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 Introduction 

 

A. Topics 
This text is an introduction to logical theory for advanced undergraduate 

and beginning graduate students in philosophy.  Like most texts at this level it 
centers on the metatheory of first-order logic.  The treatment includes the 
standard Gentzen natural deduction system, Tarski-style model theoretic 
semantics, and a Henkin-style completeness proof.  The text, however, covers a 
selection of other topics as well.  These were chosen with the needs of 
philosophy graduate students in mind, especially those planning to work in areas 
of philosophy that concern language, the natural sciences, and philosophical 
psychology.    

Regardless of specialty, all philosophy students should know the standard 
theory of first-order logic, the lingua franca of technical research today.  Here one 
learns about the difference between syntactic and semantic ideas, inductive 
definitions and proofs, models, validity, completeness, and constructive proofs.  
This core material is presented as a unit in Chapter 2.  Students who will work 
with computation theory, which is especially common in the philosophies of 
language and mind, require a good grasp of effective process.   The topic is 
covered twice, first historically in Chapter 1 as part Gödel’s incompleteness 
proof, and again more systematically in Chapter 3.  Covered there are the 
definition of effective process, Church’s thesis, logic programming with Prolog as 
an example, and first-order undecidablity proven by Herbrand’s methods.  
Special care is given to explaining Prolog in the language of first-order logic and 
for motivating the resolution proof technique within Herbrand’s model theory.  
Chapter 4 introduces students to three areas of logic with broad application in 
philosophy: many-valued, modal, and intensional logic.  Here philosophical 
issues are discussed and general methods introduced for assessing the logical 
merits of standard alternatives. 

B. The History of Logic 
It is the author’s opinion that students cannot understand core ideas in 

modern logic, especially proof theory, model theory, and computation, without 
knowing something about their historical development.  Accordingly the text 
begins with an account of the emergence of formal logic in the nineteenth and 
early 20th centuries. Chapter 1 recounts the process as stages: non-Euclidean 
geometry, the formal axiomatizations of mathematical theories like Peano’s 
arithmetic, Frege’s Grundgesetze, logicism, Russell’s paradox, and Gödel’s 
incompleteness proof.  The point of the review is to bring students themselves to 
the mind-set of logicians in the 1930’s when logical positivism gripped the 
philosophical world and advanced logic was about to bloom.  Not only will they 
see the motivation for the concepts like natural deduction, model theory, and 
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non-classical logics, which are studied systematically in later chapters, they will 
sense the point of branches of logic not covered in this book, like alternative 
philosophies of mathematics, higher-order logic, and axiomatic set theory.  When 
no conceptual issue is at stake, the history is simplified by replacing awkward 
early formulations by clearer versions discovered later. The original axioms for 
propositional, first-order logic and type theory, for example, are streamlined, and 
Gödel’s proof is simplified by skipping over various definitions of calculable 
functions and by using Tarski’s theorem.  To aid students in reading the original 
sources, however, the text retains traditional notation and definitions when 
permitted by modern conventions.    

C. Method 
The text is designed as much to teach methodology as ideas, and the 

emphasis on method greatly affects the character of this text.   The basic 
methodological goal is to bring advanced students to the point where they can 
read logic for themselves.  Reading papers and books on philosophical logic is 
an acquired skill.  To further logical literacy, the text is divided into two styles, a 
more formal mathematical presentation similar to that found in professional logic 
papers, and a more chatty informal style appropriate for teaching.  The formal 
texts are separated-off in displayed boxes.  These are intended to be sources of 
perplexity to the student, specimen documents to be taken as objects of study 
and deciphered.  They are surrounded by informal text written with the purpose 
of helping in the task.  The official logical theory, then, is in the boxes.  There it is 
rigorous, short and expressed in the peculiar jargon of the field. Students who 
come to read these mini-documents with understanding will have learned a good 
deal of logic, having acquired some of the mathematical sophistication needed 
for reading other formal texts.  The formal style is also written at a level that 
students may take as a model to imitate as they go on to write about formal ideas 
in their own work.   

Method is addressed in several more specific ways. One is the use of 
definitions and deductive reasoning. In one way or another almost all formal work 
consists of deductions from definitions and assumptions.  Reading logic is largely 
reading proofs and definitions.  It is fair to say that the sort of proofs philosophy 
students will encounter when reading, or will write themselves, is itself a kind of 
code.  It is written in mathematical English (or similar natural language) that, as 
professionals understand, may be translated if necessary into more formal 
statements in first-order logic and set theory.  The definitions and proofs actually 
written down then are really recipes for recreating longer more complete versions 
of the text in the notation of formal logic and mathematics.  Reading the 
superficial form of logicalese this way takes practice.  Accordingly formal 
definitions displayed in the text are explicitly stated in naïve set theory and proofs 
are spelled out in the steps of first-order logic.  The level of detail is somewhat 
more than usually found in professional papers but still succinct enough to be 
challenging.  Definitions and proofs become briefer and more formal as the text 
progresses. 
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A major methodological feature of the text is the use of abstract algebra. It 
is the author’s experience that philosophers often do not understand the point of 
logic, or other formal work, because they do not understand what it is to study 
structure for its own sake. But mathematical work is essentially the study of 
structures – some would extend the claim to natural science generally.  It is best 
to make this orientation clear to students from the outset, and the best way to do 
so is to formulate issues using algebraic ideas.  Accordingly notions of set, 
relation, function, structure, and morphism are introduced gradually in the early 
chapters, and become the working idiom in Chapter 4.   By the book’s end a 
philosophy student will have a good idea of what it is to study structure.  

