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Editorial

Reprint of: NewApplications of TraceMetals as Proxies inMarine Paleoenvironments☆

1. Introduction

Trace metals that can provide insight into the long-term evolution
of Earth-surface conditions are proving to be increasingly important
for paleoceanographic studies (Anbar et al., 2007; Lyons et al.,
2009). They play an essential role in many biogeochemical cycles,
such as Mo and V in nitrogenase, an enzyme used by nitrogen-fixing
bacteria, and Cu and Zn in many other enzymes and proteins
(Kieffer, 1991; Glass et al., 2009). Because of such roles, the relative
availability of trace metals in ancient seawater may have been an
important factor that regulated the development of microbial com-
munities and, hence, chemical changes in the ocean and atmosphere
through time (Canfield, 1998; Anbar and Knoll, 2002; Saito et al.,
2003; Konhauser et al., 2009). The extant evidence suggests that
large changes in the trace-metal inventory of seawater have occurred
during both the Precambrian and Phanerozoic (Algeo, 2004; Scott et
al., 2008). Our ability to track such changes in seawater composition
and to determine their relationship to the evolution of biogeochemi-
cal systems through time depends on a thorough understanding of
the processes that influence trace-metal uptake by the sediment
and on the development of suitable trace-metal proxies for paleocea-
nographic research.

The present issue of Chemical Geology consists of 11 papers on the
theme of “New applications of trace metals as proxies in marine
paleoenvironments.” The volume is an outgrowth of a theme session
organized for the 20th Annual V.M. Goldschmidt International Geo-
chemistry Conference held in Knoxville, Tennessee, in June 2010.
The contributions to this issue include one review paper, eight case
studies (two on modern sediments, six on Ordovician to Cretaceous
paleomarine units), and twomethods papers (Table 1). All of the con-
tributions consider applications of trace-metal concentration data—
primarily molybdenum (Mo) and uranium (U), although one study
has a focus on rhenium (Re) and a few papers consider other metals.
In addition, three studies investigate the utility of Mo isotopes for
paleoceanographic research.

2. Applications of trace-metal concentration data

The utility of redox-sensitive trace metals as proxies in paleocea-
nographic research has been extensively investigated (see
Tribovillard et al., 2006, for a review). Because of specific attributes,

Mo and U are among the most useful metals in this regard. In oxic
seawater, both elements exhibit conservative behavior and have
long residence times (~800 kyr for Mo, ~450 kyr for U). Consequent-
ly, both elements exhibit nearly uniform concentrations in the global
ocean (~105 nM for Mo, ~13 nM for U; Morris, 1975; Chen et al.,
1986; Millero, 1996) and low concentrations in oxic marine facies
(Zheng et al., 2000; Morford et al., 2009a, 2009b). Under anoxic con-
ditions, both metals exhibit strong authigenic enrichment. One hy-
pothesis is that Mo becomes “activated” at a critical activity of
hydrogen sulfide, facilitating conversion of molybdate (MoO4

2-) to
more particle-reactive thiomolybdates (MoOxS(4-x)2- , x=0 to 3) (Helz
et al., 1996; Zheng et al., 2000) that are readily adsorbed onto
humic substances or Mn- and Fe-oxyhydroxides (Berrang and Grill,
1974; Magyar et al., 1993). An alternative hypothesis calls for precip-
itation of a nanoscale Fe(II)-Mo(VI) sulfide mineral (Helz et al., 2011).
Under anoxic conditions, U(VI) is reduced to the less soluble U(IV)
within the sediment (Anderson et al., 1989; McManus et al., 2005),
possibly catalyzed by enzymes produced by iron- and sulfate-
reducing bacteria (Zheng et al., 2002a; Sani et al., 2004). Authigenic
U enrichment commences at the Fe(II)-Fe(III) redox boundary,
hence at shallower depths within the sediment than for authigenic
Mo enrichment, which requires free H2S (Helz et al., 1996; Zheng et
al., 2000, 2002b; Morford et al., 2005, 2007). Mn-Fe redox cycling
within the water column represents an important additional vector
on authigenic Mo enrichment, but U is not known to be influenced
by this process (Berrang and Grill, 1974; Algeo and Tribovillard,
2009). Authigenic Mo and U uptake and remobilization are also influ-
enced by bio-irrigation of the sediment (Zheng et al., 2002a; Morford
et al., 2009a) and the development of oxidation fronts (Colley and
Thomson, 1985; Thomson et al., 1995; McManus et al., 2005).

