CHAPTER 8

Reconstructing Eustatic and
Epeirogenic Trends from Paleozoic
Continental Flooding Records

Thomas J. Algeo and Kirill B. Seslavinsky

ABSTRACT: Eustatic and epeirogenic trends may be independently quantified given
knowledge of flooding patterns for multiple, coexisting, tectonically-independent land-
masses. Herein, we develop a method of analyzing paleo-continental flooding records in
order to reconstruct both global sea-level trends and individual continental epeirogenic
histories. Our method is based on the hypotheses that: 1) co-existing landmasses are
“likely to have experienced the same range of eustatic fluctuations, 2) differences in
flooding are thus primarily a function of differences in coastal hypsometry, and 3) dif-
ferences in estimated sea-level elevations between individual landmasses and the world
may reflect continental epeirogeny. We apply the method to the flooding records of 13
Paleozoic landmasses for which detailed paleogeographic reconstructions are available
(Ronov and others, 1984; Khain and Seslavinsky, 1991).
Our analysis indicates that Paleozoic eustatic highstands were probably +100 to +225 m
above present sea level, which is substantially lower than previous estimates of +300 m
(Vail and others, 1977) to +600 m (Hallam, 1984). Reconstructed epeirogenic histories
suggest that Paleozoic continents experienced £100 m of independent vertical motion
relative to global sea level at a 1040 m.y. timescale. Most large epeirogenic excursions
coincided with ‘major tectonic events such as rifting, passive-to-active margin transi-
tions, and continental collisions, and may reflect a range of epeirogenic mechanisms for
Paleozoic continents comparable to that documented for modern continents. Close links
between eustasy and continental epeirogeny are suggested by the antithetic pattern of
Gondwanan crustal motions and global sea-level elevations during the mid-Paleozoic.

1. Introduction

Detailed knowledge of secular changes in global sea-level elevations (eustasy)

and broad vertical crustal movements (epeirogeny) is required for thorough under-

standing of underlying mantle and plate tectonic processes. Although eustasy has

been widely regarded as the dominant control on long-term patterns of continental
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flooding (e.g., Vail and others, 1977; Haq and others, 1987), epeirogeny is now
considered to be a factor of equal importance and to respond to the same underlying
mantle processes (e.g., Gurnis 1992a,b). In general, eustatic and epeirogenic fluc-
tuations cannot be separated based on stratigraphic data from a single locale, basin,
or continent. Isolation of these variables at a sub-continental scale is difficult ow-
ing to the flexural rigidity of continental lithosphere and to frequent linkage of the
subsidence histories of adjacent sedimentary basins (e.g., Quinlan and Beaumont,
1984; Cloetingh, 1988).

Independent quantification of eustatic and epeirogenic trends may be possible
given stratigraphic information from multiple, co-existing, tectonically indepen-
dent sources. The goals of this contribution are to: 1) develop a method of analysis
of the flooding records of co-existing paleo-continents that permits reconstruction
of both global sea-level trends and individual continental epeirogenic histories,
2) apply the method to the flooding records of 13 Paleozoic landmasses, and 3)
consider the significance of the results of the analysis in relation to documented
mechanisms of eustatic and epeirogenic motions.

1.1. EUSTASY

Long-term (>10 m.y.) changes in global sea-level elevation are of considerable
importance as an expression of variations in mantle convection and heat flow
(Turcotte and Burke, 1978; Galer, 1991) and owing to a strong influence on
global climate, geochemistry, and biosystems, including greenhouse-icehouse cy-
cles (Fischer, 1984), atmospheric CO- levels (Wilkinson and Given, 1986; Bemer,
1994), seawater composition and marine carbonate mineralogy (Wilkinson and
others, 1985), and biodiversity and mass-extinction patterns (Riding, 1984; Wyatt,
1987). Because many aspects of paleo-mantle behavior and paleo-atmospheric
and -oceanic chemistry are difficult or impossible to reconstruct, eustasy has been
widely used as a proxy for other variables in global models (e.g., Gaffin, 1987,
Galer, 1991).

Despite the obvious importance of and need for accurate information regarding
the amplitude of secular eustatic variations, surprisingly little research on long-
term eustasy has been undertaken: to date, the only widely-cited Phanerozoic
sea-level curves are those of Vail and others (1977) and Hallam (1984). Most
extant studies of Paleozoic eustasy are based on sequence stratigraphic or facies
analysis of limited geographic areas and have yielded only qualitative trends
(e.g., Johnson and others, 1985; Heckel, 1986; Johnson and others, 1991; Schenk,
1991). Quantitative analyses of Paleozoic eustatic trends using well-documented
databases are lacking.

1.2. EPEIROGENY

Broad (>100 km) vertical crustal motions are potentially of major significance
as indicators of mantle-crustal thermal interactions, far-field responses to plate-
margin processes, and lithospheric density anomalies associated with melting,
intrusion, or phase changes (McGetchin and others, 1980). The epeirogenic his-
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Uncertainties regarding the original extent of marine strata on continents result
from loss of sedimentary rocks through erosion, metamorphism, and deep burial.
To allow for uncertainties in flooding estimates, we will bracket our “most likely”
value for continent ¢ at epoch 7, F(ij)mean, by minimum and maximum estimates
of original marine flooding, F(ij)min and F(ij)max.- As the minimum flooding
value, we will adopt the area on continent ¢ of extant marine strata of epoch
Jj- Meaningful upper limits on flooding are difficult to establish as these require
greater extrapolation beyond available stratigraphic data. For simplicity, we will
assume that the potential maximum area of lost marine strata is twice that of our
“most-likely” estimate, yielding a maximum flooding value of:

F(U)max =2x F(ij)mean —‘F(ij)mim 1

Estimated values of (i3 )min» F (2j ) mean» and F'(ij )max are shown by continent
in Fig. 1, and values of F(ij)mean are tabulated by continent and epoch in Table 1.

