
A Byte of Python

Swaroop C H

ii

Dedication

To Kalyan Varma46 and many other seniors at PESIT47 who introduced us to GNU/

Linux and the world of open source.

To the memory of Atul Chitnis48, a friend and guide who shall be missed greatly.

To the pioneers who made the Internet happen49. This book was first written in 2003.

It still remains popular, thanks to the nature of sharing knowledge on the Internet as

envisioned by the pioneers.

46 http://www.kalyanvarma.net/
47 http://www.pes.edu/
48 http://www.nextbigwhat.com/atul-chitnis-obituary-297/
49 http://www.ibiblio.org/pioneers/index.html

http://www.kalyanvarma.net/
http://www.pes.edu/
http://www.nextbigwhat.com/atul-chitnis-obituary-297/
http://www.ibiblio.org/pioneers/index.html
http://www.kalyanvarma.net/
http://www.pes.edu/
http://www.nextbigwhat.com/atul-chitnis-obituary-297/
http://www.ibiblio.org/pioneers/index.html

iii

Table of Contents

 .. ix

1. Welcome ... 1

1.1. Who reads A Byte of Python? .. 1

1.2. Academic Courses .. 10

1.3. License .. 10

1.4. Read Now ... 11

1.5. Buy The Book ... 11

1.6. Download .. 11

1.7. Read the book in your native language .. 12

Preface .. xiii

1. Who This Book Is For ... xiii

2. Official Website .. xiii

3. Something To Think About .. xiii

2. Introduction ... 15

2.1. Features of Python ... 15

2.2. Python 2 versus 3 .. 17

2.3. What Programmers Say ... 18

3. Installation ... 19

3.1. Installation on Windows .. 19

3.1.1. DOS Prompt ... 19

3.1.2. Running Python prompt on Windows ... 20

3.2. Installation on Mac OS X .. 20

3.3. Installation on GNU/Linux ... 20

3.4. Summary ... 21

4. First Steps ... 22

4.1. Using The Interpreter Prompt ... 22

4.2. Choosing An Editor ... 23

4.3. PyCharm ... 24

4.4. Vim .. 33

4.5. Emacs ... 33

4.6. Using A Source File ... 33

4.7. Getting Help .. 36

4.8. Summary ... 36

5. Basics .. 37

5.1. Comments ... 37

5.2. Literal Constants ... 37

A Byte of Python

iv

5.3. Numbers ... 38

5.4. Strings ... 38

5.4.1. Single Quote ... 38

5.4.2. Double Quotes .. 38

5.4.3. Triple Quotes .. 38

5.4.4. Strings Are Immutable .. 39

5.4.5. The format method ... 39

5.4.6. Escape Sequences ... 41

5.4.7. Raw String .. 42

5.5. Variable ... 42

5.6. Identifier Naming ... 42

5.7. Data Types ... 43

5.8. Object .. 43

5.9. How to write Python programs ... 43

5.10. For PyCharm .. 43

5.11. For other editors ... 44

5.12. Example: Using Variables And Literal Constants 44

5.13. Logical And Physical Line ... 45

5.14. Indentation .. 47

5.15. Summary ... 48

6. Operators and Expressions .. 49

6.1. Operators .. 49

6.2. Shortcut for math operation and assignment .. 52

6.3. Evaluation Order ... 52

6.4. Changing the Order Of Evaluation ... 54

6.5. Associativity .. 54

6.6. Expressions ... 54

6.7. Summary ... 55

7. Control Flow .. 56

7.1. The if statement .. 56

7.2. The while Statement ... 58

7.3. The for loop .. 60

7.4. The break Statement .. 61

7.5. The continue Statement .. 62

7.6. Summary ... 63

8. Functions ... 64

8.1. Function Parameters ... 65

8.2. Local Variables ... 66

A Byte of Python

v

8.3. The global statement .. 67

8.4. Default Argument Values .. 68

8.5. Keyword Arguments .. 69

8.6. VarArgs parameters .. 70

8.7. The return statement .. 70

8.8. DocStrings .. 71

8.9. Summary ... 73

9. Modules ... 74

9.1. Byte-compiled .pyc files .. 76

9.2. The from … import statement ... 76

9.3. A module’s name .. 76

9.4. Making Your Own Modules .. 77

9.5. The dir function ... 79

9.6. Packages .. 80

9.7. Summary ... 81

10. Data Structures ... 82

10.1. List .. 82

10.2. Quick Introduction To Objects And Classes ... 82

10.3. Tuple ... 84

10.4. Dictionary .. 86

10.5. Sequence .. 88

10.6. Set ... 91

10.7. References .. 91

10.8. More About Strings ... 93

10.9. Summary ... 94

11. Problem Solving .. 95

11.1. The Problem ... 95

11.2. The Solution .. 96

11.3. Second Version .. 99

11.4. Third Version .. 101

11.5. Fourth Version .. 103

11.6. More Refinements ... 105

11.7. The Software Development Process .. 105

11.8. Summary ... 106

12. Object Oriented Programming .. 107

12.1. The self ... 108

12.2. Classes ... 108

12.3. Methods .. 109

A Byte of Python

vi

12.4. The init method ... 110

12.5. Class And Object Variables .. 111

12.6. Inheritance .. 114

12.7. Summary ... 117

13. Input and Output ... 118

13.1. Input from user ... 118

13.1.1. Homework exercise .. 119

13.2. Files .. 119

13.3. Pickle .. 121

13.4. Unicode ... 122

13.5. Summary ... 123

14. Exceptions ... 124

14.1. Errors .. 124

14.2. Exceptions ... 124

14.3. Handling Exceptions ... 125

14.4. Raising Exceptions ... 126

14.5. Try … Finally .. 127

14.6. The with statement ... 128

14.7. Summary ... 129

15. Standard Library ... 130

15.1. sys module .. 130

15.2. logging module ... 131

15.3. Module of the Week Series .. 132

15.4. Summary ... 133

16. More .. 134

16.1. Passing tuples around .. 134

16.2. Special Methods ... 134

16.3. Single Statement Blocks ... 135

16.4. Lambda Forms .. 136

16.5. List Comprehension .. 136

16.6. Receiving Tuples and Dictionaries in Functions 137

16.7. The assert statement .. 137

16.8. Decorators ... 138

16.9. Differences between Python 2 and Python 3 .. 140

16.10. Summary ... 140

17. What Next ... 141

17.1. Next Projects .. 141

17.2. Example Code .. 142

A Byte of Python

vii

17.3. Advice ... 142

17.4. Videos ... 142

17.5. Questions and Answers .. 142

17.6. Tutorials .. 143

17.7. Discussion ... 143

17.8. News ... 143

17.9. Installing libraries .. 143

17.10. Creating a Website ... 144

17.11. Graphical Software ... 144

17.12. Summary of GUI Tools ... 145

17.13. Various Implementations ... 145

17.14. Functional Programming (for advanced readers) 146

17.15. Summary ... 146

18. Appendix: FLOSS ... 148

19. Appendix: History Lesson ... 153

19.1. Status Of The Book .. 153

20. Appendix: Revision History ... 155

21. Translations ... 158

21.1. Arabic .. 158

21.2. Brazilian Portuguese ... 158

21.3. Catalan .. 158

21.4. Chinese ... 159

21.5. Chinese Traditional ... 160

21.6. French ... 160

21.7. German ... 161

21.8. Greek .. 162

21.9. Indonesian ... 162

21.10. Italian .. 163

21.11. Japanese ... 163

21.12. Korean .. 163

21.13. Mongolian .. 164

21.14. Norwegian (bokmål) .. 164

21.15. Polish .. 165

21.16. Portuguese .. 165

21.17. Romanian .. 165

21.18. Russian ... 165

21.19. Ukranian .. 166

21.20. Serbian .. 166

A Byte of Python

viii

21.21. Slovak ... 166

21.22. Spanish ... 166

21.23. Swedish ... 167

21.24. Turkish .. 167

22. Translation Howto ... 168

ix

"A Byte of Python" is a free book on programming using the Python language. It serves

as a tutorial or guide to the Python language for a beginner audience. If all you know

about computers is how to save text files, then this is the book for you.

1

Chapter 1. Welcome

1.1. Who reads A Byte of Python?

Here are what people are saying about the book:

This is the best beginner’s tutorial I’ve ever seen! Thank you for your

effort.

— Walt Michalik1

The best thing i found was "A Byte of Python", which is simply a brilliant

book for a beginner. It’s well written, the concepts are well explained with

self evident examples.

— Joshua Robin2

Excellent gentle introduction to programming #Python for beginners

— Shan Rajasekaran3

Best newbie guide to python

— Nickson Kaigi4

start to love python with every single page read

— Herbert Feutl5

perfect beginners guide for python, will give u key to unlock magical world

of python

— Dilip6

I should be doing my actual "work" but just found "A Byte of Python". A

great guide with great examples.

1 mailto:wmich50@theramp.net
2 mailto:joshrob@poczta.onet.pl
3 https://twitter.com/ShanRajasekaran/status/268910645842423809
4 https://twitter.com/nickaigi/status/175508815729541120
5 https://twitter.com/HerbertFeutl/status/11901471389913088
6 https://twitter.com/Dili_mathilakam/status/220033783066411008

mailto:wmich50@theramp.net
mailto:joshrob@poczta.onet.pl
https://twitter.com/ShanRajasekaran/status/268910645842423809
https://twitter.com/nickaigi/status/175508815729541120
https://twitter.com/HerbertFeutl/status/11901471389913088
https://twitter.com/Dili_mathilakam/status/220033783066411008
mailto:wmich50@theramp.net
mailto:joshrob@poczta.onet.pl
https://twitter.com/ShanRajasekaran/status/268910645842423809
https://twitter.com/nickaigi/status/175508815729541120
https://twitter.com/HerbertFeutl/status/11901471389913088
https://twitter.com/Dili_mathilakam/status/220033783066411008

Welcome

2

— Biologist John7

Recently started reading a Byte of python. Awesome work. And that too

for free. Highly recommended for aspiring pythonistas.

— Mangesh8

A Byte of Python, written by Swaroop. (this is the book I’m currently

reading). Probably the best to start with, and probably the best in the

world for every newbie or even a more experienced user.

— Apostolos9

Enjoying Reading #ByteOfPython by @swaroopch best book ever

— Yuvraj Sharma10

Thank you so much for writing A Byte Of Python. I just started learning

how to code two days ago and I’m already building some simple games.

Your guide has been a dream and I just wanted to let you know how

valuable it has been.

— Franklin

I’m from Dayanandasagar College of Engineering (7th sem, CSE). Firstly

i want to say that your book "The byte of python" is too good a book for a

beginner in python like me.The concepts are so well explained with simple

examples that helped me to easily learn python. Thank you so much.

— Madhura

I am a 18 year old IT student studying at University in Ireland. I would like

to express my gratitude to you for writing your book "A Byte of Python",

I already had knowledge of 3 programming langagues - C, Java and

Javascript, and Python was by far the easiest langague I have ever

learned, and that was mainly because your book was fantastic and made

learning python very simple and interesting. It is one of the best written

and easy to follow programming books I have ever read. Congratulations

and keep up the great work.

7 https://twitter.com/BiologistJohn/statuses/194726001803132928
8 https://twitter.com/mangeshnanoti/status/225680668867321857
9 http://apas.gr/2010/04/27/learning-python/
10 https://twitter.com/YuvrajPoudyal/status/448050415356346368

https://twitter.com/BiologistJohn/statuses/194726001803132928
https://twitter.com/mangeshnanoti/status/225680668867321857
http://apas.gr/2010/04/27/learning-python/
https://twitter.com/YuvrajPoudyal/status/448050415356346368
https://twitter.com/BiologistJohn/statuses/194726001803132928
https://twitter.com/mangeshnanoti/status/225680668867321857
http://apas.gr/2010/04/27/learning-python/
https://twitter.com/YuvrajPoudyal/status/448050415356346368

Welcome

3

— Matt

Hi, I’m from Dominican Republic. My name is Pavel, recently I read your

book A Byte of Python and I consider it excellent!! :). I learnt much from

all the examples. Your book is of great help for newbies like me…

— Pavel Simo11

I am a student from China, Now ,I have read you book A byte of Python,

Oh it’s beautiful. The book is very simple but can help all the first

learnners. You know I am interesting in Java and cloud computing many

times, i have to coding programm for the server, so i think python is a

good choice, finish your book, i think its not only a good choice its must

use the Python. My English is not very well, the email to you, i just wanna

thank you! Best Wishes for you and your family.

— Roy Lau

I recently finished reading Byte of Python, and I thought I really ought

to thank you. I was very sad to reach the final pages as I now have to

go back to dull, tedious oreilly or etc. manuals for learning about python.

Anyway, I really appreciate your book.

— Samuel Young12

Dear Swaroop, I am taking a class from an instructor that has no interest

in teaching. We are using Learning Python, second edition, by O’Reilly.

It is not a text for beginner without any programming knowledge, and an

instructor that should be working in another field. Thank you very much for

your book, without it I would be clueless about Python and programming.

Thanks a million, you are able to break the message down to a level that

beginners can understand and not everyone can.

— Joseph Duarte13

I love your book! It is the greatest Python tutorial ever, and a very useful

reference. Brilliant, a true masterpiece! Keep up the good work!

— Chris-André Sommerseth

11 mailto:pavel.simo@gmail.com
12 mailto:sy137@gmail.com
13 mailto:jduarte1@cfl.rr.com

mailto:pavel.simo@gmail.com
mailto:sy137@gmail.com
mailto:jduarte1@cfl.rr.com
mailto:pavel.simo@gmail.com
mailto:sy137@gmail.com
mailto:jduarte1@cfl.rr.com

Welcome

4

First of all, I want to say thanks to you for this greate book. I think it is a

good book for those who are looking for a beginner’s tutorial for Python.

It is about two or there years ago, I think, when I first heard of this book.

At that time, I am not able to read some book in English yet, so I got a

chinese translation, which took me into the gate of Python programming.

Recently, I reread this book. This time, of course, the english version. I

couldn’t believe that I can read the whole book without my dictionary at

hand. Of course, it all dues to your effort to make this book an easy-to-

understand one.

— myd734914

I’m just e-mailing you to thank you for writing Byte of Python online. I

had been attempting Python for a few months prior to stumbling across

your book, and although I made limited success with pyGame, I never

completed a program.

Thanks to your simplification of the categories, Python actually seems a

reachable goal. It seems like I have finally learned the foundations and I

can continue into my real goal, game development.

…

Once again, thanks VERY much for placing such a structured and helpful

guide to basic programming on the web. It shoved me into and out of

OOP with an understanding where two text books had failed.

— Matt Gallivan15

I would like to thank you for your book A Byte of Python which i myself find

the best way to learn python. I am a 15 year old i live in egypt my name

is Ahmed. Python was my second programming language i learn visual

basic 6 at school but didn’t enjoy it, however i really enjoyed learning

python. I made the addressbook program and i was sucessful. i will try

to start make more programs and read python programs (if you could tell

me source that would be helpful). I will also start on learning java and

if you can tell me where to find a tutorial as good as yours for java that

would help me a lot. Thanx.

14 https://github.com/swaroopch/byte_of_python/pull/13
15 mailto:m_gallivan12@hotmail.com

https://github.com/swaroopch/byte_of_python/pull/13
mailto:m_gallivan12@hotmail.com
https://github.com/swaroopch/byte_of_python/pull/13
mailto:m_gallivan12@hotmail.com

Welcome

5

— Ahmed Mohammed16

A wonderful resource for beginners wanting to learn more about Python

is the 110-page PDF tutorial A Byte of Python by Swaroop C H. It is

well-written, easy to follow, and may be the best introduction to Python

programming available.

— Drew Ames17

Yesterday I got through most of Byte of Python on my Nokia N800

and it’s the easiest and most concise introduction to Python I have

yet encountered. Highly recommended as a starting point for learning

Python.

— Jason Delport18

Byte of Vim and Python by @swaroopch is by far the best works in

technical writing to me. Excellent reads #FeelGoodFactor

— Surendran19

"Byte of python" best one by far man

(in response to the question "Can anyone suggest a good, inexpensive

resource for learning the basics of Python? ")

— Justin LoveTrue20

The Book Byte of python was very helpful ..Thanks bigtime :)

— Chinmay21

Always been a fan of A Byte of Python - made for both new and

experienced programmers.

— Patrick Harrington22

16 mailto:sedo_91@hotmail.com
17 http://www.linux.com/feature/126522
18 http://paxmodept.com/telesto/blogitem.htm?id=627
19 http://twitter.com/suren/status/12840485454
20 http://www.facebook.com/pythonlang/posts/406873916788
21 https://twitter.com/a_chinmay/status/258822633741762560
22 http://stackoverflow.com/a/457785/4869

mailto:sedo_91@hotmail.com
http://www.linux.com/feature/126522
http://paxmodept.com/telesto/blogitem.htm?id=627
http://twitter.com/suren/status/12840485454
http://www.facebook.com/pythonlang/posts/406873916788
https://twitter.com/a_chinmay/status/258822633741762560
http://stackoverflow.com/a/457785/4869
mailto:sedo_91@hotmail.com
http://www.linux.com/feature/126522
http://paxmodept.com/telesto/blogitem.htm?id=627
http://twitter.com/suren/status/12840485454
http://www.facebook.com/pythonlang/posts/406873916788
https://twitter.com/a_chinmay/status/258822633741762560
http://stackoverflow.com/a/457785/4869

Welcome

6

I started learning python few days ago from your book..thanks for such

a nice book. it is so well written, you made my life easy..so you found a

new fan of yours..thats me :) tons of thanks.

— Gadadhari Bheem23

Before I started to learn Python, I’ve acquired basic programming skills

in Assembly, C, C++, C# and Java. The very reason I wanted to learn

Python is it’s popular (people are talking about it) and powerful (reality).

This book written by Mr. Swaroop is a very good guide for both brand-

new programmers and new python programmers. Took 10 half days to

go through it. Great Help!

— Fang Biyi (PhD Candidate ECE, Michigan State University)24

Thank you ever so much for this book!!

This book cleared up many questions I had about certain aspects of

Python such as object oriented programming.

I do not feel like an expert at OO but I know this book helped me on a

first step or two.

I have now written several python programs that actually do real things

for me as a system administrator. They are all procedural oriented but

they are small by most peoples standards.

Again, thanks for this book. Thank you for having it on the web.

— Bob

I just want to thank you for writing the first book on programming I’ve ever

really read. Python is now my first language, and I can just imagine all

the possibilities. So thank you for giving me the tools to create things I

never would have imagined I could do before.

— The Walrus

I wanted to thank you for writing A Byte Of Python (2 & 3 Versions). It

has been invaluable to my learning experience in Python & Programming

in general.

23 https://twitter.com/Pagal_e_azam/statuses/242865885256232960
24 mailto:fangbiyi@gmail.com

https://twitter.com/Pagal_e_azam/statuses/242865885256232960
mailto:fangbiyi@gmail.com
https://twitter.com/Pagal_e_azam/statuses/242865885256232960
mailto:fangbiyi@gmail.com

Welcome

7

Needless to say, I am a beginner in the programming world, a couple of

months of self study up to this point. I had been using youtube tutorials

& some other online tutorials including other free books. I decided to dig

into your book yesterday, & I’ve learned more on the first few pages than

any other book or tutorial. A few things I had been confused about, were

cleared right up with a GREAT example & explanation. Can’t wait to read

(and learn) more!!

Thank you so much for not only writing the book, but for putting it under

the creative commons license (free). Thank goodness there are unselfish

people like you out there to help & teach the rest of us.

— Chris

I wrote you back in 2011 and I was just getting into Python and wanted

to thank you for your tutorial "A Byte of Python". Without it, I would have

fallen by the wayside. Since then I have gone on to program a number

of functions in my organization with this language with yet more on the

horizon. I would not call myself an advanced programmer by any stretch

but I notice the occasional request for assistance now from others since

I started using it. I discovered, while reading "Byte" why I had ceased

studying C and C[]+ and it was because the book given to me started out

with an example containing an augmented assignment. Of course, there

was no explanation for this arrangement of operators and I fell on my head

trying to make sense of what was on the written page. As I recall it was a

most frustrating exercise which I eventually abandoned. Doesn't mean C

or C+ is impossible to learn, or even that I am stupid, but it does mean that

the documentation I worked my way through did not define the symbols

and words which is an essential part of any instruction. Just as computers

will not be able to understand a computer word or computer symbol that

is outside the syntax for the language being used, a student new to any

field will not grasp his subject if he encounters words or symbols for

which there are no definitions. You get a "blue screen" as it were in either

case. The solution is simple, though: find the word or symbol and get the

proper definition or symbol and lo and behold,the computer or student

can proceed. Your book was so well put together that I found very little in

it I couldn’t grasp. So, thank you. I encourage you to continue to include

full definitions of terms. The documentation with Python is good, once you

know, (the examples are its strength from what I see) but in many cases

it seems that you have to know in order to understand the documentation

Welcome

8

which to my mind is not what should be. Third party tutorials express

the need for clarification of the documentation and their success largely

depends on the words that are used to describe the terminology. I have

recommended your book to many others. Some in Australia, some in the

Caribbean and yet others in the US. It fills a niche no others do. I hope

you are doing well and wish you all the success in the future.

— Nick

hey, this is ankush(19). I was facing a great difficulty to start with python.

I tried a lot of books but all were bulkier and not target oriented; and then

i found this lovely one, which made me love python in no time. Thanks a

lot for this "beautiful piece of book".

— Ankush

I would like to thank you for your excellent guide on Python. I am

a molecular biologist (with little programming background) and for my

work I need to handle big datasets of DNA sequences and to analyse

microscope images. For both things, programming in python has been

useful, if not essential to complete and publish a 6-years project.

That such a guide is freely available is a clear sign that the forces of evil

are not yet ruling the world! :)

— Luca

Since this is going to be the first language you learn, you should use A

Byte of Python. It really gives a proper introduction into programming in

Python and it is paced well enough for the average beginner. The most

important thing from then on will be actually starting to practice making

your own little programs.

— "{Unregistered}"25

Just to say a loud and happy thank you very much for publishing "A Byte

of Python" and "A Byte of Vim". Those books were very useful to me four

or five years ago when I starting learning programming. Right now I’m

developing a project that was a dream for a long, long time and just want

25 http://www.overclock.net/t/1177951/want-to-learn-programming-where-do-i-start#post_15837176

http://www.overclock.net/t/1177951/want-to-learn-programming-where-do-i-start#post_15837176
http://www.overclock.net/t/1177951/want-to-learn-programming-where-do-i-start#post_15837176

Welcome

9

to say thank you. Keep walking. You are a source of motivation. All the

best.

— Jocimar

Finished reading A byte of Python in 3 days. It is thoroughly interesting.

Not a single page was boring. I want to understand the Orca screen

reader code. Your book has hopefully equipped me for it.

— Dattatray

Hi, 'A byte of python' is really a good reading for python beginners. So,

again, NICE WORK!

i’m a 4 years experienced Java&C developer from China. Recently, i want

to do some work on zim-wiki note project which uses pygtk to implement.

i read your book in 6 days, and i can read and write python code examples

now. thx for your contribution. plz keep your enthusiasm to make this

world better, this is just a little encourage from China. Your reader Lee

— LEE26

I am Isen from Taiwan, who is a graduating PhD student in Electrical

Engineering Department of National Taiwan University. I would like to

thank you for your great book. I think it is not only just easy to read but also

comprehensive and complete for a new comer of Python. The reason I

read your book is that I am starting to work on the GNU Radio framework.

Your book let me catch most of important core ideas and skill of Python

with a minimum time.

I also saw that you do not mind that readers send you a thank note in

your book. So I really like your book and appreciate it. Thanks.

— Isen I-Chun Chao27

The book is even used by NASA! It is being used in their Jet Propulsion Laboratory28

with their Deep Space Network project.

26 mailto:lisen2010@gmail.com
27 mailto:chao926@gmail.com
28 http://dsnra.jpl.nasa.gov/software/Python/byte-of-python/output/byteofpython_html/

mailto:lisen2010@gmail.com
mailto:chao926@gmail.com
http://dsnra.jpl.nasa.gov/software/Python/byte-of-python/output/byteofpython_html/
mailto:lisen2010@gmail.com
mailto:chao926@gmail.com
http://dsnra.jpl.nasa.gov/software/Python/byte-of-python/output/byteofpython_html/

Welcome

10

1.2. Academic Courses

This book is/was being used as instructional material in various educational institutions:

• 'Principles of Programming Languages' course at 'Vrije Universiteit, Amsterdam'29

• 'Basic Concepts of Computing' course at 'University of California, Davis'30

• 'Programming With Python' course at 'Harvard University'31

• 'Introduction to Programming' course at 'University of Leeds'32

• 'Introduction to Application Programming' course at 'Boston University'33

• 'Information Technology Skills for Meteorology' course at 'University of Oklahoma'34

• 'Geoprocessing' course at 'Michigan State University'35

• 'Multi Agent Semantic Web Systems' course at the 'University of Edinburgh'36

• 'Introduction to Computer Science and Programming' at 'MIT OpenCourseWare'37

• 'Basic programming at the Faculty of Social Sciences, University of Ljubljana,

Slovenia' - Aleš Žiberna38 says "I (and my predecessor) have been using your book

as the main literature for this course"

1.3. License

This book is licensed under a Creative Commons Attribution-ShareAlike 4.0

International License39.

This means:

• You are free to Share i.e. to copy, distribute and transmit this book

• You are free to Remix i.e. to make changes to this book (especially translations)

29 http://www.few.vu.nl/~nsilvis/PPL/2007/index.html
30 http://www.cs.ucdavis.edu/courses/exp_course_desc/10.html
31 http://www.people.fas.harvard.edu/~preshman/python_winter.html
32 http://www.comp.leeds.ac.uk/acom1900/
33 http://www.cs.bu.edu/courses/cs108/materials.html
34 http://gentry.metr.ou.edu/byteofpython/
35 http://www.msu.edu/~ashton/classes/825/index.html
36 http://homepages.inf.ed.ac.uk/ewan/masws/
37 http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction-to-

computer-science-and-programming-spring-2011/references/
38 mailto:ales.ziberna@fdv.uni-lj.si
39 http://creativecommons.org/licenses/by-sa/4.0/

http://www.few.vu.nl/~nsilvis/PPL/2007/index.html
http://www.cs.ucdavis.edu/courses/exp_course_desc/10.html
http://www.people.fas.harvard.edu/~preshman/python_winter.html
http://www.comp.leeds.ac.uk/acom1900/
http://www.cs.bu.edu/courses/cs108/materials.html
http://gentry.metr.ou.edu/byteofpython/
http://www.msu.edu/~ashton/classes/825/index.html
http://homepages.inf.ed.ac.uk/ewan/masws/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction-to-computer-science-and-programming-spring-2011/references/
mailto:ales.ziberna@fdv.uni-lj.si
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.few.vu.nl/~nsilvis/PPL/2007/index.html
http://www.cs.ucdavis.edu/courses/exp_course_desc/10.html
http://www.people.fas.harvard.edu/~preshman/python_winter.html
http://www.comp.leeds.ac.uk/acom1900/
http://www.cs.bu.edu/courses/cs108/materials.html
http://gentry.metr.ou.edu/byteofpython/
http://www.msu.edu/~ashton/classes/825/index.html
http://homepages.inf.ed.ac.uk/ewan/masws/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction-to-computer-science-and-programming-spring-2011/references/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction-to-computer-science-and-programming-spring-2011/references/
mailto:ales.ziberna@fdv.uni-lj.si
http://creativecommons.org/licenses/by-sa/4.0/

Welcome

11

• You are free to use it for commercial purposes

Please note:

• Please do not sell electronic or printed copies of the book unless you have clearly

and prominently mentioned in the description that these copies are not from the

original author of this book.

• Attribution must be shown in the introductory description and front page of

the document by linking back to http://swaroopch.com/notes/python and clearly

indicating that the original text can be fetched from this location.

• All the code/scripts provided in this book is licensed under the 3-clause BSD

License40 unless otherwise noted.

1.4. Read Now

You can read the book online at http://swaroopch.com/notes/python

1.5. Buy The Book

A printed hardcopy of the book can be purchased at http://swaroopch.com/buybook

for your offline reading pleasure, and to support the continued development and

improvement of this book.

1.6. Download

• PDF41 (for desktop reading, etc.)

• EPUB42 (for iPhone/iPad, ebook readers, etc.)

• Mobi (for Kindle)43

• GitHub44 (for raw text, translating, etc.)

If you wish to support the continued development of this book, please consider buying

a hardcopy45.

