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Abstract

An introduction to the construction and interpretation of supersymmetric low energy

effective actions in four space-time dimensions is given. These effective actions are used

to extract exact strong-coupling information about N = 4 and N = 2 supersymmetric

gauge theories. The M-theory 5-brane construction which derives the effective action

of certain N = 2 theories is described.



1 Introduction

The aim of these lectures is to introduce some of the arguments that have been used

successfully in the last five years to obtain exact information about strongly coupled

field theories. I will focus on four-dimensional field theories without gravity, although

the techniques described here have been applied to theories in other dimensions and to

string/M theory as well. I will also focus on theories with at leastN = 2 supersymmetry

(8 conserved supercharges) since these are physically rich theories with many open

problems, but are still highly constrained by the symmetry.

The basic notion is that of a low energy (or Wilsonian) effective action. This is simply

a local action describing a theory’s degrees of freedom at energies below a given scale

E. An example is the low energy effective action for QCD, chiral perturbation theory

describing the interactions of pions at energies E < ΛQCD. In such a theory particles

heavier than ΛQCD are included in the pion theory as classical sources. Other examples

are the various ten and eleven-dimensional supergravity theories, which appear as

effective actions for string/M theory at energies below their Planck scales. The effective

action is obtained by averaging over (integrating out) the short distance fluctuations of

the theory. If there is a sufficiently small ratio E/Λ between the cutoff energy scale E

and the energy scale Λ characteristic of the dynamics of the degrees of freedom being

averaged over, renormalization group arguments imply that the effective action can

be systematically expanded as a power series in E/Λ—essentially an expansion in the

number of derivatives of the fields.

We will use low energy effective actions to analyze four dimensional field theories by

taking the limit as the cutoff energy scale E goes to zero, or equivalently, by just keeping

the leading terms (up to two derivatives) in the low energy fields. I will call such E → 0

low energy effective actions infrared effective actions (IREAs). The idea is to guess an

IR effective field content for the microscopic (UV) theory in question and write down

all possible IREAs built from these fields consistent with the global symmetries of the

UV theory. For a “generic” UV theory this is no better than doing chiral perturbation

theory for QCD, and would seem to give little advantage for obtaining exact results.

However, if the theory has a continuous set of inequivalent vacua, it turns out that

selection rules from global symmetries of the UV theory can sometimes constrain the

IREA sufficiently to deduce exact results. There are a number of reviews deriving

these exact results [1] assuming the constraints from supersymmetry. In particular,

these lectures are a continuation of [2], where the construction of four-dimensional

IREAs is explained in a relatively non-technical way.
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We start in Sec. 2 with a brief review of IREAs with various amounts of supersym-

metry. The constraints on the IREAs become progressively more restrictive as the

number of supersymmetries is increased. In the N = 2 case they are strong enough to

allow quite general and restrictive properties of the moduli space of vacua of gauge the-

ories to be deduced. The remainder of these lectures is devoted to using these IREAs

to extract exact strong-coupling information about supersymmetric gauge theories. In

particular, Sec. 3 discusses the exact IREAs of N = 4 theories, while Sec. 4 discusses

some general things that can be said about those of N = 2 theories (Seiberg-Witten

theory [3]). Sec. 5 will elaborate on the mathematical formulation of N = 2 IREAs in

preparation for Sec. 6 which presents an account of an M-theory 5-brane construction

[4] which allows one to derive the IREA of certain N = 2 theories.

Important topics omitted include the properties of interacting IREAs—the repre-

sentation theory of superconformal algebras [5] and their use in analyzing IREAs [6];

instead these lectures concentrate on IR free effective actions. Also missing are de-

tails of supersymmetry algebras and the construction of their representations—many

good texts and review articles cover this material [7]—or the application of the ideas

presented here to theories in other dimensions [8].

2 IREAs

Since an IREA describes physics only for arbitrarily low energies, it is, by definition,

scale invariant: we simply take the cutoff scale E below any finite scale in the theory.

Scale invariant theories and therefore IREAs fall into one of the following categories:

Trivial theories in which all fields are massive, so there are no propagating degrees

of freedom in the far IR.

Free theories in which all massless fields are non-interacting in the far IR. (They can

still couple to massive sources, but these sources should not be treated dynamically in

the IREA.)

Interacting theories of massless degrees of freedom which are usually assumed to be

conformal field theories [9].

We generally have no effective description of interacting conformal field theories in

four dimensions [10] so we must limit ourselves to free or trivial theories in the IR.

A large class of these is given by the Coleman-Gross theorem [11] which states that

for small enough couplings any theory of scalars, spinors, and U(1) vectors in four

dimensions flows in the IR to a free theory. We thus take the field content of our IREA
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to be a collection of real scalars φi, Weyl spinors ψa
α, and U(1) vector fields AI

µ. Here α

and µ are the space-time spinor and vector indices, while i, a, and I label the different

field species.

Since this theory is free in the IR, no interesting dynamics involving the spinor fields

can occur, so the vacuum structure of this theory is governed by the scalar potential.

Dropping the other fields we write the general Lagrangian with up to two derivatives

for a set of real scalars

L = −V (φ) + 1
2
gij(φ)∂µφ

i∂µφj. (1)

Here the potential V is an arbitrary real function of the φi which is bounded below (for

stability), while the coefficient gij of the generalized kinetic term is a real, symmetric

and positive definite tensor (for unitarity). We assume V attains its minimum value,

which without loss of generality we take to be V = 0.

Minimizing the generalized kinetic energy term implies that in the vacuum the scalars

should all be constant. Denoting these constant values by the same symbols as for the

fields, the set of all possible vacua is then seen to naturally have the structure of a

Riemannian manifold M0 = {φi} with metric gij since an arbitrary non-singular field

redefinition φi → φ̃i(φ) transforms gij in the same way as a metric transforms under a

change of coordinates.

If V = 0 identically, then M0 would describe a manifold of vacua of this theory.

We call such a manifold of vacua the moduli space of the theory. Without any extra

symmetries to constrain it, generically V 6= 0, so M0 is not the moduli space, but

instead MV = M0/{V = 0} is. At least locally MV has the structure of a submanifold

of M0.

Now let us incorporate the U(1) gauge fields into our discussion of the moduli space.

Some of the scalar fields may be charged under the U(1)n gauge group of the IREA.

The infinitesimal U(1)n action of the gauge group on the scalars then generates a

diffeomorphism of M0. For this to be a symmetry of the IREA it must both leave V

invariant and be an isometry of the metric gij . In that case the IREA can be written

(excluding the spinors) as

L = −V (φ) + 1
2
gij(φ)Dµφ

iDµφj −
1

16π
Im

[
τIJ(φ)F I ∧ ∗FJ

]
, (2)

where Dµ = ∂µ + AI
µξI , treating the ξi

I as Killing vectors generating the isometry.

The last term in Eq. 2 is a generalized Maxwell term for the U(1) field strengths

F I
µν = ∂µA

I
ν − ∂νA

I
µ, where we have defined

F I = F I − i∗F I (3)
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in terms of 2-form field strengths and the Hodge star operator ∗Fµν = 1
2
εµνρσF

ρσ. τIJ

is a complex (gauge invariant) function of the φi symmetric in I and J and whose

imaginary part is positive definite (for unitarity). Defining the real and imaginary

parts of the couplings by

τIJ =
θIJ

2π
+ i

4π

(e2)IJ

, (4)

the generalized Maxwell term can be expanded as

LU(1) = −
1

2(e2)IJ

F I ∧ ∗F J +
θIJ

64π2
F I ∧ F J , (5)

showing that the imaginary part of τIJ is a matrix of couplings and the real part are

theta angles.

The addition of the U(1) gauge fields affects the moduli space because two points of

M0 which are related by a gauge transformation must be identified. Thus M0 or MV

(since V is gauge invariant) is replaced by M, formed by dividing by the action of the

gauged isometry group U(1)n: M = MV /U(1)n.

Note that the vacuum expectation values (vevs) of charged scalars can not parame-

terize the moduli space, because when a charged scalar gets a nonzero vev it Higgses the

U(1) it is charged under and thereby gets a mass. It is therefore not a flat direction—

i.e. changing its vev takes us off the moduli space M. Since we are interested only

in the extreme IR limit, we only need to keep the neutral scalars which parameterize

M. In this case the IREA (2) simplifies since V = 0 on M by definition and Dµ = ∂µ

on neutral scalars. Thus only the metric gij(φ) and couplings τIJ(φ) need to be speci-

fied. (If we included the fermions, there would also be the coefficient functions of their

kinetic terms as well.)

The IR free low energy U(1)n dynamics is form-invariant under electric-magnetic

duality transformations. These are simply relabellings of the fields, interchanging elec-

tric and magnetic fields and charges, and, because of the Dirac quantization condition

relating electric and magnetic charges [12], also inverting the couplings τIJ → −τ IJ ,

where τ IJ is the matrix inverse of τIJ : τ IJτJK = δI
K . This electric-magnetic duality

transformation together with the invariance of the physics under 2π shifts of the theta

angles (integer shifts of ReτIJ) τIJ → τIJ + δK
I δ

L
J + δL

I δ
K
J , generate a discrete group of

duality transformations:

τIJ → (AI
LτLM +BIM)(CJNτNM +DJ

M)−1, (6)

where

M ≡
(
A B
C D

)
∈ Sp(2n,Z). (7)
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The conditions on the n×n integer matrices A, B, C, and D for M to be in Sp(2n,Z)

are

ABT = BTA, BTD = DTB,

ATC = CTA, DTC = CDT ,

ATD − CTB = ADT −BCT = 1, (8)

and imply that

M−1 =
(
DT −BT

−CT AT

)
. (9)

The action of an electric-magnetic duality transformation on the 2n-component row

vector of magetic and electric charges (nI
m, ne,J) of massive states is

(nm ne) → (nm ne) ·M
−1. (10)

Electric-magnetic duality transformations are not symmetry transformations since

they acts on the couplings. Instead, electric-magnetic duality simply expresses the

equivalence of free U(1) field theories coupled to classical (massive) sources under

Sp(2n,Z) redefinitions of electric and magnetic charges. The importance of this re-

dundancy in the Lagrangian description of IREAs becomes apparent when there is a

moduli space M of inequivalent vacua. In that case, upon traversing a closed loop in

M the physics must, by definition, be the same at the beginning and end of the loop,

but the Lagrangian description need not—it may have suffered an electric-magnetic

duality transformation. This possibility is often expressed by saying that the coupling

matrix τIJ , in addition to being symmetric and having positive definite imaginary part,

is also a section of a (flat) Sp(2n,Z) bundle with action given by (6).

