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lon goes into water:

@ Not so simple as it seems

@ Zhou/Stell/Friedman/Pratt theorem: if two conducting
phases in contact, the interfacial potential between them is
determined by the bulk hydration free energies of the ions in
each phase (also Landau/Lifshitz vol. 8 “Galvanic cell”).

@ Can we extract single-ion bulk hydration free energies from
available data (conventional FEs and Coe cluster data)?

@ Can we learn something about specific ion hydration in the
process?



Outline:

@ lon specificity: ion/water interactions involve quantum effects

@ Classical models can still reveal some of the physics of
hydration

e Case study in ion specificity: entropies (classical)

@ Length scales and interfacial potentials in ion hydration: QM
is required for accurate estimation of more collective effects,
even though CM can give some insights



The water molecule (PNNL figure):

The surface potential of SPCE water is -0.6 V; QM water is 3.5 V.
Neither of these is the electrochemical surface potential.

b)

point
\ charges
&
VAPOR |
LIQUID
electronic

structure




The water molecule states:
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The water molecule HOMO:

Crudely speaking, the overlap of a cation s-state with the water
HOMO is poor with the cation near the oxygen (small CT).
Hydrogens are H-bonded to anions, greater orbital overlap and
chemical character (larger CT). (The water LUMO is a Rydberg
state, above).




Charge transferred to/from an ion bound to one water

Method // lon KT Na™ Lit Br- Cl~ F-
AIMAII 0.021 0.027 0.033 -0.059 -0.060 -0.079
Henkelman 0.017 0.025 0.030 -0.052 -0.052 -0.064

AIM-derived charge transfer values (in €), computed with AIMAII
and the grid-based Henkelman method. Positive means ion gets
some electron density. Collective effects in bulk (ongoing); total for
Cl~ =~ —0.2 e (Zhao, Rogers, Beck; Asher expt).



How does the water charge change?

o Cations: water oxygen gains some electron density, hydrogens
lose electron density symmetrically. Net loss of electron
density.

@ Anions: water oxygen gains more electron density, H-bonded
hydrogen loses electron density, distant hydrogen gains some
electron density. Net gain of electron density.

@ This is only for one water, condensed phase shows collective
effects.

@ Interestingly for anions, first-shell waters are slightly
underpolarized relative to bulk (Masia, JCTC, 2009)



QTAIM analysis of ion/water bond critical point

o

At bond critical point, Vp =0
Charge density is relatively low, F~ is higher
V?2p is positive — ‘closed shell’ character

Energy per electron is positive for cations, negative for anions
(more chemical)

Eigenvalues of Hessian of p indicate closed shell character, but
anions more chemical; again F~ anomalously chemical
Conclusion: ion/water interactions for anions show more CT,

more chemistry, with F~ anomalously chemical (Collins et al
2007, McCoy et al 2006, Thompson/Hynes 2000).



Belpassi et al. (anions)

Aq(z) = /Oo dx /00 dy /z dz' Ap(x,y,Z) (1)
F~ (blue), CI~ (green), Br~ (red)
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Ap isosurface, F~ /water

This is what a polarizable model attempts to mimic (the resulting
potential outside the molecule). Water is on the left, F~ on the
right. Gray is enhanced electron density, red is depletion (.001 au).
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Ap contour, F~ /water
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SAPT partitioning of interaction energies:

lon Elst Exch  Disp Ind CT  AEsppr AE[_-’ﬁ
K+ -19.61 837 -228 -463 -024 -18.14 -17.70
Na® -2532 867 -1.35 -650 0.10 -24.28  -23.87
Lit  -3336 1275 -1.08 -13.81 0.59 -35.35 -34.43
Br— -1652 1279 -429 -541 -1.47 -1296 -12.77
Cl— -1946 1583 -472 -731 -1.84 -15.05 -14.75
F~ -45.13 4959 -859 -27.88 -7.09 -2749 -27.05

SAPT2+3-CT energy decomposition analysis of the ion-water

dimers with accompanying supermolecular and perturbation theory

binding energies. CT estimate from method by Stone. Units in

kcal mol—1.



Water models:

@ Classical point charge models: electrostatics and ion size
@ Addition of higher distributed multipoles (Stone)

@ Polarization in classical models (most previous pol models
have over-polarized anions by 2x). New CT models (Rick).