2.2. PALE0ZOIC CONTINENTAL HYPSOMETRY

2.2.1. Application of Hypsometry to Sea-Level Analysis

The first step in determining eustatic and epeirogenic trends is to reconstruct
paleo-continental hypsometries. The hypsometry of a topographic surface is its
cumulative areal frequency with respect to elevation. Continental area-elevation
distributions form sigmoidal curves that are convex up at low elevations, concave
up at high elevations, and have an inflection point close to sea level (Fig. 2). The
slope of a hypsometric curve is the rate of change of elevation with respect to
cumulative area for a given elevation or elevation range (Algeo and Wilkinson,
1991). The inflection point of a hypsometric curve represents the elevation at which
the slope of the curve is gentlest and, thus, at which the modal areal frequency
occurs. The fundamental control on the sigmoidal shape of hypsometric curves
is the balance between net continent-interior erosion and net continent-margin
deposition. For landmasses in “hypsometric equilibrium”, the inflection point is
located approximately at the updip margin of coastal-plain wedges at an elevation
of several tens of meters above sea level.

Hypsometric curves can be used to convert flooding data to sea-level elevations
and to reconstruct secular sea-level trends from a series of paleogeographic maps
(Fig. 2). Because the elevation range of Phanerozoic eustatic fluctuations has
been within a few hundred meters of present sea level (e.g., Vail and others,
1977; Worsley and others, 1984), only the low-elevation portion of a continental
area-elevation distribution (“coastal hypsometry”) is of significance for eustatic
studies. Flooding data provide information about the hypsometric characteristics of
a landmass only within this limited elevation range, and, therefore, reconstruction
of paleo-continental hypsometries is constrained to the same range of elevations.
As a first approximation, we assume that paleo-continental hypsometries within the
elevation range of interest are linear. Although modern continental hypsometries
are strongly non-linear over elevation ranges of several kilometers (Harrison and
others, 1983), deviations from linearity are small within a few hundred meters of
present sea level, and this is likely to have been valid for paleo-continents as well.
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Fig. 2. Example of calculation of sea-level elevations using hypsometry and continental flooding
data. (A) Area flooded for a given epoch is measured from an equal-area paleogeographic map relative
to a specified reference level, such as the shelf margin. (B) Fractional area flooded (z)) is converted to
sea-level elevation (y1) using a landmass-specific hypsometric curve. (C) Secular sea-level variation
curve is constructed from a series of paleogeographic maps. (D) Given time-invariant continental
coastal hypsometry, a specified flooding range yields a corresponding range of sea-level elevations.
A “hypsometric chord” (H.C.) is a linear representation ‘of part of a continental area-elevation
distribution. :

We term linear segments of continental area-elevation distributions “hypsometric
chords” (Fig. 2D).

The principal difficulty in using hypsometry for eustatic analysis is in selecting
an appropriate hypsometric curve with which to transform ancient flooding records
to sea-level elevations. Because paleo-continental hypsometries cannot be recon-
structed on purely theoretical grounds, modern area-elevation distributions must
be utilized as analogs. However, continental hypsometries change through time,
and, consequently, modern area-elevation distributions are likely to yield increas-
ingly less accurate sea-level estimates for progressively older flooding records
(Algeo and Wilkinson, 1991). This limitation has constrained previous hypso-






>

SEA LEVEL
FREQUENCY

RELATIVE
ELEVATION

r@

|

AP S S

Yy2) -

SIRP" S Syl

cmee i~

FLOODING
FREQUENCY

0 20 40 60 80 100
AREA FLOODED (%)

B SEA LEVEL
FREQUENCY

HYPSOMETRIC
300 1 ~“—  ANALOG

1
; ; Ugtw)
2 W/
o R :
= M ] ] :
g P1oFga) :
i 01 A 1 .
- P —f :
w [ ] 1 .
T B :
. [ ] — . .
-100 4 e £ b
é".' Y + :
I é
-200 ; S - — . : \
0 20 40 60 80 100

CUMULATIVE AREA (%)

Fig. 3. Reconstruction of paleo-continental hypsometric chords. (A) Relative (non-dimensional)
scaling of hypsometric chords for three co-existing landmasses exhibiting low (L), medium (M), and
high (H) degrees of average flooding, ur(3), and variable flooding ranges, pr(i) + or(i) (bottom).
As co-existing landmasses experience the same mean and range of eustatic elevations (upper right),
differences in means and ranges of flooding values among continents record differences in their
coastal hypsometries (top). (B) Absolute scaling of hypsometric-chord elevations using a modern
hypsometric analog, for which an “expected” range of flooding is estimated. Actual elevation range
is dependent on choice of analog.
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TABLE 2
Flooding ranges for Paleozoic continents
Mean® Min.* Max.*
Gondwana 22.8+4.3"  163+3.8 29.346.1
Pangea 17.3£1.4 14.3£1.2 20.3x1.7
Laurentia 36.2+13.6 3244139 40.1x13.5
Laurussia 32.1£10.0 29.2+10.0 35.0+£10.1
Baltica 29.3+6.8 28.01+6.7 30.8+7.0
Siberia 46.919.6 42.749.0 51.2+10.9
Armorica 77.116.2 61.3+10.5 92.0+7.6
Chukotka 37.0+5.3 16.74£5.0 57.5£6.4

Kazakstania 60.4116.6 53.5£16.3 67.4+£17.5
North China 28.4124.1 25.8424.3 31.0124.0
China (united) §3.3£13.5 50.5+£12.8 56.2114.3
South China 54.5+7.1 443159 64.8+8.7

Indochina 88.04+3.2  48.0+5.7 100.0+0.0

¥"Means and standard deviations of flooding values for
each continent, ur(i) £ or(i), based on values of
F(i5)means F (15 )min, and F'(i5)max, respectively.

