
Chapter Operatorsinan
Observables things that can be
matured in QM are described

by certain liar operators So operators
will play a central role in QM

In the next 4 lectures we will

C Define what liar operators are

2 Show how they can be written as

matrices in a basis

Define projection operators

4 Define hermitian operators

5 Describe the close relationship between
projection ops hermitian ops
mm diagonditation and

direct sum decomposition of Hilbert
spaces

6 Define aitary operate and



describe their relationship to hermitian ops

This is a lot of math but it is
crucial to understanding the physics

In particular
Hermitian ops their associated

Fjectionops are crucial for
describingmeasurements in QM

Unitaryope are crucial for
describing physical transformations in

QM like symmetry transformations and
time evolution

I LinearOperators or operators

An operator M is a map from the
Hilbert space V to itself

M V V

This just means that M is a role



that takes any vector 14 EV to
a unique rector IX MIX EV

A linear operator is liar i e

M all b x a MY bMix

for a bed

Linear operators also act on bras

M WI n 201 Lw IM

If you know how a linear operator acts
on a basis of V then you can figure
out how it acts on any 14 EV

Say In n t e d is a basis of V and

say In Min are given Then

14147 MIEiYu In Chee

YuMin

Yulan



Say In n t and is an orthonormalbasis

Then
in Lml for any u m

are particularly simpleexamples of operators
This is simply because

in smile in
emits

Me In E V

so in Lml V V
You should be able to check it is linear

using the linearity of the bracket

In fact the set in aml n mel d

of these operators form a basis of all
operators in the sense that any operator
NT V V can be written as the linear
combination

d

M af Mnm In Lml

for some Mum EG



2 Operatorsasmatices
The set Mum are called the
matrix elements of M in basis in 3

Arrange the set Mum in a square

array Ca matrix of numbers

Mi Miz Miz Mid
Mz M22 M23 MadMum G

Md Mda Mds
Midd

So Mam is in the
convention

htt column

universal

nth row

We will now work out some key formulas
for computing matrix elements

Recall

147 E Un In for some UnEG



we compute

m 14 Lml EdYu In

I Un min 48mn Ym

The components Um of 147 in basis im

are given by

4min
Now copy this for operators

M Mum In Lml

Chinle Chel E MumIn mi le

If Mam seein smiles
It Mum Seen Sme
Mke

i The matrix elements Mum ofM in basis 1m73

are given by



go

MumIntulmp
Now compute the components of 1 7 14147

In MIX In MT4

aim E 4min71
4m nimim

4mMum Enmity
If we arrange Xu a 34m as

column vectors and Mum as a matrix

this says

4
Mia

using the usual rules of matrix multiplication



Multiplicationof perators

MN V V means simply

first act with N then act on the
result with N

in 4 IN ios

Order of multiplication matters

generally MN Nit

The commutator of two operator
is defined to be

M NJ E NN NN

If MINI 0 we say than
commute in this case the

order of multiplication does notmatter

Any operator commutes with itself
in ri Ma NN O



The matrix elements of a product are

CMN
mn LmlMN In s usual

How do we relate them to the matrix

elements Mmm Nun of it at

Recall that in an o n basis In 3

any vector 147
can be written

147 94 In with Unenlle

147 2414 In In all

In ni 147
so I In Cnl is some operator with

the property that

I 47 147 for all 147 EV

We call I the identity operator
and often just write it as the

number 1 since 1 142 147

Ceci
show that the matrix elements of I are
Inn 8mn in any basis



i E1nz nl
Completeness
Relation

This is true for any Eta
So if I say Im is an o n basis

you immediately know 2 things

mln 8min orthonormality
E1n7411COmp6tenessI

Earlier we showed that if 1 7 81147

then Xu Mum4m Let's re derive
this uging completeness

Xn Ln X L LMK Lalit 147

Lala Elm Lml 147

Em Inlaim Lully

Mum 4m



We can use the same trick to find the
matrix elements of products of operators

MN mn MINNIn MIMANin

Cain In in N In
I

I
min in GIN in

IMNlmnEMmnN.LT
If you translate this to matrices this is
just the definition of matrix multiplication