@ The form of the LJ repulsive core is too repulsive
(Cahill/Parsegian), and induction/dispersion only at crude
level

@ Quantum models get the charge density right, but are severely
limited
@ What to do?



Partitioning:

lon specificity is relatively local
Far-field response is relatively Gaussian
Local interactions are specific and can have chemical aspect

We can partition free energies (QCT, LMFT), atoms in
molecules (QTAIM-Bader, Partition Theory-Wasserman),
interactions (SAPT)

@ Partitioning helps reveal origins of collective behavior

o Classical models can still be helpful (below)



lon specificity (expt entropy):

Kosmotropes and chaotropes: entropy change to convert a water
molecule into an ion (K. Collins, et al., 2007).




lon specificity (computed, classical SPC):

LMFT partitioning of ASe, (ES): local and far-field parts. Cations
are ‘more chaotropic', what keeps them from the water surface?
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lon specificity (computed, classical):

lon pairs vs. rare gas pairs, ASsop
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Quasi-chemical theory (QCT):

Length-scale partitioning of free energy

Bu® — In <e*,3UHS()‘)> Cin <e*ﬁUHS()\)>0 —In <e*5Au>U (
HS

= Inxp(A) — In po(A) — In <e_ﬁAU>U ()
s

= AHEO) + 1E () + uge(] = —In (98Y)  (20)

1) Inner-shell 2) Packing 3) Long-ranged terms (total A
indepedent)



Cl- all terms:

SPC/E water, Horinek/Netz ions
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Anion IS data:

lon specificity followed by linearity (ion-dipole, not macroscopic).
Macroscopic should be sum of A2 and A~! terms to balance P and
LR. The ‘universal’ length scale occurs at the cavity size where the

cavity formation free energy cancels a Born model estimate of the
LR term.

Free Energy (kcal/mol)




Common length scale for IS?

e Cations and anions show consistent length scale where IS
equals the total free energy, but length differs between cations
and anions

@ That free energy in periodic boundaries is termed the
‘intrinsic’ free energy

@ It includes information from the ion-water boundary, but does
not include a distant water liquid-vapor interface

@ When the cation/anion data is shifted by £9.5 kcal/mol-e all

IS free energies collapse to a single length scale of 6.15 A.
This is the cavity potential in PBC (SPCE).



The electrochemical potential

@ Electrochemical definition
p=kTIn [pN*] 4+ p = kT In [pA®] + e + adsp  (3)

® ¢gp is large positive in real water (3.5 V)
@ Re-definition (Harder and Roux, Vorobyov and Allen)

B = pg + qonp (4)

® ¢np = Gip + ¢sp = —11.6 kcal/mol-e (-0.5 V) is net potential
at center of uncharged ion (LPS approach, Ashbaugh and
Asthagiri, 2008)

@ This is the ‘electrochemical surface potential’: yields exact
shift between Marcus (-253.4 kcal/mol) and Coe (-265.9
kcal/mol) proton free energies.



Ashbaugh local potential (Classical PBC, 2000):
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Results

Based on above analysis, ¢, for SPC/E is -4.3 kcal /mol-e
(-0.20 V)

Crude QM prediction: scale by 3.1/2.35 — -5.7 kcal /mol-e
Correct sign but factor of 2 off

This suggests SPC/E water orientations near the cavity are
decent but not perfect

Expt: including a cavity repulsion for water H's pushes ¢,
much closer to experiment, -10.5 kcal/mol-e vs. -11.6
kcal/mol-e (-0.5 V). Also almost perfectly Gaussian



Partitioning the cavity potential
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Figure: Black: QM potential profile. Red: CM potential profile. The
mean potential at the cavity center is -0.5 V (expt). Quadrupole trace
makes the difference. QM necessary for accurate ¢,, and correct ¢gp.



Quasi-chemical theory (QCT):

Rearranging the QCT, a fundamental formula for the free energy
that links accurate QM for the inner-shell with Ninham/Parsegian
approach for interaction of inner-shell cluster with medium (Pratt
et al.):

sk = —kTIn K iy + kT In px(n) + u$y, — sy (5)

Terms:

Accurate QM for formation of XW,, cluster in gas phase.