® Fractional flooding of total landmass area in percent.

flooding values should be recorded for a group of paleo-continents. Differences in
the mean, standard deviation, and range of flooding values for each landmass can
be used to partially reconstruct a characteristic long-term mean coastal hypsometry
for each landmass (Fig. 3A). Hypsometric reconstruction proceeds in two steps: 1)
non-dimensional scaling of paleo-continental hypsometric chords, and 2) absolute
scaling of hypsometric chords using a modern continental analog. In the first step,
the means and ranges of flooding values for each paleo-continent are set equal
to the same non-dimensional mean and range of eustatic elevations, 'us(w) and
'rs(w) (Fig. 3A). In the second step, dimensional values of the mean and range
of eustatic elevations, us(w) and rs(w), are substituted for ‘us(w) and 'rs(w),
permitting calculation of dimensional values for the slopes and y-intercepts of
paleo-continental hypsometric chords:

m(i) = rs(w)/r(7), (5)
b(é) = ps(w) — m(é) - pe(d), (6)

h () db() tshe slope a @ § ‘ntercept of the hypsometric chord of
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Fig. 4. Coastal hypsometries of modern continents (excluding Antarctica) with respect to shelf
margins (ca. —200 m). Hypsometric curves are cubic-splined versions of the area-elevation data of
Harrison and others (1983). The modern Indochina curve was calculated from equal-area 1:2,500,000
topographic maps and includes Borneo, Sumatra, Java, the Malaysian peninsula, the Southeast Asian
peninsula (northward to the Song Ma-Red River region in northern Vietnam and westward to
the Sagaing Fault zone in central Burma; Hutchison, 1989), and all intervening shallow-marine
areas (> —200 m). Inflection points (/, in meters; circles) and hypsometric-slope minima (m,
in meters/%area) for Eurasia: I = 30, m = 5.0, Africa: ] = 310, m = 6.7; North America:
I =15, m = 6.7, South America: I = 90, m = 5.6; Australia: ] = —60, +110, m = 6.1,
5.6; and Indochina: ] = —25, m = 1.4. Modern Indochina is included to illustrate the range of
potential hypsometric variation; it may be a better analog for small Paleozoic landmasses than modern
continents.

Choice of Modern Hypsometric Analog. As our analytical method only per-
mits reconstruction of relative coastal hypsometries based on paleo-continental
flooding data, development of an absolute elevation scale requires recourse to a
modern hypsometric analog. Next, we consider the hypsometric characteristics of
modern continents, evaluating their suitability as hypsometric analogs. The best
compilation of modern area-elevation data is that of Harrison and others (1983),
who utilized a Defense Mapping Agency database consisting of global elevation
values for 1 degree squares at elevation intervals of 100 m. We have fitted the
area-elevation data of Harrison and others with cubic splines to produce coastal
hypsometric curves for each modern continent (Fig. 4).

The curves for North America, South America, and Eurasia are rather similar,
having hypsometric slope minima of 5.0 to 6.7 m/%area and inflection-point el-
evations slightly above present sea level (+-15 m to +90 m; Fig. 4). For reasons
discussed below, these continents are probably close to their long-term hypsometric
equilibria. Although Africa and Australia have similar hypsometric slope minima
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Fig. 5. Flooding versus landmass area for Paleozoic and modern continents. For Paleozoic conti-
nents, mean and maximum flooding decrease with increasing landmass area. For modern continents,
flooding values are shown with respect to both present sea level (circles with dots) and that of an
ice-free modern world (+50 m above present sea level; solid circles). Modern continents: AU =
Australia, SA = South America, NA = North America, AF = Africa, and EA = Eurasia. Note that
modern continents exhibit generally low degrees of flooding in relation to Paleozoic landmasses of
equivalent area.

(Fig. 7A), and a mean elevation of +160 m and an elevation range of 96-224 m
based on the American analog (Fig. 7B). Although the hypsometries of Eurasia
and North and South America are similar (Fig. 4), the two analogs yield large dif-
ferences in estimated elevation ranges owing to differences in the degree to which
the actual flooding of modern continents diverges from their “expected” Paleozoic
flooding values: present flooding of Eurasia (23%; Fig. 5) is close to its expected
Paleozoic mean (25%; Fig. 6A), but present flooding of America (22%) is con-
siderably lower than its expected mean (35%). This makes clear the implications
of choosing Eurasia versus America as a hypsometric analog: the former implies
that modern sea-level elevations are rather typical for the Phanerozoic as a whole,
whereas the latter implies that they are unusually low.

2.3. PALEOzOIC SEA-LEVEL AND EPEIROGENIC TRENDS

2.3.1. Calculation of Sea-Level Elevations

Once coastal hypsometric chords have been constructed and scaled for individual
Paleozoic landmasses (Fig. 7), calculation of sea-level elevations for each continent
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Fig. 6. Mean flooding and flooding variability for Paleozoic continents. Both (A) mean flooding,
ue(t), and (B) flooding variability, og(¢), decrease and exhibit a narrower range with increasing
landmass area. These relationships are used to estimate “expected” means and ranges of flooding
values for hypsometric analogs. Paleozoic continents equivalent in area to modern Eurasia and
America would exhibit flooding ranges of 25 £+ 7% and 35 + 9%, respectively (open circles).
Uncertainties in estimates of “expected” mean flooding and flooding variability (solid vertical bars)
are based on %1 regression lines (dashed). The low flooding variabilities exhibited by some small
paleo-continents (e.g., Chukotka) reflect time-invariant flooding estimates that result from a lack of
detailed stratigraphic information rather than from genuinely small ranges of flooding values.
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Fig. 7. Scaled hypsometric chords of Paleozoic continents using Eurasian (A) and American (B)
analogs. The Eurasian model yields a mean elevation of +60 m and an elevation range of 24-102 m,
whereas the American model yields a mean elevation of +160 m and an elevation range of 96-224
m. The area-clevation curves of modern Africa and Indochina bracket the coastal hypsometries of
most Paleozoic continents. Note that choice of an American analog implies steeper paleo-continental
hypsometries and higher sea-level elevations than choice of a Eurasian analog.
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at each epoch is possible (Figs. 2, 8). This involves conversion of flooding values
to sea-level elevations using the characteristic hypsometric chord of each paleo-
continent:

S(ig) = m(i) - F(ig) + b(2), ™

where S(ij) is the sea-level elevation estimate for continent % at epoch j. For
example, Laurentia has flooding values of 21%, 32%, and 48% for the Lower,
Middle, and Upper Cambrian, respectively (Table 1), yielding sea-level elevations
of 20 m, 45 m, and 90 m based on the Eurasian analog, or 80 m, 130 m, and 220 m
based on the American analog (Figs. 7, 8). Sea-level elevation estimates are not
appreciably affected by use of linear hypsometric "chords" rather than continuously
varying curves, because most modern continents have fairly uniform hypsometric
slopes at low elevations (Fig. 4). Significant non-linearity would develop only at
extreme flooding values (i.e., > +20).