40 http://www.opensource.org/licenses/bsd-license.php
41 http://files.swaroopch.com/python/byte_of_python.pdf
42 http://files.swaroopch.com/python/byte_of_python.epub
43 http://files.swaroopch.com/python/byte_of_python.mobi
44 https://github.com/swaroopch/byte_of_python
45 http://swaroopch.com/buybook

http://swaroopch.com/notes/python
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php
http://swaroopch.com/notes/python
http://swaroopch.com/buybook
http://files.swaroopch.com/python/byte_of_python.pdf
http://files.swaroopch.com/python/byte_of_python.epub
http://files.swaroopch.com/python/byte_of_python.mobi
https://github.com/swaroopch/byte_of_python
http://swaroopch.com/buybook
http://swaroopch.com/buybook
http://www.opensource.org/licenses/bsd-license.php
http://files.swaroopch.com/python/byte_of_python.pdf
http://files.swaroopch.com/python/byte_of_python.epub
http://files.swaroopch.com/python/byte_of_python.mobi
https://github.com/swaroopch/byte_of_python
http://swaroopch.com/buybook

Welcome

12

1.7. Read the book in your native language

If you are interested in reading or contributing translations of this book to other human

languages, please see Translations.

xiii

Preface

Python is probably one of the few programming languages which is both simple and

powerful. This is good for beginners as well as for experts, and more importantly, is

fun to program with. This book aims to help you learn this wonderful language and

show how to get things done quickly and painlessly - in effect 'The Anti-venom to your

programming problems'.

1. Who This Book Is For

This book serves as a guide or tutorial to the Python programming language. It is mainly

targeted at newbies. It is useful for experienced programmers as well.

The aim is that if all you know about computers is how to save text files, then you can

learn Python from this book. If you have previous programming experience, then you

can also learn Python from this book.

If you do have previous programming experience, you will be interested in the

differences between Python and your favorite programming language - I have

highlighted many such differences. A little warning though, Python is soon going to

become your favorite programming language!

2. Official Website

The official website of the book is http://swaroopch.com/notes/python where you can

read the whole book online, download the latest versions of the book, buy a printed

hard copy1 and also send me feedback.

3. Something To Think About

There are two ways of constructing a software design: one way is to make

it so simple that there are obviously no deficiencies; the other is to make

it so complicated that there are no obvious deficiencies.

— C. A. R. Hoare

Success in life is a matter not so much of talent and opportunity as of

concentration and perseverance.

1 http://swaroopch.com/buybook

http://swaroopch.com/notes/python
http://swaroopch.com/buybook
http://swaroopch.com/buybook
http://swaroopch.com/buybook

Preface

xiv

— C. W. Wendte

15

Chapter 2. Introduction

Python is one of those rare languages which can claim to be both simple and powerful.

You will find yourself pleasantly surprised to see how easy it is to concentrate on the

solution to the problem rather than the syntax and structure of the language you are

programming in.

The official introduction to Python is:

Python is an easy to learn, powerful programming language. It has

efficient high-level data structures and a simple but effective approach

to object-oriented programming. Python’s elegant syntax and dynamic

typing, together with its interpreted nature, make it an ideal language

for scripting and rapid application development in many areas on most

platforms.

I will discuss most of these features in more detail in the next section.

Story behind the name

Guido van Rossum, the creator of the Python language, named the language

after the BBC show "Monty Python’s Flying Circus". He doesn’t particularly like

snakes that kill animals for food by winding their long bodies around them and

crushing them.

2.1. Features of Python

Simple

Python is a simple and minimalistic language. Reading a good Python program feels

almost like reading English, although very strict English! This pseudo-code nature

of Python is one of its greatest strengths. It allows you to concentrate on the solution

to the problem rather than the language itself.

Easy to Learn

As you will see, Python is extremely easy to get started with. Python has an

extraordinarily simple syntax, as already mentioned.

Free and Open Source

Python is an example of a FLOSS (Free/Libré and Open Source Software). In simple

terms, you can freely distribute copies of this software, read its source code, make

Introduction

16

changes to it, and use pieces of it in new free programs. FLOSS is based on the

concept of a community which shares knowledge. This is one of the reasons why

Python is so good - it has been created and is constantly improved by a community

who just want to see a better Python.

High-level Language

When you write programs in Python, you never need to bother about the low-level

details such as managing the memory used by your program, etc.

Portable

Due to its open-source nature, Python has been ported to (i.e. changed to make

it work on) many platforms. All your Python programs can work on any of these

platforms without requiring any changes at all if you are careful enough to avoid any

system-dependent features.

You can use Python on GNU/Linux, Windows, FreeBSD, Macintosh, Solaris, OS/2,

Amiga, AROS, AS/400, BeOS, OS/390, z/OS, Palm OS, QNX, VMS, Psion, Acorn

RISC OS, VxWorks, PlayStation, Sharp Zaurus, Windows CE and PocketPC!

You can even use a platform like Kivy1 to create games for your computer and for

iPhone, iPad, and Android.

Interpreted

This requires a bit of explanation.

A program written in a compiled language like C or C[]+ is converted from the source

language i.e. C or C+ into a language that is spoken by your computer (binary code

i.e. 0s and 1s) using a compiler with various flags and options. When you run the

program, the linker/loader software copies the program from hard disk to memory

and starts running it.

Python, on the other hand, does not need compilation to binary. You just run the

program directly from the source code. Internally, Python converts the source code

into an intermediate form called bytecodes and then translates this into the native

language of your computer and then runs it. All this, actually, makes using Python

much easier since you don’t have to worry about compiling the program, making

sure that the proper libraries are linked and loaded, etc. This also makes your

Python programs much more portable, since you can just copy your Python program

onto another computer and it just works!

1 http://kivy.org

http://kivy.org
http://kivy.org

Introduction

17

Object Oriented

Python supports procedure-oriented programming as well as object-oriented

programming. In procedure-oriented languages, the program is built around

procedures or functions which are nothing but reusable pieces of programs. In

object-oriented languages, the program is built around objects which combine data

and functionality. Python has a very powerful but simplistic way of doing OOP,

especially when compared to big languages like C++ or Java.

Extensible

If you need a critical piece of code to run very fast or want to have some piece of

algorithm not to be open, you can code that part of your program in C or C\++ and

then use it from your Python program.

Embeddable

You can embed Python within your C/C\++ programs to give scripting capabilities

for your program’s users.

Extensive Libraries

The Python Standard Library is huge indeed. It can help you do various things

involving regular expressions,documentation generation, unit testing, threading,

databases, web browsers, CGI, FTP, email, XML, XML-RPC, HTML, WAV files,

cryptography, GUI (graphical user interfaces), and other system-dependent stuff.

Remember, all this is always available wherever Python is installed. This is called

the Batteries Included philosophy of Python.

Besides the standard library, there are various other high-quality libraries which you

can find at the Python Package Index2.

Summary

Python is indeed an exciting and powerful language. It has the right combination of

performance and features that make writing programs in Python both fun and easy.

2.2. Python 2 versus 3

You can ignore this section if you’re not interested in the difference between "Python

version 2" and "Python version 3". But please do be aware of which version you are

using. This book is written for Python 2.

Remember that once you have properly understood and learn to use one version,

you can easily learn the differences and use the other one. The hard part is learning

2 http://pypi.python.org/pypi

http://pypi.python.org/pypi
http://pypi.python.org/pypi

Introduction

18

programming and understanding the basics of Python language itself. That is our goal

in this book, and once you have achieved that goal, you can easily use Python 2 or

Python 3 depending on your situation.

For details on differences between Python 2 and Python 3, see:

• The future of Python 23

• Python/3 page on the Ubuntu wiki4

2.3. What Programmers Say

You may find it interesting to read what great hackers like ESR have to say about

Python:

1. Eric S. Raymond is the author of "The Cathedral and the Bazaar" and is also the

person who coined the term Open Source. He says that Python has become his

favorite programming language5. This article was the real inspiration for my first

brush with Python.

2. Bruce Eckel is the author of the famous 'Thinking in Java' and 'Thinking in C++'

books. He says that no language has made him more productive than Python. He

says that Python is perhaps the only language that focuses on making things easier

for the programmer. Read the complete interview6 for more details.

3. Peter Norvig is a well-known Lisp author and Director of Search Quality at Google

(thanks to Guido van Rossum for pointing that out). He says that writing Python is

like writing in pseudocode7. He says that Python has always been an integral part

of Google. You can actually verify this statement by looking at the Google Jobs8

page which lists Python knowledge as a requirement for software engineers.

3 http://lwn.net/Articles/547191/
4 https://wiki.ubuntu.com/Python/3
5 http://www.python.org/about/success/esr/
6 http://www.artima.com/intv/aboutme.html
7 https://news.ycombinator.com/item?id=1803815
8 http://www.google.com/jobs/index.html

http://lwn.net/Articles/547191/
https://wiki.ubuntu.com/Python/3
http://www.python.org/about/success/esr/
http://www.python.org/about/success/esr/
http://www.artima.com/intv/aboutme.html
https://news.ycombinator.com/item?id=1803815
https://news.ycombinator.com/item?id=1803815
http://www.google.com/jobs/index.html
http://lwn.net/Articles/547191/
https://wiki.ubuntu.com/Python/3
http://www.python.org/about/success/esr/
http://www.artima.com/intv/aboutme.html
https://news.ycombinator.com/item?id=1803815
http://www.google.com/jobs/index.html

19

Chapter 3. Installation

When we refer to "Python 2" in this book, we will be referring to any version of Python

equal to or greater than version 2.71.

3.1. Installation on Windows

Visit https://www.python.org/downloads/ and download the latest version. The

installation is just like any other Windows-based software.

When you are given the option of unchecking any "optional"

components, don’t uncheck any.

3.1.1. DOS Prompt

If you want to be able to use Python from the Windows command line i.e. the DOS

prompt, then you need to set the PATH variable appropriately.

For Windows 2000, XP, 2003 , click on Control Panel → System → Advanced →
Environment Variables. Click on the variable named PATH in the System Variables

section, then select Edit and add ;C:\Python27 (please verify that this folder exists,

it will be different for newer versions of Python) to the end of what is already there. Of

course, use the appropriate directory name.

For older versions of Windows, open the file C:\AUTOEXEC.BAT and add the line

PATH=%PATH%;C:\Python33 and restart the system. For Windows NT, use the

AUTOEXEC.NT file.

For Windows Vista:

1. Click Start and choose Control Panel

2. Click System, on the right you’ll see "View basic information about your computer"

3. On the left is a list of tasks, the last of which is Advanced system settings. Click that.

4. The Advanced tab of the System Properties dialog box is shown. Click the

Environment Variables button on the bottom right.

5. In the lower box titled System Variables scroll down to Path and click the Edit button.

1 https://www.python.org/downloads/

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/

Installation

20

6. Change your path as need be.

7. Restart your system. Vista didn’t pick up the system path environment variable

change until I restarted.

For Windows 7 and 8:

1. Right click on Computer from your desktop and select Properties or click Start

and choose Control Panel → System and Security → System. Click on Advanced

system settings on the left and then click on the Advanced tab. At the bottom click

on Environment Variables and under System variables, look for the PATH variable,

select and then press Edit.

2. Go to the end of the line under Variable value and append ;C:\Python27 (please

verify that this folder exists, it will be different for newer versions of Python) to the

end of what is already there. Of course, use the appropriate folder name.

3. If the value was %SystemRoot%\system32; It will now become %SystemRoot

%\system32;C:\Python27

4. Click OK and you are done. No restart is required, however you may have to close

and reopen the command line.

3.1.2. Running Python prompt on Windows

For Windows users, you can run the interpreter in the command line if you have set

the PATH variable appropriately.

To open the terminal in Windows, click the start button and click Run. In the dialog box,

type cmd and press enter key.

Then, type python and ensure there are no errors.

3.2. Installation on Mac OS X

For Mac OS X users, Python must be installed already.

To verify, open the terminal by pressing Command+Space keys (to open Spotlight

search), type Terminal and press enter key. Now, run python and ensure there are

no errors.

3.3. Installation on GNU/Linux

For GNU/Linux users, Python must be installed already.

Installation

21

To verify, open the terminal by opening the Terminal application or by pressing Alt+F2

and entering gnome-terminal. If that doesn’t work, please refer the documentation of

your particular GNU/Linux distribution. Now, run python and ensure there are no errors.

You can see the version of Python on the screen by running:

$ python -V

Python 2.7.6

$ is the prompt of the shell. It will be different for you depending on

the settings of the operating system on your computer, hence I will

indicate the prompt by just the $ symbol.

Output may be different on your computer, depending on the version

of Python software installed on your computer.

3.4. Summary

From now on, we will assume that you have Python installed on your system.

Next, we will write our first Python program.

22

Chapter 4. First Steps

We will now see how to run a traditional 'Hello World' program in Python. This will teach

you how to write, save and run Python programs.

There are two ways of using Python to run your program - using the interactive

interpreter prompt or using a source file. We will now see how to use both of these

methods.

4.1. Using The Interpreter Prompt

Open the terminal in your operating system (as discussed previously in the Installation

chapter) and then open the Python prompt by typing python and pressing enter key.

Once you have started Python, you should see >>> where you can start typing stuff.

This is called the Python interpreter prompt.

At the Python interpreter prompt, type:

print "Hello World"

followed by the enter key. You should see the words Hello World printed to the screen.

Here is an example of what you should be seeing, when using a Mac OS X computer.

The details about the Python software will differ based on your computer, but the

part from the prompt (i.e. from >>> onwards) should be the same regardless of the

operating system.

$ python

Python 2.7.6 (default, Feb 23 2014, 16:08:15)

[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.2.79)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> print "hello world"

hello world

>>>

Notice that Python gives you the output of the line immediately! What you just entered

is a single Python statement. We use print to (unsurprisingly) print any value that you

supply to it. Here, we are supplying the text hello world and this is promptly printed to

the screen.

First Steps

23

How to Quit the Interpreter Prompt
If you are using a GNU/Linux or OS X shell, you can exit the

interpreter prompt by pressing ctrl+d or entering exit() (note:

remember to include the parentheses, ()) followed by the enter key.

If you are using the Windows command prompt, press ctrl+z

followed by the enter key.

4.2. Choosing An Editor

We cannot type out our program at the interpreter prompt every time we want to run

something, so we have to save them in files and can run our programs any number

of times.

To create our Python source files, we need an editor software where you can type and

save. A good programmer’s editor will make your life easier in writing the source files.

Hence, the choice of an editor is crucial indeed. You have to choose an editor as you

would choose a car you would buy. A good editor will help you write Python programs

easily, making your journey more comfortable and helps you reach your destination

(achieve your goal) in a much faster and safer way.

One of the very basic requirements is syntax highlighting where all the different parts

of your Python program are colorized so that you can see your program and visualize

its running.

If you have no idea where to start, I would recommend using PyCharm Educational

Edition1 software which is available on Windows, Mac OS X and GNU/Linux. Details

in the next section.

If you are using Windows, do not use Notepad - it is a bad choice because it does not

do syntax highlighting and also importantly it does not support indentation of the text

which is very important in our case as we will see later. Good editors will automatically

do this.

If you are an experienced programmer, then you must be already using Vim2 or

Emacs3. Needless to say, these are two of the most powerful editors and you will

1 https://www.jetbrains.com/pycharm-educational/
2 http://www.vim.org
3 http://www.gnu.org/software/emacs/

https://www.jetbrains.com/pycharm-educational/
https://www.jetbrains.com/pycharm-educational/
http://www.vim.org
http://www.gnu.org/software/emacs/
https://www.jetbrains.com/pycharm-educational/
http://www.vim.org
http://www.gnu.org/software/emacs/

First Steps

24

benefit from using them to write your Python programs. I personally use both for most

of my programs, and have even written an entire book on Vim4.

In case you are willing to take the time to learn Vim or Emacs, then I highly recommend

that you do learn to use either of them as it will be very useful for you in the long

run. However, as I mentioned before, beginners can start with PyCharm and focus the

learning on Python rather than the editor at this moment.

To reiterate, please choose a proper editor - it can make writing Python programs more

fun and easy.

4.3. PyCharm

PyCharm Educational Edition5 is a free editor which you can use for writing Python

programs.

When you open PyCharm, you’ll see this, click on Create New Project:

4 http://swaroopch.com/notes/vim
5 https://www.jetbrains.com/pycharm-educational/

http://swaroopch.com/notes/vim
https://www.jetbrains.com/pycharm-educational/
http://swaroopch.com/notes/vim
https://www.jetbrains.com/pycharm-educational/

First Steps

25

Select Pure Python:

First Steps

26

Change untitled to helloworld as the location of the project, you should see details

similar to this:

First Steps

27

Click the Create button.

Right-click on the helloworld in the sidebar and select New → Python File:

First Steps

28

You will be asked to type the name, type hello:

First Steps

29

You can now see a file opened for you:

First Steps

30

Delete the lines that are already present, and now type the following:

print "hello world"

Now right-click on what you typed (without selecting the text), and click on Run 'hello'.

First Steps

31

You should now see the output (what it prints) of your program:

First Steps

32

Phew! That was quite a few steps to get started, but henceforth, every time we ask you

to create a new file, remember to just right-click on helloworld on the left → New →
Python File and continue the same steps to type and run as shown above.

You can find more information about PyCharm in the PyCharm Quickstart6 page.

6 https://www.jetbrains.com/pycharm-educational/quickstart/

https://www.jetbrains.com/pycharm-educational/quickstart/
https://www.jetbrains.com/pycharm-educational/quickstart/

First Steps

33

4.4. Vim

1. Install Vim7

a. Mac OS X users should install macvim package via HomeBrew8

b. Windows users should download the "self-installing executable" from http://

www.vim.org/download.php

c. GNU/Linux users should get Vim from their distribution’s software repositories,

e.g. Debian and Ubuntu users can install the vim9 package.

2. Install jedi-vim10 plugin for autocompletion.

4.5. Emacs

1. Install Emacs 2411.

a. Mac OS X users should get Emacs from http://emacsformacosx.com

b. Windows users should get Emacs from http://ftp.gnu.org/gnu/emacs/windows/

c. GNU/Linux users should get Emacs from their distribution’s software

repositories, e.g. Debian and Ubuntu users can install the emacs2412 package.

2. Install ELPY13.

4.6. Using A Source File

Now let’s get back to programming. There is a tradition that whenever you learn a new

programming language, the first program that you write and run is the 'Hello World'

program - all it does is just say 'Hello World' when you run it. As Simon Cozens 14

says, it is the "traditional incantation to the programming gods to help you learn the

language better."

Start your choice of editor, enter the following program and save it as hello.py.

7 http://www.vim.org
8 http://brew.sh/
9 http://packages.ubuntu.com/saucy/vim
10 https://github.com/davidhalter/jedi-vim
11 http://www.gnu.org/software/emacs/
12 http://packages.ubuntu.com/saucy/emacs24
13 https://github.com/jorgenschaefer/elpy/wiki
14 the author of the amazing 'Beginning Perl' book

http://www.vim.org
http://brew.sh/
http://www.vim.org/download.php
http://www.vim.org/download.php
http://packages.ubuntu.com/saucy/vim
https://github.com/davidhalter/jedi-vim
http://www.gnu.org/software/emacs/
http://emacsformacosx.com
http://ftp.gnu.org/gnu/emacs/windows/
http://packages.ubuntu.com/saucy/emacs24
https://github.com/jorgenschaefer/elpy/wiki
http://www.vim.org
http://brew.sh/
http://packages.ubuntu.com/saucy/vim
https://github.com/davidhalter/jedi-vim
http://www.gnu.org/software/emacs/
http://packages.ubuntu.com/saucy/emacs24
https://github.com/jorgenschaefer/elpy/wiki

First Steps

34

If you are using PyCharm, we have already discussed how to run from a source file.

For other editors, open a new file hello.py and type this:

print "hello world"

Where should you save the file? To any folder for which you know the location of

the folder. If you don’t understand what that means, create a new folder and use that

location to save and run all your Python programs:

• /tmp/py on Mac OS X

• /tmp/py on GNU/Linux

• C:\\py on Windows

To create the above folder (for the operating system you are using), use the mkdir

command in the terminal, for example, mkdir /tmp/py.

Always ensure that you give it the file extension of .py, for example,

foo.py.

To run your Python program:

1. Open a terminal window (see the previous Installation chapter on how to do that)

2. Change directory to where you saved the file, for example, cd /tmp/py

3. Run the program by entering the command python hello.py. The output is as shown

below.

$ python hello.py

hello world

First Steps

35

If you got the output as shown above, congratulations! - you have successfully run

your first Python program. You have successfully crossed the hardest part of learning

programming, which is, getting started with your first program!

In case you got an error, please type the above program exactly as shown above and

run the program again. Note that Python is case-sensitive i.e. print is not the same

as Print - note the lowercase p in the former and the uppercase P in the latter. Also,

ensure there are no spaces or tabs before the first character in each line - we will see

why this is important later.

How It WorksA Python program is composed of statements. In our first program, we

have only one statement. In this statement, we call the print statement to which we

supply the text "hello world".

First Steps

36

4.7. Getting Help

If you need quick information about any function or statement in Python, then you

can use the built-in help functionality. This is very useful especially when using the

interpreter prompt. For example, run help('len') - this displays the help for the len

function which is used to count number of items.

Press q to exit the help.

Similarly, you can obtain information about almost anything in Python. Use help() to

learn more about using help itself!

In case you need to get help for operators like return, then you need to put those inside

quotes such as help('return') so that Python doesn’t get confused on what we’re

trying to do.

4.8. Summary

You should now be able to write, save and run Python programs at ease.

Now that you are a Python user, let’s learn some more Python concepts.

37

Chapter 5. Basics

Just printing hello world is not enough, is it? You want to do more than that - you want

to take some input, manipulate it and get something out of it. We can achieve this in

Python using constants and variables, and we’ll learn some other concepts as well in

this chapter.

5.1. Comments

Comments are any text to the right of the # symbol and is mainly useful as notes for

the reader of the program.

For example:

print 'hello world' # Note that print is a statement

or:

Note that print is a statement

print 'hello world'

Use as many useful comments as you can in your program to:

• explain assumptions

• explain important decisions

• explain important details

• explain problems you’re trying to solve

• explain problems you’re trying to overcome in your program, etc.

Code tells you how, comments should tell you why1.

This is useful for readers of your program so that they can easily understand what the

program is doing. Remember, that person can be yourself after six months!

5.2. Literal Constants

An example of a literal constant is a number like 5 , 1.23 , or a string like 'This is

a string' or "It’s a string!" .

1 http://www.codinghorror.com/blog/2006/12/code-tells-you-how-comments-tell-you-why.html

http://www.codinghorror.com/blog/2006/12/code-tells-you-how-comments-tell-you-why.html
http://www.codinghorror.com/blog/2006/12/code-tells-you-how-comments-tell-you-why.html

Basics

38

It is called a literal because it is literal - you use its value literally. The number 2 always

represents itself and nothing else - it is a constant because its value cannot be changed.

Hence, all these are referred to as literal constants.

5.3. Numbers

Numbers are mainly of two types - integers and floats.

An examples of an integer is 2 which is just a whole number.

Examples of floating point numbers (or floats for short) are 3.23 and 52.3E-4 . The

E notation indicates powers of 10. In this case, 52.3E-4 means 52.3 * 10^-4^.

Note for Experienced Programmers
There is no separate long type. The int type can be an integer of

any size.

5.4. Strings

A string is a sequence of characters. Strings are basically just a bunch of words.

You will be using strings in almost every Python program that you write, so pay attention

to the following part.

5.4.1. Single Quote

You can specify strings using single quotes such as 'Quote me on this' .

All white space i.e. spaces and tabs, within the quotes, are preserved as-is.

5.4.2. Double Quotes

Strings in double quotes work exactly the same way as strings in single quotes. An

example is "What’s your name?" .

5.4.3. Triple Quotes

You can specify multi-line strings using triple quotes - (""" or '''). You can use

single quotes and double quotes freely within the triple quotes. An example is:

'''This is a multi-line string. This is the first line.

Basics

39

This is the second line.

"What's your name?," I asked.

He said "Bond, James Bond."

'''

5.4.4. Strings Are Immutable

This means that once you have created a string, you cannot change it. Although this

might seem like a bad thing, it really isn’t. We will see why this is not a limitation in the

various programs that we see later on.

Note for C/C++ Programmers
There is no separate char data type in Python. There is no real need

for it and I am sure you won’t miss it.

Note for Perl/PHP Programmers
Remember that single-quoted strings and double-quoted strings are

the same - they do not differ in any way.

5.4.5. The format method

Sometimes we may want to construct strings from other information. This is where the

format() method is useful.

Save the following lines as a file str_format.py:

age = 20

name = 'Swaroop'

print '{0} was {1} years old when he wrote this book'.format(name, age)

print 'Why is {0} playing with that python?'.format(name)

Output:

$ python str_format.py

Swaroop was 20 years old when he wrote this book

Why is Swaroop playing with that python?

How It WorksA string can use certain specifications and subsequently, the format

method can be called to substitute those specifications with corresponding arguments

to the format method.

Basics

40

Observe the first usage where we use {0} and this corresponds to the variable name

which is the first argument to the format method. Similarly, the second specification

is {1} corresponding to age which is the second argument to the format method. Note

that Python starts counting from 0 which means that first position is at index 0, second

position is at index 1, and so on.

Notice that we could have achieved the same using string concatenation:

name + ' is ' + str(age) + ' years old'

but that is much uglier and error-prone. Second, the conversion to string would be done

automatically by the format method instead of the explicit conversion to strings needed

in this case. Third, when using the format method, we can change the message without

having to deal with the variables used and vice-versa.

Also note that the numbers are optional, so you could have also written as:

age = 20

name = 'Swaroop'

print '{} was {} years old when he wrote this book'.format(name, age)

print 'Why is {} playing with that python?'.format(name)

which will give the same exact output as the previous program.

What Python does in the format method is that it substitutes each argument value into

the place of the specification. There can be more detailed specifications such as:

decimal (.) precision of 3 for float '0.333'

print '{0:.3f}'.format(1.0/3)

fill with underscores (_) with the text centered

(^) to 11 width '___hello___'

print '{0:_^11}'.format('hello')

keyword-based 'Swaroop wrote A Byte of Python'

print '{name} wrote {book}'.format(name='Swaroop',

 book='A Byte of Python')

Output:

0.333

___hello___

Basics

41

Swaroop wrote A Byte of Python

Since we are discussing formatting, note that print always ends with an invisible "new

line" character (\n) so that repeated calls to print will all print on a separate line each.

To prevent this newline character from being printed, you can end the statement with

a comma:

print "a",

print "b",

Output is:

a b

5.4.6. Escape Sequences

Suppose, you want to have a string which contains a single quote ('), how will you

specify this string? For example, the string is "What’s your name?" . You cannot

specify 'What’s your name?' because Python will be confused as to where the

string starts and ends. So, you will have to specify that this single quote does not

indicate the end of the string. This can be done with the help of what is called an escape

sequence. You specify the single quote as \' : notice the backslash. Now, you can

specify the string as 'What's your name?' .

Another way of specifying this specific string would be "What’s your name?" i.e.

using double quotes. Similarly, you have to use an escape sequence for using a double

quote itself in a double quoted string. Also, you have to indicate the backslash itself

using the escape sequence \\ .

What if you wanted to specify a two-line string? One way is to use a triple-quoted string

as shown previously or you can use an escape sequence for the newline character -

\n to indicate the start of a new line. An example is:

'This is the first line\nThis is the second line'

Another useful escape sequence to know is the tab: \t. There are many more escape

sequences but I have mentioned only the most useful ones here.

One thing to note is that in a string, a single backslash at the end of the line indicates

that the string is continued in the next line, but no newline is added. For example:

Basics

42

"This is the first sentence. \

This is the second sentence."

is equivalent to

"This is the first sentence. This is the second sentence."

5.4.7. Raw String

If you need to specify some strings where no special processing such as escape

sequences are handled, then what you need is to specify a raw string by prefixing r or

R to the string. An example is:

r"Newlines are indicated by \n"

Note for Regular Expression Users
Always use raw strings when dealing with regular expressions.

Otherwise, a lot of backwhacking may be required. For example,

backreferences can be referred to as '\\1' or r'\1' .

5.5. Variable

Using just literal constants can soon become boring - we need some way of storing

any information and manipulate them as well. This is where variables come into the

picture. Variables are exactly what the name implies - their value can vary, i.e., you can

store anything using a variable. Variables are just parts of your computer’s memory

where you store some information. Unlike literal constants, you need some method of

accessing these variables and hence you give them names.

5.6. Identifier Naming

Variables are examples of identifiers. Identifiers are names given to identify something.

There are some rules you have to follow for naming identifiers:

• The first character of the identifier must be a letter of the alphabet (uppercase ASCII

or lowercase ASCII or Unicode character) or an underscore (_).

• The rest of the identifier name can consist of letters (uppercase ASCII or lowercase

ASCII or Unicode character), underscores (_) or digits (0-9).

Basics

43

• Identifier names are case-sensitive. For example, myname and myName are not

the same. Note the lowercase n in the former and the uppercase N in the latter.