Probability of inner-shell occupation in the medium

Solvation free energy of the cluster: continuum dielectric
response (all frequencies)?

Free energy of water in water, known



Summary:

@ lon specificity is relatively local
@ Classical models incorporate some of the physics

@ But the interactions, especially near the ion, involve complex
charge rearrangements, some chemistry, and QM dispersion

e Partitioning of interactions is a first step (Parsons, Duignan,
Ninham)

@ The QCT is a helpful theoretical framework for partitioning

@ Future: Partitioning and The Law of Matching Water
Affinities



Interfacial potls

e Even with the Zhou/Stell /Friedman/Pratt theorem...

@ Crucial in setting consistent scale for single-ion bulk hydration
free energies: electrochemistry

@ Larger magnitude than changes in surface potl due to
changing ion concentration

@ If such a net (electrochemical) surface potential exists (-0.5
V), it results in one part of FE driving force: pushes anions
toward water surface, cations away (protons are special).

@ The potential can alter the near-surface auto-ionization of
water

@ Are there longer-ranged collective effects? Exclusion zone of
Pollock: protons expelled, anions remain behind?
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Ap isosurface, F~ /water

A larger density isosurface (0.005 au vs. 0.001 above)
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Belpassi et al. (cations)

/ dx/ dy/ dz' Ap(x,y,Z) (6)

* (blue), Na™ (green), KT (red)
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Water atomic basin CT:

Atom // lon K+ Na* Lit Br— Cl- F-
O (AIMAI) 0.065 0.081 0.113 0.095 0.107 0.187
O (Henkelman) 0.0r1 0.082 0.105 0.102 0.111 0.187
Hpona (AIMAII) -0.043 -0.054 -0.073 -0.057 -0.074 -0.172
Hpond (Henkelman) -0.044 -0.054 -0.068 -0.069 -0.084 -0.183
Her (AIMAIL) -0.043 -0.054 -0.07v3 0.022 0.028 0.063

Hrr (Henkelman) -0.044 -0.054 -0.068 0.019 0.025 0.060

For cations, the water oxygen has enhanced electron density while
the two hydrogens show depletion (symmetrically). For anions, the
water oxygen shows a larger enhancement, the H-bonded hydrogen
shows a depletion, and the distant hydrogen shows some
enhancement.



QTAIM analysis of ion/water bond critical point

lon  r(H0-bcp) P vZp H/p G/p V/p VI/G  [Mi/As]
KT 1.28 0.02133 0.11071 0.17206 1.12564 -0.95359 0.84715 0.16
Nat 1.22 0.02626 0.18296 0.23305 1.50876 -1.27609 0.84578 0.16
Lit 1.15 0.03898 0.29118 0.22140 1.64597 -1.42458 0.86549 0.18
Br— 0.74 0.02354 0.04840 -0.09813 0.61215 -0.71028 1.16031 0.26
Cl— 0.68 0.02980 0.06402 -0.12785 0.66510 -0.79295 1.19223 0.27
F™ 0.40 0.08925 0.10227 -0.58611 0.87249 -1.45860 1.67176 0.41

Atoms in molecules (AIM) data at the X-W bond critical point:
chemical or closed shell? lon/water bonds have closed shell
character (positive Laplacian), but anion/water (H-bond) case is
‘more chemical’, especially F~ (ratio of potential to kinetic energy,
per electron). Eval ratios (perp/par) of p Hessian give similar
picture; if ratio > 1, then strongly chemical.



Classical and quantum ¢,

Figure: Black full: QM potential distribution. Black dash: CM potential
distribution. The mean potential at the cavity center is between -9.9
(QM) and -7.5 (CM) kcal/mol-e at cluster center. Red curves: near
cluster surface.
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Cation X-O rdfs:

SPC/E water, Horinek/Netz ions
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Anion X-O rdfs:

g(r)




What is ¢pp?

Ashbaugh and Asthagiri (building on Latimer, Pitzer, Slansky) —
-11.6 kcal/mol-e. Agrees exactly with shift between Marcus and
Coe et al. estimates of free energy of the proton.
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Water index of refraction:

Seet. 7.5 Frequency Dispersion Characteristics of Diclectri
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