Perhaps the most important lesson on method for students who will 
pursue logic itself is to learn to critically evaluate competing metatheories.  Since 
this text is introductory, such comparison is limited to several standard 
controversies.   Chapter 1 recounts the failure of logicism. In Chapter 2 axiomatic 
methods are contrasted with natural deduction, and the intuitionistic criticisms of 
classical logic and set theory are set out.  Chapter 3 reviews differences between 
definitions by abstraction and induction.   Chapter 4 is most methodological in 
this sense.  Families of many-valued, modal, and intensional logics are defined in 
global terms, and tools developed for comparing their logical properties.    
 

D. Exercises 
 Unlike some logic texts in which exercises develop examples relevant to 
mathematics or advance the book’s content by having the students draw out 
additional technical results, the exercises here are designed with the philosophy 
student in mind.  They attempt to insure that students posses sufficient technical 
skills to work through the material, but emphasize a discursive understanding of 
concepts.  The problems following each chapter are divided into three sets.  The 
first (marked Skills) gives pencil and paper practice at the sort of derivations and 
symbol manipulations needed to work through proofs.   The second (marked 
Ideas) asks probing questions designed to insure an understanding of technical 
ideas.  The third (marked Theory) poses global questions that allow the student 
to make a record in his or her own words of the general strategy of major proofs 
and of the theoretical issues they address.  Each set concludes with a section 
(marked Method) in which students are alerted to methodological points to be 
watched for in the chapter.  Students are advised to read the exercises first, 
keeping them in mind while working through the chapter’s text. 

The author wishes to tank the students who have helped improve the text 
with recommendations and corrections, especially Jennifer Seitzer and Viorel 
Paslaru.   



   

 
Chapter 1 

 The Beginning of First Order Logic 

I. 19TH CENTURY AXIOMATICS AND LOGICISM 

A. A Priori Knowledge and Axiom Systems Prior to 1800 
 It is a curiosity of history that when the rest of what we think of as modern 
-- literature, art, political institutions, and above all the empirical sciences like 
physics and biology -- were being born in the Renaissance and Enlightenment, 
logic was stagnating and even regressing.  Especially formal and technical logic 
was seen by the scholars of the period as a dubious legacy from mediaeval 
scholasticism.  It was kept alive in courses at the universities, but the universities 
themselves were in decline. They too were holdovers of the Middle Ages, fixed in 
their ways and conservative, still teaching in Latin and insisting on examinations 
in the format of the mediaeval disputation.  No longer were university teachers 
the leaders of intellectual invention or progress. In the Renaissance the role of 
innovator passed to scholars outside the universities who were wealthy or who 
could obtain the patronage or the rich and powerful.  Later, in the Enlightenment, 
universities were further eclipsed as research institutions by the various 
academies in letters and science, like the Académie des Sciences in France and 
the Royal Academy in England, which were established to support individual 
researchers largely outside university faculties.  
 The logic that was still part of the university curriculum consisted of 
superficial summaries of the simpler parts of Aristotle’s syllogistic.  It consisted of 
the simple theory of the syllogism that we meet in Lecture 3, and which became 
known as “school logic.”   This sort of logic was still being taught in American 
universities well into this century. Forgotten were the lively controversies 
connected with its discovery in the Middle Ages, forgotten were its extensions -- 
which we have not studied --  into the logic of necessity, possibility, and time, 
called modal logic, pioneered by Aristotle himself and pursued in the Middle 
Ages.  Forgotten was sentential logic, first discovered by the ancient Stoics, 
rediscovered, and elaborated in the Middle Ages.  Forgotten was the 
sophisticated mediaeval research into grammar and semantics. There was some 
original work done outside the universities,1 but on the whole, the era was a 
                                            