Once continental sea-level elevations have been determined for each epoch,
global sea-level elevations may be calculated by several methods. In theory, each
paleo-continent is an independent recorder of eustasy having equal validity, and,
therefore, global sea-level elevations could be calculated as a simple unweighted
average of individual continental sea-level elevations for each epoch:

S(wj) =Y S(ij)/m, 8)
1

where S(wy) is the unweighted estimate of global sea-level elevation, and m is the
number of continents extant during epoch j. However, the variance of individual
continental sea-level estimates is related to flooding data quality: on average,
estimates based on excellent- to good-quality data deviate by 40-45 m from global
mean sea-level elevations, whereas those based on poor-quality data deviate by
62 m. Therefore, we prefer eustatic estimates reflecting data quality:

S(wj) =1 _[S(7) - QAN /4 D Qig), ©)
1 1

where S(wj) is the quality-weighted estimate of global sea-level elevation, and
Q(ij) is the quality value of the flooding estimate for continent  at epoch j. Quality
values were assigned to individual continental sea-level estimates according to a
scale of 1.0 for excellent-, 0.5 for good-, 0.33 for fair-, and 0.125 for poor-quality
flooding data (quality values based on ratios of flooding extrapolation values; see
above). Global sea-level trends for quality-weighted estimates are shown in Fig. 9.

2.3.2. Calculation of Epeirogenic Trends

Individual continental sea-level estimates diverge to greater or lesser degrees from
the global mean elevation for each epoch, yielding “elevation residuals”:

©5(ij) = S(ij) — S(wj), (10)
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estimates (F'(25)min. and F (17 Jmax, respectively; dashed lines). Sea-level trends are significant where
elevation changes exceed the uncertainty range. Elevation scales are shown for both Eurasian (left)
and American (right) analogs.
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Fig.9. Global and stacked continental sea-level elevations for the Paleozoic. Symbols on continental
sea-level curves (dotted) represent data quality; refer to Fig. 1 for meaning of symbols and to Fig. 8
for identification of paleo-continents. The mean global curve (heavy solid line) is a quality-weighted
average of continental sea-level elevations using weights of 1.0 for excellent (solid squares), 0.5
for good (solid triangles), 0.33 for fair (open squares), and 0.125 for poor data (open triangles).
The uncertainty range for global sea-level elevations (shaded) is based on minimum and maximum
flooding values for all paleo-continents at each epoch (Fig. 1). Elevation scales are shown for both
Eurasian (left) and American (right) analogs.

where ©S(ij) is the difference between the sea-level estimate for continent 4
and the global mean at epoch j. Generally, high (low) flooding values (Fig. 1)
yield positive (negative) elevation residuals (Fig. 10). The maximum amplitudes
of elevation residuals are about +90 m and +150 m based on the Eurasian and
American analogs, respectively, which are comparable in magnitude to eustatic
ranges of ca. 100 m and 225 m for the respective hypsometric analogs (Fig. 9).
Deviations of continental sea-level estimates from the global mean are due
to one of two causes: 1) secular changes in paleo-continental hypsometry, or 2)
errors in flooding estimates. Although we have assumed to this point that the
coastal hypsometry of each Paleozoic landmass is time-invariant, secular changes
in the elevation or slope of a hypsometric chord would result in deviations of
continental sea-level elevations from the global mean. The simplest interpretation
of elevation residuals in terms of secular hypsometric variation invokes vertical
displacement of hypsometric chords such that a positive (negative) motion yields
a negative (positive) elevation residual of equal magnitude. This interpretation
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Fig. 10. Elevation residuals forindividual Paleozoic continents. An elevation residual is the deviation
of a continental sea-level estimate from the global mean at a given epoch (Fig. 9). Residuals represent
a combination of errors in flooding estimates and secular changes in paleo-continental hypsometry,
e.g., as a consequence of epeirogeny. To facilitate interpretation of residuals as epeirogenic motions,
elevation scales are inverted: a negative residual (low relative sea level; Fig. 8) is equivalent to
positive epeirogenic motion (uplift) and, conversely, a positive residual (high relative sea level)
is equivalent to negative epcirogenic motion (subsidence). If viewed as vertical movement about
a fixed, neutral level of buoyancy, these curves yield an “epeirogenic history” for each landmass.
Uncertainty ranges for elevation residuals (shaded) are based on minimum and maximum flooding
values (Fig. 1). Elevation scales are shown for both Eurasian (left) and American (right) hypsometric
analogs; values cited in text are for the American analog.
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receives empirical support from modern continental hypsometric anomalies (e.g.,
Africa and Australia; Fig. 4), in which the sense and scale of offset of hypsometric
inflection points is consistent with the direction and relative magnitude of recent
vertical crustal motions.

Alternatively, elevation residuals may result in part or in whole from errors in
flooding estimates (Fig. 1). The potential effects of such errors may be evaluated by
calculating an uncertainty range for elevation residuals: by substituting F'(25)max
and F(iJ)min for F (25 )mean in Eq. (10), upper (©5(ij)max) and lower (©.S(25)min)
limits on elevation residuals for continent ¢ at epoch j are established (dashed
lines, Fig. 10). When the uncertainty range encompasses the origin of the ordinate
(i.e., 0 m), the difference between individual continental and global mean sea-level
estimates is probably not significant (e.g., Cambro-Silurian, Gondwana; Fig. 10A).
When elevation residuals are larger than the enclosing uncertainty envelope, they
are likely to represent secular changes in paleo-continental coastal hypsometries
(e.g., Cambro-Silurian, Laurentia; Fig. 10B).