The concentrations of Mo, U, and other redox-sensitive trace metals
in marine sediments and sedimentary rocks have been widely used to
infer paleoredox conditions (Dean et al., 1997; Algeo and Maynard,
2004; Cruse and Lyons, 2004; Brumsack, 2006; Tribovillard et al.,
2008). Although some open-marine environments exhibit positive co-
variation between the concentrations of these metals and the intensity
of reducing conditions (e.g., Zheng et al., 2000; McManus et al., 2005,
2006), this is not the case for restricted marine environments such as
the modern Black Sea and Cariaco Basin (Algeo and Lyons, 2006) and
many ancient marine deposits in epicontinental settings (e.g., Algeo et
al., 2007; McArthur et al., 2008; Rowe et al., 2008; Hetzel et al., 2009).
In such settings, trace-metal concentrations generally decrease as facies
become more euxinic because the first-order control is aqueous metal
concentration (which declines in restricted marine settings with limited
deepwater renewal) rather than benthic redox conditions (Algeo and
Lyons, 2006). Patterns of trace-metal enrichment can thus be used in
paleoceanographic studies to evaluate deepwater restriction, deepwater
residence time, and changes in deepwater chemical composition (Algeo
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and Lyons, 2006; Algeo and Maynard, 2008; Algeo and Tribovillard,
2009). The paper by Algeo and Rowe (this volume) provides a review
of these new applications of trace-metal concentration data.

Euxinic organic-rich shales are typically strongly enriched in trace
metals, but not all ancient black shales accumulated in euxinic environ-
ments. The paper by Scott and Lyons (this volume) examinesMo uptake
by non-euxinic facies, demonstrating systematic differences in sedi-
ment Mo concentrations relative to euxinic facies that may assist in
analysis of redox conditions in paleomarine systems. They develop a
theoretical model for relationships between the concentration profiles
of Mo, Mn, Fe, and H2S relative to sediment redox zones in non-
euxinic facies. Thisworkmay help in refining the oceanicMo budget be-
cause non-euxinic facies represent a large but imprecisely quantified
sink for seawater Mo (Siebert et al., 2006). Finally, they report system-
atic changes in sediment δ98Mo as a function of redox conditions (cf.
Poulson et al., 2006; Neubert et al., 2008) but note that δ98Mo may
also have potential as a proxy to identify MnOOH cycling in paleomar-
ine systems (cf. Algeo and Tribovillard, 2009; Dahl et al., 2010).

Uptake of authigenic Mo by the sediment is generally considered
to be directly related to the intensity of reducing conditions in
open-marine environments (e.g., Zheng et al., 2000). However, the
paper by Dale et al. (this volume) concludes that other factors, such
as reactive Fe availability, were more important than benthic redox
conditions in determining authigenic Mo enrichment of OAE-2 sedi-
ments (i.e., the ocean anoxic event at the Cenomanian-Turonian
boundary, Late Cretaceous) in the North American Western Interior
Seaway. During OAE-2, an increased availability of reactive Fe pre-
vented Mo sequestration as thiomolybdate (MoS42-) both by inhibit-
ing sulfate reduction and by buffering any free sulfide that formed,
whereas following OAE-2, Mo accumulation was favored by a large
reduction in Fe flux. Their modeling results further suggest that Mo
and organic carbon accumulation was not tightly coupled to benthic
redox conditions, and that neither Mo nor organic carbon burial
fluxes are unequivocal indicators of anoxia.