• Examples of valid identifier names are i , name_2_3 . Examples of invalid identifier

names are 2things , this is spaced out , my-name and >a1b2_c3 .

5.7. Data Types

Variables can hold values of different types called data types. The basic types are

numbers and strings, which we have already discussed. In later chapters, we will see

how to create our own types using classes.

5.8. Object

Remember, Python refers to anything used in a program as an object. This is meant in

the generic sense. Instead of saying "the something"', we say "the object".

Note for Object Oriented Programming users
Python is strongly object-oriented in the sense that everything is an

object including numbers, strings and functions.

We will now see how to use variables along with literal constants. Save the following

example and run the program.

5.9. How to write Python programs

Henceforth, the standard procedure to save and run a Python program is as follows:

5.10. For PyCharm

1. Open Section 4.3, “PyCharm”.

2. Create new file with the filename mentioned.

3. Type the program code given in the example.

4. Right-click and run the current file.

Whenever you have to provide command line arguments, click on

Run → Edit Configurations and type the arguments in the Script

parameters: section and click the OK button:

Basics

44

5.11. For other editors

1. Open your editor of choice.

2. Type the program code given in the example.

3. Save it as a file with the filename mentioned.

4. Run the interpreter with the command python program.py to run the program.

5.12. Example: Using Variables And Literal Constants

Type and run the following program:

Basics

45

Filename : var.py

i = 5

print i

i = i + 1

print i

s = '''This is a multi-line string.

This is the second line.'''

print s

Output:

5

6

This is a multi-line string.

This is the second line.

How It WorksHere’s how this program works. First, we assign the literal constant value

5 to the variable i using the assignment operator (=). This line is called a statement

because it states that something should be done and in this case, we connect the

variable name i to the value 5. Next, we print the value of i using the print statement

which, unsurprisingly, just prints the value of the variable to the screen.

Then we add 1 to the value stored in i and store it back. We then print it and expectedly,

we get the value 6.

Similarly, we assign the literal string to the variable s and then print it.

Note for static language programmers
Variables are used by just assigning them a value. No declaration or

data type definition is needed/used.

5.13. Logical And Physical Line

A physical line is what you see when you write the program. A logical line is what

Python sees as a single statement. Python implicitly assumes that each physical line

corresponds to a logical line.

An example of a logical line is a statement like print 'hello world' - if this was on

a line by itself (as you see it in an editor), then this also corresponds to a physical line.

Basics

46

Implicitly, Python encourages the use of a single statement per line which makes code

more readable.

If you want to specify more than one logical line on a single physical line, then you have

to explicitly specify this using a semicolon (;) which indicates the end of a logical line/

statement. For example:

i = 5

print i

is effectively same as

i = 5;

print i;

which is also same as

i = 5; print i;

and same as

i = 5; print i

However, I strongly recommend that you stick to writing a maximum of a single

logical line on each single physical line. The idea is that you should never use the

semicolon. In fact, I have never used or even seen a semicolon in a Python program.

There is one kind of situation where this concept is really useful: if you have a long line

of code, you can break it into multiple physical lines by using the backslash. This is

referred to as explicit line joining:

s = 'This is a string. \

This continues the string.'

print s

Output:

This is a string. This continues the string.

Basics

47

Similarly,

print \

i

is the same as

print i

Sometimes, there is an implicit assumption where you don’t need to use a backslash.

This is the case where the logical line has a starting parentheses, starting square

brackets or a starting curly braces but not an ending one. This is called implicit line

joining. You can see this in action when we write programs using lists in later chapters.

5.14. Indentation

Whitespace is important in Python. Actually, whitespace at the beginning of the line

is important. This is called indentation. Leading whitespace (spaces and tabs) at the

beginning of the logical line is used to determine the indentation level of the logical line,

which in turn is used to determine the grouping of statements.

This means that statements which go together must have the same indentation. Each

such set of statements is called a block. We will see examples of how blocks are

important in later chapters.

One thing you should remember is that wrong indentation can give rise to errors. For

example:

i = 5

Error below! Notice a single space at the start of the line

 print 'Value is ', i

print 'I repeat, the value is ', i

When you run this, you get the following error:

 File "whitespace.py", line 5

 print 'Value is ', i

 ^

IndentationError: unexpected indent

Basics

48

Notice that there is a single space at the beginning of the second line. The error

indicated by Python tells us that the syntax of the program is invalid i.e. the program

was not properly written. What this means to you is that you cannot arbitrarily start new

blocks of statements (except for the default main block which you have been using all

along, of course). Cases where you can use new blocks will be detailed in later chapters

such as the Control Flow.

How to indentUse four spaces for indentation. This is the official Python language

recommendation. Good editors will automatically do this for you. Make sure you use a

consistent number of spaces for indentation, otherwise your program will show errors.

Note to static language programmers
Python will always use indentation for blocks and will never use

braces. Run from __future__ import braces to learn more.

5.15. Summary

Now that we have gone through many nitty-gritty details, we can move on to more

interesting stuff such as control flow statements. Be sure to become comfortable with

what you have read in this chapter.

49

Chapter 6. Operators and Expressions

Most statements (logical lines) that you write will contain expressions. A simple example

of an expression is 2 + 3 . An expression can be broken down into operators and

operands.

Operators are functionality that do something and can be represented by symbols such

as + or by special keywords. Operators require some data to operate on and such

data is called operands. In this case, 2 and 3 are the operands.

6.1. Operators

We will briefly take a look at the operators and their usage.

Note that you can evaluate the expressions given in the examples using the interpreter

interactively. For example, to test the expression 2 + 3 , use the interactive Python

interpreter prompt:

>>> 2 + 3

5

>>> 3 * 5

15

>>>

Here is a quick overview of the available operators:

+ (plus)

Adds two objects

3 + 5 gives 8 . 'a' + 'b' gives 'ab' .

- (minus)

Gives the subtraction of one number from the other; if the first operand is absent

it is assumed to be zero.

-5.2 gives a negative number and 50 - 24 gives 26 .

* (multiply)

Gives the multiplication of the two numbers or returns the string repeated that many

times.

2 * 3 gives 6 . 'la' * 3 gives 'lalala' .

Operators and Expressions

50

** (power)

Returns x to the power of y

3 ** 4 gives 81 (i.e. 3 * 3 * 3 * 3)

/ (divide)

Divide x by y

13 / 3 gives 4 . 13.0 / 3 gives 4.333333333333333

% (modulo)

Returns the remainder of the division

13 % 3 gives 1 . -25.5 % 2.25 gives 1.5 .

<< (left shift)

Shifts the bits of the number to the left by the number of bits specified. (Each number

is represented in memory by bits or binary digits i.e. 0 and 1)

2 << 2 gives 8 . 2 is represented by 10 in bits.

Left shifting by 2 bits gives 1000 which represents the decimal 8 .

>> (right shift)

Shifts the bits of the number to the right by the number of bits specified.

11 >> 1 gives 5 .

11 is represented in bits by 1011 which when right shifted by 1 bit gives

101`which is the decimal `5 .

& (bit-wise AND)

Bit-wise AND of the numbers

5 & 3 gives 1 .

| (bit-wise OR)

Bitwise OR of the numbers

5 | 3 gives 7

^ (bit-wise XOR)

Bitwise XOR of the numbers

5 ^ 3 gives 6

Operators and Expressions

51

~ (bit-wise invert)

The bit-wise inversion of x is -(x+1)

~5 gives -6 . More details at http://stackoverflow.com/a/11810203

< (less than)

Returns whether x is less than y. All comparison operators return True or False .

Note the capitalization of these names.

5 < 3 gives False and 3 < 5 gives True .

Comparisons can be chained arbitrarily: 3 < 5 < 7 gives True .

> (greater than)

Returns whether x is greater than y

5 > 3 returns True . If both operands are numbers, they are first converted to a

common type. Otherwise, it always returns False .

(less than or equal to)

Returns whether x is less than or equal to y

x = 3; y = 6; x # y returns True .

>= (greater than or equal to)

Returns whether x is greater than or equal to y

x = 4; y = 3; x >= 3 returns True .

== (equal to)

Compares if the objects are equal

x = 2; y = 2; x == y returns True .

x = 'str'; y = 'stR'; x == y returns False .

x = 'str'; y = 'str'; x == y returns True .

!= (not equal to)

Compares if the objects are not equal

x = 2; y = 3; x != y returns True .

not (boolean NOT)

If x is True , it returns False . If x is False , it returns True .

http://stackoverflow.com/a/11810203

Operators and Expressions

52

x = True; not x returns False .

and (boolean AND)

x and y returns False if x is False , else it returns evaluation of y

x = False; y = True; x and y returns False since x is False. In

this case, Python will not evaluate y since it knows that the left hand side of the

'and' expression is False which implies that the whole expression will be False

irrespective of the other values. This is called short-circuit evaluation.

or (boolean OR)

If x is True , it returns True, else it returns evaluation of y

x = True; y = False; x or y returns True . Short-circuit evaluation applies

here as well.

6.2. Shortcut for math operation and assignment

It is common to run a math operation on a variable and then assign the result of the

operation back to the variable, hence there is a shortcut for such expressions:

a = 2

a = a * 3

can be written as:

a = 2

a *= 3

Notice that var = var operation expression becomes var operation=

expression .

6.3. Evaluation Order

If you had an expression such as 2 + 3 * 4 , is the addition done first or the

multiplication? Our high school maths tells us that the multiplication should be done first.

This means that the multiplication operator has higher precedence than the addition

operator.

The following table gives the precedence table for Python, from the lowest precedence

(least binding) to the highest precedence (most binding). This means that in a given

Operators and Expressions

53

expression, Python will first evaluate the operators and expressions lower in the table

before the ones listed higher in the table.

The following table, taken from the Python reference manual1, is provided for the sake

of completeness. It is far better to use parentheses to group operators and operands

appropriately in order to explicitly specify the precedence. This makes the program

more readable. See Changing the Order of Evaluation below for details.

lambda

Lambda Expression

if - else

Conditional expression

or

Boolean OR

and

Boolean AND

not x

Boolean NOT

in, not in, is, is not, <, #, >, >=, !=, ==

Comparisons, including membership tests and identity tests

|

Bitwise OR

^

Bitwise XOR

&

Bitwise AND

<<, >>

Shifts

+, -

Addition and subtraction

*, /, //, %

Multiplication, Division, Floor Division and Remainder

+x, -x, ~x

Positive, Negative, bitwise NOT

1 http://docs.python.org/3/reference/expressions.html#operator-precedence

http://docs.python.org/3/reference/expressions.html#operator-precedence
http://docs.python.org/3/reference/expressions.html#operator-precedence

Operators and Expressions

54

**

Exponentiation

x[index], x[index:index], x(arguments…), x.attribute

Subscription, slicing, call, attribute reference

(expressions…), [expressions…], {key: value…}, {expressions…}

Binding or tuple display, list display, dictionary display, set display

The operators which we have not already come across will be explained in later

chapters.

Operators with the same precedence are listed in the same row in the above table. For

example, + and - have the same precedence.

6.4. Changing the Order Of Evaluation

To make the expressions more readable, we can use parentheses. For example, 2 +

(3 * 4) is definitely easier to understand than 2 + 3 * 4 which requires knowledge

of the operator precedences. As with everything else, the parentheses should be used

reasonably (do not overdo it) and should not be redundant, as in (2 + (3 * 4)) .

There is an additional advantage to using parentheses - it helps us to change the order

of evaluation. For example, if you want addition to be evaluated before multiplication

in an expression, then you can write something like (2 + 3) * 4 .

6.5. Associativity

Operators are usually associated from left to right. This means that operators with the

same precedence are evaluated in a left to right manner. For example, 2 + 3 + 4

is evaluated as (2

3) + 4 . Some operators like assignment operators have right to left associativity i.e.

a = b = c is treated as a = (b = c) .

6.6. Expressions

Example (save as expression.py):

length = 5

breadth = 2

area = length * breadth

Operators and Expressions

55

print 'Area is', area

print 'Perimeter is', 2 * (length + breadth)

Output:

$ python expression.py

Area is 10

Perimeter is 14

How It WorksThe length and breadth of the rectangle are stored in variables by the

same name. We use these to calculate the area and perimeter of the rectangle with the

help of expressions. We store the result of the expression length * breadth in the

variable area and then print it using the print function. In the second case, we directly

use the value of the expression 2 * (length + breadth) in the print statement.

Also, notice how Python pretty-prints the output. Even though we have not specified

a space between 'Area is' and the variable area , Python puts it for us so that

we get a clean nice output and the program is much more readable this way (since we

don’t need to worry about spacing in the strings we use for output). This is an example

of how Python makes life easy for the programmer.

6.7. Summary

We have seen how to use operators, operands and expressions - these are the basic

building blocks of any program. Next, we will see how to make use of these in our

programs using statements.

56

Chapter 7. Control Flow

In the programs we have seen till now, there has always been a series of statements

faithfully executed by Python in exact top-down order. What if you wanted to change the

flow of how it works? For example, you want the program to take some decisions and

do different things depending on different situations, such as printing 'Good Morning'

or 'Good Evening' depending on the time of the day?

As you might have guessed, this is achieved using control flow statements. There are

three control flow statements in Python - if, for and while.

7.1. The if statement

The if statement is used to check a condition: if the condition is true, we run a block of

statements (called the if-block), else we process another block of statements (called

the else-block). The else clause is optional.

Example (save as if.py):

number = 23

guess = int(raw_input('Enter an integer : '))

if guess == number:

 # New block starts here

 print 'Congratulations, you guessed it.'

 print '(but you do not win any prizes!)'

 # New block ends here

elif guess < number:

 # Another block

 print 'No, it is a little higher than that'

 # You can do whatever you want in a block ...

else:

 print 'No, it is a little lower than that'

 # you must have guessed > number to reach here

print 'Done'

This last statement is always executed,

after the if statement is executed.

Output:

$ python if.py

Control Flow

57

Enter an integer : 50

No, it is a little lower than that

Done

$ python if.py

Enter an integer : 22

No, it is a little higher than that

Done

$ python if.py

Enter an integer : 23

Congratulations, you guessed it.

(but you do not win any prizes!)

Done

How It WorksIn this program, we take guesses from the user and check if it is the

number that we have. We set the variable number to any integer we want, say 23 .

Then, we take the user’s guess using the raw_input() function. Functions are just

reusable pieces of programs. We’ll read more about them in the next chapter.

We supply a string to the built-in raw_input function which prints it to the screen

and waits for input from the user. Once we enter something and press enter key, the

raw_input() function returns what we entered, as a string. We then convert this

string to an integer using int and then store it in the variable guess . Actually, the

int is a class but all you need to know right now is that you can use it to convert a

string to an integer (assuming the string contains a valid integer in the text).

Next, we compare the guess of the user with the number we have chosen. If they

are equal, we print a success message. Notice that we use indentation levels to tell

Python which statements belong to which block. This is why indentation is so important

in Python. I hope you are sticking to the "consistent indentation" rule. Are you?

Notice how the if statement contains a colon at the end - we are indicating to Python

that a block of statements follows.

Then, we check if the guess is less than the number, and if so, we inform the user

that they must guess a little higher than that. What we have used here is the elif

clause which actually combines two related if else-if else statements into one

combined if-elif-else statement. This makes the program easier and reduces

the amount of indentation required.

The elif and else statements must also have a colon at the end of the logical line

followed by their corresponding block of statements (with proper indentation, of course)

Control Flow

58

You can have another if statement inside the if-block of an if statement and so on

- this is called a nested if statement.

Remember that the elif and else parts are optional. A minimal valid if statement

is:

if True:

 print 'Yes, it is true'

After Python has finished executing the complete if statement along with the

associated elif and else clauses, it moves on to the next statement in the block

containing the if statement. In this case, it is the main block (where execution of the

program starts), and the next statement is the print 'Done' statement. After this,

Python sees the ends of the program and simply finishes up.

Even though this is a very simple program, I have been pointing out a lot of things that

you should notice. All these are pretty straightforward (and surprisingly simple for those

of you from C/C++ backgrounds). You will need to become aware of all these things

initially, but after some practice you will become comfortable with them, and it will all

feel 'natural' to you.

Note for C/C++ Programmers
There is no switch statement in Python. You can use an

if..elif..else statement to do the same thing (and in some

cases, use a dictionary to do it quickly)

7.2. The while Statement

The while statement allows you to repeatedly execute a block of statements as long

as a condition is true. A while statement is an example of what is called a looping

statement. A while statement can have an optional else clause.

Example (save as while.py):

number = 23

running = True

while running:

 guess = int(raw_input('Enter an integer : '))

 if guess == number:

 print 'Congratulations, you guessed it.'

Control Flow

59

 # this causes the while loop to stop

 running = False

 elif guess < number:

 print 'No, it is a little higher than that.'

 else:

 print 'No, it is a little lower than that.'

else:

 print 'The while loop is over.'

 # Do anything else you want to do here

print 'Done'

Output:

$ python while.py

Enter an integer : 50

No, it is a little lower than that.

Enter an integer : 22

No, it is a little higher than that.

Enter an integer : 23

Congratulations, you guessed it.

The while loop is over.

Done

How It WorksIn this program, we are still playing the guessing game, but the advantage

is that the user is allowed to keep guessing until he guesses correctly - there is no need

to repeatedly run the program for each guess, as we have done in the previous section.

This aptly demonstrates the use of the while statement.

We move the raw_input and if statements to inside the while loop and set

the variable running to True before the while loop. First, we check if the variable

running is True and then proceed to execute the corresponding while-block.

After this block is executed, the condition is again checked which in this case is the

running variable. If it is true, we execute the while-block again, else we continue to

execute the optional else-block and then continue to the next statement.

The else block is executed when the while loop condition becomes False - this

may even be the first time that the condition is checked. If there is an else clause for

a while loop, it is always executed unless you break out of the loop with a break

statement.

The True and False are called Boolean types and you can consider them to be

equivalent to the value 1 and 0 respectively.

Control Flow

60

Note for C/C++ Programmers
Remember that you can have an else clause for the while loop.

7.3. The for loop

The for..in statement is another looping statement which iterates over a sequence

of objects i.e. go through each item in a sequence. We will see more about sequences

in detail in later chapters. What you need to know right now is that a sequence is just

an ordered collection of items.

Example (save as for.py):

for i in range(1, 5):

 print i

else:

 print 'The for loop is over'

Output:

$ python for.py

1

2

3

4

The for loop is over

How It WorksIn this program, we are printing a sequence of numbers. We generate

this sequence of numbers using the built-in range function.

What we do here is supply it two numbers and range returns a sequence of

numbers starting from the first number and up to the second number. For example,

range(1,5) gives the sequence [1, 2, 3, 4] . By default, range takes a step

count of 1. If we supply a third number to range , then that becomes the step count.

For example, range(1,5,2) gives [1,3] . Remember that the range extends up

to the second number i.e. it does not include the second number.

Note that range() generates a sequence of numbers all at once, so this is safe to

use only for small ranges. If you want a long range but generated only one number at

a time, then use xrange() . Lists are explained in the data structures chapter.

Control Flow

61

The for loop then iterates over this range - for i in range(1,5) is equivalent

to for i in [1, 2, 3, 4] which is like assigning each number (or object) in the

sequence to i, one at a time, and then executing the block of statements for each value

of i . In this case, we just print the value in the block of statements.

Remember that the else part is optional. When included, it is always executed once

after the for loop is over unless a break statement is encountered.

Remember that the for..in loop works for any sequence. Here, we have a list of

numbers generated by the built-in range function, but in general we can use any kind

of sequence of any kind of objects! We will explore this idea in detail in later chapters.

Note for C/C++/Java/C# Programmers
The Python for loop is radically different from the C/C++ for

loop. C# programmers will note that the for loop in Python is similar

to the foreach loop in C#. Java programmers will note that the

same is similar to for (int i : IntArray) in Java 1.5.

In C/C, if you want to write ̀ for (int i = 0; i < 5; i) , then in Python

you write just `for i in range(0,5) . As you can see,

the for loop is simpler, more expressive and less error prone in

Python.

7.4. The break Statement

The break statement is used to break out of a loop statement i.e. stop the execution of

a looping statement, even if the loop condition has not become False or the sequence

of items has not been completely iterated over.

An important note is that if you break out of a for or while loop, any corresponding

loop else block is not executed.

Example (save as break.py):

while True:

 s = raw_input('Enter something : ')

 if s == 'quit':

 break

 print 'Length of the string is', len(s)

print 'Done'

Output:

Control Flow

62

$ python break.py

Enter something : Programming is fun

Length of the string is 18

Enter something : When the work is done

Length of the string is 21

Enter something : if you wanna make your work also fun:

Length of the string is 37

Enter something : use Python!

Length of the string is 11

Enter something : quit

Done

How It WorksIn this program, we repeatedly take the user’s input and print the length

of each input each time. We are providing a special condition to stop the program by

checking if the user input is 'quit' . We stop the program by breaking out of the

loop and reach the end of the program.

The length of the input string can be found out using the built-in len function.

Remember that the break statement can be used with the for loop as well.

Swaroop’s Poetic Python

The input I have used here is a mini poem I have written:

Programming is fun

When the work is done

if you wanna make your work also fun:

 use Python!

7.5. The continue Statement

The continue statement is used to tell Python to skip the rest of the statements in

the current loop block and to continue to the next iteration of the loop.

Example (save as continue.py):

while True:

Control Flow

63

 s = raw_input('Enter something : ')

 if s == 'quit':

 break

 if len(s) < 3:

 print 'Too small'

 continue

 print 'Input is of sufficient length'

 # Do other kinds of processing here...

Output:

$ python continue.py

Enter something : a

Too small

Enter something : 12

Too small

Enter something : abc

Input is of sufficient length

Enter something : quit

How It WorksIn this program, we accept input from the user, but we process the input

string only if it is at least 3 characters long. So, we use the built-in len function to get

the length and if the length is less than 3, we skip the rest of the statements in the block

by using the continue statement. Otherwise, the rest of the statements in the loop

are executed, doing any kind of processing we want to do here.

Note that the continue statement works with the for loop as well.

7.6. Summary

We have seen how to use the three control flow statements - if , while and for

along with their associated break and continue statements. These are some of

the most commonly used parts of Python and hence, becoming comfortable with them

is essential.

Next, we will see how to create and use functions.

64

Chapter 8. Functions

Functions are reusable pieces of programs. They allow you to give a name to a block

of statements, allowing you to run that block using the specified name anywhere in

your program and any number of times. This is known as calling the function. We have

already used many built-in functions such as len and range .

The function concept is probably the most important building block of any non-

trivial software (in any programming language), so we will explore various aspects of

functions in this chapter.

Functions are defined using the def keyword. After this keyword comes an identifier

name for the function, followed by a pair of parentheses which may enclose some

names of variables, and by the final colon that ends the line. Next follows the block

of statements that are part of this function. An example will show that this is actually

very simple:

Example (save as function1.py):

def say_hello():

 # block belonging to the function

 print 'hello world'

End of function

say_hello() # call the function

say_hello() # call the function again

Output:

$ python function1.py

hello world

hello world

How It WorksWe define a function called say_hello using the syntax as explained

above. This function takes no parameters and hence there are no variables declared in

the parentheses. Parameters to functions are just input to the function so that we can

pass in different values to it and get back corresponding results.

Notice that we can call the same function twice which means we do not have to write

the same code again.

Functions

65

8.1. Function Parameters

A function can take parameters, which are values you supply to the function so that

the function can do something utilising those values. These parameters are just like

variables except that the values of these variables are defined when we call the function

and are already assigned values when the function runs.

Parameters are specified within the pair of parentheses in the function definition,

separated by commas. When we call the function, we supply the values in the same

way. Note the terminology used - the names given in the function definition are called

parameters whereas the values you supply in the function call are called arguments.

Example (save as function_param.py):

def print_max(a, b):

 if a > b:

 print a, 'is maximum'

 elif a == b:

 print a, 'is equal to', b

 else:

 print b, 'is maximum'

directly pass literal values

print_max(3, 4)

x = 5

y = 7

pass variables as arguments

print_max(x, y)

Output:

$ python function_param.py

4 is maximum

7 is maximum

How It WorksHere, we define a function called print_max that uses two parameters

called a and b . We find out the greater number using a simple if..else statement

and then print the bigger number.

Functions

66

The first time we call the function print_max , we directly supply the numbers as

arguments. In the second case, we call the function with variables as arguments.

print_max(x, y) causes the value of argument x to be assigned to parameter

a and the value of argument y to be assigned to parameter b . The print_max

function works the same way in both cases.

8.2. Local Variables

When you declare variables inside a function definition, they are not related in any way

to other variables with the same names used outside the function - i.e. variable names

are local to the function. This is called the scope of the variable. All variables have the

scope of the block they are declared in starting from the point of definition of the name.

Example (save as function_local.py):

x = 50

def func(x):

 print 'x is', x

 x = 2

 print 'Changed local x to', x

func(x)

print 'x is still', x

Output:

$ python function_local.py

x is 50

Changed local x to 2

x is still 50

How It WorksThe first time that we print the value of the name x with the first line in

the function’s body, Python uses the value of the parameter declared in the main block,

above the function definition.

Next, we assign the value 2 to x . The name x is local to our function. So, when

we change the value of x in the function, the x defined in the main block remains

unaffected.

Functions

67

With the last print statement, we display the value of x as defined in the main

block, thereby confirming that it is actually unaffected by the local assignment within

the previously called function.

8.3. The global statement

If you want to assign a value to a name defined at the top level of the program (i.e. not

inside any kind of scope such as functions or classes), then you have to tell Python

that the name is not local, but it is global. We do this using the global statement.

It is impossible to assign a value to a variable defined outside a function without the

global statement.

You can use the values of such variables defined outside the function (assuming there

is no variable with the same name within the function). However, this is not encouraged

and should be avoided since it becomes unclear to the reader of the program as to

where that variable’s definition is. Using the global statement makes it amply clear

that the variable is defined in an outermost block.

Example (save as function_global.py):

x = 50

def func():

 global x

 print 'x is', x

 x = 2

 print 'Changed global x to', x

func()

print 'Value of x is', x

Output:

$ python function_global.py

x is 50

Changed global x to 2

Value of x is 2

How It WorksThe global statement is used to declare that x is a global variable -

hence, when we assign a value to x inside the function, that change is reflected when

we use the value of x in the main block.

Functions

68

You can specify more than one global variable using the same global statement

e.g. global x, y, z .

8.4. Default Argument Values

For some functions, you may want to make some parameters optional and use default

values in case the user does not want to provide values for them. This is done

with the help of default argument values. You can specify default argument values

for parameters by appending to the parameter name in the function definition the

assignment operator (=) followed by the default value.

Note that the default argument value should be a constant. More precisely, the default

argument value should be immutable - this is explained in detail in later chapters. For

now, just remember this.

Example (save as function_default.py):

def say(message, times=1):

 print message * times

say('Hello')

say('World', 5)

Output:

$ python function_default.py

Hello

WorldWorldWorldWorldWorld

How It WorksThe function named say is used to print a string as many times as

specified. If we don’t supply a value, then by default, the string is printed just once. We

achieve this by specifying a default argument value of 1 to the parameter times .

In the first usage of say , we supply only the string and it prints the string once. In the

second usage of say , we supply both the string and an argument 5 stating that we

want to say the string message 5 times.

Only those parameters which are at the end of the parameter list can

be given default argument values i.e. you cannot have a parameter

with a default argument value preceding a parameter without a

default argument value in the function’s parameter list.

Functions

69

This is because the values are assigned to the parameters by

position. For example, def func(a, b=5) is valid, but def

func(a=5, b) is not valid.

8.5. Keyword Arguments

If you have some functions with many parameters and you want to specify only some

of them, then you can give values for such parameters by naming them - this is called

keyword arguments - we use the name (keyword) instead of the position (which we

have been using all along) to specify the arguments to the function.

There are two advantages - one, using the function is easier since we do not need

to worry about the order of the arguments. Two, we can give values to only those

parameters to which we want to, provided that the other parameters have default

argument values.

Example (save as function_keyword.py):

def func(a, b=5, c=10):

 print 'a is', a, 'and b is', b, 'and c is', c

func(3, 7)

func(25, c=24)

func(c=50, a=100)

Output:

$ python function_keyword.py

a is 3 and b is 7 and c is 10

a is 25 and b is 5 and c is 24

a is 100 and b is 5 and c is 50

How It WorksThe function named func has one parameter without a default

argument value, followed by two parameters with default argument values.

In the first usage, func(3, 7) , the parameter a gets the value 3 , the parameter

b gets the value 7 and c gets the default value of 10 .

In the second usage func(25, c=24) , the variable a gets the value of 25 due

to the position of the argument. Then, the parameter c gets the value of 24 due to

naming i.e. keyword arguments. The variable b gets the default value of 5 .