2.1 N=2 Supersymmetric IREAs

The basic (no central charges) N = 2 superalgebra is, in an indexless notation,

{Qm, Qn} = δmnP, {Qm, Qn} = 0, m, n = 1, 2, (11)

where Qm are two Weyl spinor supercharges, and P is the energy-momentum vector.

Note that the N = 2 algebra has an SU(2)R group of automorphisms under which Qm

transforms as a doublet. (Global symmetries under which the supercharges transform

are called R symmetries.)
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On shell irreducible representations of (11) are easy to construct. There are two

solutions with no spins greater than one: the hypermultiplet, containing two propagat-

ing complex scalars, φ and φ̃, as well as two Weyl fermions, ψ and ψ̃; and the vector

multiplet, made from one complex scalar a, two Weyl spinors λ and λ̃, and a vector

field Aµ. An important distinguishing feature of the hypermultiplet is that its scalars

form a complex SU(2)R doublet. The bosonic degrees of freedom in a vector multiplet,

by contrast, are a single complex scalar and a vector field, both transforming in the

adjoint of the gauge group, and both singlets under SU(2)R. In particular, in the case

of U(1)n gauge group, which we are interested in for describing IREAs, the vector

multiplet scalars are necessarily neutral.

An N = 2 IREA with Abelian gauge group and neutral hypermultiplets, a priori

has an action of the form (2) where the φi fields run over all the bosons (in both the

vector and hypermultiplets), and F I run over the U(1) gauge fields. Compatibility

with the N = 2 global supersymmetry tightly constrains this action; see, for example,

[2]. The result is that the general N = 2 IREA gauge group U(1)n (labelled by indices

I, J = 1, . . . , n) and nf neutral hypermultiplets (labelled by indices i, j = 1, . . . , nf)

has the form

L = gi(φ, φ̃)
(
∂φi · ∂φ


+ ∂φ̃i · ∂φ̃


)

+ ImτIJ(a)
(
∂aI · ∂aJ + F I · FJ

)
, (12)

with

∂[IτJ ]K = 0, (13)

and τIJ a holomorphic function (really Sp(2n,Z) section) of the vector multiplet scalars

aI .

This form of the IREA of N = 2 supersymmetric theories has many important

consequences. The first is the absence of any potential terms for the scalars which

implies that in N = 2 theories there will be a moduli space of vacua as long as U(1)

vector multiplets or neutral hypermultiplets can be shown to occur in the IREA.

The next N = 2 selection rule follows from the fact that there are no kinetic cross

terms between the vector and hypermultiplets, implying that the moduli space has a

natural (local) product structure M = MH ×MV , where MH is the subspace of M

along which only the hypermultiplet vevs vary while the vector multiplet vevs remain

fixed, and vice versa for MV . In cases where MV is trivial (a point), M = MH

is called a Higgs branch of the moduli space; when MH is trivial MV is called the

Coulomb branch (since there are always the massless U(1) vector bosons from the

vector multiplets). Cases where both MH and MV are non-trivial are called mixed

branches.
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Figure 1: Cartoon of a classical N = 2 moduli space. The Higgs and mixed branches

intersect along a Higgs submanifold A, while the mixed branch intersects the Coulomb

branch along a Coulomb submanifold B.

In general the total moduli space of a given theory need not be a smooth manifold—

it may have “jumps” where submanifolds of different dimensions meet. Classically this

occurs as a result of the Higgs mechanism: a charged scalar vev Higgses some vector

multiplets, typically lifting them (making them massive). But at the special point

where the charged vev is zero, the vector multiplets become massless, leading to extra

flat directions and a jump in the dimensionality of the moduli space. Hence, at least

classically, the general picture of an N = 2 moduli space is a collection of intersecting

manifolds, which can be Higgs, Coulomb, or mixed branches [16, 17], see Fig. 1.

This classical picture is, of course, modified quantum mechanically. A microscopic

(UV) theory is characterized by some parameters (e.g. masses, strong coupling scales,

theta angles, dimensionless couplings); we can always take ratios of these parameters

to describe them by at most one scale Λ and a set of dimensionless parameters λk. The

coefficient functions gij and τIJ of the IREA will, in general, depend on Λ and the λk.

Determining this dependence of these IR quantities on UV parameters is the ultimate

goal of the techniques reviewed in these lectures.

For asymptotically free gauge theories, the important UV parameter is the (complex)

strong coupling scale of the theory, Λ (whose definition we’ll recall in Section 4, below).

The important property of asymptotically free theories is that they are nearly free at

energy scales above Λ, so the classical theory is obtained in the limit Λ → 0. Since

Λ appears in τIJ (at, say, one loop), it appears in the Lagrangian in the same way

a scalar vev aI of an N = 2 vector multiplet would. Therefore, we can think of

Λ as a background U(1) vector superfield—in other words it is consistent to assign Λ
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Figure 2: Cartoon of a quantum N = 2 moduli space. The Higgs branch and the Higgs

(hypermultiplet vev) directions of the mixed branch remain unmodified from their

classical geometries, though they may be deformed in the Coulomb (vector multiplet

vev) directions. The Coulomb branch is generally different from its classical geometry.

supersymmetry transformation properties as if it were the lowest component of a chiral

superfield. This implies that whatever strong dynamics takes place upon flowing to the

IR, Λ will only enter the IREA in the way chiral multiplet scalars do. In particular, τIJ

will be a holomorphic function of Λ [18]. Also, since the metric on the Higgs branch

is independent of vector superfields, it is independent of Λ. Finally, we can use the

fact that the classical theory is obtained in the limit Λ → 0 to conclude that the Higgs

branch metric is given exactly by the classical answer [16]. We thus learn that only

the Coulomb branch can receive quantum corrections, and that any mixed branches

will retain their classical product structure of a hypermultiplet manifold times the

vector multiplet manifold corresponding to the subspace of the Coulomb branch along

which the mixed and Coulomb branches intersect; see Fig. 2. Since the hypermultiplet

manifolds can be determined classically in N = 2 supersymmetric gauge theories, we

will not consider them further.

(It is worth examining more closely the logic of this argument. We are assuming

that the IREA will be described by a nonlinear sigma model of some set of light chiral

fields which are not necessarily simply a subset of those of the UV theory. We have no

derivation of this hypothesis—we can only test it to see if it gives consistent answers.

The couplings of the effective theory will be some functions of the couplings of the

microscopic theory, which we would like to solve for. The next step of thinking of the

couplings in the superpotential as background chiral superfields is just a trick—we are

certainly allowed to do so if we like since the couplings enter in the microscopic theory

in the same way a background chiral superfield would. The point of this trick is that
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it makes the restrictions on possible quantum corrections allowed by supersymmetry

apparent. These restrictions are just a supersymmetric version of the familiar “selection

rules” of quantum mechanics.)

Finally, a key fact about the Coulomb branch is that though it can be corrected

quantum mechanically, it is never wholly lifted in asymptotically free N = 2 gauge

theories. We will see this when we describe N = 2 non-Abelian gauge theories in

Section 4, below. This means that N = 2 supersymmetric theories generically have

a moduli space of vacua. The challenge of solving for the vacuum structure of N =

2 gauge theories is thus that of determining the geometry on the Coulomb branch.

This geometry is encoded in the IREA (12), the integrability condition (13), and the

Sp(2n,Z) transformation properties (6), and is known as rigid special Kähler geometry.

We will develop the mathematics of these manifolds further in Section 5 below. But

for the moment, let us move on to N = 4 supersymmetry.

2.2 N=4 IREAs

The N = 4 superalgebra is

{Qm, Qn} = δmnP, {Qm, Qn} = 0, m, n = 1, . . . , 4. (14)

This algebra has an SU(4)R group of automorphisms under which Qm transforms as a

4. There is one on-shell irreducible representation with no spins greater than one, which

decomposes under an N = 2 subalgebra as a vector multiplet plus a hypermultiplet.

Its field content can be organized into six real scalars ai transforming as a 6 of SU(4)R,

four Weyl fermions ψn in the 4 of SU(4)R, and a vector field Aµ. All these fields must

transform in the adjoint of the gauge group since they are in the same multiplet as a

vector boson; in the case of U(1)n gauge group the scalars are necessarily neutral.

The N = 4 IREA with Abelian gauge group has the same form as the N = 2 IREA

(12). But now since the N = 2 hypermultiplet and vector multiplet scalars are related

by the SU(4)R global symmetry, they must have the same metric, τ IJ :

L = ImτIJ

(
∂aI

i · ∂a
J
i + F I · FJ

)
. (15)

Furthermore, since by the N = 2 selection rules, the vector multiplet metric and the

hypermultiplet metric cannot depend on the same fields, we must have

τIJ = constant. (16)
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This has the immediate consequence that the moduli space of the N = 4 theory must

locally be flat:

M = R6n = {aI
i }. (17)

3 N=4 Exact Results

We will now turn to our main task of using the supersymmetric IREAs found in the

last section to deduce exact non-perturbative information about supersymmetric gauge

theories. We start with the N = 4 case since it is the most constrained, and so gives

the simplest illustration of the basic idea.