Me MN iz Milad

in iii
it

iii HiiiMdl Mdd



Adjointsofoperator

If M V SV is an operator it
acts on both bras bets

14 MIX Loll Swim

By taking adjoints we get

147 mix It alexin

Koll aint to Mlw

This defines what is meant by it
given it

Note adjoint reverses order of bras operatorslets

e g stint pianist Lalita It
ABED It ItetBtat
Recalling Mmm mlMin then

MIn mining alatim eating



So as a matrix Mt is the complex
conjugate transpose of M

cig

in a

at a at c
b d't

att bit at it bint



Projectionoperators
An operator P is a projection operator

or forshort a projector if

It p hermitian

PE p

This is a key clan of very simple
operators which form the building
blocks for all operators used in QM

Theorem There exists an o n basis
m ma o d

which depends on P and is not unique
such that

P I hmm Lml for some of red

C



r is the rank of B Thus in
this basis P has matrix elements

fi A

o

It neo 5 0

If red 5 1

If P is a projector so is 1 P

Ty 1 pit It Pt I p r

1 PR 1 F I P
1 F 1 1.8 52
1 p Ptp
i e J

Also obvious from CA

A set of projectors Pre mi s

is a complete orthogonal set ofprojectors
if they satisfy



Put SuvPi

E e

E

Theorem F o n basis

ly i Mi is it ru

Susi v j Susi IE lMis4u1 1
g t complete ortho projs Pie m t s are

Pu In i mil

lie in matrix form

Itt

etc



Geometrical interpretation of onset Pie

Pi G linear subspace UCV
rytraulePm dimensionVee

on basis U In is it rs

Vn 1 Vu M V

Picture 3 real dimensions

each Pi has rank 1

V3

t

P has rank 1 Pi has rank 2



É

IV cain

Note o n basis of V2 is

not unique

P has rank 3 U a wholespace
o u basis is arbitrary

So we should think y Pin as giving
an orthogonal decomposition of V

V V V20 Vs
J

direct sum of vector spaces

if In is i l rn o u basis of Vu
then ly i ma s it rn o h basis V



4 Hermitianoperators

M is hermitian off it M

Also called self adjoint

Any operator can be written uniquely as

in At it

with A B hermitian

Trod Let Ana hint

E Cri nt

Then the tart if.CN At
Atik

and
ft scanty Intent
Bt film ntl I Mta By



Hermitian ops are special

Physics they correspond tomeasurements inQM
May I o h basis la at d in which they

are given by a diagonal matrix

al Mlb e Sa My Ma EIR

in I
Matrixdiagonalization

Spectral theorem

If M hermitian then can be

written uniquely as

i m

where Pu Mi s is a complete on

set of projectors and mm me s CIR
are the eigenvalues of a



Combine w our theorem on complete

o n sets of projectors and toad
in basis

pi it Ma s 2 1 rn

Htt

Ft or

I rank ru of y't projector Pu

multiplicity of my eigenvalue

degeneracy of Mn eigenvalue

2 questions
QE What does spectral theorem mean

2 How do we find the o n basis

Im i 3
which diagonalizes N



QI spectral refers to spectrum

set of eigenvalues

Spectral theorem gives a geometrical

picture of the map of Hilbert
space given by it V V

To each M as o n set Pi projectors

V V Us

and on each Um M acts simply
by multiplication by the real number

Mr
M VasVa Mm eigenvalue

w of a
M197 mule

So
says M acts as a set of

rescaling on a certain set of
orthogonal subspaces of V

QI How to compute diagonalizationof a

If 197 EVu then



q

M197mn17
in mu 197 0 e

it mut can't exist since

if it did then C 147 0

But the inverse exists if det 0

Therefore eigenvalues mm are

the solutions to the equation

detlMmIP
This equation is independent of choice of
basis i pick any basis write it
as a matrix May compute

det.fi ni
Mai Mdd m

Gives a degree d polynomial equation

PCM I Nomdt La md t 20 0



for some complex numbers dal
which you compute by using the
usual formulas for determinant