Although most redox-sensitive elements are enriched in marine
sediments under reducing conditions, relative rates of enrichment
may vary as a consequence of interelemental differences in reactivity,
water-column cycling, availability of host substrates, and other factors.
Investigation of the controls on covariation is a relatively new area of in-
vestigation, with studies by Algeo and Maynard (2008) and Algeo and
Tribovillard (2009) examining covariation in modern marine settings

and applying these findings to analysis of Devonian and Pennsylvanian
paleomarine systems. The paper by Tribovillard et al. (this volume) ex-
amines patterns of covariation betweenMo and U in Jurassic and Creta-
ceous anoxicmarine facies.Mo-U covariation is a particularly promising
proxy owing to the differential geochemical behavior of these elements:
(1) authigenic Mo enrichment requires euxinic conditions (presence of
H2S), whereas authigenic U enrichment begins under suboxic condi-
tions (at the Fe(II)-Fe(III) redox boundary), and (2) transfer of Mo
(but not U) to the sediment is enhanced through redox cycling of
MnOOH in thewater column. This study confirms prevailing interpre-
tations of redox conditions during Mesozoic OAEs but provides new
insights regarding watermass restriction and the operation of Mn-
particulate shuttles in various depositional basins, which helps in
addressing issues such as the degree to which regional versus global
factors controlled OAE development.

Fine-grained siliciclastic rocks (shales) are commonly altered by
burial diagenesis or near-surface weathering, but methods to recognize
such geochemical changes have received only limited attention to date
(e.g., Petsch et al., 2000; Hannigan and Sholkovitz, 2001; Lev and Filer,
2004). The paper by Williams et al. (this volume) develops chemo-
metric techniques based on principal components analysis and cluster
analysis to recognize diagenetic and weathering overprints on shale
composition and applies them to an analysis of a Permian-Triassic
boundary section at Attargoo (Kashmir, India). After accounting for
weathering effects, they were able to recognize a series of geochemical
event beds associated with transient development of euxinia in an oth-
erwise dysoxic depositional environment.

Rhenium (Re) in marine systems has received relatively less at-
tention in the past (Anbar et al., 1992; Colodner et al., 1993, 1995;
Crusius et al., 1996) but is the focus of the paper by Morford et al.
(this volume). They measured Re concentrations at three sites on
the Mid-Atlantic Bight (eastern margin of United States) representing
shallow (75 m; mixed surface layer), intermediate (647 m; intra-
thermocline), and deep (2648 m) sites. They show that rates of Re re-
moval to the sediment correlate positively with organic carbon oxida-
tion rates and ‘reducing intensity’, which are greatest at the
intermediate site and least at the deep site, and negatively with
depth to the O2-H2S interface. Bio-irrigation of the sediment, which
is most important in coastal (shallow) settings, augments the diffu-
sive flux of Re across the sediment-water interface and enhances
net removal of Re to the sediment. Seasonal fluctuations in oxygen
penetration depths at each site result in remobilization of Re within
the upper ~1 cm of the sediment column. These findings provide
new insights into controls on Re accumulation in marine sediments
and the potential application of Re as a proxy for both paleoredox
conditions and organic carbon oxidation rates.