Consider an N = 4 super Yang-Mills theory. Its (UV) bosonic action is given by

L = Im



τtr


DµΦiD

µΦi + F · F +
∑

i>j

[Φi,Φj ]
2





 , (18)

where i, j = 1, . . . , 6 for the six adjoint scalars in the N = 4 vector multiplet. For

definiteness, let us take the gauge group to be SU(n+ 1).

Classically, the vacua of this theory occur for Φi vevs of the form (up to gauge

transformations)

〈Φi〉 =



α1

i
. . .

αn+1
i


 , (19)

with
n+1∑

K=1

αK
i = 0. (20)

This tracelessness condition is required for an (n+ 1) × (n+ 1) matrix representation

of the adjoint representation of SU(n + 1). By the usual Higgs mechanism, a generic

such vev spontaneously breaks SU(n + 1) → U(1)n. There are special vacua where

two or more of the αK
i are equal where SU(n + 1) is not completely broken down to

U(1)’s, but has some SU(m) subgroups left unbroken.

The classical moduli space is thus the flat 6n-dimensional manifold M = {αI
i , I =

1, . . . , n}. Actually, choosing the vevs of the form (19) does not completely fix the

gauge invariance: the Weyl subgroup of SU(n + 1) acts on the αK
i by permutations

on the K index. Thus the moduli space must be divided out by this Sn+1 group of

permutations, so

M = R6n/Sn+1. (21)
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Figure 3: Running of the coupling of an asymptotically free gauge theory with gauge

group G Higgsed to U(1)’s at a scale 〈Φ〉 � Λ. The U(1) couplings do not run below

〈Φ〉 because there are no charged fields lighter than φ.

The orbifold submanifolds at the fixed points of the Sn+1 action occur at precisely the

places where the low energy U(1)n gauge group is enhanced.

Now we turn to the quantum mechanical theory. The first question is whether the

UV coupling τ (which is classically dimensionless) suffers some renormalization group

running, thus generating some strong coupling scale Λ? Our IREA selection rules

can immediately rule this out, however. For we have seen that the IR effective U(1)n

coupling τIJ must be a constant, independent of the values of any of the vevs αK
i . But

if the UV coupling ran at high energies, we would detect this in a vev-dependence of

the τIJ , for at weak enough UV coupling (large vevs in an asymptotically free theory)

the classical Higgs mechanism picture of the classical picture can be made arbitrarily

precise, implying that the τIJ will be equal to the value of the microscopic τ at the

scale 〈Φ〉; see Fig. 3. Since, in fact, the τIJ are independent of 〈Φ〉, so τ must be exactly

(even non-perturbatively) independent of scale.

We have thus learned that the N = 4 super Yang-Mills theory is a scale invariant, or

conformal, field theory. Indeed, it is easy to check at one loop that the beta-function

for the running of the gauge coupling vanishes, and can also be verified to all orders

in perturbation theory. The form of the N = 4 IREA also shows it to be true non-

perturbatively.

To make further progress on the quantum vacuum structure of these N = 4 theories,

consider such theories at weak coupling,

τ → +i∞. (22)

Then the classical description of the SU(n + 1) → U(1)n Higgs mechanism is good,
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giving an IREA

L = ImτIJ

(
∂aI

i · ∂a
J
i + F I · FJ

)
, (23)

for I, J = 1, . . . , n where we have defined

aI
i ≡

I∑

K=1

αK
i , (24)

and

τIJ = τ




2 −1
−1 2 −1

−1 2
. . .

. . .
. . .



, (25)

which is proportional to the Cartan matrix of SU(n+1). Note that the change of basis

(24) is integer-valued, i.e. an element of GL(n,Z); this was a necessary restriction in

order to preserve the integrality of the magnetic and electric charges (nm, ne) of any

massive states in the theory.

The moduli space of this theory is just the classical one (21), including dividing

by the Sn+1 Weyl group action on the aI
i . For example, the simplest case is SU(2)

gauge group, where n = 1. Then the moduli space is M = R6/S2 where the S2 ' Z2

acts on the six coordinates ai as S2 : ai → −ai. This has a single fixed point at the

origin. Thus the vacuum structure is simple: at the origin of moduli space there is a

scale invariant vacuum with an unbroken SU(2) gauge invariance, and there is a six

dimensional space of flat directions leading away from it where the scale invariance is

spontaneously broken by the non-zero ai vevs and the low energy theory is the N = 4

U(1)n theory (23).

At points in the moduli space where new degrees of freedom (not included in the

fields of the IREA) become massless, the IREA description of the physics breaks down.

Generally this break down is signalled by a singularity in the metric on the moduli

space. In the above example the origin was singular in this way: the W± bosons (and

their superpartners) filling out the SU(2) adjoint multiplet became massless there, and

the metric was singular there (it is a Z2 orbifold point).

Finally, we can deduce what happens to the vacuum structure for couplings not near

weak coupling. Since the low energy τIJ cannot depend on the vevs, it can only be a

function of the UV coupling τ . Treating the IREA (23) as an N = 2 supersymmetric

action, τ must enter only holomorphically in τIJ . Furthermore, by the angularity of

the theta angle, i.e. the invariance of the physics under τ → τ + 1, τIJ can depend on
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τ only as

τIJ = τCIJ +
∞∑

`=0

C
(`)
IJ e

2πi`τ , (26)

where CIJ is the Cartan matrix appearing in (25), and C
(`)
IJ are arbitrary independent

complex matrices. Note that the first term is not invariant under τ → τ + 1, but

shifts by the interger matrix CIJ . This has no effect on the physics since it is just a

low-energy electric-magnetic duality transformation in the U(1)n theory.

I do not know of a first principles argument to determine the C
(`)
IJ ’s, but various

indirect arguments from string and M theory (mentioned below) imply that they are

all proportional to the Cartan matrix CIJ . In that case we have τIJ = f(τ)CIJ , with

f(τ) → τ as τ → +i∞. In particular, f(τ) differs from τ only by nonperturbative

terms. Since we have no alternative non-perturbative definition of the UV coupling τ ,

we are free to define f(τ) itself to be the UV coupling: f(τ) = τ . So, finally, the IR

U(1)n couplings are

τIJ = τCIJ . (27)

The Sp(2n,Z) electric-magnetic duality transformations (6) include transformations

taking τIJ → τ ′IJ such that τ → τ + 1 and τ → −1/τ . These generate an SL(2,Z)

group of transformations on the microscopic coupling which leave the IR physics in-

variant. This is evidence for the existence of an S-duality of the N = 4 theories

[19, 20] which is simply the statement that the theories with UV couplings τ related by

SL(2,Z) transformations are physically equivalent. S-dualities, also known as strong-

weak coupling dualities, or Montonen-Olive dualities, and are conceptually distinct

from electric-magnetic dualities. It is worth emphasizing that electric-magnetic duali-

ties are equivalences of the free IR effective U(1)n theories, whereas S-dualities identify

interacting theories with a priori distinct couplings.

Further evidence for N = 4 S-duality comes from the spectrum of BPS states in the

theories. BPS states are states preserving some of the supersymmetries. The masses

of states preserving half the supersymmetries are known exactly in terms of the central

charges of the supersymmetry algebra [20]. For example, for SU(2), the mass of a
1
2
-BPS state with magnetic and electric charges nm and ne is

M2 =
1

Imτ
|ne + τnm|

2(aI
iCIJa

J
i ). (28)

It is easy to check that this formula is invariant under electric-magnetic duality trans-

formations. Furthermore, under S-duality transformations it takes states with given
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(nm, ne) into ones with different charges. In particular, given that the massive W-

bosons of the N = 4 theory are 1
2
-BPS states with (nm, ne) = (0,±1), if S-duality

is correct it follows that there must be also be a 1
2
-BPS state for all relatively prime

choices of electric and magnetic charges. Such states have been constructed [21], adding

to the evidence for the S-duality.

The best evidence for N = 4 S-duality comes from string and M theory. There are a

set of similar dualities in these theories which fit together in an intricate way, and also

imply the N = 4 S-duality. The self-consistency of this “web of dualities” thus lends

strong support to the existence of N = 4 S-duality. Scale-invariant N = 2 theories also

have S-dualities [22, 23, 24]. It is striking that, unlike their N = 4 counterparts, many

of the N = 2 dualities can be proved using purely field theoretic arguments [25, 26].

4 Seiberg-Witten Theory

We now turn to deriving the vacuum properties of N = 2 supersymmetric gauge the-

ories. Since there are now both hypermultiplets and vector multiplets at our disposal,

we can construct a much richer set of N = 2 theories than N = 4 theories. For sim-

plicity we will focus only on the N = 2 Yang-Mills theories, that is, those with only

vector multiplets appearing in the microscopic action. The treatment of theories with

hypermultiplets does not differ much from the pure Yang-Mills theories, especially as

we are primarily interested in the Coulomb branch of the moduli space.