3. Discussion

3.1. EUSTASY

3.1.1. Paleozoic Eustatic Elevations

First-order Paleozoic eustatic trends are similar in our curve and those of Vail
and others (1977) and Hallam (1984), all of which exhibit a Cambro-Silurian
Caledonian and a Devono-Permian Appalachian-Hercynian cycle (Fig. 11). On the
other hand, these curves exhibit large differences with regard to eustatic amplitudes:
the Vail and Hallam curves have Paleozoic sea-level maxima of +200 mto +300 m
and +300 m to +600 m, respectively, which are substantially higher than those
of this study (+100 m to +225 m). Independent estimates of Paleozoic eustatic
amplitudes are few. Backstripping methods of subsidence analysis have yielded
“changes in accommodation” (eustasy plus local tectonism) of ca. 100-200 m
in the North American midcontinent area during major Paleozoic transgressions
(e.g., Bond and Kominz, 1991), although such estimates may exceed 300 m for
continental margin sequences (Osleger and Read, 1993).

A comparison of the Paleozoic supercycle with the better documented Meso-
zoic—Cenozoic supercycle is warranted. The Late Cretaceous highstand has been
estimated at +175 m to +250 m based on hypsometry, mid-ocean ridge volume
analysis, sequence stratigraphy, and subduction rate analysis (e.g., Bond, 1979;
Harrison and others, 1983; Kominz, 1984; Haq and others, 1987; Engebretson and
others, 1992), which is lower than the Paleozoic highstand elevations of Vail and
others (1977) but higher than those of this study. Further, the total length of passive
margins created during supercontinent breakup was greater during the Jurassic-
Cretaceous (ca. 35,000 km; Harrison and others, 1981; Heller and Angevine, 1985)
than during the Eocambrian (ca. 18,000 km; Bond and others, 1984). Because
passive-margin lengths and eustatic elevations are both controlled by geotectonic
supercycles (e.g., Heller and Angevine, 1985; Gurnis, 1992a), inferred positive co-
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Fig. 11. Phanerozoic eustatic trends according to Vail and others (1977), Hallam (1984), Haq

and others (1987; smoothed version of their long-term curve), and this study. Our Paleozoic curve
(heavy solid line; spliced to Hag curve at Permo-Triassic boundary) is based on mean values for
all model parameters and a hypsometric analog that is an unweighted average of the Eurasian and
American curves; uncertainty range (shaded) from Fig. 9. Note the substantially lower Paleozoic
eustatic elevations of our curve relative to those of the two existing Phanerozoic sea-level curves.

variance between these parameters implies that eustatic elevations associated with
the Paleozoic were no greater than those of the Mesozoic—Cenozoic supercycle.

3.1.2. Controls on Long-Term Eustasy

Although many factors influence eustasy (e.g., Donovan and Jones, 1979; Harri-
son, 1988), long-term (i.e., > 10 m.y.) sea-level cycles are commonly attributed
to changes in the lengths and spreading rates of mid-ocean ridges (MORs; Pitman,
1978; Kominz, 1984; Larson, 1991) or to interbasinal differences in the age distri-
bution of oceanic lithosphere (Heller and Angevine, 1985). The potential effects
of these factors on global sea-level elevations are substantial: two-fold reduction
of global spreading rates since the Late Cretaceous may have caused a eustatic fall
of ca. 230+ 115 m (Kominz, 1984), and evolution of ocean-crust age distributions
during growth of an Atlantic-type ocean basin may induce eustatic fluctuations
of ca. 40-100 m (Heller and Angevine, 1985). A related factor linked to geotec-
tonic cycles is ocean basin volume, which decreases during continental rifting and
attenuation of passive margins and increases during continental collision and litho-
spheric thickening in orogens. The potential effects of this factor are substantial:
Heller and Angevine (1985) estimated a 50-90 m eustatic rise owing to continen-
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tal margin extension during development of an Atlantic-type ocean, and Harrison
(1988) estimated a 70-m eustatic rise associated with post-Jurassic passive-margin
creation and a 20-m eustatic fall associated with the Eocene-to-Recent collision of
India and Eurasia.

The largest changes in Paleozoic eustatic elevations are associated with the
onset and termination of geotectonic supercycles. A rise of 50-100 m during the
Early-Middle Ordovician (Figs. 9, 11) may reflect a combination of increases in
MOR lengths and spreading rates, formation of new Atlantic-type ocean basins,
and decreases in ocean basin volume associated with attenuated passive margins.
During geotectonic rift phases, all three factors operate to raise global sea levels,
as during the Jurassic-Cretaceous disintegration of Pangea (Heller and Angevine,
1985; Wyatt, 1986). Absence of information regarding lengths and spreading rates
of Paleozoic MORs precludes determination of the relative contribution of each
factor to the Early-Middle Ordovician eustatic highstand (e.g., Vail and others,
1977; Hallam, 1984; this study). However, the timing of the Early Paleozoic
highstand is consistent with peak sea-level elevations some 50-100 m.y. after
supercontinent breakup in response to shifts in the area—age distribution of oceanic
lithosphere (e.g., Heller and Angevine, 1985).

The Caledonian and Appalachian—Hercynian cycles are terminated by eustatic
falls of 40-70 m during the Late Silurian and Late Permian, respectively (Figs. 9,
11), which coincide with major continental collisions, i.e., Late Silurian suturing
of Laurentia, Baltica, and Chukotka to form Laurussia, and Late Carboniferous-
Permian suturing of Gondwana, Laurussia, Kazakhstania, and Siberia to form
Pangea. Several mechanisms could account for synchroneity of major Paleozoic
eustatic falls with continental collision events, although some explanations (e.g.,
reduced global spreading rates) lack empirical support. The simplest explanation is
anincrease in ocean basin volume resulting from orogenic thickening of continental
lithosphere during the Caledonian and Appalachian/Hercynian/Uralian orogenies,
similar to but larger than that proposed for the India—Eurasia collision (Harrison,
1988).

