The Geology of Fossil Fuels

By

Nayera Abelaziz & Upasana Banerejee

* Geology of fossil fuels

History of formation

Physical structure and substance

Process to make these usable

* What are fossil fuels?

- Fuels formed by natural resources such as anaerobic decomposition of buried dead organisms.
- These were formed hundreds of million years ago,

mainly in carboniferous period. (345-286 million

years ago)

Some deposits were found during late cretaceous period. (70 million years ago).

Era	Period	Epoch	of years	of years ago
CENOZOIC	Quaternary	Recent	Last 5000 years	
		Pleistocene	2.5	25 -
		Pliocene	45	7.
		Miocene	19	26 -
		Oligocene	12	38 -
	Tertiary	Eocene	16	54 -
		Paleocene	11	- 65
MESOZOIC	Cretaceous		71	136
	Jurassic		54	190
	Triassic		35	225
9 ¹ 5	Permian		55	220
PALEOZOIC	Carbonifer-	Pennsylvanian	45	325
	rous	Mississippian	20	345
	Devoman		50	305
	Silurian		35	430
	Odovician		70	500
	Cambrian		70	570
PRECAMBRI	AN		4030	4600

Table 25.1 : Geological Time Scale (Redrawn from Taylor, 1981).

*Types of Fossil Fuels

Coal
Oil
Natural gas.

*****Origin of Coal

In carboniferous period, land was covered with swamps filled with huge trees, leafy plants.

As the trees and plants died, sank to the bottom of the swamps of oceans to form layers of spongy materials called eat.

Over many hundred years, peat was covered by sand, clay which turned into sedimentary rocks.

More and more rock piled on top of old rock and began to press on the peat. It was squeezed and eventually turned into fossil fuels.

*Coal : Physical structure and substance

 \succ Coal is made up of carbon, hydrogen, oxygen, nitrogen and sulphur.

 \succ The three main types of coal are anthracite, bituminous and lignite.

Anthracite coal is the hardest and has more carbon.

Lignite is the softest and is low in carbon but high in hydrogen and oxygen content.

Bituminous is in between anthracite and lignite.

Types of Coal (Metamorphic grade)

Based on pressure applied to dead biotic materials

1. **Peat** is a fibrous, soft, spongy substance in which plant remains are easily recognizable. It contains a large amount of water and must be dry before use.

2. **Lignite** is formed when peat is subjected to increased vertical pressure from accumulating sediments.

3. Bituminous Coal is greatly used in industry as a source of heat energy.

4. Anthracite is also known as "hard coal" because it is hard and has a high lustre.

Coal resources and reserves

Quality Economics Safety

* Geology of coal mining

- Underground mining: far beneath the ground surface, accessed by tunnels
- Surface mining: close to ground surface, accessed k excavation

World's top hard coal producers

	Million tonnes (Mt)
China	3,162
USA	932
India	538
Australia	353
South Africa	255
Russia	248
Indonesia	173
Kazakhstan	105
Poland	77
Colombia	74

2014 U.S. Coal Production by State

* Origin of petroleum and natural gas

Petroleum as a substance

- Yellow to black liquid found beneath earth's surface
- Petroleum covers both naturally unprocessed crude oil and petroleum products separated by fractional distillation.
- Mostly recovered by oil drilling.

Composition by weight				
Element	Percent range			
Carbon	83 to 85%			
Hydrogen	10 to 14%			
Nitrogen	0.1 to 2%			
Oxygen	0.05 to 1.5%			
Sulfur	0.05 to 6.0%			
Metals	< 0.1%			

Composition by weight (4types)					
Hydrocar bon	Average	Range			
Alkanes (paraffin s)	30%	15 to 60%			
Naphthen	49%	30 to 60%			
Aromatics	15%	3 to 30%			
A 1 11 1	C 0/	remainde			

Composition by woight (Atypos)

Petroleum geology

Principally concerned with 7 key elements in the sedimentary basin:

- 1. Source (quantification of organo-rich rocks)
- 2. Reservoir (Unit with high permeability: Porosity check)
- 3. Seal (Unit with low permeability: chalk, shale, evaporates: effectiveness quantification
- 4. Trap (Ensuring position of reservoir and seal)
- 5. Timing (Timing of hydrocarbon generation and expulsion)
- 6. Maturation (analyzing thermal history of source rock to predict timing)
- 7. Migration (Analyzing how to safely move from source to reservoirs)

Petroleum production

***** Chemical Composition of Natural Gas

Natural gas is a naturally occurring gas mixture, consisting mainly of **methane.**

Component	Typical Analysis (mole %)	Range (mole %)
Methane	95.0	87.0 - 97.0
Ethane	3.2	1.5 - 7.0
Propane	0.2	0.1 - 1.5
iso - Butane	0.03	0.01 - 0.3
normal - Butane	0.03	0.01 - 0.3
iso - Pentane	0.01	trace - 0.04
normal - Pentane	0.01	trace - 0.04
Hexanes plus	0.01	trace - 0.06
Nitrogen	1.0	0.2 - 5.5
Carbon Dioxide	0.5	0.1 - 1.0
Oxygen	0.02	0.01 - 0.1
Hydrogen	trace	trace - 0.02

https://www.uniongas.com

Geology of Natural Gas

- Gas-rich shale is the source rock for many natural gas resources, but, until now, has not been a focus for production.
- Conventional gas accumulations occur when gas migrates from gas-rich shale into an overlying sandstone formation, and then becomes trapped by an overlying impermeable formation, called the seal.
- Tight sand gas accumulations occur where gas migrates from a source rock into a sandstone formation, but is limited in its ability to migrate upward due to reduced permeability in the sandstone.
- Coalbed methane does not migrate from shale, but is generated during the transformation of organic material to coal.

* Natural gas Production

Further details about natural gas

Figure 5. Estimated proved natural gas reserves, as of January 1, 2015 trillion cubic feet Russia Iran Qatar United States Saudi Arabia Turkmenistan United Arab Emirates Venezuela Nigeria China eia 500 1,000 1,500 0 2.000

Source: Oil & Gas Journal, "Worldwide Look at Reserves and Production," December 1, 2014.

Threat from fossil fuel

Information Sources

http://www.ucsusa.org

http://www.eia.gov/

https://www.wikipedia.org

https://www.uniongas.com