Taking SU(n + 1) as our example again, denote the complex adjoint scalar field of

the vector multiplet by Φ, an (n + 1) × (n + 1) complex traceless matrix. Then the

N = 2 Yang-Mills action looks much like the N = 4 action (18),

L = Im
{
τ tr

(
DµΦD

µΦ + [Φ,Φ]2 + F · F
)}
. (29)

Classically, the vacua of this theory occur for Φ vevs of the form (up to gauge

transformations)

〈Φ〉 =



a1

. . .

an+1


 , (30)

with
n+1∑

K=1

aK = 0, (31)

and the aK complex. Such a vev spontaneously breaks SU(n + 1) → U(1)n except

when two or more of the aK are equal so that SU(n + 1) is not completely broken

14



down to U(1)’s, but has some SU(m) subgroups left unbroken. Choosing the vevs of

the form (30) does not completely fix the gauge invariance since the Weyl subgroup

Sn+1 ⊂ SU(n + 1) acts on the aK by permutations on the K index. The classical

moduli space is thus a flat n-complex-dimensional manifold with orbifold singularities

M = Cn/Sn+1. (32)

Gauge-invariant coordinates on this space can be taken to be the n independent com-

plex symmetric polynomials in the aK :

s2 =
∑

J<K

aJaK ,

s3 =
∑

J<K<L

aJaKaL,

...

sn+1 = a1a2 · · ·an+1. (33)

(Note that there is no s1 since the sum of the aK ’s vanishes by the tracelessness

condition.)

Now we turn to the quantum mechanical theory. Unlike the N = 4 super Yang-

Mills theories, the N = 2 theories are asymptotically free and their UV coupling

τ (which is classically dimensionless) runs with scale, generating a strong coupling

scale Λ. Let us recall how this scale is defined. Consider an asymptotically free

gauge theory with kinetic term −(1/4g2
0)trF

2 in an effective action at a scale µ0, with

g0 the coupling at that scale. For g0 small enough we can calculate with arbitrary

accuracy the renormalization group running of the coupling from the one loop result

8π2g−2(µ) ' −b0 log(|Λ|/µ), where we have defined |Λ| ≡ µ0e
−8π2/b0g2

0 , the strong

coupling scale of the gauge group. It is then convenient to introduce a complex “scale”

Λ ≡ |Λ|eiθ/b0 so that the complex coupling τ ≡ (θ/2π) + i(4π/g2) = (b0/2πi) log(Λ/µ)

at one loop.

(The coefficient of the one-loop beta function is given by

b0 =
11

6
T (adj) −

1

3

∑

a

T (Ra) −
1

12

∑

i

T (Ri) (34)

where the indices a run over Weyl fermions in representations Ra of the gauge group,

and i runs over real scalars in the representations Ri. T (R) is the index of the repre-

sentation R; for SU(n + 1), for example, the index of the fundamental representation

is 1, and of the adjoint representation is 2(n+1). For the N = 2 Yang-Mills theory, all
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fields are in the adjoint representation, and we have one complex scalar and two Weyl

fermions, thus giving b0 = T (adj) = 2(n+ 1).)

Far out on the on the Coulomb branch, where aK � Λ, the SU(n + 1) theory is

Higgsed to the U(1)n gauge group at a scale where the microscopic theory is very

weakly coupled; see Fig. 3. Thus, the low-energy effective U(1)n couplings τIJ will be

proportional to the running microscopic coupling at the scale of the aK ∼ 〈a〉 vevs:

τIJ ∼
b0CIJ

2πi
log

(
Λ

〈a〉

)
(35)

for CIJ some constant matrix that can be computed in perturbation theory. We see

here the parameter Λ enters the IREA along with the vector multiplet scalar vevs, so we

can treat Λ as if it were such a vev. In particular, Λ can only enter τIJ holomorphically.

Furthermore, due to the angular nature of the theta angle, as τ → τ + 1, or Λb0 →

e2πiΛb0, the physics must remain invariant. Thus τIJ = τIJ(sk,Λ
b0) is a holomorphic

function of the sk and Λb0 which matches on to (35) as Λ → 0.

We can now derive a key fact about the Coulomb branch: though it can be corrected

quantum mechanically, it is never lifted in asymptotically free N = 2 gauge theories.

This is because there is a Coulomb branch for large adjoint scalar vevs where the

asymptotically free gauge theory is Higgsed to U(1)n at arbitrarily weak coupling.

Quantum corrections in the resulting N = 2 IREA cannot lift these flat directions

since the only way (at weak coupling) to give mass to the U(1) photons in the vector

multiplets is by the Higgs mechanism; but there are no charged scalars in the vector

multiplet. Thus it is not lifted for large enough sk, and so by analytic continuation

it cannot be lifted even for sk ∼ Λ where perturbation theory is no longer valid. In

general, complex manifolds like the Coulomb branch of N = 2 theories can become

singular only on complex submanifolds, that is to say submanifolds at least 2 real

dimensions smaller than the moduli space. Thus these singularities cannot be barriers

preventing analytic continuation into a region of strong coupling.

The simplest example is the Coulomb branch of the SU(2) Yang-Mills theory. The

microscopic potential terms imply the equation [Φ,Φ] = 0 for the complex adjoint

scalar field, implying that Φ can be diagonalized by color rotations:

Φ =
(
a 0
0 −a

)
, (36)

and there is a discrete gauge identification a ' −a. The gauge-invariant variable is

s2 = −a2 ≡ −
1

2
U, (37)
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where we have introduced the traditional name “U” for this Coulomb branch coor-

dinate. It is easy to see that (36) leaves the diagonal U(1) ⊂ SU(2) unbroken, and

the light field U is neutral under this U(1). We can thus think of the light degrees

of freedom appearing in the IREA as those of an N = 2 U(1) vector multiplet with

complex scalar field U and a vector boson Aµ, as well as two Weyl fermions. The IREA

can thus be written as

L = Im τ(U,Λ)
(
∂a(U) · ∂a(U) + F · F

)
, (38)

where, by the arguments of the preceeding paragraphs, a(U) is some holomorphic

function of U and Λ4, and the effective U(1) gauge coupling will have the form

τ(U) =
1

2πi
log

(
Λ4

U2

)
+

∞∑

n=0

cn

(
Λ4

U2

)n

. (39)

The fact that only U2 enters this formula follows from matching dimension with Λ4,

whose power follows from the coefficient of the one-loop beta function; it reflects a

global Z2 symmetry acting on the Coulomb branch under U → −U .

Solving for the vacuum structure of the SU(2) theory is thus reduced to determin-

ing this function τ(U). It is worth examining the formula (39) in some detail. The

first, logarithm, term came from matching to the one-loop running of the microscopic

coupling for U � Λ2. Because under theta-angle rotations, corresponding to 2π phase

rotations of Λ4, the physics must remain invariant, the low energy τ(U) can at most

suffer an Sp(2,Z) ' SL(2,Z) electric-magnetic duality transformation. The terms

included in (39) imply that τ(U) → τ(U) + 1 under such a rotation, which is indeed

in SL(2,Z). Any other terms containing multiple logarithms, or any non-constant

coefficient of the single logarithm term are not allowed, since they would necessarily

imply τ(U) transformations under theta-angle rotations which are U -dependent, and

therefore not in SL(2,Z) since SL(2,Z) is a discrete group of transformations. The

absence of these higer logarithm terms is equivalent to the absence of all higher-loop

corrections to the running of the microscopic coupling.

The terms proportional to Λ4n correspond to a non-perturbative n-instanton con-

tribution. Since the model is Higgsed for large U , the instantons have an effective IR

cutoff at the scale U , so these instanton effects are calculable; the first two coefficients

have been calculated [27]. In principle one could compute τ(U) by calculating all the

n-instanton contributions, and then analytically continuing (39) to the whole U -plane;

in practice this is too hard. Instead, we follow N. Seiberg and E. Witten’s more physical

approach to determining τ(U) [3].
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There are two puzzles which indicate that we are missing some basic physics:

(1.) The effective coupling τ(U) is holomorphic, implying that Reτ and Imτ are har-

monic functions on the U -plane. Since they are not constant functions, they

therefore must be unbounded both above and below. In particular this implies

that Imτ = 1
g2 will be negative for some U , and the effective theory will be

non-unitary!

(2.) If we were to add a tree-level mass m for the complex scalar Φ (and one of the

Weyl fermions as well to preserve an N = 1 supersymmetry), then, for m � Λ,

Φ can be integrated out leaving a low-energy pure SU(2) N = 1 super-YM

theory with scale Λ̂6 = m2Λ4. This theory has two vacua with mass gaps; in

particular there are no massless photons. For nonzero m � Λ by an N = 1

nonrenormalization argument one expects this qualitative behavior to persist. In

that case our low-energy N = 2 theory on the U -plane should be approximately

correct, and we should see some way to lift the degenerate vacua and create a

mass gap. In particular we need to give the photon a mass, but there are no light

charged degrees of freedom to Higgs the photon.

The next subsection will introduce the physical ingredient which resolves these puzzles

and allows us to solve for τ(U).

4.1 Monopoles

The ingredient we need to be aware of is monopoles [28]. Monopoles can be constructed

as finite-energy classical solutions of non-Abelian gauge theories spontaneously broken

down to Abelian factors [29]. In particular they will occur in the N = 2 SU(2) Yang-

Mills theory. We illustrate this for simplicity in a (non-supersymmetric) SU(2) theory

broken down to U(1) by a real adjoint Higgs:

L = −
1

4g2
F a

µνF
aµν +

1

2
DµΦaDµΦ

a − V (Φ) (40)

where V has a minimum on the sphere in field space
∑

a ΦaΦa = v2. Different directions

on this sphere are gauge-equivalent. In the vacuum 〈Φa〉 lies on this sphere, Higgsing

SU(2) → U(1) and giving a mass mW = gv to the W± gauge bosons. The unbroken

U(1) has coupling g, so satisfies Gauss’s law ~D· ~E = g2j0
e , where jµ

e is the electric current

density. Thus the electric charge is computed as Qe = 1
g2

∫
S2
∞

~E ·d~S. In the vacuum, the
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unbroken U(1) is picked out by the direction of the Higgs vev, so ~E = 1
v
Φa ~Ea. With

this normalization of the electic charge, we find that the W± bosons have Qe = ±1.