3.2. CONTINENTAL EPEIROGENY

Paleozoic continental elevation residuals (Fig. 10) may record epeirogenic motions,
as suggested by large-scale vertical displacements of modern continents (e.g., Fig.
4). Given the limited existing data on continental epeirogenic histories (Bond, 1976,
1978a,b, 1979; Harrison and others, 1981, 1983; Hallam, 1984; Veevers, 1984;
Harrison, 1988, 1990), these residuals represent a potentially valuable source of
information regarding the frequency, magnitude, and origin of continental crustal
motions. However, interpretation of paleo-continental elevation residuals requires
a thorough understanding of epeirogenic processes. Therefore, before proceeding
to consider the significance of Paleozoic elevation residuals, we begin with a
review of the Cretaceous-Cenozoic epeirogenic histories of modern continents
and of proposed underlying mechanisms.
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3.2.1. Modern Continental Epeirogeny

Complex patterns of crustal uplift and subsidence have been documented for
most modern continents during the Cretaceous and Cenozoic. In Africa, uplifts
occur as broad plateaus (ca. 10° km?) up to 1 km in height with local domes (ca.
10° km?) greater than 3 km in height (Sahagian, 1988; Westaway, 1993). Domes
exhibit complex Tertiary uplift histories with distinct phases of ca. 2-10 m.y.
duration (King, 1962; Rosendahl, 1987; Sahagian, 1988). In Australia, the most
prominent long-wavelength crustal feature is a north-south depression through the
center of the continent, transecting the Simpson Desert, Euroka Arch, and Gulf
of Carpentaria, and continuing southward at least as far as the Southeast Indian
Ridge, where it is known as the Australian-Antarctic Discordance (AAD; Palmer
and others, 1993).

Elsewhere, broad crustal uplifts are mostly associated with Late Cretaceous
and younger orogenies. In Asia, the Tibetan Plateau has been uplifted 4-5 km
in response to the collision of India with Eurasia (Molnar, 1989; Harrison and
others, 1992). In North America, large areas of the West, including the Basin and
Range, Cordillera, Colorado Plateau, and western Great Plains, have been uplifted
by 1-3 km during the Late Cretaceous—-Recent Laramide Orogeny (Bond, 1979;
Sahagian, 1987; Ruddiman and others, 1989). Recent broad uplift has occurred
in central and southern Europe in association with the Alpine—Carpathian and
Pyrennean orogenies (Bond, 1979), as well as in the Andean Altiplano of South
America (Allmendinger, 1986). On the other hand, broad areas of the Russian
Platform may have subsided (Bond, 1979) or maintained a stable elevation since

“the Cenomanian (Sahagian, 1989). Thus, all modern continents appear to have
been affected to varying degrees by recent epeirogenic motions.

Hypsometric analysis is capable of identifying major epeirogenic events. How-
ever, because this method integrates elevations over the surface of an entire conti-
nent, hypsometric estimates of elevation changes for a given event are invariably
muted in relation to actual crustal displacements occurring at a subcontinental
scale. Thus, although large areas of eastern Africa and western North America
have experienced uplift of 1-3 km during the Cenozoic, Bond’s (1978b) analysis
identified an average (continent-scale) uplift of 210 m for Africa (Oligocene—
Recent) and an average uplift of 150 m for North America (Paleocene—Eocene).
Thus, it must be recognized that hypsometric estimates of average continent-scale
elevation changes do not represent the actual length scales of epeirogenic events.

3.2.2. Mechanisms of Modern Continental Epeirogeny

Although the phenomenon of epeirogeny is well documented, large uncertainties
exist regarding the operation and relative importance of various causative factors.
Three broad categories of mechanisms have been proposed: thermal isostatic,
non-thermal isostatic, and dynamic (i.e., non-isostatic; Table 3). Each mechanism
exhibits characteristic lateral, vertical, and temporal scales of operation. The lateral
scale of epeirogenic motions is definitionally delimited to > 10? km (shorter
flexural wavelengths are characteristic of local tectonic processes) and is controlled
by the rheology of continental lithosphere and the size and locus (i.e., supra-, intra-,
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or subcrustal) of applied forces (Forsyth, 1985). Vertical crustal displacements
range from a few meters to a few kilometers, and characteristic timescales range
from 103 yr to 108 yr (Table 3).

Among the numerous proposed mechanisms of continental epeirogeny (Ta-
ble 3), some are more thoroughly documented than others. In this section, we
consider several epeirogenic mechanisms in greater detail, focusing on those that:
1) have well-documented examples, and 2) operate at length and time scales large
enough to permit recognition through hypsometric analysis, and 3) are linked to
tectonic processes for which independent geologic evidence may be available:

1) Thermal subsidence of rift margins. Conductive and advective cooling of
attenuated passive margins following rifting results in exponentially-declining
subsidence of 2-3 km, often amplified substantially owing to sediment loading
(Steckler and Watts, 1978; Royden and others, 1980). Characteristic features
of this process are hinged subsidence of long, linear belts along young passive
margins. Examples include the Paleozoic (Bond and others, 1989; Osleger
and Read, 1993) and Mesozoic-Cenozoic passive margins of North America
(Steckler and Watts, 1978; Heller and others, 1982).

2) Mantle plumes. Thermal buoyancy, in conjunction with dynamic mantle up-
welling, results in uplift of continental lithosphere by 1-3 km over mantle
plumes. Characteristic features of this process are small domical uplifts within
broad plateaus and association with tensional stress regimes, alkaline mag-
matism, and continental fragmentation. Examples include Mesozoic West
Gondwana (White and McKenzie, 1989; Peate and others, 1990) and late
Cenozoic East Africa (Sahagian, 1988; Westaway, 1993).