3. Applications of trace-metal isotope data

Recent work has provided a foundation for paleoceanographic ap-
plications of the isotopes of Mo (Barling et al., 2001; Siebert et al.,
2003; Anbar, 2004; Barling and Anbar, 2004; Nägler et al., 2005;
Anbar and Rouxel, 2007; Wasylenki et al., 2008; Gordon et al.,
2009) and U (Stirling et al., 2007; Weyer et al., 2008; Brennecka et
al., 2010, 2011a). These relatively new but incompletely understood
isotopic systems have generated considerable interest owing to
their potential as global paleoredox proxies. This potential exists be-
cause the residence times of both elements in seawater (Mo ~800
kyr; U ~450 kyr) are far longer than the ocean mixing time (~1-2
kyr; Wright and Colling, 1995), resulting in globally uniform seawater
δ98Mo and δ238U values. A number of such investigations have now
been carried out for Mo (Arnold et al., 2004; Siebert et al., 2005;
Pearce et al., 2008) and U (Montoya-Pino et al., 2010; Brennecka et
al., 2011b), and two studies in the present volume provide additional
insights into the application of Mo isotopes as a global paleoredox
proxy.

Table 1
Contributions to present special issue on trace metal proxies.

No. Authors Paper
type

Elemental Isotopic

Age Mo U Re Other Mo Re-
Os

1 Algeo &
Rowe

review modern & ancient ✓ ✓ ✓ ✓

2 Scott &
Lyons

case
study

modern ✓ ✓

3 Morford
et al.

case
study

modern ✓

4 Dale et al. case
study

Cretaceous ✓

5 Tribovillard
et al.

case
study

Triassic-Cretaceous ✓ ✓

6 Georgiev
et al.

case
study

Permian-Triassic ✓ ✓

7 Williams
et al.

case
study

Permian-Triassic ✓ ✓ ✓

8 Xu et al. methods Permian-Triassic ✓ ✓ ✓ ✓

9 Zhou
et al.

case
study

Permian-Triassic &
Ordovician-Silurian

✓ ✓ ✓ ✓

10 Hermann
et al.

case
study

Pennsylvanian ✓ ✓

11 Rowe et al. methods Devonian-
Cretaceous

✓ ✓ ✓ ✓
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The paper by Herrmann et al. (this volume) assesses the use of the
Mo-isotope system as a global redox proxy during the Pennsylvanian. In
this study of theHushpuckney Shale, strongly euxinic facies (representing
maximum interglacial highstands) yield low δ98Mo values (~+0.6‰)
whereas weakly euxinic to suboxic facies (representing lower eustatic
levels) yield higher δ98Mo values (+1.1 to +1.8‰). These results are in-
consistent with a simple redox control on Mo isotopes (cf. Poulson et al.,
2006). Two alternative interpretations are that interglacial stages of the
Late Paleozoic Ice Agewere characterized by (1) expandedoceanic anoxia
and a larger anoxic:oxic Mo burial sink ratio, resulting in a ~1.2‰ de-
crease in the δ98Mo of Late Pennsylvanian seawater, and (2) intensified
Mn redox cycling locally within the water column of the North American
Midcontinent Sea, during which isotopically light Mo was adsorbed onto
sinking particles and rapidly transferred to the sediment. Each scenario
has important implications for the application ofMo isotopes in paleocea-
nographic research. The oceanic-anoxia hypothesis is consistent with the
use ofMo isotopes as a global redox proxy, but it requires a large decrease
in the residence time of Mo in seawater (to b100 kyr) in order to allow
variation in seawater δ98Mo of ~1.2‰ at sub-cyclothemic timescales. On
the other hand, the Mn-cycling hypothesis challenges the assumption of
quantitative removal of seawater Mo to euxinic facies, which is a key as-
sumption of the application of Mo isotopes as a global redox proxy. Fur-
ther work will be needed to test these hypotheses.