Static, finite-energy configurations must approach the vacuum at spatial infinity.

Thus for a finite energy configuration the Higgs field Φa, evaluated as r → ∞, provides

a map from the S2 at spatial infinity into the S2 of the Higgs vacuum. Such maps

are characterized by an integer, nm, which measures the winding of one S2 around the

other. Mathematically, the second homotopy group of S2 is the integers, π2(S
2) = Z.

The winding, nm, is the magnetic charge of the field configuration. To see this, the

total energy from the Higgs field configuration:

Energy =
∫
d3x1

2
DµΦaDµΦa + V (Φ) ≥

∫
d3x1

2
DµΦaDµΦa. (41)

To have finite energy configurations we must therefore ensure that the covariant deriva-

tive of Φa falls off faster than 1/r at infinity. The general solution for the gauge field

consistent with this behavior is

Aa
µ ∼ −

1

v2
εabcΦb∂µΦc +

1

v
ΦaAµ (42)

with Aµ arbitrary. The leading-order behavior of the field strength is then

F aµν =
1

v
ΦaF µν (43)

with

F µν = −
1

v3
εabcΦa∂µΦb∂νΦc + ∂µAν − ∂νAµ (44)

and the equations of motion imply ∂µF
µν = ∂µ ∗ F µν = 0. Thus we learn that outside

the core of the monopole the non-Abelian gauge field is purely in the direction of

Φa, that is the direction of the unbroken U(1). The magnetic charge of this field

configuration is then computed to be

Qm =
∫

S2
∞

~B · d~S =
1

2v3

∫

S2
∞

εijkεabcΦa∂jΦb∂kΦcdSi = 4πnm (45)

where nm is the winding number of the Higgs field configuration, recovering the Dirac

quantization condition.1

1This is actually the Dirac quantization condition only for even values of nm since in this theory

we could add fields in the fundamental 2 representation of SU(2), which would carry electric charge

Qe = ±1/2.
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Note that for such non-singular field configurations, the electric and magnetic charges

can be rewritten as

Qe =
1

g2

∫

S2
∞

~E · d~S =
1

g2v

∫

S2
∞

Φa ~Ea · d~S =
1

g2v

∫
d3x~Ea · ( ~DΦ)a

Qm =
∫

S2
∞

~B · d~S =
1

v

∫

S2
∞

Φa ~Ba · d~S =
1

v

∫
d3x~Ba · ( ~DΦ)a (46)

using the vacuum equation of motion and the Bianchi identity ~D · ~Ea = ~D · ~Ba = 0

and integration by parts.

If we consider a static configuration with vanishing electric field the energy (mass)

of the configuration is given by

mM =
∫
d3x

(
1

2g2
~Ba · ~Ba +

1

2
~DΦa · ~DΦa + V (Φ)

)
≥
∫
d3x

(
1

2g2
~Ba · ~Ba +

1

2
~DΦa · ~DΦa

)

=
1

2

∫
d3x

(
1

g
~Ba − ~DΦa

)2

+
vQm

g
, (47)

giving the BPS bound

mM ≥

∣∣∣∣∣
vQm

g

∣∣∣∣∣ . (48)

This semi-classical bound can be extended to dyons (solitonic states carrying both

electric and magnetic charges):

mD ≥ gv

∣∣∣∣∣Qe + i
Qm

g2

∣∣∣∣∣ . (49)

A theta angle has a non-trivial effect in the presence of magnetic monopoles: it shifts

the allowed values of electric charge in the monopole sector of the theory [30]. To see

this, consider gauge transformations, constant at infinity, which are rotations in the

U(1) subgroup of SU(2) picked out by the Higgs vev, that is, rotations in SU(2) about

the axis Φ̂a = Φa/|Φa|. The action of such an infinitesimal gauge transformation on

the field is

δAa
µ =

1

v
(DµΦ)a (50)

with Φ the background monopole Higgs field. Let N denote the generator of this gauge

transformation. Then if we rotate by 2π about the Φ̂ axis we must get the identity

e2πiN = 1. (51)

Including the θ term, it is straightforward to compute N using the Noether method,

N =
∂L

∂∂0Aa
µ

δAa
µ = Qe −

θQm

8π2
, (52)
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where we have used the definitions (46) of the electric and magnetic charge operators.

This result implies

Qe = ne + nm
θ

2π
(53)

where ne is an arbitrary integer and nm = Qm/4π determines the magnetic charge of

the monopole. We will henceforth label dyons by the integers (ne, nm). Note that the

BPS bound becomes

MD ≥ gv

∣∣∣∣∣

(
ne + nm

θ

2π

)
+ inm

4π

g2

∣∣∣∣∣ = gv|ne + τnm|. (54)

This result is classical; quantum mechanically, the coupling τ runs, and gv and gτ

will be replaced by functions of the strong coupling scale Λ and the vevs. In theories

with extended supersymmetry the (quantum-corrected) BPS bound can be computed

exactly, and states saturating the bound can be identified [20]. For example, in the

N = 2 SU(2) theory the BPS mass formula becomes [3]

MD = |a(U)ne + b(U)nm|, (55)

where a and b are holomorphic functions of U and Λ4 satisfying

∂b(U)

∂a(U)
= τ(U), (56)

with a(U) the same function as appeared in the IREA (38).2

4.2 Solution to the SU(2) Theory

Returning to the N = 2 SU(2) Yang-Mills theory, we have learned that this theory

can have magnetic monopoles. Indeed, one can show that there are BPS solitons with

charges (ne, nm) = (0,±1) in this theory, and they turn out to lie in hypermultiplets

of the supersymmetry algebra. Furthermore, from (39) we see that changing the phase

of U shifts the effective theta angle. In particular under the global Z2: U → eiπU ,

τ → τ−1. From the associated duality transformation on the charges of any massive

states (53), we see that there will be (∓1,±1) dyons in the spectrum. Repeating this

procedure, we find there must be a whole tower of semi-classically stable dyons of

charges (n,±1) for arbitrary integers n.

The existence of these dyon states suggests a possible resolution to one of our puzzles:

perhaps at some strong coupling point on the moduli space, for example U = U0 with

2b(U) is often called aD(U) in the literature.

21



−Λ2 Λ2

γ
1

γ
2

γ
3

U

Figure 4: Cut U-plane with three loops. The cuts have been placed in an arbitrary

manner connecting the two possible strong-coupling singularities, and a possible sin-

gularity at weak coupling (U = ∞).

U0 ∼ Λ2, one of these dyons becomes massless, thereby providing the light charged

scalar fields needed to Higgs the U(1). Since we expect to recover the two gapped

vacua of the N = 1 SU(2) super-YM theory, and recalling the Z2 symmetry of the

theory, it is natural to assume that there are two points on the U -plane where charged

fields become massless, and they are at U = ±U0. Since Λ is the only scale in the

theory, we take U0 = Λ2. (We can take this as the definition of our normalization of

Λ, if we like.)

We can check this assumption by examining the behavior of τ as a function of U .

Recall the other puzzle we had about the physics on the Coulomb branch: since τ(U) is

holomorphic, 1/g2 ∼ Imτ is harmonic and therefore unbounded from below, violating

unitarity.

This puzzle is resolved by noting that τ is not, in fact, a holomorphic function of

U . In particular, by electric-magnetic duality, as we traverse closed loops in the U -

plane, τ need not come back to the same value, only one related to it by an SL(2,Z)

transformation. Mathematically, this is described by saying that τ is a section of a flat

SL(2,Z) bundle. This multi-valuedness of τ can be described by saying that τ is a

holomorphic function on a cut U -plane, with cuts emanating from some singularities,

and with the jump in τ across the cuts being an element of SL(2,Z). The two points

U = ±Λ2 at which we are assuming there are massless charged fields are the natural

candidates for the branch points, see Fig. 4. The presence of these cuts allows us to

avoid the conclusion that Imτ is unbounded.

Upon traversing the various loops γi in the above figure, τ will change by the action
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of an SL(2,Z) element. These elements are called the monodromies of τ , and will be

denoted Mi.

We first calculate M3, the monodromy around the weak-coupling singularity at

infinity. By taking γ3 of large enough radius, τ will be accurately given by its one-loop

value, the first term in (39). Taking U → e2πiU in this formula gives τ → τ − 2, giving

for the monodromy at infinity3

M3 =
(
−1 2
0 −1

)
. (57)

In order to calculate the M1,2 monodromies, let us first calculate the monodromy

we would expect if the field becoming massless at the associated singularity had charge

(ne, nm). By a duality transformation we can change to a basis where this charge is

purely electric: (ñe, 0). In this basis the physics near the U = U0 singularity is just that

of QED with the electron becoming massless. This theory is IR free, so the behavior of

the low-energy effective coupling will be dominated by its one-loop expression, at least

sufficiently near U0 where the mass of the charged field ∼ U−U0 is arbitrarily small:

τ̃ =
ñ2

e

πi
log(U − U0) + O(U − U0)

0. (58)

By traversing a small loop around U0, (U−U0) → e2πi(U−U0), we find the monodromy

τ̃ → τ̃ + 2ñ2
e =⇒ M̃ =

(
1 2ñ2

e

0 1

)
. (59)

Now let us duality-transform this answer back to the basis where the charges are

(ne, nm). The required SL(2,Z) element will be denoted N =
(

a b
c d

)
, and satisfies

(
a b
c d

)(
ne

nm

)
=
(
ñe

0

)
, and ad− bc = 1 with a, b, c, d ∈ Z. (60)

The transformed monodromy is then

M = NM̃N−1 =
(

1 + 2nenm 2n2
e

−2n2
m 1 − 2nenm

)
. (61)

Now, by deforming the γi contours in the U -plane, we find that the three mon-

odromies must be related by

M3 = M1M2. (62)

3This actually only determines the monodromy up to an overall sign. The sign is determined by

noting that U → e2πiU has the effect of Φ → −Φ on the elementary Higgs field, so it reverses the sign

of the low-energy electromagnetic field which in terms of SU(2) variables is proportional to tr(ΦF ).