3) Dynamic topography. Thermal/density anomalies of mantle convective origin
result in broad topographic and geoid anomalies (Hager and others, 1985;
Gurnis, 1990b). The largest anomalies are associated with low-degree patterns
of mantle convection: highs over mantle upwelling zones and lows over
mantle downwelling zones. Because continents tend to move away from
the former and toward the latter, long-term cycles of continental flooding
may be linked to drift with respect to dynamic topography (Gurnis, 1988).
Examples include Africa, which is probably located over a mantle upwelling
zone (Hager and others, 1985), and Australia, which may straddle a mantle
downwelling zone, as suggested by seismic, gravimetric, and geochemical
data (Sempéré and others, 1991; Pyle and others, 1992; Kuo, 1993; Palmer
and others, 1993).

4) Variations in intraplate stress fields. Changes in the horizontal forces acting
on a plate cause changes in lithospheric density, leading to uplift under ten-
sional stress regimes and subsidence under compressional ones (Gay, 1980;
Cloetingh, 1988; Cathles and Hallam, 1991). A characteristic feature of this
process may be episodes of linked subsidence in intracratonic basins lacking
an obvious tectonic or eustatic driver. Possible examples include the North
American craton during the Devono-Mississippian (Kominz and Bond, 1991)
and the Australian craton during the Cenozoic (Lambeck, 1983).
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5)

6)

7)

8)

Lithospheric thickening owing to imbricate thrusting. Overthrusting and com-
plex deformation of continental margins under strong compressive regimes
may result in lithospheric thickening over wide areas (Allegre and others,
1984). Thickening of the lithosphere underlying the Tibetan Plateau is proba-
bly due to complex internal structural displacements, although limited under-
thrusting of the margins of the Tibetan Plateau (ca. 50-80 km) by the Indian
and Tarim Basin plates is likely (Hirn and others, 1984; Molnar, 1989). The
degree of lithospheric thickening and scale of uplift is primarily a function of
the rate of plate convergence (Molnar, 1989).

Viscous dynamic topography. Viscous coupling of subducting oceanic and
overriding continental lithosphere may result in continental subsidence in
back-arc settings (Hager, 1984; Mitrovica and others, 1989; Gurnis, 1992b).
Changes in subduction rate and in the age and angle of penetration of subduct-
ing oceanic lithosphere result in variable crustal motions; generally, increased
(decreased) subduction rates cause subsidence (uplift). This mechanism is of
greatest potential significance during passive-to-active margin transitions,
when onset of subduction may initiate back-arc subsidence (Gurnis, 1992b).
A possible example is the Cretaceous-Tertiary epeirogenic history of western
North America (Cross and Pilger, 1978; Mitrovica and others, 1989).

Subducted slab buoyancy. Subduction of young, hot oceanic lithosphere may
result in shallowing subduction angles and physical buoyancy of adjacent
continental margins (McGetchin and others, 1980; Cross, 1986). Progressive
uplift may result when a subduction zone migrates toward a mid-ocean ridge.
Tertiary uplift of the western margin of North America has been linked to
approach of the East Pacific Rise (Cross, 1986).

Slabless windows. Collision of a mid-ocean ridge with a trench may produce a
transform margin, along which spreading and formation of oceanic lithosphere
cease and cratonward of which a hole develops in the subducting oceanic
lithosphere. The progressively enlarging hole (“slabless window”) permits
advection of hot mantle material, resulting in thermal uplift of overlying
continental lithosphere. High heat flow and uplift of the Basin and Range
Province since the Early Miocene have been attributed to collision of North
America with the East Pacific Rise and to development of a slabless window
east of the San Andreas Fault Zone (Crough and Thompson, 1977).

3.2.3. Paleozoic Continental Epeirogeny

In analysis of paleo-continental epeirogeny, the temporal and spatial character-
istics of the database of choice constrain the range of epeirogenic mechanisms
about which inferences may be drawn. Epeirogenic histories reconstructed from
continental flooding data at epochal intervals (as in this study) have a temporal
resolution of 1-4 x 107 yr and a vertical resolution of 10 to 100 m (the latter
a function of flooding data quality and resultant uncertainty ranges of elevation
residuals; Fig. 10).
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Because many epeirogenic mechanisms operate at similar length and time
scales, it is generally not possible to identify the process responsible for a given
crustal motion from these parameters alone. However, most types of epeirogenic
motion have been shown to occur within specific plate tectonic contexts and, there-
fore, analysis of continental epeirogenic histories within a plate tectonic frame-
work should lead to a better understanding of the origins of broad crustal motions.
A complete analysis of this type is beyond the scope of the present paper, but
the following discussion will serve to demonstrate the potential utility of linking
paleo-continental epeirogenic and tectonic histories in order to constrain proba-
ble mechanisms of crustal motion. We will focus on Gondwana and Laurentia,
touching only lightly on other Paleozoic continents:

Gondwana. Gondwanan elevation residuals suggest broad continental subsi-
dence (— 130 m) during the Early Silurian—Early Devonian and uplift (+260 m) dur-
ing the Middle Devonian—Early Carboniferous (Fig. 10A). Siluro—Carboniferous
epeirogeny may-be related to the tectonic evolution of Gondwanan continental
margins. Late Silurian—Early Devonian flooding of broad areas of South America,
West Antarctica, and eastern Australia was followed by marine regression during
the Middle Devonian—Early Carboniferous (Khain and Seslavinsky, 1991; Scotese
and Golonka, 1993). In South America, where a widespread Late Devonian un-
conformity developed (Barrett and Isaacson, 1988), coeval arc-related magmatism
and terrane accretion occurred along the southern Andean margin (Ramos and
others, 1986). The Australian and Antarctic paleo-Pacific margins underwent a
late Middle Devonian transition from transtensional to convergent active margins
(Veevers, 1984), resulting in development of continental volcanic arc systems
within the Lachlan Fold Belt of eastern Australia (Jell, 1988) and in North Vic-
toria Land and Marie Byrd Land on the eastern Antarctic margin (Bradshaw and
Webers, 1988).