Functions

70

In the third usage func(c=50, a=100) , we use keyword arguments for all specified

values. Notice that we are specifying the value for parameter c before that for a even

though a is defined before c in the function definition.

8.6. VarArgs parameters

Sometimes you might want to define a function that can take any number of parameters,

i.e. variable number of arguments, this can be achieved by using the stars (save as

function_varargs.py):

def total(initial=5, *numbers, **keywords):

 count = initial

 for number in numbers:

 count += number

 for key in keywords:

 count += keywords[key]

 return count

print total(10, 1, 2, 3, vegetables=50, fruits=100)

Output:

$ python function_varargs.py

166

How It WorksWhen we declare a starred parameter such as *param , then all the

positional arguments from that point till the end are collected as a tuple called 'param'.

Similarly, when we declare a double-starred parameter such as **param , then all

the keyword arguments from that point till the end are collected as a dictionary called

'param'.

We will explore tuples and dictionaries in a later chapter.

8.7. The return statement

The return statement is used to return from a function i.e. break out of the function.

We can optionally return a value from the function as well.

Example (save as function_return.py):

def maximum(x, y):

Functions

71

 if x > y:

 return x

 elif x == y:

 return 'The numbers are equal'

 else:

 return y

print maximum(2, 3)

Output:

$ python function_return.py

3

How It WorksThe maximum function returns the maximum of the parameters, in this

case the numbers supplied to the function. It uses a simple if..else statement to

find the greater value and then returns that value.

Note that a return statement without a value is equivalent to return None . None

is a special type in Python that represents nothingness. For example, it is used to

indicate that a variable has no value if it has a value of None .

Every function implicitly contains a return None statement at the end unless

you have written your own return statement. You can see this by running print

some_function() where the function some_function does not use the return

statement such as:

def some_function():

 pass

The pass statement is used in Python to indicate an empty block of statements.

There is a built-in function called max that already implements the

'find maximum' functionality, so use this built-in function whenever

possible.

8.8. DocStrings

Python has a nifty feature called documentation strings, usually referred to by its

shorter name docstrings. DocStrings are an important tool that you should make use

of since it helps to document the program better and makes it easier to understand.

Functions

72

Amazingly, we can even get the docstring back from, say a function, when the program

is actually running!

Example (save as function_docstring.py):

def print_max(x, y):

 '''Prints the maximum of two numbers.

 The two values must be integers.'''

 # convert to integers, if possible

 x = int(x)

 y = int(y)

 if x > y:

 print x, 'is maximum'

 else:

 print y, 'is maximum'

print_max(3, 5)

print print_max.__doc__

Output:

$ python function_docstring.py

5 is maximum

Prints the maximum of two numbers.

 The two values must be integers.

How It WorksA string on the first logical line of a function is the docstring for that

function. Note that DocStrings also apply to modules and classes which we will learn

about in the respective chapters.

The convention followed for a docstring is a multi-line string where the first line starts

with a capital letter and ends with a dot. Then the second line is blank followed by any

detailed explanation starting from the third line. You are strongly advised to follow this

convention for all your docstrings for all your non-trivial functions.

We can access the docstring of the print_max function using the doc (notice the

double underscores) attribute (name belonging to) of the function. Just remember

that Python treats everything as an object and this includes functions. We’ll learn more

about objects in the chapter on classes.

Functions

73

If you have used help() in Python, then you have already seen the usage of

docstrings! What it does is just fetch the doc attribute of that function and displays

it in a neat manner for you. You can try it out on the function above - just include

help(print_max) in your program. Remember to press the q key to exit help .

Automated tools can retrieve the documentation from your program in this manner.

Therefore, I strongly recommend that you use docstrings for any non-trivial function

that you write. The pydoc command that comes with your Python distribution works

similarly to help() using docstrings.

8.9. Summary

We have seen so many aspects of functions but note that we still haven’t covered all

aspects of them. However, we have already covered most of what you’ll use regarding

Python functions on an everyday basis.

Next, we will see how to use as well as create Python modules.

74

Chapter 9. Modules

You have seen how you can reuse code in your program by defining functions once.

What if you wanted to reuse a number of functions in other programs that you write?

As you might have guessed, the answer is modules.

There are various methods of writing modules, but the simplest way is to create a file

with a .py extension that contains functions and variables.

Another method is to write the modules in the native language in which the Python

interpreter itself was written. For example, you can write modules in the C programming

language1 and when compiled, they can be used from your Python code when using

the standard Python interpreter.

A module can be imported by another program to make use of its functionality. This

is how we can use the Python standard library as well. First, we will see how to use

the standard library modules.

Example (save as module_using_sys.py):

import sys

print('The command line arguments are:')

for i in sys.argv:

 print i

print '\n\nThe PYTHONPATH is', sys.path, '\n'

Output:

$ python module_using_sys.py we are arguments

The command line arguments are:

module_using_sys.py

we

are

arguments

The PYTHONPATH is ['/tmp/py',

many entries here, not shown here

1 http://docs.python.org/2/extending/

http://docs.python.org/2/extending/
http://docs.python.org/2/extending/
http://docs.python.org/2/extending/

Modules

75

'/Library/Python/2.7/site-packages',

'/usr/local/lib/python2.7/site-packages']

How It WorksFirst, we import the sys module using the import statement.

Basically, this translates to us telling Python that we want to use this module. The sys

module contains functionality related to the Python interpreter and its environment i.e.

the system.

When Python executes the import sys statement, it looks for the sys module. In

this case, it is one of the built-in modules, and hence Python knows where to find it.

If it was not a compiled module i.e. a module written in Python, then the Python

interpreter will search for it in the directories listed in its sys.path variable. If the

module is found, then the statements in the body of that module are run and the module

is made available for you to use. Note that the initialization is done only the first time

that we import a module.

The argv variable in the sys module is accessed using the dotted notation i.e.

sys.argv . It clearly indicates that this name is part of the sys module. Another

advantage of this approach is that the name does not clash with any argv variable

used in your program.

The sys.argv variable is a list of strings (lists are explained in detail in a later

chapter. Specifically, the sys.argv contains the list of command line arguments

i.e. the arguments passed to your program using the command line.

If you are using an IDE to write and run these programs, look for a way to specify

command line arguments to the program in the menus.

Here, when we execute python module_using_sys.py we are arguments , we

run the module module_using_sys.py with the python command and the other

things that follow are arguments passed to the program. Python stores the command

line arguments in the sys.argv variable for us to use.

Remember, the name of the script running is always the first argument in

the sys.argv list. So, in this case we will have 'module_using_sys.py'

as sys.argv[0] , 'we' as sys.argv[1] , 'are' as sys.argv[2] and

'arguments' as sys.argv[3] . Notice that Python starts counting from 0 and not

1.

The sys.path contains the list of directory names where modules are imported from.

Observe that the first string in sys.path is empty - this empty string indicates that the

Modules

76

current directory is also part of the sys.path which is same as the PYTHONPATH

environment variable. This means that you can directly import modules located in the

current directory. Otherwise, you will have to place your module in one of the directories

listed in sys.path .

Note that the current directory is the directory from which the program is launched. Run

import os; print os.getcwd() to find out the current directory of your program.

9.1. Byte-compiled .pyc files

Importing a module is a relatively costly affair, so Python does some tricks to make it

faster. One way is to create byte-compiled files with the extension .pyc which is an

intermediate form that Python transforms the program into (remember the introduction

section on how Python works?). This .pyc file is useful when you import the module

the next time from a different program - it will be much faster since a portion of the

processing required in importing a module is already done. Also, these byte-compiled

files are platform-independent.

These .pyc files are usually created in the same directory as the

corresponding .py files. If Python does not have permission to write

to files in that directory, then the .pyc files will not be created.

9.2. The from … import statement

If you want to directly import the argv variable into your program (to avoid typing the

sys. everytime for it), then you can use the from sys import argv statement.

In general, you should avoid using this statement and use the import statement

instead since your program will avoid name clashes and will be more readable.

Example:

from math import sqrt

print "Square root of 16 is", sqrt(16)

9.3. A module’s name

Every module has a name and statements in a module can find out the name of their

module. This is handy for the particular purpose of figuring out whether the module

is being run standalone or being imported. As mentioned previously, when a module

is imported for the first time, the code it contains gets executed. We can use this to

Modules

77

make the module behave in different ways depending on whether it is being used by

itself or being imported from another module. This can be achieved using the name

attribute of the module.

Example (save as module_using_name.py):

if __name__ == '__main__':

 print 'This program is being run by itself'

else:

 print 'I am being imported from another module'

Output:

$ python module_using_name.py

This program is being run by itself

$ python

>>> import module_using_name

I am being imported from another module

>>>

How It WorksEvery Python module has its name defined. If this is 'main' , that

implies that the module is being run standalone by the user and we can take appropriate

actions.

9.4. Making Your Own Modules

Creating your own modules is easy, you’ve been doing it all along! This is because

every Python program is also a module. You just have to make sure it has a .py

extension. The following example should make it clear.

Example (save as mymodule.py):

def say_hi():

 print 'Hi, this is mymodule speaking.'

__version__ = '0.1'

The above was a sample module. As you can see, there is nothing particularly special

about it compared to our usual Python program. We will next see how to use this module

in our other Python programs.

Modules

78

Remember that the module should be placed either in the same directory as the

program from which we import it, or in one of the directories listed in sys.path .

Another module (save as mymodule_demo.py):

import mymodule

mymodule.say_hi()

print 'Version', mymodule.__version__

Output:

$ python mymodule_demo.py

Hi, this is mymodule speaking.

Version 0.1

How It WorksNotice that we use the same dotted notation to access members of the

module. Python makes good reuse of the same notation to give the distinctive 'Pythonic'

feel to it so that we don’t have to keep learning new ways to do things.

Here is a version utilising the from..import syntax (save as

mymodule_demo2.py):

from mymodule import say_hi, __version__

say_hi()

print 'Version', __version__

The output of mymodule_demo2.py is same as the output of mymodule_demo.py .

Notice that if there was already a version name declared in the module that imports

mymodule, there would be a clash. This is also likely because it is common practice

for each module to declare it’s version number using this name. Hence, it is always

recommended to prefer the import statement even though it might make your

program a little longer.

You could also use:

from mymodule import *

Modules

79

This will import all public names such as say_hi but would not import version

because it starts with double underscores.

Remember that you should avoid using import-star, i.e. from

mymodule import * .

Zen of Python

One of Python’s guiding principles is that "Explicit is better than Implicit". Run

import this in Python to learn more.

9.5. The dir function

You can use the built-in dir function to list the identifiers that an object defines.

For example, for a module, the identifiers include the functions, classes and variables

defined in that module.

When you supply a module name to the`dir()` function, it returns the list of the names

defined in that module. When no argument is applied to it, it returns the list of names

defined in the current module.

Example:

$ python

>>> import sys

get names of attributes in sys module

>>> dir(sys)

['__displayhook__', '__doc__',

'argv', 'builtin_module_names',

'version', 'version_info']

only few entries shown here

get names of attributes for current module

>>> dir()

['__builtins__', '__doc__',

'__name__', '__package__']

create a new variable 'a'

>>> a = 5

Modules

80

>>> dir()

['__builtins__', '__doc__', '__name__', '__package__', 'a']

delete/remove a name

>>> del a

>>> dir()

['__builtins__', '__doc__', '__name__', '__package__']

How It WorksFirst, we see the usage of dir on the imported sys module. We can

see the huge list of attributes that it contains.

Next, we use the dir function without passing parameters to it. By default, it returns

the list of attributes for the current module. Notice that the list of imported modules is

also part of this list.

In order to observe the dir in action, we define a new variable a and assign it a

value and then check dir and we observe that there is an additional value in the list

of the same name. We remove the variable/attribute of the current module using the

del statement and the change is reflected again in the output of the dir function.

A note on del - this statement is used to delete a variable/name and after the

statement has run, in this case del a , you can no longer access the variable a - it

is as if it never existed before at all.

Note that the dir() function works on any object. For example, run dir(str) for

the attributes of the str (string) class.

There is also a vars()2 function which can potentially give you the attributes and

their values, but it will not work for all cases.

9.6. Packages

By now, you must have started observing the hierarchy of organizing your programs.

Variables usually go inside functions. Functions and global variables usually go inside

modules. What if you wanted to organize modules? That’s where packages come into

the picture.

Packages are just folders of modules with a special init.py file that indicates to

Python that this folder is special because it contains Python modules.

2 http://docs.python.org/2/library/functions.html#vars

http://docs.python.org/2/library/functions.html#vars
http://docs.python.org/2/library/functions.html#vars

Modules

81

Let’s say you want to create a package called 'world' with subpackages 'asia', 'africa',

etc. and these subpackages in turn contain modules like 'india', 'madagascar', etc.

This is how you would structure the folders:

- <some folder present in the sys.path>/

 - world/

 - __init__.py

 - asia/

 - __init__.py

 - india/

 - __init__.py

 - foo.py

 - africa/

 - __init__.py

 - madagascar/

 - __init__.py

 - bar.py

Packages are just a convenience to hierarchically organize modules. You will see many

instances of this in the standard library.

9.7. Summary

Just like functions are reusable parts of programs, modules are reusable programs.

Packages are another hierarchy to organize modules. The standard library that comes

with Python is an example of such a set of packages and modules.

We have seen how to use these modules and create our own modules.

Next, we will learn about some interesting concepts called data structures.

82

Chapter 10. Data Structures

Data structures are basically just that - they are structures which can hold some data

together. In other words, they are used to store a collection of related data.

There are four built-in data structures in Python - list, tuple, dictionary and set. We will

see how to use each of them and how they make life easier for us.

10.1. List

A list is a data structure that holds an ordered collection of items i.e. you can store

a sequence of items in a list. This is easy to imagine if you can think of a shopping list

where you have a list of items to buy, except that you probably have each item on a

separate line in your shopping list whereas in Python you put commas in between them.

The list of items should be enclosed in square brackets so that Python understands

that you are specifying a list. Once you have created a list, you can add, remove or

search for items in the list. Since we can add and remove items, we say that a list is

a mutable data type i.e. this type can be altered.

10.2. Quick Introduction To Objects And Classes

Although I’ve been generally delaying the discussion of objects and classes till now, a

little explanation is needed right now so that you can understand lists better. We will

explore this topic in detail in a later chapter.

A list is an example of usage of objects and classes. When we use a variable i and

assign a value to it, say integer 5 to it, you can think of it as creating an object (i.e.

instance) i of class (i.e. type) int . In fact, you can read help(int) to understand

this better.

A class can also have methods i.e. functions defined for use with respect to that class

only. You can use these pieces of functionality only when you have an object of that

class. For example, Python provides an append method for the list class which

allows you to add an item to the end of the list. For example, mylist.append('an

item') will add that string to the list mylist . Note the use of dotted notation for

accessing methods of the objects.

A class can also have fields which are nothing but variables defined for use with

respect to that class only. You can use these variables/names only when you have

Data Structures

83

an object of that class. Fields are also accessed by the dotted notation, for example,

mylist.field .

Example (save as ds_using_list.py):

This is my shopping list

shoplist = ['apple', 'mango', 'carrot', 'banana']

print 'I have', len(shoplist), 'items to purchase.'

print 'These items are:',

for item in shoplist:

 print item,

print '\nI also have to buy rice.'

shoplist.append('rice')

print 'My shopping list is now', shoplist

print 'I will sort my list now'

shoplist.sort()

print 'Sorted shopping list is', shoplist

print 'The first item I will buy is', shoplist[0]

olditem = shoplist[0]

del shoplist[0]

print 'I bought the', olditem

print 'My shopping list is now', shoplist

Output:

$ python ds_using_list.py

I have 4 items to purchase.

These items are: apple mango carrot banana

I also have to buy rice.

My shopping list is now ['apple', 'mango', 'carrot', 'banana', 'rice']

I will sort my list now

Sorted shopping list is ['apple', 'banana', 'carrot', 'mango', 'rice']

The first item I will buy is apple

I bought the apple

My shopping list is now ['banana', 'carrot', 'mango', 'rice']

How It WorksThe variable shoplist is a shopping list for someone who is going to

the market. In shoplist , we only store strings of the names of the items to buy but

you can add any kind of object to a list including numbers and even other lists.

Data Structures

84

We have also used the for..in loop to iterate through the items of the list. By now,

you must have realised that a list is also a sequence. The speciality of sequences will

be discussed in a later section.

Notice the use of the trailing comma in the print statement to indicate that we want

to end the output with a space instead of the usual line break. Think of the comma as

telling Python that we have more items to print on the same line.

Next, we add an item to the list using the append method of the list object, as already

discussed before. Then, we check that the item has been indeed added to the list by

printing the contents of the list by simply passing the list to the print statement which

prints it neatly.

Then, we sort the list by using the sort method of the list. It is important to understand

that this method affects the list itself and does not return a modified list - this is different

from the way strings work. This is what we mean by saying that lists are mutable and

that strings are immutable.

Next, when we finish buying an item in the market, we want to remove it from the list. We

achieve this by using the del statement. Here, we mention which item of the list we

want to remove and the del statement removes it from the list for us. We specify that

we want to remove the first item from the list and hence we use del shoplist[0]

(remember that Python starts counting from 0).

If you want to know all the methods defined by the list object, see help(list) for

details.

10.3. Tuple

Tuples are used to hold together multiple objects. Think of them as similar to lists, but

without the extensive functionality that the list class gives you. One major feature of

tuples is that they are immutable like strings i.e. you cannot modify tuples.

Tuples are defined by specifying items separated by commas within an optional pair

of parentheses.

Tuples are usually used in cases where a statement or a user-defined function can

safely assume that the collection of values i.e. the tuple of values used will not change.

Example (save as ds_using_tuple.py):

I would recommend always using parentheses

Data Structures

85

to indicate start and end of tuple

even though parentheses are optional.

Explicit is better than implicit.

zoo = ('python', 'elephant', 'penguin')

print 'Number of animals in the zoo is', len(zoo)

new_zoo = 'monkey', 'camel', zoo

print 'Number of cages in the new zoo is', len(new_zoo)

print 'All animals in new zoo are', new_zoo

print 'Animals brought from old zoo are', new_zoo[2]

print 'Last animal brought from old zoo is', new_zoo[2][2]

print 'Number of animals in the new zoo is', \

 len(new_zoo)-1+len(new_zoo[2])

Output:

$ python ds_using_tuple.py

Number of animals in the zoo is 3

Number of cages in the new zoo is 3

All animals in new zoo are ('monkey', 'camel', ('python', 'elephant',

 'penguin'))

Animals brought from old zoo are ('python', 'elephant', 'penguin')

Last animal brought from old zoo is penguin

Number of animals in the new zoo is 5

How It WorksThe variable zoo refers to a tuple of items. We see that the len

function can be used to get the length of the tuple. This also indicates that a tuple is

a sequence as well.

We are now shifting these animals to a new zoo since the old zoo is being closed.

Therefore, the new_zoo tuple contains some animals which are already there along

with the animals brought over from the old zoo. Back to reality, note that a tuple within

a tuple does not lose its identity.

We can access the items in the tuple by specifying the item’s position within a pair of

square brackets just like we did for lists. This is called the indexing operator. We access

the third item in new_zoo by specifying new_zoo[2] and we access the third item

within the third item in the new_zoo tuple by specifying new_zoo[2][2] . This is

pretty simple once you’ve understood the idiom.

Tuple with 0 or 1 items
An empty tuple is constructed by an empty pair of parentheses such

as myempty = () . However, a tuple with a single item is not so

Data Structures

86

simple. You have to specify it using a comma following the first (and

only) item so that Python can differentiate between a tuple and a pair

of parentheses surrounding the object in an expression i.e. you have

to specify singleton = (2 ,) if you mean you want a tuple

containing the item 2 .

Note for Perl programmers
A list within a list does not lose its identity i.e. lists are not flattened

as in Perl. The same applies to a tuple within a tuple, or a tuple within

a list, or a list within a tuple, etc. As far as Python is concerned, they

are just objects stored using another object, that’s all.

10.4. Dictionary

A dictionary is like an address-book where you can find the address or contact details

of a person by knowing only his/her name i.e. we associate keys (name) with values

(details). Note that the key must be unique just like you cannot find out the correct

information if you have two persons with the exact same name.

Note that you can use only immutable objects (like strings) for the keys of a dictionary

but you can use either immutable or mutable objects for the values of the dictionary.

This basically translates to say that you should use only simple objects for keys.

Pairs of keys and values are specified in a dictionary by using the notation d =

{key1 : value1, key2 : value2 } . Notice that the key-value pairs are separated

by a colon and the pairs are separated themselves by commas and all this is enclosed

in a pair of curly braces.

Remember that key-value pairs in a dictionary are not ordered in any manner. If you

want a particular order, then you will have to sort them yourself before using it.

The dictionaries that you will be using are instances/objects of the dict class.

Example (save as ds_using_dict.py):

'ab' is short for 'a'ddress'b'ook

ab = { 'Swaroop' : 'swaroop@swaroopch.com',

 'Larry' : 'larry@wall.org',

 'Matsumoto' : 'matz@ruby-lang.org',

 'Spammer' : 'spammer@hotmail.com'

Data Structures

87

 }

print "Swaroop's address is", ab['Swaroop']

Deleting a key-value pair

del ab['Spammer']

print '\nThere are {} contacts in the address-book\n'.format(len(ab))

for name, address in ab.items():

 print 'Contact {} at {}'.format(name, address)

Adding a key-value pair

ab['Guido'] = 'guido@python.org'

if 'Guido' in ab:

 print "\nGuido's address is", ab['Guido']

Output:

$ python ds_using_dict.py

Swaroop's address is swaroop@swaroopch.com

There are 3 contacts in the address-book

Contact Swaroop at swaroop@swaroopch.com

Contact Matsumoto at matz@ruby-lang.org

Contact Larry at larry@wall.org

Guido's address is guido@python.org

How It WorksWe create the dictionary ab using the notation already discussed.

We then access key-value pairs by specifying the key using the indexing operator as

discussed in the context of lists and tuples. Observe the simple syntax.

We can delete key-value pairs using our old friend - the del statement. We simply

specify the dictionary and the indexing operator for the key to be removed and pass it

to the del statement. There is no need to know the value corresponding to the key

for this operation.

Next, we access each key-value pair of the dictionary using the items method of the

dictionary which returns a list of tuples where each tuple contains a pair of items - the

key followed by the value. We retrieve this pair and assign it to the variables name

Data Structures

88

and address correspondingly for each pair using the for..in loop and then print

these values in the for-block.

We can add new key-value pairs by simply using the indexing operator to access a key

and assign that value, as we have done for Guido in the above case.

We can check if a key-value pair exists using the in operator.

For the list of methods of the dict class, see help(dict) .

Keyword Arguments and Dictionaries
If you have used keyword arguments in your functions, you have

already used dictionaries! Just think about it - the key-value pair is

specified by you in the parameter list of the function definition and

when you access variables within your function, it is just a key access

of a dictionary (which is called the symbol table in compiler design

terminology).

10.5. Sequence

Lists, tuples and strings are examples of sequences, but what are sequences and what

is so special about them?

The major features are membership tests, (i.e. the in and not in expressions)

and indexing operations, which allow us to fetch a particular item in the sequence

directly.

The three types of sequences mentioned above - lists, tuples and strings, also have

a slicing operation which allows us to retrieve a slice of the sequence i.e. a part of

the sequence.

Example (save as ds_seq.py):

shoplist = ['apple', 'mango', 'carrot', 'banana']

name = 'swaroop'

Indexing or 'Subscription' operation

print 'Item 0 is', shoplist[0]

print 'Item 1 is', shoplist[1]

print 'Item 2 is', shoplist[2]

print 'Item 3 is', shoplist[3]

print 'Item -1 is', shoplist[-1]

Data Structures

89

print 'Item -2 is', shoplist[-2]

print 'Character 0 is', name[0]

Slicing on a list

print 'Item 1 to 3 is', shoplist[1:3]

print 'Item 2 to end is', shoplist[2:]

print 'Item 1 to -1 is', shoplist[1:-1]

print 'Item start to end is', shoplist[:]

Slicing on a string

print 'characters 1 to 3 is', name[1:3]

print 'characters 2 to end is', name[2:]

print 'characters 1 to -1 is', name[1:-1]

print 'characters start to end is', name[:]

Output:

$ python ds_seq.py

Item 0 is apple

Item 1 is mango

Item 2 is carrot

Item 3 is banana

Item -1 is banana

Item -2 is carrot

Character 0 is s

Item 1 to 3 is ['mango', 'carrot']

Item 2 to end is ['carrot', 'banana']

Item 1 to -1 is ['mango', 'carrot']

Item start to end is ['apple', 'mango', 'carrot', 'banana']

characters 1 to 3 is wa

characters 2 to end is aroop

characters 1 to -1 is waroo

characters start to end is swaroop

How It WorksFirst, we see how to use indexes to get individual items of a sequence.

This is also referred to as the subscription operation. Whenever you specify a number

to a sequence within square brackets as shown above, Python will fetch you the item

corresponding to that position in the sequence. Remember that Python starts counting

numbers from 0. Hence, shoplist[0] fetches the first item and shoplist[3]

fetches the fourth item in the `shoplist`sequence.

The index can also be a negative number, in which case, the position is calculated

from the end of the sequence. Therefore, shoplist[-1] refers to the last item in

the sequence and shoplist[-2] fetches the second last item in the sequence.

Data Structures

90

The slicing operation is used by specifying the name of the sequence followed by an

optional pair of numbers separated by a colon within square brackets. Note that this

is very similar to the indexing operation you have been using till now. Remember the

numbers are optional but the colon isn’t.

The first number (before the colon) in the slicing operation refers to the position from

where the slice starts and the second number (after the colon) indicates where the

slice will stop at. If the first number is not specified, Python will start at the beginning

of the sequence. If the second number is left out, Python will stop at the end of the

sequence. Note that the slice returned starts at the start position and will end just before

the end position i.e. the start position is included but the end position is excluded from

the sequence slice.

Thus, shoplist[1:3] returns a slice of the sequence starting at position 1, includes

position 2 but stops at position 3 and therefore a slice of two items is returned. Similarly,

shoplist[:] returns a copy of the whole sequence.

You can also do slicing with negative positions. Negative numbers are used for

positions from the end of the sequence. For example, shoplist[:-1] will return

a slice of the sequence which excludes the last item of the sequence but contains

everything else.

You can also provide a third argument for the slice, which is the step for the slicing (by

default, the step size is 1):

>>> shoplist = ['apple', 'mango', 'carrot', 'banana']

>>> shoplist[::1]

['apple', 'mango', 'carrot', 'banana']

>>> shoplist[::2]

['apple', 'carrot']

>>> shoplist[::3]

['apple', 'banana']

>>> shoplist[::-1]

['banana', 'carrot', 'mango', 'apple']

Notice that when the step is 2, we get the items with position 0, 2,… When the step

size is 3, we get the items with position 0, 3, etc.

Try various combinations of such slice specifications using the Python interpreter

interactively i.e. the prompt so that you can see the results immediately. The great thing

about sequences is that you can access tuples, lists and strings all in the same way!

Data Structures

91

10.6. Set

Sets are unordered collections of simple objects. These are used when the existence of

an object in a collection is more important than the order or how many times it occurs.

Using sets, you can test for membership, whether it is a subset of another set, find the

intersection between two sets, and so on.

>>> bri = set(['brazil', 'russia', 'india'])

>>> 'india' in bri

True

>>> 'usa' in bri

False

>>> bric = bri.copy()

>>> bric.add('china')

>>> bric.issuperset(bri)

True

>>> bri.remove('russia')

>>> bri & bric # OR bri.intersection(bric)

{'brazil', 'india'}

How It WorksThe example is pretty much self-explanatory because it involves basic

set theory mathematics taught in school.

10.7. References

When you create an object and assign it to a variable, the variable only refers to the

object and does not represent the object itself! That is, the variable name points to that

part of your computer’s memory where the object is stored. This is called binding the

name to the object.

Generally, you don’t need to be worried about this, but there is a subtle effect due to

references which you need to be aware of:

Example (save as ds_reference.py):

print 'Simple Assignment'

shoplist = ['apple', 'mango', 'carrot', 'banana']

mylist is just another name pointing to the same object!

mylist = shoplist

Data Structures

92

I purchased the first item, so I remove it from the list

del shoplist[0]

print 'shoplist is', shoplist

print 'mylist is', mylist

Notice that both shoplist and mylist both print

the same list without the 'apple' confirming that

they point to the same object

print 'Copy by making a full slice'

Make a copy by doing a full slice

mylist = shoplist[:]

Remove first item

del mylist[0]

print 'shoplist is', shoplist

print 'mylist is', mylist

Notice that now the two lists are different

Output:

$ python ds_reference.py

Simple Assignment

shoplist is ['mango', 'carrot', 'banana']

mylist is ['mango', 'carrot', 'banana']

Copy by making a full slice

shoplist is ['mango', 'carrot', 'banana']

mylist is ['carrot', 'banana']

How It WorksMost of the explanation is available in the comments.