Thus it reverses the sign of electric and magnetic charges, giving an “extra” factor of −1 ∈ SL(2,Z).
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Assuming that a field with charges (ne1, nm1) becomes massless at U = Λ2, while one

with charges (ne2, nm2) does so at U = −Λ2, and substituting into (62) using (57) and

(61) gives as solutions

(ne1, nm1) = ±(n, 1), (ne2, nm2) = ±(n−1, 1), for all n ∈ Z. (63)

This set of charges actually represents a single physical solution. This is because taking

U → eiπU takes us to an equivalent theory by the Z2 symmetry; but this corresponds to

shifting the low-energy theta-angle by 2π which in turn shifts all dyon electric charges

by their magnetic charges. Repeated applications of this shift can take any of the above

solutions to the solution

(ne1, nm1) = ±(0, 1), (ne2, nm2) = ±(−1, 1). (64)

The plus and minus sign solutions must both be there by anomaly cancellation in the

low-energy U(1). We thus learn that there is a consistent solution with a monopole

becoming massless at U = Λ2 and a charge (−1, 1) dyon becoming massless at U =

−Λ2. Some progress has been made in weakening the initial assumption that there are

just two strong-coupling singularities [31].

With the monodromies around the singularities in hand, we now turn to finding

the low-energy coupling τ on the U -plane. The basic idea is that τ is determined by

holomorphy and demanding that it match onto the behavior we have determined above

at U = ∞ and U = ±Λ2. Seeing how to solve this “analytic continuation” problem

analytically is not obvious, however. Seiberg and Witten did it by introducing an

auxiliary mathematical object: a family of tori varying over the Coulomb branch.

This is a useful construction because the low-energy effective coupling τ has the same

properties as the complex structure of a 2-torus. In particular, the complex structure

of a torus can be described by its modulus, a complex number τ , with Imτ > 0.

In this description, the torus can be thought of as a parallelogram in the complex

plane with opposite sides identified, see Fig. 5. Furthermore, the modulus τ of such a

torus gives equivalent complex structures modulo SL(2,Z) transformations acting on

τ . Therefore, if we associate to each point in the U -plane a holomorphically-varying

torus, its modulus will automatically be a holomorphic section of an SL(2,Z) bundle

with positive imaginary part, which are just the properties we want for the effective

coupling τ .

At U = ±Λ2, magnetically charged states become massless, implying that the effec-

tive coupling Imτ → 0. (Recall that by U(1) IR freedom, when an electrically charged
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Figure 5: A complex torus as a parallelogram in the complex plane with opposite sides

identified.

state becomes massless, the coupling g → 0, implying τ → +i∞. Doing the duality

transform τ → −1/τ gives the above result for a magnetic charge becoming massless.)

From the parallelogram, we see this implies that the torus is degenerating: one of its

cycles is vanishing.

Now, a general torus can be described analytically as the Riemann surface which is

the solution y(x) to the complex cubic equation

y2 = (x− e1)(x− e2)(x− e3). (65)

We can think of this as a double-sheeted cover of the x-plane, branched over the

three points ei and the point at infinity. We let this torus vary over the U -plane by

letting the ei vary: ei = ei(U,Λ). By choosing the cuts to run between pairs of these

branch points, and “gluing” the two sheets together along these cuts, one sees that

the Riemann surface is indeed topologically a torus. Furthermore, the condition for a

nontrivial cycle on this torus to vanish is that two of the branch points collide. Since

we want this to happen at the two points U = ±Λ2, it is natural to choose e1 = Λ2,

e2 = −Λ2, and e3 = U :

y2 = (x− Λ2)(x+ Λ2)(x− U). (66)

Note that this choice has a manifest U → −U symmetry, under which x → −x and

y → ±iy.

Given this family of tori, one can compute their moduli as a ratio of line integrals:

τ(U) =

∮
β ω∮
α ω

, (67)

where ω is the (unique) holomorphic one-form on the Riemann surface,

ω =
dx

y
=

dx√
(x2 − Λ4)(x− U)

, (68)
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Figure 6: Cut x-plane with α and β cycles.

and α and β are any two non-trivial cycles on the torus which intersect once. For

example, we might take α to be a cycle on the x-plane which loops around the branch

points at ±Λ2, while β is the one which loops around the branch points at Λ2 and U .

If we chose the cuts on the x-plane to run between ±Λ2 and between U and ∞, then

the α cycle would lie all on one sheet, while the β cycle would go onto the second sheet

as it passes through the cut, see Fig. 6. Since the integrand in (68) is a closed one form

(dω = 0), the value of τ does not depend on the exact locations of α and β, but only

on how they loop around the branch points.

We can now check that our family of tori (66) indeed gives rise to the correct low-

energy τ . By taking U → ∞, it is not hard to explicitly evaluate (68) to find agreement

with the first term in the weak-coupling expansion (39).4 Also, without having to

explicitly evaluate the integrals in (68), one can check that it reproduces the correct

monodromies as U goes around the singularities at ±Λ2 by tracking how the α and β

cycles are deformed as U varies. Finally, it turns out that the family of tori (66) is the

unique one with these properties [3].

5 Geometry of N=2 Coulomb Branches

We would like to generalize the above arguments to other gauge groups and matter

representations. To state the problem clearly:

4Though perhaps only up to an SL(2,Z) transformation if I made the “wrong” choice for my α

and β cycles.
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Given: the field theory data specifying an N = 2 supersymmetric gauge theory, namely a

gauge group G (not necessarily simple), a matter (hypermultiplet) representation

R (not necessarily irreducible), bare masses m for the matter, and UV coupling

constant(s) τ or strong coupling scales Λ for the vector multiplets,

Find: the N = 2 IREA on the Coulomb branch, namely the U(1)n couplings τIJ and

the “special coordinates” aI as functions of the microscopic field theory data and

the gauge-invariant coordinates on the Coulomb branch.

We have not emphasized the special coordinates above, so let us define them here.

Recall from Section 2 that the N = 2 IREA on the Coulomb branch has the form

L = ImτIJ

(
∂aI · ∂aJ + F I · FJ

)
, (69)

with τIJ satisfying the conditions

∂[IτJ ]K = 0, (70)

where ∂I = ∂/∂aI , and τIJ a holomorphic Sp(2n,Z) section of the vector multiplet

scalars aI . Clearly we could make a non-singular field redefinition on the scalars, effec-

tively changing the coordinates we use to describe the Coulomb branch, and changing

the form of the IREA (69). The choice of scalar fields such that the IREA has the above

form where τIJ plays the role of both the Coulomb branch metric and the U(1)n ef-

fective couplings, are called special coordinates. In general the special coordinates can

become singular, as they do at the monopole and dyon points in the SU(2) example,

so it is useful to choose well-behaved global coordinates on the Coulomb branch—the

sn. At weak coupling the special coordinates and the global coordinates are related by

(33), but at strong coupling no such simple relation need exist. The special coordinates

also appear in the BPS mass formula

M = |ne,Ia
I + nJ

mbJ |, (71)

where the bJ are defined by

∂IbJ = τIJ , (72)

and exist by virtue of the integrability condition for this equation, (70).

This problem of determining the Coulomb branch IREA given the UV field theory

data has not been solved, though many infinite series of solutions are known. Most of

the known solutions were found essentially by (educated) guessing. In section 6 we will

discuss one method which, although it is not known how to use it to solve the general
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problem, permits a derivation of the solutions when it works. In order to get to the

point where we can discuss this method, we first need to reformulate the geometry

of the vector multiplet manifolds; this is of interest also for the light it sheds on the

general problem.

The Coulomb branch moduli space of the N = 2 IREA (69) satisfying condition

(70) and the Sp(2n,Z) properties of τIJ defines a rigid special Kähler (RSK) manifold

[32]. Abstracting away from the IREA, we can thus define an RSK manifold as an n-

complex-dimensional manifold M with certain properties. Choose some global complex

coordinates sK , K = 1, . . . , n on M.5 Then an RSK manifold has “special coordinates”

aI(sK), I = 1, . . . , n, which are local holomorphic coordinates almost everywhere on

M, and a symmetric, holomorphic section τIJ of an Sp(2n,Z) bundle on M,6 such that

the metric in special coordinates is gIJ = ImτIJ and ∂[IτJ ]K = 0, where the derivative

is with respect to the special coordinates. Note that ImτIJ must be positive definite

for the metric to be non-singular.

Several properties of RSK manifolds can immediately be deduced from this definition.

The first is the existence of the “dual” special coordinates bI , satisfying (72). Then,

defining K = i(aIbI − aIbI), it is easy to check that gIJ = ∂I∂JK, which is the defining

condition for a Kähler manifold. Defining the 2n-component column vector c by

c =
(
bI
aI

)
, (73)

the expression for the Kähler potential can be written compactly as K = 〈c, c〉, where

the brackets denote the symplectic inner product

〈c,d〉 = cT · J · d with J =
(

0 1
−1 0

)
. (74)

Under transformations M ∈ Sp(2n,Z) it is not hard to see that c transforms in the

2n-dimensional representation:7

c → M · c, (75)

and so the special coordinates are really part of a holomorphic Sp(2n,Z) bundle M in

the fundamental representation.

