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ABSTRACT

Evolutionary developments
among vascular land plants may
have been the ultimate cause for
oceanic anoxic events, biotic crises,
global climate change, and geochem-
ical and sedimentologic anomalies of
Late Devonian age. The influence of
vascular land plants on weathering
processes and global geochemical
cycles is likely to have increased
substantially during the Late Devon-
ian owing to large increases in root
biomass associated with develop-
ment of (1) arborescence (tree-sized
stature), which increased root pene-
tration depths, and (2) the seed
habit, which allowed colonization
of drier upland areas. We hypothe-
size that rapidly increasing root mass
led to transient intensification of the
rate of soil formation and to perma-
nent gains in the thickness and areal
extent of deeply weathered soil pro-
files. In the short term, greater pedo-
genesis caused increased sediment
yields owing to episodic disturbance
of developing soils and to increased

Figure 1. Paleobotanic
reconstructions of

(A) an Early Devonian
coastal delta, (B) an Early
Devonian upland flood
plain, (C) a Late Devonian
coastal delta, and (D) a
Late Devonian upland
flood plain. Early Devonian
plants: Pr = Pertica, Ps =
Psilophyton, Sc = Sciado-

of vascular land plants, in the biomass
and conmnlevitv aof flaaral cammiinitiec

1983), whereas high-latitude and cold-

wrater cnecies wore loce affactad (o

phyton, and Sw = Sawdonig;
Late Devonian plants: A =
Archaeopteris, B = Barino-
phyton, L = tree lycopod,

R = Rhacophyton, and

S = seed plant. Data from
Scheckler (1986), Gensel
and Andrews (1984, 1987),
and P. G. Gensel (personal
commun.).
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habit, which allowed colonization
of drier upland areas. We hypothe-
size that rapidly increasing root mass
led to transient intensification of the
rate of soil formation and to perma-
nent gains in the thickness and areal
extent of deeply weathered soil pro-
files. In the short term, greater pedo-
genesis caused increased sediment
yields owing to episodic disturbance
of developing soils and to increased
nutrient fluxes to the oceans as a
result of enhanced chemical weather-
ing. Long-term effects included
increased landscape stabilization,
drawdown of atmospheric CO;
through enhanced uptake in silicate
weathering and burial of organic car-
bon, and global cooling. Coeval ter-
restrial paleobotanic developments
and marine anoxic and extinction-
events are likely to have been linked
causally through transient nutrient
pulses that caused eutrophication of
semirestricted epicontinental sea-
ways, stimulating marine algal
blooms. Correlativity of black shale
horizons and episodes of extinction
of tropical marine benthos impli-
cates oceanic anoxia rather than
global cooling as the proximate
cause of the Late Devonian biotic
crisis.

INTRODUCTION

The origin of the Late Devonian
biotic crisis is a subject of continuing
debate. Although various causes have
been proposed, including bolide
impacts, oceanic overturn, sea-level
changes, and global climate change
(Copper, 1986; Geldsetzer et al., 1987;
McGhee, 1991; Claeys et al., 1992),
none has gained general acceptance.
Few, if any, of these theories have
attempted to link Late Devonian ex-
tinctions to coeval paleobotanic events;
however, the Givetian-Famennian
epochs are characterized by important
paleobotanic developments, including
large increases in the maximum size

of vascular land plants, in the biomass
and complexity of floral communities,
and in the geographic distribution of
terrestrial vegetation (Iig. 1; SchecKkler,
1986; Gensel and Andrews, 1987). In
this paper, we propose that evolution-
ary innovations among vascular land
plants were the ultimate cause of both
the Late Devonian biotic crisis and a
variety of coeval sedimentologic and
geochemical anomalies. The main lines
of evidence supporting this hypothesis
are (1) close temporal relations between
Late Devonian paleobotanic develop-
ments and major episodes of oceanic
anoxia and mass extinction, and (2) a
model that successtully links these
paleobotanic developments to the Late
Devonian biotic crisis and coeval sedi-
mentologic and geochemical anomalies
through changes in pedogenic rates
and processes.