Every polynomial can be factorized as

PCW Xd m c m Cz m ca

for some numbers ca the roots of
Pln Generally ca e G but for hermitian
M Ca EIR

The Ca are the eigenvalues

Ci G Cd

magmiggm images

a t y
multiplicity or degeneracy of the roots

Once know the eigenvalues e their

multiplicities still need to find the
eigenspaces Un G Pi



To do this solve linear equation

M mm 97 0

Iii mine.it
for each mm Know will Fru
linearly independent solar forces

19 e 19,17 119,17

Now if any 2 vectors 147,147
solve eigenvector equation foramen

M mile o

N Mn 147 0

then any linear combo dig 8147
also solves the equation

N Ma ale pie o

i 19,57 i c ru form a basis

for a whole eigensrace Vee corresponding



2

to eigenvalue m

All that remains is to find an

o u basis for this space Vm There
are a ly many possible solutions A
method to construct an o n bar is out

of any given basis Ip i 3 is

Gram Schmidt orthogoudization

Compute Iq i 11 126,119,7 IN

Define In 17 I 19,1

so lie i normalized

Subtract a In i from 19,27 so

result is orthogonal to be D
o he il 14,27 X 1m17

Lu 119,27 a

a 4,119,27
Define

19,27 I 19,27 1M174,119,27

Compute Nifong define



4,27 I 19,27
iterate

Define

Im i fly i where G S

i
msm

ortho

Reffing in it can be written

in Emm Pi EE sure
mmEi Imi Gil

Mu E IR ha itv j Susi
Compute inn with multiplicities ru
by solving polynomial equation

detcie m o



For each u solve linear eigenvector
equations

M m 197 0

for lin indep set 19,27 2 1 rn

Use G S ortho to construct o n
basis of Un In i i l ru

6 Unitaryoperator
ilis unitary if that
This is the same as saying

i i it

Since left inverses are also right inverses

it W Wit 1

also 1 for unitary ops

Properties of unitary operators



Preserve inner product

if 10 s V10 14 21147
then 40114 5014

Pf d ly Glo t U147 solitary 24147

This analogous to rotations in euclidean

space which preserves dot products
so unitary operators are the complex
analog of rotations

Change any o n basis to a new one

If Im m c nd o n basic

then Im in my m l ed is also o n basis

Prf Lm n Lalita in Fmln Smn

E lui sail aim mint ie Elm impatient

Satisfy the spectral theorem

F complete orthog set of projectors Pi
such that



WE unpin Yee

Eigenvalues are phases un e

OnEIR

Art tips umps split utCpl
1 419 q Italy unmetLyle lump

Related to hermitian ops by exponentiation

I unitary implies 7 Mint such that

U e

Ff Use spec then go tobasis in which
a ga O GjEIR

gigd

exp life ein

with



M f'd pier

in this basis But Matt J
Exponentiation of operators

40 1
et Fran A

This definition is often difficult to use
since need to compute Al fo all LEIN
and then do infinite sum