We will now describe three reformulations of RSK geometry. The first will be to

show that RSK geometry is equivalent to having a family of algebraic varieties varying

5Or a patch of M; this definition can be applied patch by patch to an atlas covering M.
6With the usual action (6) on τIJ .
7Actually, the c’s can in general also shift by constants under electric-magnetic duality transfor-

mations, which is important when there are hypermultiplet masses in the problem [22].
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holomorphically with the sK along with some extra structures; these are in turn equiv-

alent to algebraically completely integrable Hamiltonian systems [33]. The second will

be to show that a class of RSK manifolds are described by n-complex-dimensional fam-

ilies of Riemann surfaces of genus n with certain meromorphic one-forms [3]. The third

will be to show that at least a subset of the RSK manifolds described in the second

way can also be described by families of Riemann surfaces embedded in hyperKähler

manifolds [4].

Though it is not known whether all RSK manifolds can be described in the second

or third ways, in fact all RSK manifolds that have been found as Coulomb branches of

N = 2 gauge theories do fall into the third category.

5.1 RSK and Families of Abelian Varieties

A straightforward generalization of the complex torus construction introduced in our

discussion of the SU(2) theory where the Coulomb branch was one-complex-dimensional

to the case where the Coulomb branch is n-complex-dimensional, is to think of τij as

specifying the complex structure of an n-complex-dimensional torus [33]. Such a torus

is specified by 2n linearly independent vectors forming the basis of a lattice Γ in Cn.

so the torus is T 2n = Cn/Γ. Global linear complex changes of variables on Cn do not

change the complex structure of T 2n, and can be used to set half of the basis vectors

of Γ to real unit vectors. Thus the complex structure of T 2n is encoded in the n × n

complex matrix, τij, of coordinates of the remaining n basis vectors. It is easy to check

that this τij is really only defined up to GL(2n,Z) fractional linear transformations

reflecting the ability to choose a different set of n lattice vectors to set to the real unit

vectors.

The τij ’s describing RSK geometry have four further constraints, however: they are

symmetric, have positive definite imaginary part, are a section of an Sp(2n,Z) bundle,

and satisfy the integrability condition (70). The third constraint can be encoded in

the geometry of T 2n by introducing an extra structure, a polarization, which is a

non-degenerate (1, 1)-form t on T 2n with integral periods, and can be thought of as

defining a symplectic inner product on the periods of 1-cycles on the torus as in (74).

Complex tori obeying the first three conditions are known as Abelian varieties, which

are essentially tori that can be described by algebraic equations involving generalized

theta functions.

The fourth condition can be incorporated as the additional structure of a meromor-
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phic 1-form, λ, on T 2n with the property that

∂

∂sK
λ = ωK, (76)

up to total derivatives, where ωK are a basis of n holomorphic one-forms on T 2n.

This is related to τij as follows. Choose a symplectic (or canonical) homology basis of

one-cycles on T 2n. This is a basis of 2n one-cycles {βI , α
J} such that

∫

αI∧αJ

t =
∫

βI∧βJ

t = 0,
∫

αI∧βJ

t = δI
J , (77)

where the “wedge product” of one-cycles refers to the two-cycle spanned by them. Then

the periods of λ (the integrals of λ over this basis of one-cycles) is the 2n-component

vector c introduced in (73).8

This reformulation of RSK geometry as complex manifolds with a family of Abelian

varieties with meromorphic one form is quite general. Furthermore, the exterior deriva-

tive of the one-form on the total space of the RSK manifold plus its T 2n fibers is a

symplectic two-form of a complex integrable system [33]. This equivalence of RSK ge-

ometry to integrable systems has led to the solution of many N = 2 IREAs [34, 33, 35].

However the procedure essentially involves matching an integrable system to the ap-

propriate N = 2 field theory data, and no systematic way is known to do this matching.

5.2 RSK and Families of Riemann Surfaces

More systematic control over the construction of RSK geometries is obtained by spe-

cializing to classes of RSK manifolds whose geometry can be naturally encoded in

simpler structures. One such specialization is to RSK manifolds whose associated

Abelian variety T 2n can be realized as the Jacobian variety of a genus-n Riemann

surface. For n ≥ 4, these varieties form a subset of measure zero in the space of all

Abelian varieties. Whether all families of Abelian varieties admitting the existence of

an appropriate meromorphic one-form (to describe RSK geometry) are actually Jaco-

bian varieties is an open question. In any case, to date all known constructions of RSK

geometry are in terms of families of Jacobian varieties.

The connection between genus-n Riemann surfaces, Σn, and Jacobian varieties,

8For these periods to depend only on the homology class of the cycles, the one-form λ must

have vanishing residues. Actually, λ’s with non-vanishing residues are allowed, and are interpreted

physically as bare hypermultiplet masses [22]. In what follows we will assume zero bare masses.
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Figure 7: A genus 2 Riemann surface with a canonical homology basis of α and β

cycles.

Jac(Σn) ' T 2n, is through the Jacobian map,

P ∈ Σn −→

{∫ P

P0

ω1, . . . ,
∫ P

P0

ωn

}
mod periods, (78)

where P0 is some argbitrary fixed base point and ωK is a basis of the n holomorphic

one-forms on Σn [36]. Under this map one-cycles on Σn are pushed forward to one-

cycles on T 2n, the symplectic inner product (polarization) two-form t is pulled back

to the intersection form on Σn, and the basis of holomorphic one forms ωK and the

meromorphic one-form λ on T 2n are pulled back to one-forms on Σn (which we call by

the same names).

Thus τIJ is just the period matrix of the Riemann surface, and is given by

τIJ =
(∫

βI

ωK
)(∫

αJ

ωK
)−1

(79)

where the second factor is to be interpreted as a matrix inverse on the JK indices

and K is to be summed over. The symmetry and positive-definiteness conditions on

τIJ follow from the Riemann bilinear relations, while the Sp(2n,Z) structure follows

from the intersection form on Riemann surfaces. In particular, one can always choose

a canonical homology basis of 2n one-cycles {αI , βJ} such that their intersections obey

αI · αJ = βI · βJ = 0 and αI · βJ = δI
J ; see Fig. 7.

To summarize, we have encoded the RSK geometry of an n complex-dimensional

Coulomb branch in a family of genus-n Riemann surfaces varying holomorphically over

the Coulomb branch and endowed with a meromorphic one-form λ satisfying (76).

This formulation has been used to solve for many N = 2 IREAs essentially by guessing

a form for the family of Riemann surfaces and matching to N = 2 field theory data

[37, 23, 24]. Again, as with the integrable system formulation, this matching procedure

has not been made systematic.
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5.3 RSK and Riemann Surfaces in HyperKähler Manifolds

We now turn to one further reformulation of RSK geometry which, when combined

with some string theory ideas, has allowed a more (though not completely) systematic

approach.

The previous encoding of RSK geometry in a family of Riemann surfaces failed to

“geometrize” the meromorphic one-form λ. This geometrization can be performed as

follows [4, 38]. Suppose the family of Riemann surfaces Σn can be embedded in a fixed

(independent of the sK) hyperKähler 4-manifold Q. Now a hyperKähler manifold is a

manifold Kähler with respect to three complex structures, I, J , and K, satisfying the

quaternion algebra

I2 = J2 = K2 = −1, IJ = −JI = K, and cyclic permutations. (80)

Each complex structure can be thought of either as a rank-2 tensor acting on the

tangent space to the manifold, e.g. I = I i
j, or, using the metric to lower one of

the indices, as an antisymmetric 2-tensor (a 2-form) on Q. Furthermore, the Kähler

condition implies that these 2-forms are closed. Then, with respect to the complex

structure I, ω ≡ J + iK is a closed holomorphic 2-form. Thus locally ω = dλ and λ

pulls back to a meromorphic one-form on Σn. Because the family of Σn obtained as

we vary the sK are all embedded holomorphically in the fixed manifold Q, the RSK

condition (76) on λ is automatically satisfied.

RSK manifolds which can be described in this way are clearly a subset of those that

can be described just in terms of those described in terms of a family of Reimann

surfaces and a one-form λ. But this restricted class has the great advantage that

everything appears geometrically, requiring only a choice of a fixed “background” hy-

perKähler 4-manifold Q.

6 M-theory 5-Brane Construction of the Coulomb

Branch

In this section we will outline the construction of solutions to N = 2 IREAs (Coulomb

branch geometries) using the encoding of RSK geometry in a holomorphically varying

family of Riemann surfaces Σn embedded in a hyperKähler four-manifold Q, following

[4]. First we will outline an argument using the M-theory/IIA string theory equivalence

to identify Q and some gross topological properties of the embedding corresponding to
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some N = 2 field theory data. Then we will show, in an example, how easy it is to

solve for the specific family of embedded surfaces given this data, thus solving for the

N = 2 IREA on the Coulomb branch of SU(n+ 1) Yang-Mills theory.

6.1 5-Branes in M-Theory

The basic idea [4] is to interpret the geometrical objects Q and Σn as physical objects

in a supergravity theory such that at energies far below the Planck scale where the

gravity decouples we are left with an N = 2 field theory.

Choose the supergravity theory to be the unique 11-dimensional supergravity the-

ory, which is the low energy effective theory of M-theory [39]. This theory has 32

supercharges, corresponding to N = 8 supergravity in four dimensions. A consistent

background to this theory is R6+1 × Q; if Q is hyperKähler this background breaks

half the supersymmetries to N = 4 in four dimensions.