LATE DEVONIAN BIOTIC
CRISIS AND ANOMALIES

During the Late Devonian biotic
crisis (Frasnian-Famennian extinction),
about 21% of families and 50% of gen-
era among marine organisms disap-
peared (Sepkoski, 1986). This event was
unusual in three respects (1) duration,
~20 m.y. (beginning in the Givetian, or
late Middle Devonian); (2) episodicity,
comprising at least eight separate
episodes of extinction (House, 1985);
and (3) selectivity, disproportionately
eliminating tropical marine benthos
(Bambach, 1985; Sepkoski, 1986).
Extinctions were particularly severe
among the middle Paleozoic reef
community, dominated by stromato-
poroids and corals (Fig. 2A; James,

1983), whereas high-latitude and cold-
water species were less affected (Cop-
per, 1986). The two extinction maxima
of widest taxonomic impact occurred
at or near the lFrasnian-Famennian (F-F)
and Devonian-Carboniterous (D-C)
boundaries and are known as the Kell-

wasser and Hangenberg events, respec-
tively (Fig. 3A; Talent et al., 1993).

The origin of the Late Devonian
biotic crisis has been the subject of
considerable debate. Much recent
research has sought evidence of a
bolide impact, an idea stimulated by
proposals for such a catastrophic mech-
anism at the Cretaceous-Tertiary (K-T)
boundary (Alvarez et al., 1980).
Although minor iridium anomalies
(Geldsetzer et al., 1987; Wang et al.,
1993) and small concentrations of
microspherules (Wang, 1992; Claeys
et al., 1992) have been identitied close
to the F-F and D-C boundaries at sev-
eral locales, siderophile element ratios
are incompatible with those of mete-
orites, and these anomalies have been
interpreted as resulting from concen-
tration of metals by cyanobacteria or
changes in redox conditions (Playford
et al., 1984; Wang et al., 1993). Other
causes proposed for the Late Devonian
biotic crisis include climate change
associated with global tectonics (Cop-
per, 1986), oceanic overturn (Geldsetz-
er et al., 1987), and sea-level elevation
changes (McGhee, 1991), but none of
these fully accounts for the duration,
episodicity, and selectivity of the crisis.

The Late Devonian is also charac-
terized by an unusual combination of
major excursions or permanent shifts
in a variety of sedimentologic and geo-

S = seed plant. Data from
Scheckler (1986), Gensel
and Andrews (1984, 1987),
and P. G. Gensel (personal
commun.).

chemical records. Laminated black
shales indicate episodic development
of widespread oceanic anoxia in many
cratonic sequences during this interval
(Fig. 3, B-D). Deposition of organic-rich
shales and coals during the Devonian-
Carboniferous transition sequestered
large quantities of isotopically light car-
bon in the sedimentary reservoir, caus-
ing an enrichment of marine carbonate
313C values of about 4%o (Fig. 2B;
Lohmann, 1988; Berner, 1989). A
combination of increased burial of
organic carbon and enhanced silicate
weathering by vascular plants drew
down atmospheric COz levels from
~12-16 present atmospheric level (PAL)
in the early-middle Paleozoic to ~1 PAL
in the Carboniterous and Permian (Fig.
2C; Berner, 1994). Evidence of lowered
atmospheric COz is provided by
changes in soil carbonate 3!13C (Mora et
al., 1991) and by a marked decline

in dolomite abundance across the D-C
boundary (Fig. 2D). Marine evaporites
of this age exhibit a +8%o to +10%o0
834§ excursion as a consequence of
large-scale bacterial reduction of dis-
solved sulfate in association with burial
of organic carbon (Fig. 2E; Holser et al,,
1989). Drawdown of atmospheric CO;

~ initiated global cooling, recorded as a

about +3%o0 enrichment of abiotic
marine carbonate 5180 values across
the D-C boundary (Fig. 2F; Lohmann,
1988), and resulted in continental
glaciation by the late Famennian
(Fig. 3E; Caputo, 1985).