But can be used to show some general

properties

eatebt eatb A

But generally et et ett's

If EA 87 0 then etet ettB



When F is diagonalizable then

exponentiationiseasy just go
to Basis in which

I 8 a

Then Al fat gg and so

e É Iai

ÉÉÉ
Eoe tea

More generally

FCA
Hai

o Ian
any function f



AxiomsofQuantummechanic
All this linear algebra was so we can

restate the rules of QM in a more

flexible form

We had the measurement rules
Outcomesofmeasurement M orthonormal basis of V

lm Md milm Sig Ie Imi mil I
Probabilityofobservingoutcome1mi is

Prob 14 1mi Kmily T

If outcome 1mi is observedupon measuring M statechanges to

1471514 mis

Implicit was that to each outcome 1mi was a

value mi of the quantity M being measured

Eg ForMeSz outcome 1 27 corresponds to
valve Sz hi 2

So it is better to package values outcomestogether

M as Mi Ii
measured valve I L outcome state



Do this by defining an operator associated to
each measurement M

Mes M
i Mili it A

Since measured values are real MiMitt we

see that I Mt is hermitian

Conversely by spectral theorem any hermitian M
can be diagonalized as in A

In this language the Born OB
collapse roles read

Prob Mani Icily 12
14 ix 14 a ti

But these rules are too restrictive

To see this consider a measurement

which consists of doing nothing This
is a measurement in which we gain no

information about the state 14 and 147
does not change as a result



We would like to describe this as a measurement

for which there is just a single possible outcome
M M

in_mI e En Ii it

Prob Man 1
541114 ETH i 2014

Ii kilt t
1471514 147

IN
Ii sins

This prompts us to refine the measurement
axioms so that if two outcomes lis lj a M

have the same value Mi Mj then
we sum the Born probabilities oftheiroccurrence

we project 14 14 onto the

subspace spanned by lis ly's



Axioms of Quantum Mechanics
Underlined terms are linear algebra concepts whose definitions you need to know.

Italicized terms are the concepts being defined by the axioms.

I. The state of a system is a vector, | i, in a Hilbert space, H (a complex vector space with a
positive definite inner product), and is normalized: h | i = 1. Also, the phase of the state
is unobservable, so if | i = e

i↵
|�i, then | i and |�i describe the same physical state of the

system. (This can be summarized by saying that a state is a ray in a Hilbert space.)

II. An observable (allowed measurement) is a choice of a hermitian operator, cM . By the spectral

theorem, cM =
P

i µi
bPi, where µi are its eigenvalues and bPi are the orthogonal projection

operators onto their corresponding eigenspaces. Examples of observables are energy, position,
momentum, and angular momentum operators, which are basically all the observables we will
use in the course.

III. The only possible outcomes of measuring cM are one of its eigenvalues. I denote this outcome
of this measurement by “M = µi”.

IV. The probability of observing a given possible outcome, M = µi, of such a measurement is
denoted P(M=µi), and is given by the squared norm of the projection of the state onto the
eigenspace of the eigenvalue µi. In formulas, this is

P(M=µi) =
��� bPi| i

���
2

= h | bPi| i. (1)

This is known as the Born rule.

V. Once we observe or measure the outcome M = µi, the state changes as a result of the measure-
ment from its state | i immediately before the measurement, to a new state | 0

i immediately
after the measurement, given by its normalized projection onto the eigenspace corresponding
to the observed eigenvalue. In formulas, this is

| i
meas. M=µi
�������! | 

0
i =

bPi| ip
P(M=µi)

=
bPi| i��� bPi| i

���
. (2)

This rule really only applies to idealized instantaneous nondestructive measurements, also
known as projective measurements. The results of real-life measurements are typically much
more complicated to describe, but their e↵ect on the observed state is always in some sense
greater than that of the ideal projective measurement shown in (2).

VI. The time evolution of the state of an isolated system (i.e., when it is not being measured or
otherwise interacting with the external world) is given by | (t)i = bU(t)| (0)i, where the
unitary time evolution operator is given by bU(t) = exp{�it bH/~} where bH is the hermitian
energy operator (also known as the Hamiltonian operator).

VII. If a system can be decomposed into two subsystems each respectively described by states
in Hilbert spaces H1 and H2, then states of the combined system are in the tensor product
Hilbert space H1 ⌦H2.

o



These are the final form of the
rules of QM They are what are

used in all realms of physics from atomic
phenomena to relativistic quantum field theory
to Hawking radiation of black holes to

string theory

They rely on an implicit separation between an

observer and the observed subsystem
This clearly breaks down when you try to apply it
to the universe as a whole e.g in early universe

cosmology

There have been many attempts over the past 90
years to overcome this separation
In my opinion they have all failed so far

Expectationvalvesrevisited

In our operator formalism let's see how the
formula for expectation value of a measurement

changes

Recall if we measure M in a state 147
we have



M E Prob Mi Mi
possible outcomes I value of M

I 4415,147miI

41 Eu E 147

LM7 L4M4

Extremely easy a useful formula
Note Born rule Prob Mai 241Pi147

Prob Mmi Pi

is also written as an expectation value

All predictionsof QM can be recast as
statements about expectation values