Remember that if you want to make a copy of a list or such kinds of sequences or

complex objects (not simple objects such as integers), then you have to use the slicing

operation to make a copy. If you just assign the variable name to another name, both

of them will ''refer'' to the same object and this could be trouble if you are not careful.

Note for Perl programmers
Remember that an assignment statement for lists does not create

a copy. You have to use slicing operation to make a copy of the

sequence.

Data Structures

93

10.8. More About Strings

We have already discussed strings in detail earlier. What more can there be to know?

Well, did you know that strings are also objects and have methods which do everything

from checking part of a string to stripping spaces!

The strings that you use in program are all objects of the class str . Some useful

methods of this class are demonstrated in the next example. For a complete list of such

methods, see help(str) .

Example (save as ds_str_methods.py):

This is a string object

name = 'Swaroop'

if name.startswith('Swa'):

 print 'Yes, the string starts with "Swa"'

if 'a' in name:

 print 'Yes, it contains the string "a"'

if name.find('war') != -1:

 print 'Yes, it contains the string "war"'

delimiter = '_*_'

mylist = ['Brazil', 'Russia', 'India', 'China']

print delimiter.join(mylist)

Output:

$ python ds_str_methods.py

Yes, the string starts with "Swa"

Yes, it contains the string "a"

Yes, it contains the string "war"

Brazil_*_Russia_*_India_*_China

How It WorksHere, we see a lot of the string methods in action. The startswith

method is used to find out whether the string starts with the given string. The in

operator is used to check if a given string is a part of the string.

The find method is used to locate the position of the given substring within the string;

find returns -1 if it is unsuccessful in finding the substring. The str class also has

Data Structures

94

a neat method to join the items of a sequence with the string acting as a delimiter

between each item of the sequence and returns a bigger string generated from this.

10.9. Summary

We have explored the various built-in data structures of Python in detail. These data

structures will be essential for writing programs of reasonable size.

Now that we have a lot of the basics of Python in place, we will next see how to design

and write a real-world Python program.

95

Chapter 11. Problem Solving

We have explored various parts of the Python language and now we will take a look

at how all these parts fit together, by designing and writing a program which does

something useful. The idea is to learn how to write a Python script on your own.

11.1. The Problem

The problem we want to solve is:

I want a program which creates a backup of all my important files.

Although, this is a simple problem, there is not enough information for us to get started

with the solution. A little more analysis is required. For example, how do we specify

which files are to be backed up? How are they stored? Where are they stored?

After analyzing the problem properly, we design our program. We make a list of things

about how our program should work. In this case, I have created the following list on

how I want it to work. If you do the design, you may not come up with the same kind of

analysis since every person has their own way of doing things, so that is perfectly okay.

• The files and directories to be backed up are specified in a list.

• The backup must be stored in a main backup directory.

• The files are backed up into a zip file.

• The name of the zip archive is the current date and time.

• We use the standard zip command available by default in any standard GNU/

Linux or Unix distribution. Note that you can use any archiving command you want

as long as it has a command line interface.

For Windows users
Windows users can install1 the zip command from the GnuWin32

project page2 and add C:\Program Files\GnuWin32\bin to

your system PATH environment variable, similar to what we did for

recognizing the python command itself.

1 http://gnuwin32.sourceforge.net/downlinks/zip.php
2 http://gnuwin32.sourceforge.net/packages/zip.htm

http://gnuwin32.sourceforge.net/downlinks/zip.php
http://gnuwin32.sourceforge.net/packages/zip.htm
http://gnuwin32.sourceforge.net/packages/zip.htm
http://gnuwin32.sourceforge.net/downlinks/zip.php
http://gnuwin32.sourceforge.net/packages/zip.htm

Problem Solving

96

11.2. The Solution

As the design of our program is now reasonably stable, we can write the code which

is an implementation of our solution.

Save as backup_ver1.py :

import os

import time

1. The files and directories to be backed up are

specified in a list.

Example on Windows:

source = ['"C:\\My Documents"', 'C:\\Code']

Example on Mac OS X and Linux:

source = ['/Users/swa/notes']

Notice we had to use double quotes inside the string

for names with spaces in it.

2. The backup must be stored in a

main backup directory

Example on Windows:

target_dir = 'E:\\Backup'

Example on Mac OS X and Linux:

target_dir = '/Users/swa/backup'

Remember to change this to which folder you will be using

3. The files are backed up into a zip file.

4. The name of the zip archive is the current date and time

target = target_dir + os.sep + \

 time.strftime('%Y%m%d%H%M%S') + '.zip'

Create target directory if it is not present

if not os.path.exists(target_dir):

 os.mkdir(target_dir) # make directory

5. We use the zip command to put the files in a zip archive

zip_command = "zip -r {0} {1}".format(target,

 ' '.join(source))

Run the backup

print "Zip command is:"

print zip_command

print "Running:"

if os.system(zip_command) == 0:

Problem Solving

97

 print 'Successful backup to', target

else:

 print 'Backup FAILED'

Output:

$ python backup_ver1.py

Zip command is:

zip -r /Users/swa/backup/20140328084844.zip /Users/swa/notes

Running:

 adding: Users/swa/notes/ (stored 0%)

 adding: Users/swa/notes/blah1.txt (stored 0%)

 adding: Users/swa/notes/blah2.txt (stored 0%)

 adding: Users/swa/notes/blah3.txt (stored 0%)

Successful backup to /Users/swa/backup/20140328084844.zip

Now, we are in the testing phase where we test that our program works properly. If

it doesn’t behave as expected, then we have to debug our program i.e. remove the

bugs (errors) from the program.

If the above program does not work for you, copy the line printed after the Zip

command is line in the output, paste it in the shell (on GNU/Linux and Mac OS X) /

cmd (on Windows), see what the error is and try to fix it. Also check the zip command

manual on what could be wrong. If this command succeeds, then the problem might be

in the Python program itself, so check if it exactly matches the program written above.

How It WorksYou will notice how we have converted our design into code in a step-

by-step manner.

We make use of the os and time modules by first importing them. Then, we specify

the files and directories to be backed up in the source list. The target directory is

where we store all the backup files and this is specified in the target_dir variable.

The name of the zip archive that we are going to create is the current date and time

which we generate using the time.strftime() function. It will also have the .zip

extension and will be stored in the target_dir directory.

Notice the use of the os.sep variable - this gives the directory separator according

to your operating system i.e. it will be '/' in GNU/Linux and Unix, it will be '\\'

in Windows and ':' in Mac OS. Using os.sep instead of these characters directly

will make our program portable and work across all of these systems.

The time.strftime() function takes a specification such as the one we have used

in the above program. The %Y specification will be replaced by the year with the

Problem Solving

98

century. The %m specification will be replaced by the month as a decimal number

between 01 and 12 and so on. The complete list of such specifications can be found

in the Python Reference Manual3.

We create the name of the target zip file using the addition operator which concatenates

the strings i.e. it joins the two strings together and returns a new one. Then, we create

a string zip_command which contains the command that we are going to execute.

You can check if this command works by running it in the shell (GNU/Linux terminal

or DOS prompt).

The zip command that we are using has some options and parameters passed. The

-r option specifies that the zip command should work recursively for directories i.e.

it should include all the subdirectories and files. The two options are combined and

specified in a shortcut as -qr . The options are followed by the name of the zip archive

to create followed by the list of files and directories to backup. We convert the source

list into a string using the join method of strings which we have already seen how

to use.

Then, we finally run the command using the os.system function which runs the

command as if it was run from the system i.e. in the shell - it returns 0 if the command

was successfully, else it returns an error number.

Depending on the outcome of the command, we print the appropriate message that

the backup has failed or succeeded.

That’s it, we have created a script to take a backup of our important files!

Note to Windows Users
Instead of double backslash escape sequences, you can also

use raw strings. For example, use 'C:\\Documents' or r’C:

\Documents' . However, do not use 'C:\Documents' since

you end up using an unknown escape sequence \D .

Now that we have a working backup script, we can use it whenever we want to take

a backup of the files. This is called the operation phase or the deployment phase of

the software.

The above program works properly, but (usually) first programs do not work exactly as

you expect. For example, there might be problems if you have not designed the program

3 http://docs.python.org/2/library/time.html#time.strftime

http://docs.python.org/2/library/time.html#time.strftime
http://docs.python.org/2/library/time.html#time.strftime

Problem Solving

99

properly or if you have made a mistake when typing the code, etc. Appropriately, you

will have to go back to the design phase or you will have to debug your program.

11.3. Second Version

The first version of our script works. However, we can make some refinements to it

so that it can work better on a daily basis. This is called the maintenance phase of

the software.

One of the refinements I felt was useful is a better file-naming mechanism - using the

time as the name of the file within a directory with the current date as a directory within

the main backup directory. The first advantage is that your backups are stored in a

hierarchical manner and therefore it is much easier to manage. The second advantage

is that the filenames are much shorter. The third advantage is that separate directories

will help you check if you have made a backup for each day since the directory would

be created only if you have made a backup for that day.

Save as backup_ver2.py :

import os

import time

1. The files and directories to be backed up are

specified in a list.

Example on Windows:

source = ['"C:\\My Documents"', 'C:\\Code']

Example on Mac OS X and Linux:

source = ['/Users/swa/notes']

Notice we had to use double quotes inside the string

for names with spaces in it.

2. The backup must be stored in a

main backup directory

Example on Windows:

target_dir = 'E:\\Backup'

Example on Mac OS X and Linux:

target_dir = '/Users/swa/backup'

Remember to change this to which folder you will be using

Create target directory if it is not present

if not os.path.exists(target_dir):

 os.mkdir(target_dir) # make directory

3. The files are backed up into a zip file.

Problem Solving

100

4. The current day is the name of the subdirectory

in the main directory.

today = target_dir + os.sep + time.strftime('%Y%m%d')

The current time is the name of the zip archive.

now = time.strftime('%H%M%S')

The name of the zip file

target = today + os.sep + now + '.zip'

Create the subdirectory if it isn't already there

if not os.path.exists(today):

 os.mkdir(today)

 print 'Successfully created directory', today

5. We use the zip command to put the files in a zip archive

zip_command = "zip -r {0} {1}".format(target,

 ' '.join(source))

Run the backup

print "Zip command is:"

print zip_command

print "Running:"

if os.system(zip_command) == 0:

 print 'Successful backup to', target

else:

 print 'Backup FAILED'

Output:

$ python backup_ver2.py

Successfully created directory /Users/swa/backup/20140329

Zip command is:

zip -r /Users/swa/backup/20140329/073201.zip /Users/swa/notes

Running:

 adding: Users/swa/notes/ (stored 0%)

 adding: Users/swa/notes/blah1.txt (stored 0%)

 adding: Users/swa/notes/blah2.txt (stored 0%)

 adding: Users/swa/notes/blah3.txt (stored 0%)

Successful backup to /Users/swa/backup/20140329/073201.zip

How It WorksMost of the program remains the same. The changes are that we

check if there is a directory with the current day as its name inside the main backup

directory using the os.path.exists function. If it doesn’t exist, we create it using

the os.mkdir function.

Problem Solving

101

11.4. Third Version

The second version works fine when I do many backups, but when there are lots of

backups, I am finding it hard to differentiate what the backups were for! For example,

I might have made some major changes to a program or presentation, then I want to

associate what those changes are with the name of the zip archive. This can be easily

achieved by attaching a user-supplied comment to the name of the zip archive.

The following program does not work, so do not be alarmed, please

follow along because there’s a lesson in here.

Save as backup_ver3.py :

import os

import time

1. The files and directories to be backed up are

specified in a list.

Example on Windows:

source = ['"C:\\My Documents"', 'C:\\Code']

Example on Mac OS X and Linux:

source = ['/Users/swa/notes']

Notice we had to use double quotes inside the string

for names with spaces in it.

2. The backup must be stored in a

main backup directory

Example on Windows:

target_dir = 'E:\\Backup'

Example on Mac OS X and Linux:

target_dir = '/Users/swa/backup'

Remember to change this to which folder you will be using

Create target directory if it is not present

if not os.path.exists(target_dir):

 os.mkdir(target_dir) # make directory

3. The files are backed up into a zip file.

4. The current day is the name of the subdirectory

in the main directory.

today = target_dir + os.sep + time.strftime('%Y%m%d')

The current time is the name of the zip archive.

now = time.strftime('%H%M%S')

Problem Solving

102

Take a comment from the user to

create the name of the zip file

comment = raw_input('Enter a comment --> ')

Check if a comment was entered

if len(comment) == 0:

 target = today + os.sep + now + '.zip'

else:

 target = today + os.sep + now + '_' +

 comment.replace(' ', '_') + '.zip'

Create the subdirectory if it isn't already there

if not os.path.exists(today):

 os.mkdir(today)

 print 'Successfully created directory', today

5. We use the zip command to put the files in a zip archive

zip_command = "zip -r {0} {1}".format(target,

 ' '.join(source))

Run the backup

print "Zip command is:"

print zip_command

print "Running:"

if os.system(zip_command) == 0:

 print 'Successful backup to', target

else:

 print 'Backup FAILED'

Output:

$ python backup_ver3.py

 File "backup_ver3.py", line 39

 target = today + os.sep + now + '_' +

 ^

SyntaxError: invalid syntax

How This (does not) WorkThis program does not work! Python says there is a

syntax error which means that the script does not satisfy the structure that Python

expects to see. When we observe the error given by Python, it also tells us the place

where it detected the error as well. So we start debugging our program from that line.

On careful observation, we see that the single logical line has been split into two

physical lines but we have not specified that these two physical lines belong together.

Basically, Python has found the addition operator (+) without any operand in that

Problem Solving

103

logical line and hence it doesn’t know how to continue. Remember that we can specify

that the logical line continues in the next physical line by the use of a backslash at the

end of the physical line. So, we make this correction to our program. This correction of

the program when we find errors is called bug fixing.

11.5. Fourth Version

Save as backup_ver4.py :

import os

import time

1. The files and directories to be backed up are

specified in a list.

Example on Windows:

source = ['"C:\\My Documents"', 'C:\\Code']

Example on Mac OS X and Linux:

source = ['/Users/swa/notes']

Notice we had to use double quotes inside the string

for names with spaces in it.

2. The backup must be stored in a

main backup directory

Example on Windows:

target_dir = 'E:\\Backup'

Example on Mac OS X and Linux:

target_dir = '/Users/swa/backup'

Remember to change this to which folder you will be using

Create target directory if it is not present

if not os.path.exists(target_dir):

 os.mkdir(target_dir) # make directory

3. The files are backed up into a zip file.

4. The current day is the name of the subdirectory

in the main directory.

today = target_dir + os.sep + time.strftime('%Y%m%d')

The current time is the name of the zip archive.

now = time.strftime('%H%M%S')

Take a comment from the user to

create the name of the zip file

comment = raw_input('Enter a comment --> ')

Check if a comment was entered

if len(comment) == 0:

Problem Solving

104

 target = today + os.sep + now + '.zip'

else:

 target = today + os.sep + now + '_' + \

 comment.replace(' ', '_') + '.zip'

Create the subdirectory if it isn't already there

if not os.path.exists(today):

 os.mkdir(today)

 print 'Successfully created directory', today

5. We use the zip command to put the files in a zip archive

zip_command = "zip -r {0} {1}".format(target,

 ' '.join(source))

Run the backup

print "Zip command is:"

print zip_command

print "Running:"

if os.system(zip_command) == 0:

 print 'Successful backup to', target

else:

 print 'Backup FAILED'

Output:

$ python backup_ver4.py

Enter a comment --> added new examples

Zip command is:

zip -r /Users/swa/backup/20140329/074122_added_new_examples.zip /Users/

swa/notes

Running:

 adding: Users/swa/notes/ (stored 0%)

 adding: Users/swa/notes/blah1.txt (stored 0%)

 adding: Users/swa/notes/blah2.txt (stored 0%)

 adding: Users/swa/notes/blah3.txt (stored 0%)

Successful backup to /Users/swa/

backup/20140329/074122_added_new_examples.zip

How It WorksThis program now works! Let us go through the actual enhancements that

we had made in version 3. We take in the user’s comments using the input function

and then check if the user actually entered something by finding out the length of the

input using the len function. If the user has just pressed enter without entering

anything (maybe it was just a routine backup or no special changes were made), then

we proceed as we have done before.

Problem Solving

105

However, if a comment was supplied, then this is attached to the name of the zip archive

just before the .zip extension. Notice that we are replacing spaces in the comment

with underscores - this is because managing filenames without spaces is much easier.

11.6. More Refinements

The fourth version is a satisfactorily working script for most users, but there is always

room for improvement. For example, you can include a verbosity level for the program

where you can specify a -v option to make your program become more talkative or

a -q to make it quiet.

Another possible enhancement would be to allow extra files and directories to be

passed to the script at the command line. We can get these names from the sys.argv

list and we can add them to our source list using the extend method provided by

the list class.

The most important refinement would be to not use the os.system way of creating

archives and instead using the zipfile4 or tarfile5 built-in modules to create these

archives. They are part of the standard library and available already for you to use

without external dependencies on the zip program to be available on your computer.

However, I have been using the os.system way of creating a backup in the above

examples purely for pedagogical purposes, so that the example is simple enough to be

understood by everybody but real enough to be useful.

Can you try writing the fifth version that uses the zipfile6 module instead of the

os.system call?

11.7. The Software Development Process

We have now gone through the various phases in the process of writing a software.

These phases can be summarised as follows:

1. What (Analysis)

2. How (Design)

3. Do It (Implementation)

4 http://docs.python.org/2/library/zipfile.html
5 http://docs.python.org/2/library/tarfile.html
6 http://docs.python.org/2/library/zipfile.html

http://docs.python.org/2/library/zipfile.html
http://docs.python.org/2/library/tarfile.html
http://docs.python.org/2/library/zipfile.html
http://docs.python.org/2/library/zipfile.html
http://docs.python.org/2/library/tarfile.html
http://docs.python.org/2/library/zipfile.html

Problem Solving

106

4. Test (Testing and Debugging)

5. Use (Operation or Deployment)

6. Maintain (Refinement)

A recommended way of writing programs is the procedure we have followed in creating

the backup script: Do the analysis and design. Start implementing with a simple version.

Test and debug it. Use it to ensure that it works as expected. Now, add any features that

you want and continue to repeat the Do It-Test-Use cycle as many times as required.

Remember:

Software is grown, not built.

— Bill de hÓra7

11.8. Summary

We have seen how to create our own Python programs/scripts and the various stages

involved in writing such programs. You may find it useful to create your own program

just like we did in this chapter so that you become comfortable with Python as well as

problem-solving.

Next, we will discuss object-oriented programming.

7 http://97things.oreilly.com/wiki/index.php/Great_software_is_not_built,_it_is_grown

http://97things.oreilly.com/wiki/index.php/Great_software_is_not_built,_it_is_grown
http://97things.oreilly.com/wiki/index.php/Great_software_is_not_built,_it_is_grown

107

Chapter 12. Object Oriented Programming

In all the programs we wrote till now, we have designed our program around functions

i.e. blocks of statements which manipulate data. This is called the procedure-oriented

way of programming. There is another way of organizing your program which is to

combine data and functionality and wrap it inside something called an object. This

is called the object oriented programming paradigm. Most of the time you can use

procedural programming, but when writing large programs or have a problem that is

better suited to this method, you can use object oriented programming techniques.

Classes and objects are the two main aspects of object oriented programming. A class

creates a new type where objects are instances of the class. An analogy is that you

can have variables of type int which translates to saying that variables that store

integers are variables which are instances (objects) of the int class.

Note for Static Language Programmers
Note that even integers are treated as objects (of the int class).

This is unlike C++ and Java (before version 1.5) where integers are

primitive native types.

See help(int) for more details on the class.

C# and Java 1.5 programmers will find this similar to the boxing and

unboxing concept.

Objects can store data using ordinary variables that belong to the object. Variables that

belong to an object or class are referred to as fields. Objects can also have functionality

by using functions that belong to a class. Such functions are called methods of

the class. This terminology is important because it helps us to differentiate between

functions and variables which are independent and those which belong to a class or

object. Collectively, the fields and methods can be referred to as the attributes of that

class.

Fields are of two types - they can belong to each instance/object of the class or they

can belong to the class itself. They are called instance variables and class variables

respectively.

A class is created using the class keyword. The fields and methods of the class are

listed in an indented block.

Object Oriented Programming

108

12.1. The self

Class methods have only one specific difference from ordinary functions - they must

have an extra first name that has to be added to the beginning of the parameter list,

but you do not give a value for this parameter when you call the method, Python will

provide it. This particular variable refers to the object itself, and by convention, it is

given the name self .

Although, you can give any name for this parameter, it is strongly recommended that

you use the name self - any other name is definitely frowned upon. There are many

advantages to using a standard name - any reader of your program will immediately

recognize it and even specialized IDEs (Integrated Development Environments) can

help you if you use self .

Note for C++/Java/C# Programmers
The self in Python is equivalent to the this pointer in C++ and

the this reference in Java and C#.

You must be wondering how Python gives the value for self and why you don’t need

to give a value for it. An example will make this clear. Say you have a class called

MyClass and an instance of this class called myobject . When you call a method of

this object as myobject.method(arg1, arg2) , this is automatically converted by

Python into MyClass.method(myobject, arg1, arg2) - this is all the special

self is about.

This also means that if you have a method which takes no arguments, then you still

have to have one argument - the self .

12.2. Classes

The simplest class possible is shown in the following example (save as

oop_simplestclass.py).

class Person:

 pass # An empty block

p = Person()

print(p)

Output:

Object Oriented Programming

109

$ python oop_simplestclass.py

<__main__.Person instance at 0x10171f518>

How It WorksWe create a new class using the class statement and the name of

the class. This is followed by an indented block of statements which form the body of

the class. In this case, we have an empty block which is indicated using the pass

statement.

Next, we create an object/instance of this class using the name of the class followed

by a pair of parentheses. (We will learn more about instantiation in the next section).

For our verification, we confirm the type of the variable by simply printing it. It tells us

that we have an instance of the Person class in the main module.

Notice that the address of the computer memory where your object is stored is also

printed. The address will have a different value on your computer since Python can

store the object wherever it finds space.

12.3. Methods

We have already discussed that classes/objects can have methods just like functions

except that we have an extra self variable. We will now see an example (save as

oop_method.py).

class Person:

 def say_hi(self):

 print('Hello, how are you?')

p = Person()

p.say_hi()

The previous 2 lines can also be written as

Person().say_hi()

Output:

$ python oop_method.py

Hello, how are you?

How It WorksHere we see the self in action. Notice that the say_hi method takes

no parameters but still has the self in the function definition.

Object Oriented Programming

110

12.4. The init method

There are many method names which have special significance in Python classes. We

will see the significance of the init method now.

The init method is run as soon as an object of a class is instantiated. The method

is useful to do any initialization you want to do with your object. Notice the double

underscores both at the beginning and at the end of the name.

Example (save as oop_init.py):

class Person:

 def __init__(self, name):

 self.name = name

 def say_hi(self):

 print 'Hello, my name is', self.name

p = Person('Swaroop')

p.say_hi()

The previous 2 lines can also be written as

Person('Swaroop').say_hi()

Output:

$ python oop_init.py

Hello, my name is Swaroop

How It WorksHere, we define the init method as taking a parameter name (along

with the usual self). Here, we just create a new field also called name . Notice these

are two different variables even though they are both called 'name'. There is no problem

because the dotted notation self.name means that there is something called "name"

that is part of the object called "self" and the other name is a local variable. Since we

explicitly indicate which name we are referring to, there is no confusion.

Most importantly, notice that we do not explicitly call the init method but pass the

arguments in the parentheses following the class name when creating a new instance

of the class. This is the special significance of this method.

Now, we are able to use the self.name field in our methods which is demonstrated

in the say_hi method.

Object Oriented Programming

111

12.5. Class And Object Variables

We have already discussed the functionality part of classes and objects (i.e. methods),

now let us learn about the data part. The data part, i.e. fields, are nothing but ordinary

variables that are bound to the namespaces of the classes and objects. This means

that these names are valid within the context of these classes and objects only. That’s

why they are called name spaces.

There are two types of fields - class variables and object variables which are classified

depending on whether the class or the object owns the variables respectively.

Class variables are shared - they can be accessed by all instances of that class. There

is only one copy of the class variable and when any one object makes a change to a

class variable, that change will be seen by all the other instances.

Object variables are owned by each individual object/instance of the class. In this

case, each object has its own copy of the field i.e. they are not shared and are not

related in any way to the field by the same name in a different instance. An example

will make this easy to understand (save as oop_objvar.py):

class Robot:

 """Represents a robot, with a name."""

 # A class variable, counting the number of robots

 population = 0

 def __init__(self, name):

 """Initializes the data."""

 self.name = name

 print "(Initializing {})".format(self.name)

 # When this person is created, the robot

 # adds to the population

 Robot.population += 1

 def die(self):

 """I am dying."""

 print "{} is being destroyed!".format(self.name)

 Robot.population -= 1

 if Robot.population == 0:

 print "{} was the last one.".format(self.name)

Object Oriented Programming

112

 else:

 print "There are still {:d} robots working.".format(

 Robot.population)

 def say_hi(self):

 """Greeting by the robot.

 Yeah, they can do that."""

 print "Greetings, my masters call me {}.".format(self.name)

 @classmethod

 def how_many(cls):

 """Prints the current population."""

 print "We have {:d} robots.".format(cls.population)

droid1 = Robot("R2-D2")

droid1.say_hi()

Robot.how_many()

droid2 = Robot("C-3PO")

droid2.say_hi()

Robot.how_many()

print "\nRobots can do some work here.\n"

print "Robots have finished their work. So let's destroy them."

droid1.die()

droid2.die()

Robot.how_many()

Output:

$ python oop_objvar.py

(Initializing R2-D2)

Greetings, my masters call me R2-D2.

We have 1 robots.

(Initializing C-3PO)

Greetings, my masters call me C-3PO.

We have 2 robots.

Robots can do some work here.

Robots have finished their work. So let's destroy them.

Object Oriented Programming

113

R2-D2 is being destroyed!

There are still 1 robots working.

C-3PO is being destroyed!

C-3PO was the last one.

We have 0 robots.

How It WorksThis is a long example but helps demonstrate the nature of class and

object variables. Here, population belongs to the Robot class and hence is a

class variable. The name variable belongs to the object (it is assigned using self)

and hence is an object variable.

Thus, we refer to the population class variable as Robot.population and not

as self.population . We refer to the object variable name using self.name

notation in the methods of that object. Remember this simple difference between class

and object variables. Also note that an object variable with the same name as a class

variable will hide the class variable!

Instead of Robot.population , we could have also used self.__class__.population

because every object refers to it’s class via the self.__class__ attribute.

The how_many is actually a method that belongs to the class and not to the object. This

means we can define it as either a classmethod or a staticmethod depending

on whether we need to know which class we are part of. Since we refer to a class

variable, let’s use classmethod .

We have marked the how_many method as a class method using a decorator.

Decorators can be imagined to be a shortcut to calling a wrapper function, so applying

the @classmethod decorator is same as calling:

how_many = classmethod(how_many)

Observe that the init method is used to initialize the Robot instance with a name.

In this method, we increase the population count by 1 since we have one more

robot being added. Also observe that the values of self.name is specific to each

object which indicates the nature of object variables.

Remember, that you must refer to the variables and methods of the same object using

the self only. This is called an attribute reference.

Object Oriented Programming

114

In this program, we also see the use of docstrings for classes as well as methods. We

can access the class docstring at runtime using Robot.doc and the method docstring

as Robot.say_hi.doc

In the die method, we simply decrease the Robot.population count by 1.

All class members are public. One exception: If you use data members with names

using the double underscore prefix such as __privatevar , Python uses name-

mangling to effectively make it a private variable.

Thus, the convention followed is that any variable that is to be used only within the

class or object should begin with an underscore and all other names are public and

can be used by other classes/objects. Remember that this is only a convention and is

not enforced by Python (except for the double underscore prefix).

Note for C++/Java/C# Programmers
All class members (including the data members) are public and all

the methods are virtual in Python.

12.6. Inheritance

One of the major benefits of object oriented programming is reuse of code and one of

the ways this is achieved is through the inheritance mechanism. Inheritance can be

best imagined as implementing a type and subtype relationship between classes.

Suppose you want to write a program which has to keep track of the teachers and

students in a college. They have some common characteristics such as name, age and

address. They also have specific characteristics such as salary, courses and leaves

for teachers and, marks and fees for students.

You can create two independent classes for each type and process them but adding a

new common characteristic would mean adding to both of these independent classes.

This quickly becomes unwieldy.

A better way would be to create a common class called SchoolMember and then have

the teacher and student classes inherit from this class i.e. they will become sub-types

of this type (class) and then we can add specific characteristics to these sub-types.