Plants continued on p. 64
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innovations are of major significance
in this regard: (1) arborescence, or tree-
sized stature, and (2) the seed habit.
With the advent of supporting tissues
(2° xylem, 2° cortex) in the Middle
Devonian (Fig. 3E), several groups

of vascular plants (lycopods, cladoxy-
laleans, progymnosperms) exhibited
increases in stature (Fig. 4; Chaloner
and Sheerin, 1979; Mosbrugger, 1990).
However, Middle Devonian trees

occurred within the mid-Frasnian to
mid-Famennian interval of archaeop-
terid dominance and might represent
the rapid spread of this genus (Fig. 3L).
Third, the D-C boundary Hangenberg
event is preceded by the appearance of
the earliest known seeds by one con-
odont zone, or about 0.5 m.y. (Fig. 3E;
Gillespie et al., 1981; Rothwell et al.,
1989). In each case, an important pale-
obotanic development that probably

(60 mostly occupied riparian habitats, and
tlood-plain forests probably developed
in the Frasnian with the appearance
of the progymnosperm Archaeopteris.
T <3 5 This genus, which grew ~30 m high,
[cm | or |sr|Dv Pm|Tr] Jr | Kr | ¢z became the dominant element of ter-
600 500 400 300 200 100 0 restrial floras between the mid-Frasnian

AGE (Ma) and mid-Famennian, but declined Plants continued on p. 65

CLAY MINERAL

1 0 a large increase in root biomass
ASSEMBLAGES ed t g se in root bio

preceded major paleontologic, sedi-
mentologic, and geochemical events
by no more than a few million years.
In this regard, first appearances are less

KAOLINITE *
SMECTITE :

% kaol (% smec)




Plants continued from p. 64

important than increases in abundance
and biomass, which are harder to quan-
tify but signiticantly more important in
terms of geochemical consequences.

DEVELOPMENT OF THE
RHIZOSPHERE AND SOILS

Soils are the geochemical interface
between the lithosphere and the atmo-
sphere-hydrosphere, and their impor-
tance in global geochemical cycles
has been largely underappreciated.
Although thick Precambrian soil pro-
files are known, generally high rates
of physical weathering in the pre-
Devonian probably yielded widespread
barren rock surfaces and thin microbial
protosoils similar to modern desert
crusts (Campbell, 1979). Increases in
the size and geographic distribution
of large vascular plants and in root
biomass probably resulted in substan-
tial increases in the depth and volume
of soils during the Late Devonian
(Retallack, 1986).

Development of the rhizosphere
had important short- and long-term
effects on sedimentologic and geo-
chemical processes associated with
weathering (Fig. 5). In the short term,
global weathering rates increased as rel-
atively fresh substrates were physically
and chemically attacked by rapidly
spreading root systems. Enhanced
physical weathering may have accom-
panied the transition from largely
unvegetated to vegetated uplands,
during which increases in root density
would have accelerated mechanical
breakup of rock but exerted only a
weak stabilizing influence against ero-
sion by episodic droughts, landslides,
and wildfires (Stallard, 1985), yielding
transient increases in regional or global
particulate fluxes (Fig. 2G). Elevated
chemical weatiering rates resulted
from “pumping” of atmospheric CO;
into the soil during rhizosphere expan-
sion. Rapid drawdown of atmospheric
CO3 led to a negative feedback on
weathering rates, reestablishing a long-
term halance in the rate of CO» utiliza-
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Figure 3. Correlation
of Devonian events:

(A) extinction events;
black shales from

(B) eastern North
America, (C) central to
western North America,
and (D) Europe; and
(E) paleobotanic events
(data sources available
upon request). For
columns B-D, note that
illustrated units repre-
sent anoxic maxima as
determined by total
organic carbon content;
black shales were
deposited through
much of the late Middle
and Late Devonian in
some areas. in column
E, FAD = first appear-
ance datum; the range
and peak abundance of
Archaeopteris are shown
by dashed and solid
lines, respectively;