An unusual aspect of the Gondwanan “epeirogenic” record is that major ex-
cursions are antithetic to coeval eustatic trends: 130-m subsidence in the Early
Silurian-Early Devonian correlates with a 70-m sea-level fall, 260-m uplift in
the Middle Devonian-Early Carboniferous with a 50-m sea-level rise, and 110-m
subsidence in the Late Carboniferous with a 30-m sea-level fall (Figs. 9, 10).
The large magnitude of these excursions and the 150-m.y. duration of the inter-
val of covariance argues against a coincidental relationship and implies a strong
causal connection between mid-Paleozoic eustasy and Gondwanan epeirogeny.
One possibility is that faster MOR spreading rates caused both a global sea-level
rise and uplift of Gondwanan continental margins owing to subduction of young
oceanic lithosphere (e.g., Gurnis, 1992b) or continent-terrane collisions. Deceler-
ation of MOR spreading rates in the mid-Carboniferous may be consistent with
a major plate reorganization following collision of Laurussia and Gondwana, as
evidenced by a mid-Carboniferous cusp in the North American APWP (DiVenere
and Opdyke, 1991).

Laurentia. Laurentia/Laurussia exhibits sizable elevation residuals throughout
the Paleozoic, implying large-scale subsidence during the Middle-Late Cambrian
(=170 m), Late Ordovician (—140 m), and Middle-Late Devonian (—150 m),
and uplift during the Early Ordovician (4100 m) and Early Silurian (4150 m;
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and Trench, 1991; Cope and others, 1992). Thus, Middle-Late Cambrian uplift
(+140 m) and Early-Late Ordovician subsidence (—~170 m) may reflect syn-rift
thermal doming and post-rift subsidence (Fig. 10D).

Siberia. Middle-Late Cambrian uplift (+150 m) may reflect collision and
suturing of the Siberian craton with the Aldan and Barguzin terranes, and Late
Devonian uplift (+60 m) may be related to the coeval Taimyr Orogeny in eastern
Siberia (Fig. 10E; Zonenshain and others, 1990).

Kazakhstania. Owing to progressive assembly through accretion of a series
of arcs and terranes around a microcontinental nucleus, Paleozoic Kazakhstania
has a complex tectonic history (Zonenshain and others, 1990; Sengor and others,
1993). Late Carboniferous uplift (+140 m) was probably related to suturing of
Kazakhstania with Laurussia and Siberia (Fig. 10F). Absence of coeval uplift of
the latter two continents (Fig. 10B,E) is likely to have been a function of subduction
zone polarity (Khain and Seslavinsky, 1991).

North China, South China, and Indochina. North China, South China, and In-

dochina fissioned sequentially from the Australian margin of Gondwana, probably
during the Early-Middle Ordovician, Late Silurian—Early Devonian, and Siluro—
Permian, respectively (Hutchison, 1989; Nie and others, 1990; Metcalfe, 1991).
Late Ordovician uplift (4110 m) of the North China craton coincided with onset of
dual-margin subduction along the Suolun—Xar Moron and Shanyang—Tongcheng
tectonic zones (Fig. 10G; Wang, 1985). Early—Late Permian uplift of united China
(+120 m) may have been linked to docking of North China with Siberia along the
Suolun-Xar Moron suture (Wang, 1985; Nie and others, 1990).
- Chukotka. Possible large-scale subsidence (—280 m) during the Late Ordovi-
cian—Late Silurian may record docking of Chukotka along the northern margin of
North America, which culminated in the Late Silurian—Early Devonian Franklinian
Orogeny (Fig. 10H). Docking occurred through sinistral oblique collision, which
may have depressed the Chukotkan continental margin along a southward-dipping
subduction zone (Trettin, 1989; Klaper, 1992).

This brief survey of the epeirogenic histories of Paleozoic continents suggests
that most large elevation residuals may represent epeirogenic motions connected
with major tectonic events. Although some elevation residual trends are consistent
with known Paleozoic continental tectonic histories, as for Laurentia, others are
enigmatic, such as the large mid-Paleozoie excursions exhibited by Gondwana.
The range of mechanisms inferred for Paleozoic epeirogenic motions is nearly
as broad as that documented for Cenozoic continents. Continued study of paleo-
continental crustal motions within a plate tectonic context should provide new
insights regarding mechanisms of continental epeirogeny.

4. Conclusions

Analysis of the flooding records of multiple, co-existing, tectonically-independent
landmasses allows reconstruction of global sea-level trends and paleo-continental
hypsometries and epeirogenic histories. The fundamental assumption underlying
the method is that co-existing landmasses must have experienced the same range
of eustatic fluctuations, and differences in degree of flooding therefore reflect
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differences in continental coastal hypsometry. Patterns of hypsometric variation
(i.e., similar hypsometric slopes but divergent inflection-point elevations) imply
that epeirogenic motions are largely responsible for “hypsometric disequilibrium”
among modern continents. Thus, continents may have stable long-term hypsomet-
ric profiles that are important controls on their flooding patterns, validating the
reconstruction of paleo-continental hypsometric chords.

Scaling of paleo-continental elevations using Eurasian and American analogs
yields mean Paleozoic sea-level estimates of +60 m and 160 m and sea-level
elevation ranges of 24-102 m and 96-224 m, respectively. Choice of a Eurasian
analog implies that modern eustatic elevations are rather typical for the Phanerozoic
(modern sea level in an ice-free world +50 m), whereas choice of an American ana-
log implies that they are unusualy low. Regardless of choice of analog, highstand
elevations of +100 to +225 m are substantially lower than previous Paleozoic
estimates of +300 m to +600 m but only slightly lower than estimates of +175 to
+250 m for the Late Cretaceous highstand.

Differences between individual continental sea-level estimates and the global
mean for each epoch are “elevation residuals” that represent either secular changes
in paleo-continental hypsometry or errors in flooding estimates. Large elevation
residuals are likely to have an epeirogenic origin, and many of these may be
understood within the context of the tectonic history of individual continents.
The most enigmatic continent is Gondwana, which exhibits large excursions in
an antithetic sense to global sea-level trends during the Siluro—Carboniferous.
This pattern requires a global control linking eustasy to epeirogeny, possibly via
increased MOR spreading rates leading to uplift of Gondwanan continental margins
through subduction of young oceanic lithosphere or continent-terrane collisions.
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