The paper by Zhou et al. (this volume) investigates variation in
δ98Mo (and other trace-metal proxies) in conjunction with the
Ordovician-Silurian and Permian-Triassic boundary mass extinctions.
Euxinic facies of Ordovician-Silurian age exhibit a gradual trend toward
higher δ98Mo values (from +0.4 to +1.2‰), suggesting a shift toward
lower anoxic:oxic Mo burial sink ratios as a consequence of long-term
improvements in deep-ocean ventilation. In addition, δ98Mo values ex-
hibit an abrupt, short-term excursion to+2.1‰ during the latest Ordo-
vician Hirnantian glaciation that they interpret as evidence of a sharp
rise in ocean ventilation as a result of glacially invigorated ocean circu-
lation. In the Late PermianDalong Formation, oxic-suboxic facies exhib-
it generally low δ98Mo values (−1.0 to +1.2‰), but a 7-m interval of
euxinic sedimentation around the latest Permian mass extinction hori-
zon is characterized by δ98Mo values of +0.3 to +2.2‰. Differences in
δ98Mo between euxinic facies of Ordovician-Silurian (+0.4 to+1.2‰),
Permian-Triassic (+0.3 to +2.2‰), and Recent age (+2.3‰) reflect a
general decline in the importance of euxinic marine sedimentation
since the Early Paleozoic.

The paper by Georgiev et al. (this volume) investigates the effects
of weathering on Re-Os isotope, elemental, and organic matter prox-
ies in shales by comparing signals in correlative units from outcrops
and drillcore in East Greenland. They report systematic differences
in major- and trace-element content and kerogen quality between
weathered and fresh samples that can be used to characterize and
quantify the effect of weathering on shale chemistry. The Re-Os iso-
chroneity of shale sections was also affected by weathering and can
be used to distinguish chemically unaltered shale from macroscopi-
cally fresh but chemically altered shale. They develop a protocol for
assessment of alteration in shale samples based on a combination of
Rock-Eval indices and sulfur content (proxies for oxidation of OM
and pyrite) that will assist in more accurate and precise Re-Os geo-
chronology. They also note the seemingly global occurrence of high
Re/Os and high 187Os/188Os ratios in shales of Late Permian-Early
Triassic age, possibly indicative of a major disturbance to the exogenic
cycles of Re and Os in conjunction with the largest mass extinction in
Earth history (cf. Georgiev et al., 2011).

4. Methodological advances

While the interpretation of trace-metal data in the context of
paleoceanographic studies has made tremendous strides, as discussed
above, there have also been improvements related to the develop-
ment of new instrumental or analytical approaches to the analysis

of trace metals in marine sediments. The paper by Rowe et al. (this
volume) investigates the application of a portable energy-dispersive
XRF instrument to the analysis of the geochemical composition of
mudrocks. They report on the development of a large suite of
mudrock reference materials that can be used for calilbration of the
ED-XRF instrument. Their protocol will be useful for researchers
wishing to rapidly develop a quantitative chemostratigraphic frame-
work that can be integrated with lithostratigraphic and biostrati-
graphic data. Furthermore, geochemical analysis using a portable
ED-XRF instrument is a non-destructive analytical procedure that
should find wide application wherever conservation of geological
samples is necessary. The examples given in their study are from
the Devonian Ohio Shale of eastern Kentucky, and the DevonianWood-
ford Formation, the Mississippian Barnett Shale, the Pennsylvanian
Smithwick Formation, and the Cretaceous Eagle Ford Shale of eastern
Texas.

The authigenic fraction of a trace metal is commonly assessed by
subtracting an Al-based estimate of the detrital fraction from the
total trace-metal concentration in a sediment (e.g., Brumsack, 2006;
Perkins et al., 2008). The paper by Xu et al. (this volume) investigates
an alternative approach to determining authigenic trace-metal con-
centrations based on chemical digestion procedures. They tested
three different procedures: (1–2) aqua regia and inverse aqua regia,
which dissolve the organic matter, sulfide, and carbonate phases
that host trace metals of hydrogenous (seawater) origin, and (3)
multi-acid total digestion, which yields multiple trace-metal frac-
tions. These chemical digestion procedures yield relatively consistent
results, suggesting that they are able to isolate the authigenic fraction
of trace metals with~±10% analytical uncertainty, although their ef-
ficacy relative to the Al-based procedure remains to be tested.
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