There are many advantages to this approach. If we add/change any functionality in

SchoolMember , this is automatically reflected in the subtypes as well. For example,

you can add a new ID card field for both teachers and students by simply adding it

Object Oriented Programming

115

to the SchoolMember class. However, changes in the subtypes do not affect other

subtypes. Another advantage is that if you can refer to a teacher or student object as

a SchoolMember object which could be useful in some situations such as counting

of the number of school members. This is called polymorphism where a sub-type can

be substituted in any situation where a parent type is expected i.e. the object can be

treated as an instance of the parent class.

Also observe that we reuse the code of the parent class and we do not need to repeat

it in the different classes as we would have had to in case we had used independent

classes.

The SchoolMember class in this situation is known as the base class or the

superclass. The Teacher and Student classes are called the derived classes

or subclasses.

We will now see this example as a program (save as oop_subclass.py):

class SchoolMember:

 '''Represents any school member.'''

 def __init__(self, name, age):

 self.name = name

 self.age = age

 print '(Initialized SchoolMember: {})'.format(self.name)

 def tell(self):

 '''Tell my details.'''

 print 'Name:"{}" Age:"{}"'.format(self.name, self.age),

class Teacher(SchoolMember):

 '''Represents a teacher.'''

 def __init__(self, name, age, salary):

 SchoolMember.__init__(self, name, age)

 self.salary = salary

 print '(Initialized Teacher: {})'.format(self.name)

 def tell(self):

 SchoolMember.tell(self)

 print 'Salary: "{:d}"'.format(self.salary)

class Student(SchoolMember):

 '''Represents a student.'''

 def __init__(self, name, age, marks):

 SchoolMember.__init__(self, name, age)

 self.marks = marks

Object Oriented Programming

116

 print '(Initialized Student: {})'.format(self.name)

 def tell(self):

 SchoolMember.tell(self)

 print 'Marks: "{:d}"'.format(self.marks)

t = Teacher('Mrs. Shrividya', 40, 30000)

s = Student('Swaroop', 25, 75)

prints a blank line

print

members = [t, s]

for member in members:

 # Works for both Teachers and Students

 member.tell()

Output:

$ python oop_subclass.py

(Initialized SchoolMember: Mrs. Shrividya)

(Initialized Teacher: Mrs. Shrividya)

(Initialized SchoolMember: Swaroop)

(Initialized Student: Swaroop)

Name:"Mrs. Shrividya" Age:"40" Salary: "30000"

Name:"Swaroop" Age:"25" Marks: "75"

How It WorksTo use inheritance, we specify the base class names in a tuple following

the class name in the class definition. Next, we observe that the init method of the

base class is explicitly called using the self variable so that we can initialize the

base class part of the object. This is very important to remember - Python does not

automatically call the constructor of the base class, you have to explicitly call it yourself.

We also observe that we can call methods of the base class by prefixing the class name

to the method call and then pass in the self variable along with any arguments.

Notice that we can treat instances of Teacher or Student as just instances of the

SchoolMember when we use the tell method of the SchoolMember class.

Also, observe that the tell method of the subtype is called and not the tell method

of the SchoolMember class. One way to understand this is that Python always starts

looking for methods in the actual type, which in this case it does. If it could not find the

Object Oriented Programming

117

method, it starts looking at the methods belonging to its base classes one by one in the

order they are specified in the tuple in the class definition.

A note on terminology - if more than one class is listed in the inheritance tuple, then

it is called multiple inheritance.

The trailing comma is used at the end of the print statement in the superclass’s

tell() method to print a line and allow the next print to continue on the same line.

This is a trick to make print not print a \n (newline) symbol at the end of the printing.

12.7. Summary

We have now explored the various aspects of classes and objects as well as the

various terminologies associated with it. We have also seen the benefits and pitfalls

of object-oriented programming. Python is highly object-oriented and understanding

these concepts carefully will help you a lot in the long run.

Next, we will learn how to deal with input/output and how to access files in Python.

118

Chapter 13. Input and Output

There will be situations where your program has to interact with the user. For example,

you would want to take input from the user and then print some results back. We can

achieve this using the raw_input() function and print statement respectively.

For output, we can also use the various methods of the str (string) class. For

example, you can use the rjust method to get a string which is right justified to a

specified width. See help(str) for more details.

Another common type of input/output is dealing with files. The ability to create, read and

write files is essential to many programs and we will explore this aspect in this chapter.

13.1. Input from user

Save this program as io_input.py :

def reverse(text):

 return text[::-1]

def is_palindrome(text):

 return text == reverse(text)

something = raw_input("Enter text: ")

if is_palindrome(something):

 print "Yes, it is a palindrome"

else:

 print "No, it is not a palindrome"

Output:

$ python io_input.py

Enter text: sir

No, it is not a palindrome

$ python io_input.py

Enter text: madam

Yes, it is a palindrome

$ python io_input.py

Enter text: racecar

Yes, it is a palindrome

Input and Output

119

How It WorksWe use the slicing feature to reverse the text. We’ve already seen how

we can make slices from sequences using the seq[a:b] code starting from position

a to position b . We can also provide a third argument that determines the step by

which the slicing is done. The default step is 1 because of which it returns a continuous

part of the text. Giving a negative step, i.e., -1 will return the text in reverse.

The raw_input() function takes a string as argument and displays it to the user.

Then it waits for the user to type something and press the return key. Once the user

has entered and pressed the return key, the raw_input() function will then return

that text the user has entered.

We take that text and reverse it. If the original text and reversed text are equal, then

the text is a palindrome1.

13.1.1. Homework exercise

Checking whether a text is a palindrome should also ignore punctuation, spaces and

case. For example, "Rise to vote, sir." is also a palindrome but our current program

doesn’t say it is. Can you improve the above program to recognize this palindrome?

If you need a hint, the idea is that… 2

13.2. Files

You can open and use files for reading or writing by creating an object of the file

class and using its read , readline or write methods appropriately to read from

or write to the file. The ability to read or write to the file depends on the mode you have

specified for the file opening. Then finally, when you are finished with the file, you call

the close method to tell Python that we are done using the file.

Example (save as io_using_file.py):

poem = '''\

Programming is fun

When the work is done

if you wanna make your work also fun:

 use Python!

'''

1 http://en.wiktionary.org/wiki/palindrome
2Use a tuple (you can find a list of all punctuation marks here [http://grammar.ccc.commnet.edu/grammar/

marks/marks.htm]) to hold all the forbidden characters, then use the membership test to determine

whether a character should be removed or not, i.e. forbidden = (! , ? , . , …).

http://en.wiktionary.org/wiki/palindrome
http://en.wiktionary.org/wiki/palindrome
http://grammar.ccc.commnet.edu/grammar/marks/marks.htm
http://grammar.ccc.commnet.edu/grammar/marks/marks.htm
http://grammar.ccc.commnet.edu/grammar/marks/marks.htm

Input and Output

120

Open for 'w'riting

f = open('poem.txt', 'w')

Write text to file

f.write(poem)

Close the file

f.close()

If no mode is specified,

'r'ead mode is assumed by default

f = open('poem.txt')

while True:

 line = f.readline()

 # Zero length indicates EOF

 if len(line) == 0:

 break

 # The `line` already has a newline

 # at the end of each line

 # since it is reading from a file.

 print line,

close the file

f.close()

Output:

$ python io_using_file.py

Programming is fun

When the work is done

if you wanna make your work also fun:

 use Python!

How It WorksFirst, open a file by using the built-in open function and specifying the

name of the file and the mode in which we want to open the file. The mode can be a

read mode ('r'), write mode ('w') or append mode ('a'). We can also specify

whether we are reading, writing, or appending in text mode ('t') or binary mode

('b'). There are actually many more modes available and help(open) will give

you more details about them. By default, open() considers the file to be a 't’ext file

and opens it in 'r’ead mode.

In our example, we first open the file in write text mode and use the write method of

the file object to write to the file and then we finally close the file.

Next, we open the same file again for reading. We don’t need to specify a mode

because 'read text file' is the default mode. We read in each line of the file using the

Input and Output

121

readline method in a loop. This method returns a complete line including the newline

character at the end of the line. When an empty string is returned, it means that we

have reached the end of the file and we 'break' out of the loop.

In the end, we finally close the file.

Now, check the contents of the poem.txt file to confirm that the program has indeed

written to and read from that file.

13.3. Pickle

Python provides a standard module called pickle using which you can store any

plain Python object in a file and then get it back later. This is called storing the object

persistently.

Example (save as io_pickle.py):

import pickle

The name of the file where we will store the object

shoplistfile = 'shoplist.data'

The list of things to buy

shoplist = ['apple', 'mango', 'carrot']

Write to the file

f = open(shoplistfile, 'wb')

Dump the object to a file

pickle.dump(shoplist, f)

f.close()

Destroy the shoplist variable

del shoplist

Read back from the storage

f = open(shoplistfile, 'rb')

Load the object from the file

storedlist = pickle.load(f)

print storedlist

Output:

$ python io_pickle.py

['apple', 'mango', 'carrot']

Input and Output

122

How It WorksTo store an object in a file, we have to first open the file in write binary

mode and then call the dump function of the pickle module. This process is called

pickling.

Next, we retrieve the object using the load function of the pickle module which

returns the object. This process is called unpickling.

13.4. Unicode

So far, when we have been writing and using strings, or reading and writing to a file,

we have used simple English characters only. If we want to be able to read and write

other non-English languages, we need to use the unicode type, and it all starts with

the character u :

>>> "hello world"

'hello world'

>>> type("hello world")

<type 'str'>

>>> u"hello world"

u'hello world'

>>> type(u"hello world")

<type 'unicode'>

We use the unicode type instead of strings to make sure that we handle non-

English languages in our programs. However, when we read or write to a file or when

we talk to other computers on the Internet, we need to convert our unicode strings

into a format that can be sent and received, and that format is called "UTF-8". We can

read and write in that format, using a simple keyword argument to our standard open

function:

encoding=utf-8

import io

f = io.open("abc.txt", "wt", encoding="utf-8")

f.write(u"Imagine non-English language here")

f.close()

text = io.open("abc.txt", encoding="utf-8").read()

print text

How It WorksYou can ignore the import statement for now, we’ll explore that in

detail in the modules chapter.

Input and Output

123

Whenever we write a program that uses Unicode literals like we have used above, we

have to make sure that Python itself is told that our program uses UTF-8, and we have

to put # encoding=utf-8 comment at the top of our program.

We use io.open and provide the "encoding" and "decoding" argument to tell Python

that we are using unicode, and in fact, we have to pass in a string in the form of u""

to make it clear that we are using Unicode strings.

You should learn more about this topic by reading:

• "The Absolute Minimum Every Software Developer Absolutely, Positively Must

Know About Unicode and Character Sets"3

• Python Unicode Howto4

• Pragmatic Unicode talk by Nat Batchelder5

13.5. Summary

We have discussed various types of input/output, about file handling, about the pickle

module and about Unicode.

Next, we will explore the concept of exceptions.

3 http://www.joelonsoftware.com/articles/Unicode.html
4 http://docs.python.org/2/howto/unicode.html
5 http://nedbatchelder.com/text/unipain.html

http://www.joelonsoftware.com/articles/Unicode.html
http://www.joelonsoftware.com/articles/Unicode.html
http://docs.python.org/2/howto/unicode.html
http://nedbatchelder.com/text/unipain.html
http://www.joelonsoftware.com/articles/Unicode.html
http://docs.python.org/2/howto/unicode.html
http://nedbatchelder.com/text/unipain.html

124

Chapter 14. Exceptions

Exceptions occur when exceptional situations occur in your program. For example,

what if you are going to read a file and the file does not exist? Or what if you

accidentally deleted it when the program was running? Such situations are handled

using exceptions.

Similarly, what if your program had some invalid statements? This is handled by Python

which raises its hands and tells you there is an error.

14.1. Errors

Consider a simple print function call. What if we misspelt print as Print ? Note

the capitalization. In this case, Python raises a syntax error.

>>> Print "Hello World"

 File "<stdin>", line 1

 Print "Hello World"

 ^

SyntaxError: invalid syntax

>>> print "Hello World"

Hello World

Observe that a SyntaxError is raised and also the location where the error was

detected is printed. This is what an error handler for this error does.

14.2. Exceptions

We will try to read input from the user. Press ctrl-d and see what happens.

>>> s = raw_input('Enter something --> ')

Enter something --> Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

EOFError

Python raises an error called EOFError which basically means it found an end of file

symbol (which is represented by ctrl-d) when it did not expect to see it.

Exceptions

125

14.3. Handling Exceptions

We can handle exceptions using the try..except statement. We basically put our

usual statements within the try-block and put all our error handlers in the except-block.

Example (save as exceptions_handle.py):

try:

 text = raw_input('Enter something --> ')

except EOFError:

 print 'Why did you do an EOF on me?'

except KeyboardInterrupt:

 print 'You cancelled the operation.'

else:

 print 'You entered {}'.format(text)

Output:

Press ctrl + d

$ python exceptions_handle.py

Enter something --> Why did you do an EOF on me?

Press ctrl + c

$ python exceptions_handle.py

Enter something --> ^CYou cancelled the operation.

$ python exceptions_handle.py

Enter something --> No exceptions

You entered No exceptions

How It WorksWe put all the statements that might raise exceptions/errors inside the

try block and then put handlers for the appropriate errors/exceptions in the except

clause/block. The except clause can handle a single specified error or exception,

or a parenthesized list of errors/exceptions. If no names of errors or exceptions are

supplied, it will handle all errors and exceptions.

Note that there has to be at least one except clause associated with every try

clause. Otherwise, what’s the point of having a try block?

If any error or exception is not handled, then the default Python handler is called which

just stops the execution of the program and prints an error message. We have already

seen this in action above.

Exceptions

126

You can also have an else clause associated with a try..except block. The

else clause is executed if no exception occurs.

In the next example, we will also see how to get the exception object so that we can

retrieve additional information.

14.4. Raising Exceptions

You can raise exceptions using the raise statement by providing the name of the

error/exception and the exception object that is to be thrown.

The error or exception that you can raise should be a class which directly or indirectly

must be a derived class of the Exception class.

Example (save as exceptions_raise.py):

class ShortInputException(Exception):

 '''A user-defined exception class.'''

 def __init__(self, length, atleast):

 Exception.__init__(self)

 self.length = length

 self.atleast = atleast

try:

 text = raw_input('Enter something --> ')

 if len(text) < 3:

 raise ShortInputException(len(text), 3)

 # Other work can continue as usual here

except EOFError:

 print 'Why did you do an EOF on me?'

except ShortInputException as ex:

 print ('ShortInputException: The input was ' + \

 '{0} long, expected at least {1}')\

 .format(ex.length, ex.atleast)

else:

 print 'No exception was raised.'

Output:

$ python exceptions_raise.py

Enter something --> a

ShortInputException: The input was 1 long, expected at least 3

Exceptions

127

$ python exceptions_raise.py

Enter something --> abc

No exception was raised.

How It WorksHere, we are creating our own exception type. This new exception type

is called ShortInputException . It has two fields - length which is the length

of the given input, and atleast which is the minimum length that the program was

expecting.

In the except clause, we mention the class of error which will be stored as the

variable name to hold the corresponding error/exception object. This is analogous to

parameters and arguments in a function call. Within this particular except clause, we

use the length and atleast fields of the exception object to print an appropriate

message to the user.

14.5. Try … Finally

Suppose you are reading a file in your program. How do you ensure that the file object

is closed properly whether or not an exception was raised? This can be done using

the finally block.

Save this program as exceptions_finally.py :

import sys

import time

f = None

try:

 f = open("poem.txt")

 # Our usual file-reading idiom

 while True:

 line = f.readline()

 if len(line) == 0:

 break

 print line,

 sys.stdout.flush()

 print "Press ctrl+c now"

 # To make sure it runs for a while

 time.sleep(2)

except IOError:

 print "Could not find file poem.txt"

except KeyboardInterrupt:

 print "!! You cancelled the reading from the file."

Exceptions

128

finally:

 if f:

 f.close()

 print "(Cleaning up: Closed the file)"

Output:

$ python exceptions_finally.py

Programming is fun

Press ctrl+c now

^C!! You cancelled the reading from the file.

(Cleaning up: Closed the file)

How It WorksWe do the usual file-reading stuff, but we have arbitrarily introduced

sleeping for 2 seconds after printing each line using the time.sleep function so

that the program runs slowly (Python is very fast by nature). When the program is still

running, press ctrl + c to interrupt/cancel the program.

Observe that the KeyboardInterrupt exception is thrown and the program quits.

However, before the program exits, the finally clause is executed and the file object

is always closed.

Note that we use sys.stdout.flush() after print so that it prints to the screen

immediately.

14.6. The with statement

Acquiring a resource in the try block and subsequently releasing the resource in the

finally block is a common pattern. Hence, there is also a with statement that

enables this to be done in a clean manner:

Save as exceptions_using_with.py :

with open("poem.txt") as f:

 for line in f:

 print line,

How It WorksThe output should be same as the previous example. The difference

here is that we are using the open function with the with statement - we leave the

closing of the file to be done automatically by with open .

Exceptions

129

What happens behind the scenes is that there is a protocol used by the with

statement. It fetches the object returned by the open statement, let’s call it "thefile"

in this case.

It always calls the thefile.enter function before starting the block of code under

it and always calls thefile.exit after finishing the block of code.

So the code that we would have written in a finally block should be taken care

of automatically by the exit method. This is what helps us to avoid having to use

explicit try..finally statements repeatedly.

More discussion on this topic is beyond scope of this book, so please refer PEP 3431

for a comprehensive explanation.

14.7. Summary

We have discussed the usage of the try..except and try..finally

statements. We have seen how to create our own exception types and how to raise

exceptions as well.

Next, we will explore the Python Standard Library.

1 http://www.python.org/dev/peps/pep-0343/

http://www.python.org/dev/peps/pep-0343/
http://www.python.org/dev/peps/pep-0343/

130

Chapter 15. Standard Library

The Python Standard Library contains a huge number of useful modules and is part of

every standard Python installation. It is important to become familiar with the Python

Standard Library since many problems can be solved quickly if you are familiar with

the range of things that these libraries can do.

We will explore some of the commonly used modules in this library. You can find

complete details for all of the modules in the Python Standard Library in the 'Library

Reference' section1 of the documentation that comes with your Python installation.

Let us explore a few useful modules.

If you find the topics in this chapter too advanced, you may skip this

chapter. However, I highly recommend coming back to this chapter

when you are more comfortable with programming using Python.

15.1. sys module

The sys module contains system-specific functionality. We have already seen that

the sys.argv list contains the command-line arguments.

Suppose we want to check the version of the Python software being used, the sys

module gives us that information.

$ python

>>> import sys

>>> sys.version_info

sys.version_info(major=2, minor=7, micro=6, releaselevel='final',

 serial=0)

>>> sys.version_info.major == 2

True

How It WorksThe sys module has a version_info tuple that gives us the version

information. The first entry is the major version. We can pull out this information to use it.

1 http://docs.python.org/2/library/

http://docs.python.org/2/library/
http://docs.python.org/2/library/
http://docs.python.org/2/library/

Standard Library

131

15.2. logging module

What if you wanted to have some debugging messages or important messages to be

stored somewhere so that you can check whether your program has been running as

you would expect it? How do you "store somewhere" these messages? This can be

achieved using the logging module.

Save as stdlib_logging.py :

import os, platform, logging

if platform.platform().startswith('Windows'):

 logging_file = os.path.join(os.getenv('HOMEDRIVE'),

 os.getenv('HOMEPATH'),

 'test.log')

else:

 logging_file = os.path.join(os.getenv('HOME'),

 'test.log')

print "Logging to", logging_file

logging.basicConfig(

 level=logging.DEBUG,

 format='%(asctime)s : %(levelname)s : %(message)s',

 filename = logging_file,

 filemode = 'w',

)

logging.debug("Start of the program")

logging.info("Doing something")

logging.warning("Dying now")

Output:

$ python stdlib_logging.py

Logging to /Users/swa/test.log

$ cat /Users/swa/test.log

2014-03-29 09:27:36,660 : DEBUG : Start of the program

2014-03-29 09:27:36,660 : INFO : Doing something

2014-03-29 09:27:36,660 : WARNING : Dying now

Standard Library

132

If you do not have the cat command, then you can just open the test.log file in

a text editor.

How It WorksWe use three modules from the standard library - the os module for

interacting with the operating system, the platform module for information about the

platform i.e. the operating system and the logging module to log information.

First, we check which operating system we are using by checking the string returned

by platform.platform() (for more information, see import platform;

help(platform)). If it is Windows, we figure out the home drive, the home folder and

the filename where we want to store the information. Putting these three parts together,

we get the full location of the file. For other platforms, we need to know just the home

folder of the user and we get the full location of the file.

We use the os.path.join() function to put these three parts of the location

together. The reason to use a special function rather than just adding the strings

together is because this function will ensure the full location matches the format

expected by the operating system.

We configure the logging module to write all the messages in a particular format to

the file we have specified.

Finally, we can put messages that are either meant for debugging, information, warning

or even critical messages. Once the program has run, we can check this file and we

will know what happened in the program, even though no information was displayed

to the user running the program.

15.3. Module of the Week Series

There is much more to be explored in the standard library such as debugging2, handling

command line options3, regular expressions4 and so on.

The best way to further explore the standard library is to read Doug Hellmann’s

excellent Python Module of the Week5 series (also available as a book6) and reading

the Python documentation7.

2 http://docs.python.org/2/library/pdb.html
3 http://docs.python.org/2/library/argparse.html
4 http://docs.python.org/2/library/re.html
5 http://pymotw.com/2/contents.html
6 http://amzn.com/0321767349
7 http://docs.python.org/2/

http://docs.python.org/2/library/pdb.html
http://docs.python.org/2/library/argparse.html
http://docs.python.org/2/library/argparse.html
http://docs.python.org/2/library/re.html
http://pymotw.com/2/contents.html
http://amzn.com/0321767349
http://docs.python.org/2/
http://docs.python.org/2/library/pdb.html
http://docs.python.org/2/library/argparse.html
http://docs.python.org/2/library/re.html
http://pymotw.com/2/contents.html
http://amzn.com/0321767349
http://docs.python.org/2/

Standard Library

133

15.4. Summary

We have explored some of the functionality of many modules in the Python Standard

Library. It is highly recommended to browse through the Python Standard Library

documentation8 to get an idea of all the modules that are available.

Next, we will cover various aspects of Python that will make our tour of Python more

complete.

8 http://docs.python.org/2/library/

http://docs.python.org/2/library/
http://docs.python.org/2/library/
http://docs.python.org/2/library/

134

Chapter 16. More

So far we have covered a majority of the various aspects of Python that you will use. In

this chapter, we will cover some more aspects that will make our knowledge of Python

more well-rounded.

16.1. Passing tuples around

Ever wished you could return two different values from a function? You can. All you

have to do is use a tuple.

>>> def get_error_details():

... return (2, 'details')

...

>>> errnum, errstr = get_error_details()

>>> errnum

2

>>> errstr

'details'

Notice that the usage of a, b = <some expression> interprets the result of the

expression as a tuple with two values.

This also means the fastest way to swap two variables in Python is:

>>> a = 5; b = 8

>>> a, b

(5, 8)

>>> a, b = b, a

>>> a, b

(8, 5)

16.2. Special Methods

There are certain methods such as the init and del methods which have special

significance in classes.

Special methods are used to mimic certain behaviors of built-in types. For example, if

you want to use the x[key] indexing operation for your class (just like you use it for

More

135

lists and tuples), then all you have to do is implement the getitem() method and

your job is done. If you think about it, this is what Python does for the list class itself!

Some useful special methods are listed in the following table. If you want to know about

all the special methods, see the manual1.

init(self, …)

This method is called just before the newly created object is returned for usage.

del(self)

Called just before the object is destroyed (which has unpredictable timing, so avoid

using this)

str(self)

Called when we use the print statement or when str() is used.

lt(self, other)

Called when the less than operator (<) is used. Similarly, there are special methods

for all the operators (+, >, etc.)

getitem(self, key)

Called when x[key] indexing operation is used.

len(self)

Called when the built-in len() function is used for the sequence object.

16.3. Single Statement Blocks

We have seen that each block of statements is set apart from the rest by its own

indentation level. Well, there is one caveat. If your block of statements contains only

one single statement, then you can specify it on the same line of, say, a conditional

statement or looping statement. The following example should make this clear:

>>> flag = True

>>> if flag: print 'Yes'

...

Yes

Notice that the single statement is used in-place and not as a separate block. Although,

you can use this for making your program smaller, I strongly recommend avoiding this

1 http://docs.python.org/2/reference/datamodel.html#special-method-names

http://docs.python.org/2/reference/datamodel.html#special-method-names
http://docs.python.org/2/reference/datamodel.html#special-method-names

More

136

short-cut method, except for error checking, mainly because it will be much easier to

add an extra statement if you are using proper indentation.

16.4. Lambda Forms

A lambda statement is used to create new function objects. Essentially, the lambda

takes a parameter followed by a single expression only which becomes the body of the

function and the value of this expression is returned by the new function.

Example (save as more_lambda.py):

points = [{ 'x' : 2, 'y' : 3 },

 { 'x' : 4, 'y' : 1 }]

points.sort(key=lambda i : i['y'])

print points

Output:

$ python more_lambda.py

[{'y': 1, 'x': 4}, {'y': 3, 'x': 2}]

How It WorksNotice that the sort method of a list can take a key parameter

which determines how the list is sorted (usually we know only about ascending or

descending order). In our case, we want to do a custom sort, and for that we need to

write a function but instead of writing a separate def block for a function that will get

used in only this one place, we use a lambda expression to create a new function.

16.5. List Comprehension

List comprehensions are used to derive a new list from an existing list. Suppose you

have a list of numbers and you want to get a corresponding list with all the numbers

multiplied by 2 only when the number itself is greater than 2. List comprehensions are

ideal for such situations.

Example (save as more_list_comprehension.py):

listone = [2, 3, 4]

listtwo = [2*i for i in listone if i > 2]

print listtwo

More

137

Output:

$ python more_list_comprehension.py

[6, 8]

How It WorksHere, we derive a new list by specifying the manipulation to be done

(2*i) when some condition is satisfied (if i > 2). Note that the original list remains

unmodified.

The advantage of using list comprehensions is that it reduces the amount of boilerplate

code required when we use loops to process each element of a list and store it in a

new list.

16.6. Receiving Tuples and Dictionaries in Functions

There is a special way of receiving parameters to a function as a tuple or a dictionary

using the * or ** prefix respectively. This is useful when taking variable number of

arguments in the function.

>>> def powersum(power, *args):

... '''Return the sum of each argument raised to the specified

 power.'''

... total = 0

... for i in args:

... total += pow(i, power)

... return total

...

>>> powersum(2, 3, 4)

25

>>> powersum(2, 10)

100

Because we have a * prefix on the args variable, all extra arguments passed to the

function are stored in args as a tuple. If a ** prefix had been used instead, the extra

parameters would be considered to be key/value pairs of a dictionary.

16.7. The assert statement

The assert statement is used to assert that something is true. For example, if you

are very sure that you will have at least one element in a list you are using and want

More

138

to check this, and raise an error if it is not true, then assert statement is ideal in this

situation. When the assert statement fails, an AssertionError is raised.

>>> mylist = ['item']

>>> assert len(mylist) >= 1

>>> mylist.pop()

'item'

>>> assert len(mylist) >= 1

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AssertionError

The assert statement should be used judiciously. Most of the time, it is better to

catch exceptions, either handle the problem or display an error message to the user

and then quit.

16.8. Decorators

Decorators are a shortcut to applying wrapper functions. This is helpful to "wrap"

functionality with the same code over and over again. For example, I created a retry

decorator for myself that I can just apply to any function and if any exception is thrown

during a run, it is retried again, till a maximum of 5 times and with a delay between each

retry. This is especially useful for situations where you are trying to make a network

call to a remote computer:

from time import sleep

from functools import wraps

import logging

logging.basicConfig()

log = logging.getLogger("retry")

def retry(f):

 @wraps(f)

 def wrapped_f(*args, **kwargs):

 MAX_ATTEMPTS = 5

 for attempt in range(1, MAX_ATTEMPTS + 1):

 try:

 return f(*args, **kwargs)

 except:

 log.exception("Attempt %s/%s failed : %s",

 attempt,

More

139

 MAX_ATTEMPTS,

 (args, kwargs))

 sleep(10 * attempt)

 log.critical("All %s attempts failed : %s",

 MAX_ATTEMPTS,

 (args, kwargs))

 return wrapped_f

counter = 0

@retry

def save_to_database(arg):

 print "Write to a database or make a network call or etc."

 print "This will be automatically retried if exception is thrown."

 global counter

 counter += 1

 # This will throw an exception in the first call

 # And will work fine in the second call (i.e. a retry)

 if counter < 2:

 raise ValueError(arg)

if __name__ == '__main__':

 save_to_database("Some bad value")

Output:

$ python more_decorator.py

Write to a database or make a network call or etc.

