|rij + nL|e−η2|rij+nL|2 + erfc(η|rij + nL|)

)
(77)

+
(

4π

L3

)
qi
∑
k6=0

e−k
2/4η2

k2
[sin(k · rij)] (pj · k)

}
(78)
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For the dip-dip interactions, I get

1

2

∑
i 6=j

{∑
n

[
pi · pj
|rij + nL|3

(
2η√
π
|rij + nL|e−η2|rij+nL|2 + erfc(η|rij + nL|)

)
(79)

−3(pi · (rij + nL))(pj · (rij + nL))

|rij + nL|5
× (80)(

4η3

3
√
π
|rij + nL|3e−η

2|rij+nL|2 +
2η√
π
|rij + nL|e−η2|rij+nL|2 + erfc(η|rij + nL|)

) ]
(81)

+
(

4π

L3

)∑
k6=0

e−k
2/4η2

k2
eik·rij(pi · k)(pj · k)

}
(82)

This gives the total energy in a form which can be used to insert the damping factors used
by Thole (see below for the induced dipole contributions).

6 Another form for the total energy

Let’s look at the total energy again, but now take the case where there are charges and
induced dipoles, but no permanent multipole moments. We can extend this easily to include
the electrostatic field from the permanent multipole moments also. The total energy is

U =
1

2

∑
i 6=j

(qi + di · ∇i)(qj − dj · ∇i)ψ(rij) +
ξ

2L

∑
i

q2
i −

2π

3L3

∑
i

|di|2 +
1

2

∑
i

|di|2

αi
(83)

We follow Xantheas (JCP 110, 4566, 1999) and rearrange this expression by inserting di =
αiE

tot
i into the last term (the energy to induce the dipoles). When we make that substitution,

we get a very simple form for the total energy

U = U cc +
1

2

∑
i 6=j

qjdi · ∇iψ(rij) = U cc − 1

2

∑
i 6=j

qjdi · Ec
i(ri) (84)

where U cc is the usual chg-chg interaction energy and Ec
i(ri) is the field at the site i due to

all the other fixed charges (sum over j).
Here we assumed that the field at the site i is just due to all the other charges, but that

field could also include the field due to permanent dipoles, quadruopoles etc. That is what
Ren and Ponder have in their AMOEBA paper – it’s why they have only terms involving
dot products of induced and permanent dipoles etc., and no induced dip-induced dip dot
products. (Notice the dipole self energy goes away.) Xantheas calls the term −1

2

∑
i 6=j qjdi ·

Ec
i(rij) the polarization energy, which is always negative. Xantheas calls the work to induce

the dipoles the induction energy. I think Stone calls the Xantheas’s polarization energy the
induction energy, so the terminology seems a bit confused in the literature. Notice that
the dispersion energy is an entirely different quantum mechanical object involving induced
dipoles.

The formula I got above for ∆U for changing the polarizability for the case of a single
polarizable ion above falls out easily from the expression above.
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7 Thole damping

According to Ren and Ponder, a damping term should be inserted into the real-space part
of the interaction. For this chg-dip term they call this damping factor λ3:

λ3 = 1− exp(−au3) (85)

where a is a constant taken as 0.39 by Ren/Ponder, and

u = rij/(αiαj)
1/6 (86)

Then we get

∑
i 6=j

{
λ3,ij

∑
n

qipj · (rij + nL)

|rij + nL|3

(
2η√
π
|rij + nL|e−η2|rij+nL|2 + erfc(η|rij + nL|)

)
(87)

+
(

4π

L3

)
qi
∑
k 6=0

e−k
2/4η2

k2
[sin(k · rij)] (pj · k)

}
(88)

for the chg-dip interactions with the damping.
Putting in the damping for the dip-dip interactions, we get

1

2

∑
i 6=j

{∑
n

[
λ3,ijpi · pj
|rij + nL|3

(
2η√
π
|rij + nL|e−η2|rij+nL|2 + erfc(η|rij + nL|)

)
(89)

−3λ5,ij(pi · (rij + nL))(pj · (rij + nL))

|rij + nL|5
× (90)(

4η3

3
√
π
|rij + nL|3e−η

2|rij+nL|2 +
2η√
π
|rij + nL|e−η2|rij+nL|2 + erfc(η|rij + nL|)

) ]
(91)

+
(

4π

L3

)∑
k6=0

e−k
2/4η2

k2
eik·rij(pi · k)(pj · k)

}
(92)

where
λ5 = 1− (1 + au3) exp(−au3) (93)

8 Corrections for the molecular ion case

Finally, we add in the corrections to the total energy from removing the solute intramolecular
energies from the total electrostatic energy. This follows HPG (1998). This won’t be an issue
if we have one monatomic polarizable ion, but will be necessary if we have a molecular ion
like NO−3 .
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