and the age of South
American glaciation is
restricted by occurrence
of Foerstia (F; dashed;
Caputo, 1985) and
miospores (solid; Streel,
1986). Conodont zona-
tion from Ziegler and
Sandberg (1990), and
time scale from Harland
et al. (1990).
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and wildfires (Stallard, 19835), yielding
transient increases in regional or global
particulate fluxes (Fig. 2G). Elevated
chemical weathering rates resulted
from “pumping” of atmospheric CO;
into the soil during rhizosphere expan-
sion. Rapid drawdown of atmospheric
CO; led to a negative feedback on
weathering rates, reestablishing a long-
term balance in the rate of CO; utiliza-
tion through weathering and the rate
of COz supply through volcanic out-
gassing (Berner, 1992, 1994). The tran-
sient increase in chemical weathering
rates associated with rhizosphere
expansion is likely to have caused a
pulse in nutrient flux to the oceans,
resulting in eutrophication of semire-
stricted epicontinental seas and stimu-
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lating marine algal blooms (Fig. 5).
Such blooms may have been the source
of high concentrations of marine algal
matter in Upper Devonian black shales
(Maynard, 1981) and of enigmatic fos-
sils of wide geographic but restricted
stratigraphic occurrence such as Proto-
salvinia (Foerstia; Schopt and Schwieter-
ing, 1970). Analogous relations have
been documented from the modern
Black and Baltic Seas, in which anthro-
pogenic and natural increases in nutri-

Pseudo-
sporochnus

Eospermatoperis
Archaeoptefis

-
3
S  JCooksonia

ent fluxes have caused eutrophication
and transient expansion of oxygen-
depleted bottom waters (Kuparinen
and Heinanen, 1993; Lyons ct al.,
1993).

Long-term effects of rhizosphere
development on weathering processes
included increased landscape stabili-
zation and a shift from weathering-
limited to transport-limited weathering
regimes (Fig. 5; Stallard, 1985; Johns-
son, 1993). Weathering of rocks to a
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finer grained, compositionally more
mature product was promoted by

(1) production of organic and carbonic
acids by roots, (2) trapping of moisture
in soils, and (3) increased water-rock
contact time as a result of soil stabiliza-
tion and enhanced evapotranspira-
tional recirculation (Berner, 1992).
These developments are consistent
with an Early Carboniferous shift from
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Gensel and Andrews (1984), and Mosbrugger (1990).
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illite-chlorite- to smectite-kaolinite—
dominated clay mineral assemblages
(Fig. 2H; Weaver, 1967). At present,
formation of smectite and kaolinite

is closely associated with moderate to
strong pedogenic weathering in tem-
perate to semiarid and in humid tropi-
cal climate zones, respectively (Singer
and Munns, 1991).

CONCLUSIONS

The influence of vascular land -
plants on weathering processes and
global geochemical cycles is likely to
have increased substantially during the
Late Devonian owing to development
of arborescence and the seed habit.
These paleobotanic innovations led to
rapid expansion of the global rhizo-
sphere, resulting in a transient intensi-
fication of the rate of soil formation
and in a permanent increase in the
thickness and areal extent of deeply
weathered soils. Intensified chemical
weathering may have caused a tran-
sient increase in riverine nutrient
fluxes, resulting in eutrophication of
semirestricted epicontinental seaways
and stimulating marine algal blooms
and widespread deposition of black
shales. Correlativity of black shale hori-
zons with episodes of extinction of
tropical marine benthos implicates .

oceanic anoxia rather than global cool- ‘

ing as the proximate cause of the Late
Devonian biotic crisis. Drawdown of
atmospheric CO; and global cooling
were secondary effects of enhanced sili-
cate weathering and rapid organic car-

bon burial. Thus, evolutionary devetop-’

ments among vascular land plants are
likely to have been the ultimate cause
of oceanic anoxic events, biotic crises,
and global climate change during the
Late Devonian. ‘
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and global climate change during the
Late Devonian.
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Each month, GSA Today features a short science article on fast-breaking items or
current topics of general interest to the 17,000 members of GSA. What do you think
of these articles? Do you have an idea for an article that you would like to see pub-
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(916) 752-0352, fax 916-752-0951.
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