This will be automatically retried if exception is thrown.

ERROR:retry:Attempt 1/5 failed : (('Some bad value',), {})

Traceback (most recent call last):

 File "more_decorator.py", line 14, in wrapped_f

 return f(*args, **kwargs)

 File "more_decorator.py", line 39, in save_to_database

 raise ValueError(arg)

ValueError: Some bad value

Write to a database or make a network call or etc.

This will be automatically retried if exception is thrown.

How It WorksSee:

• http://www.ibm.com/developerworks/linux/library/l-cpdecor.html

http://www.ibm.com/developerworks/linux/library/l-cpdecor.html

More

140

• http://toumorokoshi.github.io/dry-principles-through-python-decorators.html

16.9. Differences between Python 2 and Python 3

See:

• "Six" library2

• Porting to Python 3 Redux by Armin3

• Python 3 experience by PyDanny4

• Official Django Guide to Porting to Python 35

• Discussion on What are the advantages to python 3.x?6

16.10. Summary

We have covered some more features of Python in this chapter and yet we haven’t

covered all the features of Python. However, at this stage, we have covered most of

what you are ever going to use in practice. This is sufficient for you to get started with

whatever programs you are going to create.

Next, we will discuss how to explore Python further.

2 http://pythonhosted.org/six/
3 http://lucumr.pocoo.org/2013/5/21/porting-to-python-3-redux/
4 http://pydanny.com/experiences-with-django-python3.html
5 https://docs.djangoproject.com/en/dev/topics/python3/
6 http://www.reddit.com/r/Python/comments/22ovb3/what_are_the_advantages_to_python_3x/

http://toumorokoshi.github.io/dry-principles-through-python-decorators.html
http://pythonhosted.org/six/
http://lucumr.pocoo.org/2013/5/21/porting-to-python-3-redux/
http://pydanny.com/experiences-with-django-python3.html
https://docs.djangoproject.com/en/dev/topics/python3/
http://www.reddit.com/r/Python/comments/22ovb3/what_are_the_advantages_to_python_3x/
http://pythonhosted.org/six/
http://lucumr.pocoo.org/2013/5/21/porting-to-python-3-redux/
http://pydanny.com/experiences-with-django-python3.html
https://docs.djangoproject.com/en/dev/topics/python3/
http://www.reddit.com/r/Python/comments/22ovb3/what_are_the_advantages_to_python_3x/

141

Chapter 17. What Next

If you have read this book thoroughly till now and practiced writing a lot of programs,

then you must have become comfortable and familiar with Python. You have probably

created some Python programs to try out stuff and to exercise your Python skills as

well. If you have not done it already, you should. The question now is 'What Next?'.

I would suggest that you tackle this problem:

Create your own command-line address-book program using which

you can browse, add, modify, delete or search for your contacts such

as friends, family and colleagues and their information such as email

address and/or phone number. Details must be stored for later retrieval.

This is fairly easy if you think about it in terms of all the various stuff that we have come

across till now. If you still want directions on how to proceed, then here’s a hint 1.

Once you are able to do this, you can claim to be a Python programmer. Now,

immediately send me an email2 thanking me for this great book ;-). This step is

optional but recommended. Also, please consider buying a printed copy3 to support

the continued development of this book.

If you found that program easy, here’s another one:

Implement the replace command4. This command will replace one string

with another in the list of files provided.

The replace command can be as simple or as sophisticated as you wish, from simple

string substitution to looking for patterns (regular expressions).

17.1. Next Projects

If you found above programs easy to create, then look at this comprehensive

list of projects and try writing your own programs: https://github.com/thekarangoel/

Projects#numbers (the list is also at Martyr2’s Mega Project List5).

1Create a class to represent the person’s information. Use a dictionary to store person objects with

their name as the key. Use the pickle module to store the objects persistently on your hard disk. Use the

dictionary built-in methods to add, delete and modify the persons.
2 http://swaroopch.com/contact/
3 http://swaroopch.com/buybook/
4 http://unixhelp.ed.ac.uk/CGI/man-cgi?replace
5 http://www.dreamincode.net/forums/topic/78802-martyr2s-mega-project-ideas-list/

http://swaroopch.com/contact/
http://swaroopch.com/buybook/
http://unixhelp.ed.ac.uk/CGI/man-cgi?replace
https://github.com/thekarangoel/Projects#numbers
https://github.com/thekarangoel/Projects#numbers
http://www.dreamincode.net/forums/topic/78802-martyr2s-mega-project-ideas-list/
http://swaroopch.com/contact/
http://swaroopch.com/buybook/
http://unixhelp.ed.ac.uk/CGI/man-cgi?replace
http://www.dreamincode.net/forums/topic/78802-martyr2s-mega-project-ideas-list/

What Next

142

Also see Intermediate Python Projects6.

17.2. Example Code

The best way to learn a programming language is to write a lot of code and read a

lot of code:

• Python Cookbook7 is an extremely valuable collection of recipes or tips on how to

solve certain kinds of problems using Python. This is a must-read for every Python

user.

• Python Module of the Week8 is another excellent must-read guide to the Standard

Library.

17.3. Advice

• The Hitchhiker’s Guide to Python!9

• Python Big Picture10

• "Writing Idiomatic Python" ebook11 (paid)

17.4. Videos

• PyVideo12

17.5. Questions and Answers

• Official Python Dos and Don’ts13

• Official Python FAQ14

• Norvig’s list of Infrequently Asked Questions15

6 https://openhatch.org/wiki/Intermediate_Python_Workshop/Projects
7 http://code.activestate.com/recipes/langs/python/
8 http://pymotw.com/2/contents.html
9 http://docs.python-guide.org/en/latest/
10 http://slott-softwarearchitect.blogspot.ca/2013/06/python-big-picture-whats-roadmap.html
11 http://www.jeffknupp.com/writing-idiomatic-python-ebook/
12 http://www.pyvideo.org
13 http://docs.python.org/3/howto/doanddont.html
14 http://www.python.org/doc/faq/general/
15 http://norvig.com/python-iaq.html

https://openhatch.org/wiki/Intermediate_Python_Workshop/Projects
http://code.activestate.com/recipes/langs/python/
http://pymotw.com/2/contents.html
http://docs.python-guide.org/en/latest/
http://slott-softwarearchitect.blogspot.ca/2013/06/python-big-picture-whats-roadmap.html
http://www.jeffknupp.com/writing-idiomatic-python-ebook/
http://www.pyvideo.org
http://docs.python.org/3/howto/doanddont.html
http://www.python.org/doc/faq/general/
http://norvig.com/python-iaq.html
https://openhatch.org/wiki/Intermediate_Python_Workshop/Projects
http://code.activestate.com/recipes/langs/python/
http://pymotw.com/2/contents.html
http://docs.python-guide.org/en/latest/
http://slott-softwarearchitect.blogspot.ca/2013/06/python-big-picture-whats-roadmap.html
http://www.jeffknupp.com/writing-idiomatic-python-ebook/
http://www.pyvideo.org
http://docs.python.org/3/howto/doanddont.html
http://www.python.org/doc/faq/general/
http://norvig.com/python-iaq.html

What Next

143

• Python Interview Q & A16

• StackOverflow questions tagged with python17

17.6. Tutorials

• Hidden features of Python18

• What’s the one code snippet/python trick/etc did you wish you knew when you

learned python?19

• Awaretek’s comprehensive list of Python tutorials20

17.7. Discussion

If you are stuck with a Python problem, and don’t know whom to ask, then the python-

tutor list21 is the best place to ask your question.

Make sure you do your homework by trying to solving the problem yourself first and

ask smart questions22.

17.8. News

If you want to learn what is the latest in the world of Python, then follow the Official

Python Planet23.

17.9. Installing libraries

There are a huge number of open source libraries at the Python Package Index24 which

you can use in your own programs.

To install and use these libraries, you can use pip25.

16 http://dev.fyicenter.com/Interview-Questions/Python/index.html
17 http://stackoverflow.com/questions/tagged/python
18 http://stackoverflow.com/q/101268/4869
19 http://www.reddit.com/r/Python/comments/19dir2/

whats_the_one_code_snippetpython_tricketc_did_you/
20 http://www.awaretek.com/tutorials.html
21 http://mail.python.org/mailman/listinfo/tutor
22 http://catb.org/~esr/faqs/smart-questions.html
23 http://planet.python.org
24 http://pypi.python.org/pypi
25 http://www.pip-installer.org/en/latest/

http://dev.fyicenter.com/Interview-Questions/Python/index.html
http://stackoverflow.com/questions/tagged/python
http://stackoverflow.com/q/101268/4869
http://www.reddit.com/r/Python/comments/19dir2/whats_the_one_code_snippetpython_tricketc_did_you/
http://www.reddit.com/r/Python/comments/19dir2/whats_the_one_code_snippetpython_tricketc_did_you/
http://www.awaretek.com/tutorials.html
http://mail.python.org/mailman/listinfo/tutor
http://mail.python.org/mailman/listinfo/tutor
http://catb.org/~esr/faqs/smart-questions.html
http://planet.python.org
http://planet.python.org
http://pypi.python.org/pypi
http://www.pip-installer.org/en/latest/
http://dev.fyicenter.com/Interview-Questions/Python/index.html
http://stackoverflow.com/questions/tagged/python
http://stackoverflow.com/q/101268/4869
http://www.reddit.com/r/Python/comments/19dir2/whats_the_one_code_snippetpython_tricketc_did_you/
http://www.reddit.com/r/Python/comments/19dir2/whats_the_one_code_snippetpython_tricketc_did_you/
http://www.awaretek.com/tutorials.html
http://mail.python.org/mailman/listinfo/tutor
http://catb.org/~esr/faqs/smart-questions.html
http://planet.python.org
http://pypi.python.org/pypi
http://www.pip-installer.org/en/latest/

What Next

144

17.10. Creating a Website

Learn Flask26 to create your own website. Some resources to get started:

• Flask Official Quickstart27

• The Flask Mega-Tutorial28

• Example Flask Projects29

17.11. Graphical Software

Suppose you want to create your own graphical programs using Python. This can

be done using a GUI (Graphical User Interface) library with their Python bindings.

Bindings are what allow you to write programs in Python and use the libraries which

are themselves written in C or C++ or other languages.

There are lots of choices for GUI using Python:

Kivy

http://kivy.org

PyGTK

This is the Python binding for the GTK+ toolkit which is the foundation upon

which GNOME is built. GTK+ has many quirks in usage but once you become

comfortable, you can create GUI apps fast. The Glade graphical interface designer

is indispensable. The documentation is yet to improve. GTK+ works well on GNU/

Linux but its port to Windows is incomplete. You can create both free as well as

proprietary software using GTK+. To get started, read the PyGTK tutorial30.

PyQt

This is the Python binding for the Qt toolkit which is the foundation upon which

the KDE is built. Qt is extremely easy to use and very powerful especially due to

the Qt Designer and the amazing Qt documentation. PyQt is free if you want to

create open source (GPL’ed) software and you need to buy it if you want to create

proprietary closed source software. Starting with Qt 4.5 you can use it to create non-

GPL software as well. To get started, read about PySide31.

26 http://flask.pocoo.org
27 http://flask.pocoo.org/docs/quickstart/
28 http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world
29 https://github.com/mitsuhiko/flask/tree/master/examples
30 http://www.pygtk.org/tutorial.html
31 http://qt-project.org/wiki/PySide

http://flask.pocoo.org
http://flask.pocoo.org/docs/quickstart/
http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world
https://github.com/mitsuhiko/flask/tree/master/examples
http://kivy.org
http://www.pygtk.org/tutorial.html
http://qt-project.org/wiki/PySide
http://flask.pocoo.org
http://flask.pocoo.org/docs/quickstart/
http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world
https://github.com/mitsuhiko/flask/tree/master/examples
http://www.pygtk.org/tutorial.html
http://qt-project.org/wiki/PySide

What Next

145

wxPython

This is the Python bindings for the wxWidgets toolkit. wxPython has a learning curve

associated with it. However, it is very portable and runs on GNU/Linux, Windows,

Mac and even embedded platforms. There are many IDEs available for wxPython

which include GUI designers as well such as SPE (Stani’s Python Editor)32 and the

wxGlade33 GUI builder. You can create free as well as proprietary software using

wxPython. To get started, read the wxPython tutorial34.

17.12. Summary of GUI Tools

For more choices, see the GuiProgramming wiki page at the official python website35.

Unfortunately, there is no one standard GUI tool for Python. I suggest that you choose

one of the above tools depending on your situation. The first factor is whether you are

willing to pay to use any of the GUI tools. The second factor is whether you want the

program to run only on Windows or on Mac and GNU/Linux or all of them. The third

factor, if GNU/Linux is a chosen platform, is whether you are a KDE or GNOME user

on GNU/Linux.

For a more detailed and comprehensive analysis, see Page 26 of the 'The Python

Papers, Volume 3, Issue 1'36.

17.13. Various Implementations

There are usually two parts a programming language - the language and the software. A

language is how you write something. The software is what actually runs our programs.

We have been using the CPython software to run our programs. It is referred to as

CPython because it is written in the C language and is the Classical Python interpreter.

There are also other software that can run your Python programs:

Jython37

A Python implementation that runs on the Java platform. This means you can use

Java libraries and classes from within Python language and vice-versa.

32 http://spe.pycs.net/
33 http://wxglade.sourceforge.net/
34 http://zetcode.com/wxpython/
35 http://www.python.org/cgi-bin/moinmoin/GuiProgramming
36 http://archive.pythonpapers.org/ThePythonPapersVolume3Issue1.pdf
37 http://www.jython.org

http://spe.pycs.net/
http://wxglade.sourceforge.net/
http://zetcode.com/wxpython/
http://www.python.org/cgi-bin/moinmoin/GuiProgramming
http://archive.pythonpapers.org/ThePythonPapersVolume3Issue1.pdf
http://archive.pythonpapers.org/ThePythonPapersVolume3Issue1.pdf
http://www.jython.org
http://spe.pycs.net/
http://wxglade.sourceforge.net/
http://zetcode.com/wxpython/
http://www.python.org/cgi-bin/moinmoin/GuiProgramming
http://archive.pythonpapers.org/ThePythonPapersVolume3Issue1.pdf
http://www.jython.org

What Next

146

IronPython38

A Python implementation that runs on the .NET platform. This means you can

use .NET libraries and classes from within Python language and vice-versa.

PyPy39

A Python implementation written in Python! This is a research project to make it

fast and easy to improve the interpreter since the interpreter itself is written in a

dynamic language (as opposed to static languages such as C, Java or C# in the

above three implementations)

There are also others such as CLPython40 - a Python implementation written in

Common Lisp and Brython41 which is an implementation on top of a JavaScript

interpreter which could mean that you can use Python (instead of JavaScript) to write

your web-browser ("Ajax") programs.

Each of these implementations have their specialized areas where they are useful.

17.14. Functional Programming (for advanced readers)

When you start writing larger programs, you should definitely learn more about a

functional approach to programming as opposed to the class-based approach to

programming that we learned in the object oriented programming chapter:

• Functional Programming Howto by A.M. Kuchling42

• Functional programming chapter in 'Dive Into Python' book43

• Functional Programming with Python presentation44

• Funcy library45

17.15. Summary

We have now come to the end of this book but, as they say, this is the the beginning

of the end!. You are now an avid Python user and you are no doubt ready to solve

38 http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython
39 http://codespeak.net/pypy/dist/pypy/doc/home.html
40 http://common-lisp.net/project/clpython/
41 http://brython.info/
42 http://docs.python.org/3/howto/functional.html
43 http://www.diveintopython.net/functional_programming/index.html
44 http://ua.pycon.org/static/talks/kachayev/index.html
45 https://github.com/Suor/funcy

http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython
http://codespeak.net/pypy/dist/pypy/doc/home.html
http://common-lisp.net/project/clpython/
http://brython.info/
http://docs.python.org/3/howto/functional.html
http://www.diveintopython.net/functional_programming/index.html
http://ua.pycon.org/static/talks/kachayev/index.html
https://github.com/Suor/funcy
http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython
http://codespeak.net/pypy/dist/pypy/doc/home.html
http://common-lisp.net/project/clpython/
http://brython.info/
http://docs.python.org/3/howto/functional.html
http://www.diveintopython.net/functional_programming/index.html
http://ua.pycon.org/static/talks/kachayev/index.html
https://github.com/Suor/funcy

What Next

147

many problems using Python. You can start automating your computer to do all kinds

of previously unimaginable things or write your own games and much much more. So,

get started!

148

Chapter 18. Appendix: FLOSS

Please note that this section was written in 2003, so some of this

might sound quaint to you :-)

"Free/Libre and Open Source Software", in short, FLOSS1 is based on the concept

of a community, which itself is based on the concept of sharing, and particularly the

sharing of knowledge. FLOSS are free for usage, modification and redistribution.

If you have already read this book, then you are already familiar with FLOSS since you

have been using Python all along and Python is an open source software!

Here are some examples of FLOSS to give an idea of the kind of things that community

sharing and building can create:

Linux2

This is a FLOSS OS kernel used in the GNU/Linux operating system. Linux, the

kernel, was started by Linus Torvalds as a student. Android is based on Linux. Any

website you use these days will mostly be running on Linux.

Ubuntu3

This is a community-driven distribution, sponsored by Canonical and it is the most

popular GNU/Linux distribution today. It allows you to install a plethora of FLOSS

available and all this in an easy-to-use and easy-to-install manner. Best of all, you

can just reboot your computer and run GNU/Linux off the CD! This allows you

to completely try out the new OS before installing it on your computer. However,

Ubuntu is not entirely free software; it contains proprietary drivers, firmware, and

applications.

LibreOffice4

This is an excellent community-driven and developed office suite with a writer,

presentation, spreadsheet and drawing components among other things. It can

even open and edit MS Word and MS PowerPoint files with ease. It runs on almost

all platforms and is entirely free, libre and open source software.

1 http://en.wikipedia.org/wiki/FLOSS
2 http://www.kernel.org
3 http://www.ubuntu.com
4 http://www.libreoffice.org/

http://en.wikipedia.org/wiki/FLOSS
http://www.kernel.org
http://www.ubuntu.com
http://www.libreoffice.org/
http://en.wikipedia.org/wiki/FLOSS
http://www.kernel.org
http://www.ubuntu.com
http://www.libreoffice.org/

Appendix: FLOSS

149

Mozilla Firefox5

This is the best web browser. It is blazingly fast and has gained critical acclaim for

its sensible and impressive features. The extensions concept allows any kind of

plugins to be used.

Mono6

This is an open source implementation of the Microsoft .NET platform. It allows .NET

applications to be created and run on GNU/Linux, Windows, FreeBSD, Mac OS and

many other platforms as well.

Apache web server7

This is the popular open source web server. In fact, it is the most popular web server

on the planet! It runs nearly more than half of the websites out there. Yes, that’s

right - Apache handles more websites than all the competition (including Microsoft

IIS) combined.

VLC Player8

This is a video player that can play anything from DivX to MP3 to Ogg to VCDs and

DVDs to … who says open source ain’t fun? ;-)

This list is just intended to give you a brief idea - there are many more excellent FLOSS

out there, such as the Perl language, PHP language, Drupal content management

system for websites, PostgreSQL database server, TORCS racing game, KDevelop

IDE, Xine - the movie player, VIM editor, Quanta+ editor, Banshee audio player, GIMP

image editing program, … This list could go on forever.

To get the latest buzz in the FLOSS world, check out the following websites:

• OMG! Ubuntu!9

• Web Upd810

• DistroWatch11

• Planet Debian12

Visit the following websites for more information on FLOSS:

5 http://www.mozilla.org/products/firefox
6 http://www.mono-project.com
7 http://httpd.apache.org
8 http://www.videolan.org/vlc/
9 http://www.omgubuntu.co.uk/
10 http://www.webupd8.org/
11 http://www.distrowatch.com
12 http://planet.debian.org/

http://www.mozilla.org/products/firefox
http://www.mono-project.com
http://httpd.apache.org
http://www.videolan.org/vlc/
http://www.omgubuntu.co.uk/
http://www.webupd8.org/
http://www.distrowatch.com
http://planet.debian.org/
http://www.mozilla.org/products/firefox
http://www.mono-project.com
http://httpd.apache.org
http://www.videolan.org/vlc/
http://www.omgubuntu.co.uk/
http://www.webupd8.org/
http://www.distrowatch.com
http://planet.debian.org/

Appendix: FLOSS

150

• GitHub Explore13

• Code Triage14

• SourceForge15

• FreshMeat16

So, go ahead and explore the vast, free and open world of FLOSS!

13 http://github.com/explore
14 http://www.codetriage.com/
15 http://www.sourceforge.net
16 http://www.freshmeat.net

http://github.com/explore
http://www.codetriage.com/
http://www.sourceforge.net
http://www.freshmeat.net
http://github.com/explore
http://www.codetriage.com/
http://www.sourceforge.net
http://www.freshmeat.net

151

Appendix: Colophon

Almost all of the software that I have used in the creation of this book are FLOSS.

1. Birth of the Book

In the first draft of this book, I had used Red Hat 9.0 Linux as the foundation of my

setup and in the sixth draft, I used Fedora Core 3 Linux as the basis of my setup.

Initially, I was using KWord to write the book (as explained in the history lesson in the

preface).

2. Teenage Years

Later, I switched to DocBook XML using Kate but I found it too tedious. So, I switched

to OpenOffice which was just excellent with the level of control it provided for formatting

as well as the PDF generation, but it produced very sloppy HTML from the document.

Finally, I discovered XEmacs and I rewrote the book from scratch in DocBook XML

(again) after I decided that this format was the long term solution.

In the sixth draft, I decided to use Quanta+ to do all the editing. The standard XSL

stylesheets that came with Fedora Core 3 Linux were being used. However, I had

written a CSS document to give color and style to the HTML pages. I had also written

a crude lexical analyzer, in Python of course, which automatically provides syntax

highlighting to all the program listings.

For the seventh draft, I’m using MediaWiki17 as the basis of my setup. I used to edit

everything online and the readers can directly read/edit/discuss within the wiki website,

but I ended up spending more time fighting spam than writing.

For the eight draft, I used Vim18, Pandoc19, and Mac OS X.

17 http://www.mediawiki.org
18 http://www.swaroopch.com/notes/vim
19 http://johnmacfarlane.net/pandoc/README.html

http://www.mediawiki.org
http://www.swaroopch.com/notes/vim
http://johnmacfarlane.net/pandoc/README.html
http://www.mediawiki.org
http://www.swaroopch.com/notes/vim
http://johnmacfarlane.net/pandoc/README.html

Appendix: Colophon

152

3. Now

For the ninth draft, I switched to AsciiDoc format20 and used Emacs 24.321, tomorrow

theme22, Fira Mono font23 and adoc-mode24 to write.

4. About the Author

See http://swaroopch.com/about/

20 http://asciidoctor.org/docs/what-is-asciidoc/
21 http://www.masteringemacs.org/articles/2013/03/11/whats-new-emacs-24-3/
22 https://github.com/chriskempson/tomorrow-theme
23 https://www.mozilla.org/en-US/styleguide/products/firefox-os/typeface/#download-primary
24 https://github.com/sensorflo/adoc-mode/wiki

http://asciidoctor.org/docs/what-is-asciidoc/
http://www.masteringemacs.org/articles/2013/03/11/whats-new-emacs-24-3/
https://github.com/chriskempson/tomorrow-theme
https://github.com/chriskempson/tomorrow-theme
https://www.mozilla.org/en-US/styleguide/products/firefox-os/typeface/#download-primary
https://github.com/sensorflo/adoc-mode/wiki
http://swaroopch.com/about/
http://asciidoctor.org/docs/what-is-asciidoc/
http://www.masteringemacs.org/articles/2013/03/11/whats-new-emacs-24-3/
https://github.com/chriskempson/tomorrow-theme
https://www.mozilla.org/en-US/styleguide/products/firefox-os/typeface/#download-primary
https://github.com/sensorflo/adoc-mode/wiki

153

Chapter 19. Appendix: History Lesson

I first started with Python when I needed to write an installer for software I had written

called 'Diamond' so that I could make the installation easy. I had to choose between

Python and Perl bindings for the Qt library. I did some research on the web and I came

across an article by Eric S. Raymond1, a famous and respected hacker, where he

talked about how Python had become his favorite programming language. I also found

out that the PyQt bindings were more mature compared to Perl-Qt. So, I decided that

Python was the language for me.

Then, I started searching for a good book on Python. I couldn’t find any! I did find some

O’Reilly books but they were either too expensive or were more like a reference manual

than a guide. So, I settled for the documentation that came with Python. However, it

was too brief and small. It did give a good idea about Python but was not complete. I

managed with it since I had previous programming experience, but it was unsuitable

for newbies.

About six months after my first brush with Python, I installed the (then) latest Red Hat

9.0 Linux and I was playing around with KWord. I got excited about it and suddenly

got the idea of writing some stuff on Python. I started writing a few pages but it quickly

became 30 pages long. Then, I became serious about making it more useful in a book

form. After a lot of rewrites, it has reached a stage where it has become a useful guide

to learning the Python language. I consider this book to be my contribution and tribute

to the open source community.

This book started out as my personal notes on Python and I still consider it in the same

way, although I’ve taken a lot of effort to make it more palatable to others :)

In the true spirit of open source, I have received lots of constructive suggestions,

criticisms and feedback from enthusiastic readers which has helped me improve this

book a lot.

19.1. Status Of The Book

• The book was last updated on 2015-05-24 and generated using AsciiDoctor2 1.5.2.

1 http://www.python.org/about/success/esr/
2 http://www.asciidoctor.org

http://www.python.org/about/success/esr/
http://www.asciidoctor.org
http://www.python.org/about/success/esr/
http://www.asciidoctor.org

Appendix: History Lesson

154

• Last major update of this book was in Mar-Apr 2014, converted to Asciidoc3 using

Emacs 244 and adoc-mode5.

• In Dec 2008, the book was updated for the Python 3.0 release (one of the first books

to do so). But now, I have converted the book back for Python 2 language because

readers would often get confused between the default Python 2 installed on their

systems vs. Python 3 which they had to separately install and all the tooling, esp.

editors would assume Python 2 as well. I had a hard time justifying why I had to

aggravate readers and make them go through all this when the fact is that they can

learn either one and it would be just as useful. So, Python 2 it is.

The book needs the help of its readers such as yourselves to point out any parts of the

book which are not good, not comprehensible or are simply wrong. Please write to the

main author6 or the respective translators with your comments and suggestions.

3 http://asciidoctor.org/docs/what-is-asciidoc/
4 http://swaroopch.com/2013/10/17/emacs-configuration-tutorial/
5 https://github.com/sensorflo/adoc-mode/wiki
6 http://swaroopch.com/contact

http://asciidoctor.org/docs/what-is-asciidoc/
http://swaroopch.com/2013/10/17/emacs-configuration-tutorial/
https://github.com/sensorflo/adoc-mode/wiki
http://swaroopch.com/contact
http://swaroopch.com/contact
http://asciidoctor.org/docs/what-is-asciidoc/
http://swaroopch.com/2013/10/17/emacs-configuration-tutorial/
https://github.com/sensorflo/adoc-mode/wiki
http://swaroopch.com/contact

155

Chapter 20. Appendix: Revision History

• 3.0

31 Mar 2014

Rewritten using AsciiDoc1 and adoc-mode2.

• 2.1

03 Aug 2013

Rewritten using Markdown and Jason Blevins' Markdown Mode3

• 2.0

20 Oct 2012

Rewritten in Pandoc format4, thanks to my wife who did most of the conversion

from the Mediawiki format

Simplifying text, removing non-essential sections such as nonlocal and

metaclasses

• 1.90

04 Sep 2008 and still in progress

Revival after a gap of 3.5 years!

Rewriting for Python 3.0

Rewrite using MediaWiki5 (again)

• 1.20

13 Jan 2005

Complete rewrite using Quanta+6 on Fedora7 Core 3 with lot of corrections and

updates. Many new examples. Rewrote my DocBook setup from scratch.