Now M theory has 5-branes, which are excitations of the theory extended in 5 + 1

dimensions. On length scales much larger than the Planck scale of this theory, we can

think of the 5-brane as a mathematical 6-manifold embedded in the 11-dimensional

space-time. The 5-brane has field theory degrees of freedom which are constrained

to propagate only on the brane. Furthermore, as long as the 5-brane is holomor-

phically embedded in the background 11-dimensional space, a solution to the super-

gravity equations of motion are obtained with only half of the remaining supersym-

metries broken. Thus the 5-brane (six-dimensional) field theory has 8 conserved su-

percharges, corresponding to N = 2 supersymmetry in four dimensions. In the limit

that curvature length scales of the brane are much greater than the Planck scale,

the “bulk” 11-dimensional supergravity degrees of freedom decouple, leaving a unitary

six-dimensional field theory on the brane.

The final step in this M-theory construction is to interpret the embedded Riemann

surface Σn as part of the 5-brane world-volume. In particular, take the 5-brane world-

volume to be the manifold R3+1 × Σn with R3+1 ⊂ R6+1 and Σn ⊂ Q. Then on

distance scales large compared to the size of Σn the brane field theory is effectively an

N = 2 four-dimensional field theory.

Thus we have incorporated all the mathematical ingredients needed to describe the

RSK Coulomb branch geometry together with the associated physical degrees of free-

dom (the four-dimensional field theory) in a single supergravity configuration.
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6.2 IIA/M-Theory Duality

To use this to solve a concrete N = 2 theory, we need to choose the background

hyperKähler manifold Q. The simplest choice would be a flat four-manifold Q = R4,

but this does not work. To see this, pick some complex structure on Q, say coordinates

v = x1 + ix2 and s = x3 + ix4. Then any holomorphically embedded Riemann surface

Σn will be described by some complex analytic equation in s and v: F (s, v) = 0. But,

by the properties of analytic maps, the surface described by such an equation cannot

be compact—it must extend to infinity in Q. Thus it would seem that we are really

describing in this way a six-dimensional field theory on some curved background.

The key to connecting this construction to a four-dimensional interpretation is to

use the equivalence of the (ten-dimensional) type IIA string theory to M theory com-

pactified on a circle. In this equivalence, the string coupling gs of the IIA theory is

related to the radius of the compactified circle, R, by

gs = (R/`p)
3/2, (81)

where `p is the 11-dimensional Planck length, and the defining string scale `s (related

to the fundamental string tension) satisfies

gs`s = R. (82)

Thus when the 11-dimensional supergravity description is good, that is when `p � R,

we have gs � 1, so the string description is strongly coupled, and vice versa.

The connection to a four-dimensional description comes from taking the limit as the

compactification radius R → 0, so that the ten-dimensional string description becomes

weakly coupled. In that limit the 5-brane reduces to either a 4-brane or a 5-brane

in the ten-dimensional theory, depending on whether the M-theory 5-brane is or is

not wrapped around the shrinking circle. The eventual brane configuration in ten

dimensions will look like that shown in Fig. 8, with short 4-brane segments suspended

between infinite 5-branes.

Now, at weak coupling IIA 5-branes are much heavier than 4-branes, and so can be

considered as fixed objects, with any field theory degrees of freedom propagating on the

4-branes. Indeed, the typical length scales (inverse of the mass scales) of NS5-branes

(`5) and D4-branes (`4) are

`4 = gs`s and `5 = g2
s`s. (83)

Furthermore, since the extent of the 4-branes is finite in one dimension, at long dis-

tances the 4-brane field theory will be effectively four-dimensional. Thus we recover
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NS5 NS5

Figure 8: Three D4-branes suspended between two NS5-branes in Type IIA string

theory. Only two of the ten dimensions are shown; the 4- and 5-branes are all parallel

along an additional 3 + 1 dimensions.

the four-dimensional N = 2 field theory. Finally, an important property of D-branes

in string theory (of which the 4-branes are examples) is that the field theory degrees

of freedom living on n + 1 parallel D-branes are described by an SU(n + 1) theory

Higgsed to U(1)’s, i.e. a Yang-Mills theory on its Coulomb branch [40]. The size of the

vevs Higgsing the gauge group (i.e. the Coulomb branch coordinates) are proportional

to the separations of the 4-branes. Thus we have learned that in order to describe

the SU(n + 1) N = 2 Yang-Mills Coulomb branch we should choose as our M-theory

background Q = R3 × S1.

Before turning to the explicit construction of the SU(n + 1) IREA, there is an im-

portant question to address in this construction, namely, why is an essentially classical

11-dimensional supergravity construction at all reliable to describe a field theory we

only see in the R → 0 limit, where the M-theory description should be strongly cou-

pled? The answer lies in a supersymmetric selection rule. Denote by L a typical length

scale of the brane configuration shown in Fig. 8, say the distance between some 4-branes

or between the 5-branes. Now the typical length scale of the 4-brane dynamics is, from

(83) and (82), `4 = gs`s = R. So the relevant scales on the Coulomb branch are mea-

sured by the ratios L/R. In terms of the 11-dimensional picture, these ratios determine

the shape (complex structure) of Σn but not its overall size—which is just as expected

since only the complex structure of Σn encoded the RSK geometry. Furthermore, the

overall size parameter enters as the vev of a hypermultiplet in the supergravity theory.

By the N = 2 selection rule described in Section 2.1, hypermultiplet vevs do not affect

the vector multiplet vevs (the Coulomb branch). Thus we learn that the size of R (or

equivalently of the string coupling gs) has no effect on the complex sructure of Σn,
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|t|

Figure 9: Two dimensions of an M-theory 5-brane embedded in the Q manifold. The

three tubes wrap around the S1 and extend along the |t| direction. The two sheets

extend to infinty in Q along the complex v direction far from the tubes.

which can therefore be computed in whatever limit is convenient. In physical terms,

this argument shows that R is an irrelevant parameter in the Coulomb branch vacua

of the 4-brane field theories.

6.3 The SU(n+1) Coulomb Branch

Let us choose complex coordinates on our hyperKähler 4-manifold Q = R3 × S1 to be

v = (x1 + ix2)/R and s = (x3 + iy)/R where y is a periodic coordinate along the S1,

y ' y + 2πR. Good global complex coordinates on Q can then be taken to be v and

t = es. A holomorphically embedded Riemann surface Σn will be described by some

complex analytic equation in t and v: F (t, v) = 0. Since upon shrinking the circle,

the surface is supposed to reproduce the IIA brane configuration of Fig. 8, we expect

that Σn will look globally something like two sheets connected by n + 1 tubes as in

Fig. 9. Since the tubes are to collapse to D4-branes, they must be wrapped around the

S1, which is the phase of t, and extend along the modulus of t. The two sheets are to

become NS5-branes so do not wrap the S1; thus they should extend to infinity along

the complex v direction.

Since this surface wraps n+1 times around the S1 at intermediate |t|, by conservation

of this winding number, it must also do so as t→ 0,∞. The simplest way of satisfying

this constraint is to demand that

t ∼ vn+1 as t→ ∞, (84)
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and

t ∼ v−n−1 as t→ 0. (85)

(Other choices can also satisfy this constraint, but turn out to lead to SU(n+1) N = 2

theories with hypermultiplets, and correspond in the IIA picture to configurations with

ssemi-infinite D4-branes extending to the left or right of the NS5-branes in Fig. 8.)

Now we can write determine the holomorphic equation F (v, t) = 0 for Σn. Since

at fixed v there are two values of the t coordinate that lie on the surface in Fig. 9, F

should be at most quadratic in t:

0 = F = A(v)t2 +B(v)t+ C(v). (86)

Furthermore since at generic fixed t we found n+ 1 values of v on the surface, we see

that A, B, and C can be at most (n+1)th order polynomials in v. Suppose the highest

powers of v in A, B, and C are nA, nB, and nC , respectively, with

0 ≤ nA, nB, nC ≤ n+ 1. (87)

Then the leading terms in (86) as t→ ∞ according to (84) give

vnA+2n+2 + vnB+n+1 + vnC = 0. (88)

This has a solution as v → ∞ with the nA,B,C in the range (87) only if

nA = 0 and nB = n + 1. (89)

A similar argument using (85) as t→ 0 gives

nC = 0 and nB = n + 1. (90)

Thus the equation for Σn must have the form 0 = αt2 +β(vn+1 +a1v
n + · · ·+an)t+γ

with α, β, γ, and the ai complex constants. Under holomorphic changes of variables

which do not affect the asymptotic behavior of v and t, namely t→ at and v → bv+ c,

as well as an overall rescaling of F , we can finally put Σn in the form

t2 +
1

Λn+1

(
vn+1 + s2v

n−1 + s3v
n−2 + · · ·+ sn

)
t+ 1 = 0. (91)

We have identified the coefficients with the strong-coupling scale Λ of the Yang-Mills

theory, and the gauge-invariant coordinates sK on the SU(n + 1) Coulomb branch.

This makes it clear that this curve indeed has precisely the right number of parameters

to describe the Coulomb branch of the SU(n + 1) Yang-Mills theory. Furthermore,
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they can be assigned the right dimensions as well, by assigning v dimensions of energy.

Many more detailed checks on this answer can be made by taking the sK vevs large

and comparing the resulting complex structure τIJ of this curve to that computed from

loops in perturbation theory and instanton contributions semiclassically. Finally, it is

easy to compute the meromorphic one-form from this data to be λ = (v/t)dt, thus

allowing the computation of BPS masses.

To summarize, we have seen how interpreting geometrical structures in the RSK

geometry ofN = 2 Coulomb branches as physical objects in M-theory together with the

type IIA/M-theory equivalence has allowed us to solve for the Coulomb branch IREA

associated to particular field theory data in a simple algebraic way. This approach has

been extended to solve for the IREAs of many infinite series of N = 2 field theory data.

It is an open question whether all N = 2 field theory IREAs can be solved in this way.
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