• 1.15

1 http://asciidoctor.org/docs/what-is-asciidoc/
2 https://github.com/sensorflo/adoc-mode/wiki
3 http://jblevins.org/projects/markdown-mode/
4 http://johnmacfarlane.net/pandoc/README.html
5 http://www.mediawiki.org
6 https://en.wikipedia.org/wiki/Quanta_Plus
7 http://fedoraproject.org/

http://asciidoctor.org/docs/what-is-asciidoc/
https://github.com/sensorflo/adoc-mode/wiki
http://jblevins.org/projects/markdown-mode/
http://johnmacfarlane.net/pandoc/README.html
http://www.mediawiki.org
https://en.wikipedia.org/wiki/Quanta_Plus
http://fedoraproject.org/
http://asciidoctor.org/docs/what-is-asciidoc/
https://github.com/sensorflo/adoc-mode/wiki
http://jblevins.org/projects/markdown-mode/
http://johnmacfarlane.net/pandoc/README.html
http://www.mediawiki.org
https://en.wikipedia.org/wiki/Quanta_Plus
http://fedoraproject.org/

Appendix: Revision History

156

28 Mar 2004

Minor revisions

• 1.12

16 Mar 2004

Additions and corrections

• 1.10

09 Mar 2004

More typo corrections, thanks to many enthusiastic and helpful readers.

• 1.00

08 Mar 2004

After tremendous feedback and suggestions from readers, I have made

significant revisions to the content along with typo corrections.

• 0.99

22 Feb 2004

Added a new chapter on modules. Added details about variable number of

arguments in functions.

• 0.98

16 Feb 2004

Wrote a Python script and CSS stylesheet to improve XHTML output, including

a crude-yet-functional lexical analyzer for automatic VIM-like syntax highlighting

of the program listings.

• 0.97

13 Feb 2004

Another completely rewritten draft, in DocBook XML (again). Book has improved

a lot - it is more coherent and readable.

• 0.93

25 Jan 2004

Added IDLE talk and more Windows-specific stuff

Appendix: Revision History

157

• 0.92

05 Jan 2004

Changes to few examples.

• 0.91

30 Dec 2003

Corrected typos. Improvised many topics.

• 0.90

18 Dec 2003

Added 2 more chapters. OpenOffice8 format with revisions.

• 0.60

21 Nov 2003

Fully rewritten and expanded.

• 0.20

20 Nov 2003

Corrected some typos and errors.

• 0.15

20 Nov 2003

Converted to DocBook XML9 with XEmacs.

• 0.10

14 Nov 2003

Initial draft using KWord10.

8 https://en.wikipedia.org/wiki/OpenOffice
9 https://en.wikipedia.org/wiki/DocBook
10 https://en.wikipedia.org/wiki/Kword

https://en.wikipedia.org/wiki/OpenOffice
https://en.wikipedia.org/wiki/DocBook
https://en.wikipedia.org/wiki/Kword
https://en.wikipedia.org/wiki/OpenOffice
https://en.wikipedia.org/wiki/DocBook
https://en.wikipedia.org/wiki/Kword

158

Chapter 21. Translations

There are many translations of the book available in different human languages, thanks

to many tireless volunteers!

If you want to help with these translations, please see the list of volunteers and

languages below and decide if you want to start a new translation or help in existing

translation projects.

If you plan to start a new translation, please read the Translation Howto.

21.1. Arabic

Below is the link for the Arabic version. Thanks to Ashraf Ali Khalaf for translating

the book, you can read the whole book online at http://www.khaledhosny.org/byte-of-

python/index.html or you can download it from sourceforge.net1 for more info see http://

itwadi.com/byteofpython_arabi.

21.2. Brazilian Portuguese

There are two translations in various levels of completion and accessibility. The older

translation is now missing/lost, and newer translation is incomplete.

Samuel Dias Neto (samuel.arataca@gmail.com2) made the first Brazilian Portuguese

translation (older translation) of this book when Python was in 2.3.5 version. This is no

longer publicly accessible.

Rodrigo Amaral3 (rodrigoamaral@gmail.com4) has volunteered to translate the book

to Brazilian Portuguese, (newer translation) which still remains to be completed.

21.3. Catalan

Moises Gomez (moisesgomezgiron@gmail.com5) has volunteered to translate the

book to Catalan. The translation is in progress.

1 http://downloads.sourceforge.net/omlx/byteofpython_arabic.pdf?use_mirror=osdn
2 mailto:samuel.arataca@gmail.com
3 http://rodrigoamaral.net
4 mailto:rodrigoamaral@gmail.com
5 mailto:moisesgomezgiron@gmail.com

http://www.khaledhosny.org/byte-of-python/index.html
http://www.khaledhosny.org/byte-of-python/index.html
http://downloads.sourceforge.net/omlx/byteofpython_arabic.pdf?use_mirror=osdn
http://itwadi.com/byteofpython_arabi
http://itwadi.com/byteofpython_arabi
mailto:samuel.arataca@gmail.com
http://rodrigoamaral.net
mailto:rodrigoamaral@gmail.com
mailto:moisesgomezgiron@gmail.com
http://downloads.sourceforge.net/omlx/byteofpython_arabic.pdf?use_mirror=osdn
mailto:samuel.arataca@gmail.com
http://rodrigoamaral.net
mailto:rodrigoamaral@gmail.com
mailto:moisesgomezgiron@gmail.com

Translations

159

Moisès Gómez - I am a developer and also a teacher of programming

(normally for people without any previous experience).

Some time ago I needed to learn how to program in Python, and

Swaroop’s work was really helpful. Clear, concise, and complete enough.

Just what I needed.

After this experience, I thought some other people in my country could

take benefit from it too. But English language can be a barrier.

So, why not try to translate it? And I did for a previous version of BoP.

I my country there are two official languages. I selected the Catalan

language assuming that others will translate it to the more widespread

Spanish.

21.4. Chinese

Translations are available at http://woodpecker.org.cn/abyteofpython_cn/chinese/ and

http://zhgdg.gitcafe.com/static/doc/byte_of_python.html.

Juan Shen (orion_val@163.com6) has volunteered to translate the book to Chinese.

I am a postgraduate at Wireless Telecommunication Graduate School,

Beijing University of Technology, China PR. My current research interest

is on the synchronization, channel estimation and multi-user detection of

multicarrier CDMA system. Python is my major programming language

for daily simulation and research job, with the help of Python Numeric,

actually. I learned Python just half a year before, but as you can see, it’s

really easy-understanding, easy-to-use and productive. Just as what is

ensured in Swaroop’s book, 'It’s my favorite programming language now'.

'A Byte of Python' is my tutorial to learn Python. It’s clear and effective

to lead you into a world of Python in the shortest time. It’s not too long,

but efficiently covers almost all important things in Python. I think 'A Byte

of Python' should be strongly recommendable for newbies as their first

Python tutorial. Just dedicate my translation to the potential millions of

Python users in China.

6 mailto:orion_val@163.com

http://woodpecker.org.cn/abyteofpython_cn/chinese/
http://zhgdg.gitcafe.com/static/doc/byte_of_python.html
mailto:orion_val@163.com
mailto:orion_val@163.com

Translations

160

21.5. Chinese Traditional

Fred Lin (gasolin@gmail.com7) has volunteered to translate the book to Chinese

Traditional.

It is available at http://code.google.com/p/zhpy/wiki/ByteOfZhpy.

An exciting feature of this translation is that it also contains the executable chinese

python sources side by side with the original python sources.

Fred Lin - I’m working as a network firmware engineer at Delta Network,

and I’m also a contributor of TurboGears web framework.

As a python evangelist (:-p), I need some material to promote python

language. I found 'A Byte of Python' hit the sweet point for both newbies

and experienced programmers. 'A Byte of Python' elaborates the python

essentials with affordable size.

The translation are originally based on simplified chinese version, and

soon a lot of rewrite were made to fit the current wiki version and the

quality of reading.

The recent chinese traditional version also featured with executable

chinese python sources, which are achieved by my new 'zhpy' (python in

chinese) project (launch from Aug 07).

zhpy(pronounce (Z.H.?, or zippy) build a layer upon python to translate

or interact with python in chinese(Traditional or Simplified). This project

is mainly aimed for education.

21.6. French

Gregory (coulix@ozforces.com.au8) has volunteered to translate the book to French.

Gérard Labadie (gerard.labadie@gmail.com9) has completed to translate the book to

French.

7 mailto:gasolin@gmail.com
8 mailto:coulix@ozforces.com.au
9 mailto:gerard.labadie@gmail.com

mailto:gasolin@gmail.com
http://code.google.com/p/zhpy/wiki/ByteOfZhpy
mailto:coulix@ozforces.com.au
mailto:gerard.labadie@gmail.com
mailto:gasolin@gmail.com
mailto:coulix@ozforces.com.au
mailto:gerard.labadie@gmail.com

Translations

161

21.7. German

Lutz Horn (lutz.horn@gmx.de10), Bernd Hengelein (bernd.hengelein@gmail.com11)

and Christoph Zwerschke (cito@online.de12) have volunteered to translate the book

to German.

Their translation is located at http://ftp.jaist.ac.jp/pub//sourceforge/a/ab/abop-

german.berlios/

Lutz Horn says:

I’m 32 years old and have a degree of Mathematics from University of

Heidelberg, Germany. Currently I’m working as a software engineer on

a publicly funded project to build a web portal for all things related to

computer science in Germany.The main language I use as a professional

is Java, but I try to do as much as possible with Python behind the scenes.

Especially text analysis and conversion is very easy with Python. I’m not

very familiar with GUI toolkits, since most of my programming is about

web applications, where the user interface is build using Java frameworks

like Struts. Currently I try to make more use of the functional programming

features of Python and of generators. After taking a short look into Ruby,

I was very impressed with the use of blocks in this language. Generally

I like the dynamic nature of languages like Python and Ruby since it

allows me to do things not possible in more static languages like Java.I’ve

searched for some kind of introduction to programming, suitable to teach

a complete non-programmer. I’ve found the book 'How to Think Like a

Computer Scientist: Learning with Python', and 'Dive into Python'. The

first is good for beginners but to long to translate. The second is not

suitable for beginners. I think 'A Byte of Python' falls nicely between

these, since it is not too long, written to the point, and at the same

time verbose enough to teach a newbie. Besides this, I like the simple

DocBook structure, which makes translating the text a generation the

output in various formats a charm.

Bernd Hengelein says:

10 mailto:lutz.horn@gmx.de
11 mailto:bernd.hengelein@gmail.com
12 mailto:cito@online.de

mailto:lutz.horn@gmx.de
mailto:bernd.hengelein@gmail.com
mailto:cito@online.de
http://ftp.jaist.ac.jp/pub//sourceforge/a/ab/abop-german.berlios/
http://ftp.jaist.ac.jp/pub//sourceforge/a/ab/abop-german.berlios/
mailto:lutz.horn@gmx.de
mailto:bernd.hengelein@gmail.com
mailto:cito@online.de

Translations

162

Lutz and me are going to do the german translation together. We just

started with the intro and preface but we will keep you informed about

the progress we make. Ok, now some personal things about me. I am

34 years old and playing with computers since the 1980’s, when the

"Commodore C64" ruled the nurseries. After studying computer science

I started working as a software engineer. Currently I am working in the

field of medical imaging for a major german company. Although C++ is

the main language I (have to) use for my daily work, I am constantly

looking for new things to learn.Last year I fell in love with Python, which

is a wonderful language, both for its possibilities and its beauty. I read

somewhere in the net about a guy who said that he likes python, because

the code looks so beautiful. In my opinion he’s absolutly right. At the

time I decided to learn python, I noticed that there is very little good

documentation in german available. When I came across your book the

spontaneous idea of a german translation crossed my mind. Luckily, Lutz

had the same idea and we can now divide the work.I am looking forward

to a good cooperation!

21.8. Greek

The Greek Ubuntu Community translated the book in Greek13, for use in our

on-line asynchronous Python lessons that take place in our forums. Contact

@savvasradevic14 for more information.

21.9. Indonesian

Daniel (daniel.mirror@gmail.com15) is translating the book to Indonesian at http://

python.or.id/moin.cgi/ByteofPython.

Wisnu Priyambodo (cibermen@gmail.com16) also has volunteered to translate the

book to Indonesian.

Also, Bagus Aji Santoso (baguzzzaji@gmail.com17) has volunteered.

13 http://wiki.ubuntu-gr.org/byte-of-python-el
14 https://twitter.com/savvasradevic
15 mailto:daniel.mirror@gmail.com
16 mailto:cibermen@gmail.com
17 mailto:baguzzzaji@gmail.com

http://wiki.ubuntu-gr.org/byte-of-python-el
https://twitter.com/savvasradevic
mailto:daniel.mirror@gmail.com
http://python.or.id/moin.cgi/ByteofPython
http://python.or.id/moin.cgi/ByteofPython
mailto:cibermen@gmail.com
mailto:baguzzzaji@gmail.com
http://wiki.ubuntu-gr.org/byte-of-python-el
https://twitter.com/savvasradevic
mailto:daniel.mirror@gmail.com
mailto:cibermen@gmail.com
mailto:baguzzzaji@gmail.com

Translations

163

21.10. Italian

Enrico Morelli (mr.mlucci@gmail.com18) and Massimo Lucci (morelli@cerm.unifi.it19)

have volunteered to translate the book to Italian.

The Italian translation is present at http://www.gentoo.it/Programmazione/

byteofpython.

Massimo Lucci and Enrico Morelli - we are working at the University

of Florence (Italy) - Chemistry Department. I (Massimo) as service

engineer and system administrator for Nuclear Magnetic Resonance

Spectrometers; Enrico as service engineer and system administrator

for our CED and parallel / clustered systems. We are programming on

python since about seven years, we had experience working with Linux

platforms since ten years. In Italy we are responsible and administrator

for www.gentoo.it web site for Gentoo/Linux distrubution and www.nmr.it

(now under construction) for Nuclear Magnetic Resonance applications

and Congress Organization and Managements.That’s all! We are

impressed by the smart language used on your Book and we think this is

essential for approaching the Python to new users (we are thinking about

hundred of students and researcher working on our labs).

21.11. Japanese

Shunro Dozono (dozono@gmail.com20) is translating the book to Japanese.

21.12. Korean

Jeongbin Park (pjb7687@gmail.com21) has translated the book to Korean - https://

github.com/pjb7687/byte_of_python

I am Jeongbin Park, currently working as a Biophysics & Bioinformatics

researcher in Korea.

A year ago, I was looking for a good tutorial/guide for Python to introduce

it to my colleagues, because using Python in such research fields is

becoming inevitable due to the user base is growing more and more.

18 mailto:mr.mlucci@gmail.com
19 mailto:morelli@cerm.unifi.it
20 mailto:dozono@gmail.com
21 mailto:pjb7687@gmail.com

mailto:mr.mlucci@gmail.com
mailto:morelli@cerm.unifi.it
http://www.gentoo.it/Programmazione/byteofpython
http://www.gentoo.it/Programmazione/byteofpython
mailto:dozono@gmail.com
mailto:pjb7687@gmail.com
https://github.com/pjb7687/byte_of_python
https://github.com/pjb7687/byte_of_python
mailto:mr.mlucci@gmail.com
mailto:morelli@cerm.unifi.it
mailto:dozono@gmail.com
mailto:pjb7687@gmail.com

Translations

164

But at that time only few Python books are available in Korean, so I

decided to translate your ebook because it looks like one of the best

guides that I have ever read!

Currently, the book is almost completely translated in Korean, except

some of the text in introduction chapter and the appendixes.

Thank you again for writing such a good guide!

21.13. Mongolian

Ariunsanaa Tunjin (luftballons2010@gmail.com22) has volunteered to translate the

book to Mongolian.

Update on Nov 22, 2009 : Ariunsanaa is on the verge of completing the translation.

21.14. Norwegian (bokmål)

Eirik Vågeskar is a high school student at Sandvika videregående skole23 in Norway,

a blogger24 and currently translating the book to Norwegian (bokmål).

Eirik Vågeskar: I have always wanted to program, but because I speak a

small language, the learning process was much harder. Most tutorials and

books are written in very technical English, so most high school graduates

will not even have the vocabulary to understand what the tutorial is about.

When I discovered this book, all my problems were solved. "A Byte of

Python" used simple non-technical language to explain a programming

language that is just as simple, and these two things make learning

Python fun. After reading half of the book, I decided that the book was

worth translating. I hope the translation will help people who have found

themself in the same situation as me (especially young people), and

maybe help spread interest for the language among people with less

technical knowledge.

22 mailto:luftballons2010@gmail.com
23 http://no.wikipedia.org/wiki/Sandvika_videreg%C3%A5ende_skole
24 http://forbedre.blogspot.com/

mailto:luftballons2010@gmail.com
http://no.wikipedia.org/wiki/Sandvika_videreg%C3%A5ende_skole
http://forbedre.blogspot.com/
mailto:luftballons2010@gmail.com
http://no.wikipedia.org/wiki/Sandvika_videreg%C3%A5ende_skole
http://forbedre.blogspot.com/

Translations

165

21.15. Polish

Dominik Kozaczko (dominik@kozaczko.info25) has volunteered to translate the book to

Polish. Translation is in progress and it’s main page is available here: Uk## Pythona26.

Update : The translation is complete and ready as of Oct 2, 2009. Thanks to Dominik,

his two students and their friend for their time and effort!

Dominik Kozaczko - I’m a Computer Science and Information Technology

teacher.

21.16. Portuguese

Fidel Viegas (fidel.viegas@gmail.com27) has volunteered to translate the book to

Portuguese.

21.17. Romanian

Paul-Sebastian Manole (brokenthorn@gmail.com28) has volunteered to translate this

book to Romanian.

Paul-Sebastian Manole - I’m a second year Computer Science student

at Spiru Haret University, here in Romania. I’m more of a self-taught

programmer and decided to learn a new language, Python. The web told

me there was no better way to do so but read ''A Byte of Python''. That’s

how popular this book is (congratulations to the author for writing such an

easy to read book). I started liking Python so I decided to help translate

the latest version of Swaroop’s book in Romanian. Although I could be

the one with the first initiative, I’m just one volunteer so if you can help,

please join me.

21.18. Russian

Vladimir Smolyar (v_2e@ukr.net29) has completed a Russian translation at http://

wombat.org.ua/AByteOfPython/.

25 mailto:dominik@kozaczko.info
26 http://python.edu.pl/byteofpython/
27 mailto:fidel.viegas@gmail.com
28 mailto:brokenthorn@gmail.com
29 mailto:v_2e@ukr.net

mailto:dominik@kozaczko.info
http://python.edu.pl/byteofpython/
mailto:fidel.viegas@gmail.com
mailto:brokenthorn@gmail.com
mailto:v_2e@ukr.net
http://wombat.org.ua/AByteOfPython/
http://wombat.org.ua/AByteOfPython/
mailto:dominik@kozaczko.info
http://python.edu.pl/byteofpython/
mailto:fidel.viegas@gmail.com
mailto:brokenthorn@gmail.com
mailto:v_2e@ukr.net

Translations

166

21.19. Ukranian

Averkiev Andrey (averkiyev@ukr.net30) has volunteered to translate the book to

Russian, and perhaps Ukranian (time permitting).

21.20. Serbian

"BugSpice" (amortizerka@gmail.com31) has completed a Serbian translation:

This download link is no longer accessible.

More details at http://forum.ubuntu-rs.org/Thread-zagrljaj-pitona.

21.21. Slovak

Albertio Ward (albertioward@gmail.com32) has translated the book to Slovak at http://

www.fatcow.com/edu/python-swaroopch-sl/ :

We are a non-profit organization called "Translation for education".

We represent a group of people, mainly students and professors, of

the Slavonic University. Here are students from different departments:

linguistics, chemistry, biology, etc. We try to find interesting publications

on the Internet that can be relevant for us and our university colleagues.

Sometimes we find articles by ourselves; other times our professors

help us choose the material for translation. After obtaining permission

from authors we translate articles and post them in our blog which is

available and accessible to our colleagues and friends. These translated

publications often help students in their daily study routine.

21.22. Spanish

Alfonso de la Guarda Reyes (alfonsodg@ictechperu.net33), Gustavo

Echeverria (gustavo.echeverria@gmail.com34), David Crespo Arroyo

30 mailto:averkiyev@ukr.net
31 mailto:amortizerka@gmail.com
32 mailto:albertioward@gmail.com
33 mailto:alfonsodg@ictechperu.net
34 mailto:gustavo.echeverria@gmail.com

mailto:averkiyev@ukr.net
mailto:amortizerka@gmail.com
http://forum.ubuntu-rs.org/Thread-zagrljaj-pitona
mailto:albertioward@gmail.com
http://www.fatcow.com/edu/python-swaroopch-sl/
http://www.fatcow.com/edu/python-swaroopch-sl/
mailto:alfonsodg@ictechperu.net
mailto:gustavo.echeverria@gmail.com
mailto:averkiyev@ukr.net
mailto:amortizerka@gmail.com
mailto:albertioward@gmail.com
mailto:alfonsodg@ictechperu.net
mailto:gustavo.echeverria@gmail.com

Translations

167

(davidcrespoarroyo@hotmail.com35) and Cristian Bermudez Serna

(crisbermud@hotmail.com36) have volunteered to translate the book to Spanish.

Gustavo Echeverria says:

I work as a software engineer in Argentina. I use mostly C# and .Net

technologies at work but strictly Python or Ruby in my personal projects.

I knew Python many years ago and I got stuck inmediately. Not so long

after knowing Python I discovered this book and it helped me to learn the

language. Then I volunteered to translate the book to Spanish. Now, after

receiving some requests, I’ve begun to translate "A Byte of Python" with

the help of Maximiliano Soler.

Cristian Bermudez Serna says:

I am student of Telecommunications engineering at the University of

Antioquia (Colombia). Months ago, i started to learn Python and found

this wonderful book, so i volunteered to get the Spanish translation.

21.23. Swedish

Mikael Jacobsson (leochingkwake@gmail.com37) has volunteered to translate the

book to Swedish.

21.24. Turkish

Türker SEZER (tsezer@btturk.net38) and Bugra Cakir (bugracakir@gmail.com39)

have volunteered to translate the book to Turkish. "Where is Turkish version? Bitse

de okusak."

35 mailto:davidcrespoarroyo@hotmail.com
36 mailto:crisbermud@hotmail.com
37 mailto:leochingkwake@gmail.com
38 mailto:tsezer@btturk.net
39 mailto:bugracakir@gmail.com

mailto:davidcrespoarroyo@hotmail.com
mailto:crisbermud@hotmail.com
mailto:leochingkwake@gmail.com
mailto:tsezer@btturk.net
mailto:bugracakir@gmail.com
mailto:davidcrespoarroyo@hotmail.com
mailto:crisbermud@hotmail.com
mailto:leochingkwake@gmail.com
mailto:tsezer@btturk.net
mailto:bugracakir@gmail.com

168

Chapter 22. Translation Howto

1. The full source of the book is available from https://github.com/swaroopch/

byte_of_python.

2. Please fork the repository1.

3. Then, fetch the repository to your computer. You need to know how to use Git2

to do that.

4. Read AsciiDoc syntax quick reference3.

5. Start editing the .asciidoc files to translate to your local language.

6. Run source commands.bash and use make_html , make_pdf , etc. to

generate output from the AsciiDoc sources.

1 https://help.github.com/articles/fork-a-repo
2 http://www.git-scm.com
3 http://asciidoctor.org/docs/asciidoc-syntax-quick-reference/

https://github.com/swaroopch/byte_of_python
https://github.com/swaroopch/byte_of_python
https://help.github.com/articles/fork-a-repo
http://www.git-scm.com
http://asciidoctor.org/docs/asciidoc-syntax-quick-reference/
https://help.github.com/articles/fork-a-repo
http://www.git-scm.com
http://asciidoctor.org/docs/asciidoc-syntax-quick-reference/

	A Byte of Python
	Table of Contents
	
	Chapter 1. Welcome
	1.1. Who reads A Byte of Python?
	1.2. Academic Courses
	1.3. License
	1.4. Read Now
	1.5. Buy The Book
	1.6. Download
	1.7. Read the book in your native language

	Preface
	1. Who This Book Is For
	2. Official Website
	3. Something To Think About

	Chapter 2. Introduction
	2.1. Features of Python
	2.2. Python 2 versus 3
	2.3. What Programmers Say

	Chapter 3. Installation
	3.1. Installation on Windows
	3.1.1. DOS Prompt
	3.1.2. Running Python prompt on Windows

	3.2. Installation on Mac OS X
	3.3. Installation on GNU/Linux
	3.4. Summary

	Chapter 4. First Steps
	4.1. Using The Interpreter Prompt
	4.2. Choosing An Editor
	4.3. PyCharm
	4.4. Vim
	4.5. Emacs
	4.6. Using A Source File
	4.7. Getting Help
	4.8. Summary

	Chapter 5. Basics
	5.1. Comments
	5.2. Literal Constants
	5.3. Numbers
	5.4. Strings
	5.4.1. Single Quote
	5.4.2. Double Quotes
	5.4.3. Triple Quotes
	5.4.4. Strings Are Immutable
	5.4.5. The format method
	5.4.6. Escape Sequences
	5.4.7. Raw String

	5.5. Variable
	5.6. Identifier Naming
	5.7. Data Types
	5.8. Object
	5.9. How to write Python programs
	5.10. For PyCharm
	5.11. For other editors
	5.12. Example: Using Variables And Literal Constants
	5.13. Logical And Physical Line
	5.14. Indentation
	5.15. Summary

	Chapter 6. Operators and Expressions
	6.1. Operators
	6.2. Shortcut for math operation and assignment
	6.3. Evaluation Order
	6.4. Changing the Order Of Evaluation
	6.5. Associativity
	6.6. Expressions
	6.7. Summary

	Chapter 7. Control Flow
	7.1. The if statement
	7.2. The while Statement
	7.3. The for loop
	7.4. The break Statement
	7.5. The continue Statement
	7.6. Summary

	Chapter 8. Functions
	8.1. Function Parameters
	8.2. Local Variables
	8.3. The global statement
	8.4. Default Argument Values
	8.5. Keyword Arguments
	8.6. VarArgs parameters
	8.7. The return statement
	8.8. DocStrings
	8.9. Summary

	Chapter 9. Modules
	9.1. Byte-compiled .pyc files
	9.2. The from … import statement
	9.3. A module’s name
	9.4. Making Your Own Modules
	9.5. The dir function
	9.6. Packages
	9.7. Summary

	Chapter 10. Data Structures
	10.1. List
	10.2. Quick Introduction To Objects And Classes
	10.3. Tuple
	10.4. Dictionary
	10.5. Sequence
	10.6. Set
	10.7. References
	10.8. More About Strings
	10.9. Summary

	Chapter 11. Problem Solving
	11.1. The Problem
	11.2. The Solution
	11.3. Second Version
	11.4. Third Version
	11.5. Fourth Version
	11.6. More Refinements
	11.7. The Software Development Process
	11.8. Summary

	Chapter 12. Object Oriented Programming
	12.1. The self
	12.2. Classes
	12.3. Methods
	12.4. The init method
	12.5. Class And Object Variables
	12.6. Inheritance
	12.7. Summary

	Chapter 13. Input and Output
	13.1. Input from user
	13.1.1. Homework exercise

	13.2. Files
	13.3. Pickle
	13.4. Unicode
	13.5. Summary

	Chapter 14. Exceptions
	14.1. Errors
	14.2. Exceptions
	14.3. Handling Exceptions
	14.4. Raising Exceptions
	14.5. Try … Finally
	14.6. The with statement
	14.7. Summary

	Chapter 15. Standard Library
	15.1. sys module
	15.2. logging module
	15.3. Module of the Week Series
	15.4. Summary

	Chapter 16. More
	16.1. Passing tuples around
	16.2. Special Methods
	16.3. Single Statement Blocks
	16.4. Lambda Forms
	16.5. List Comprehension
	16.6. Receiving Tuples and Dictionaries in Functions
	16.7. The assert statement
	16.8. Decorators
	16.9. Differences between Python 2 and Python 3
	16.10. Summary

	Chapter 17. What Next
	17.1. Next Projects
	17.2. Example Code
	17.3. Advice
	17.4. Videos
	17.5. Questions and Answers
	17.6. Tutorials
	17.7. Discussion
	17.8. News
	17.9. Installing libraries
	17.10. Creating a Website
	17.11. Graphical Software
	17.12. Summary of GUI Tools
	17.13. Various Implementations
	17.14. Functional Programming (for advanced readers)
	17.15. Summary

	Chapter 18. Appendix: FLOSS
	1. Birth of the Book
	2. Teenage Years
	3. Now
	4. About the Author
	Chapter 19. Appendix: History Lesson
	19.1. Status Of The Book

	Chapter 20. Appendix: Revision History
	Chapter 21. Translations
	21.1. Arabic
	21.2. Brazilian Portuguese
	21.3. Catalan
	21.4. Chinese
	21.5. Chinese Traditional
	21.6. French
	21.7. German
	21.8. Greek
	21.9. Indonesian
	21.10. Italian
	21.11. Japanese
	21.12. Korean
	21.13. Mongolian
	21.14. Norwegian (bokmål)
	21.15. Polish
	21.16. Portuguese
	21.17. Romanian
	21.18. Russian
	21.19. Ukranian
	21.20. Serbian
	21.21. Slovak
	21.22. Spanish
	21.23. Swedish
	21.24. Turkish

	Chapter 22. Translation Howto