1 It is true that the decline of logic was gradual and that some interesting work in formal logic was 
done in the 14th and 15th centuries.  It is also true that the Renaissance saw the reawakening of 
interest in Aristotle’s informal logic or “topics,” practical rules of thumb to aid reasoners engaged 
in day-to-day debate or scientific inquiry.  Neither the work in formal or informal logic however 
was of high quality.  See E.J. Ashworth, “Traditional Logic,” and Lisa Jardine, “Humanistic Logic,” 
in Charles B. Schmitt et al., The Cambridge History of Renaissance Philosophy (Cambridge: 
Cambraidge Universsity Press, 1988).  Two exceptions to the general rule are found in the work 
of the Rationalists.  The Port Royal logicians developed a grammatical and semantic theory that 
anticipated some of Noam Chomsky’s ideas in linguistics (see Noam Chomshy, Cartesian 
Lingusitcs), and  Leibniz anticipated modern symbolic logic by inventing various symbolic 
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logical dark age.  With little personal understanding of the subject, a consensus 
developed among the learned about what logic was and how it fitted into the rest 
of science.  It was seen as an uncontroversial subject, and one that was 
completely understood. In the 18th century the great German philosopher 
Immanuel Kant described logic, which he identified with the simple syllogistic, as 
a science that was “achieved and complete.” Though complete, formal logic was 
also thought to have only very limited practical application to the world of affairs 
or natural science.  It was of interest only to philosophers who, though 
uninterested in doing original work in logic, nevertheless needed to fit this curious 
branch of knowledge into the grand scheme of things. 
 Though philosophers from 1450-1850 really knew less about logic then 
those of previous periods, when they did try to fit it in, they attributed to logic a 
rather exalted status. It was well known, even in ancient times, that there was 
something particularly obvious or transparent about logic, but until relatively 
recently philosophers did not identify this transparency with logic in particular.  
Until well into the 17th century, they tended to think of all knowledge, or at least 
that associated with the sciences, as certain.  This innocence was lost once the 
natural sciences like physics and chemistry were seriously underway, and it 
became very clear how much work they involved.  It proved very difficult to 
amass the needed information and make the right generalizations.  In 
comparison, logic, together with its cousin mathematics, stood out as areas of 
learning that were safe and certain. 
 They asked why.  Why were logic and mathematics special?  Kant and 
earlier philosophers of the Enlightenment offered an explanation by making a 
distinction. There are, they said, two kinds of knowledge.  The more common 
type is that gained through the senses.  This includes knowledge of day to day 
facts about the world, as well as the generalizations about experience that make 
up the natural sciences.  Its technical name is empirical or a posteriori 
knowledge.  Though empirical knowledge is extremely useful, it is hard to 
accumulate.  It requires observations, data collecting, and generalizations, all 
methods that are time consuming, costly, and prone to mistakes. 
 The second, rarer sort of knowledge is that associated with logic and 
mathematics. It is the opposite of empirical knowledge; that is, it is knowledge not 
based on experience, and it is called non-empirical or a priori knowledge.  This 
is the sort of knowledge obtainable just by thinking.  You can make its 
discoveries in your armchair, with your eyes closed.  At one point in the 17th 
century when modern physics was just unfolding, rationalism, the school of 
philosophy then dominant, optimistically proclaimed that all knowledge could be 
obtained by thought alone.  It quickly became evident, however, that the 
optimism was unfounded, and that relatively little knowledge is obtainable just 
through thinking.   
 What little there is, however, is important.  Logic and mathematics appear 
to fall within this class.  Such knowledge does seem to have a special feature: if it 
is true, it is not subject to the same sort of doubts as empirical knowledge.  
                                                                                                                                  
languages for reasoning that featured both a clear semantics and techiniques for generating 
syntactic proofs (see C.I. Lewis, Survey of Symbolic Logic).  
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Indeed, it is only about matters of pure reason that we seem to be able to 
achieve certainty. 
 But what is it that is special about mathematics and logic, making it 
obvious and obtainable through reason alone?  The answer is as old as 
philosophy.  Logic and mathematics are based on proofs.  Among all true 
propositions, there are some that are basic and so obviously true that they are 
self-evident.  These are set down as axioms, and from them small but completely 
reliable steps of reasoning derive other truths.  A chain of such reasoning can 
take you from an axiom that is obviously true to a rather remote theorem, which 
might not be evident at all. However, since the premises of the demonstration are 
certain, and each logical step is transparently correct, it follows that we know the 
conclusion too with certainty. Aristotle calls the truths derived this way apodictic, 
which is usually translated into English as provable or demonstrative. 
 Probably the most consequential book every written for the scientific 
method was Euclid’s Elements.  These are thirteen books, complied from the 
work of Greek mathematicians in the generation of Aristotle’s pupils, which lay 
out the theory of plane geometry in axiomatic form.   This was the first treatise to 
use the axiomatic method. Your high-school geometry text was probably 
modeled on the Elements.  Many of you will remember that it began by laying 
down three sorts of assumptions: definitions2 of basic terms, axioms stating 
self-evident truths of logic, and postulates containing “self-evident” geometric 
truths.  It is the postulates that will be of interest to us here.  Euclid employs just 
five: 
 
Euclid’s Postulates for Plane Geometry (Elements, 300 B.C.) 
1.   Any two points are contained in some line. 
2.   Any finite line is contained in some line not contained in any other line. 
3.   Any point and any line segment beginning with that point determine a 
 circle with the point as its center and the line as its radius.  
4.   All right angles are equal. 
5.   (Euclid’s original version.)  If a straight line falling on two straight lines 

makes the interior angles on the same side less than two right angles,  then 
the two straight lines, if produced indefinitely, meet on that side on which the 
angles are less than the two right angles. 

 
He then proceeds to deduce the theorems of the subject by giving a proof for 
each.  A proof consists of a series of a special sort: each step is either a theorem 
already established or follows from a previous step in the series by a self-evident 
application of logic.  It is important to stress that from ancient times Euclid’s 

                                            
2 In our discussion here we will need to employ only three of the terms Euclid defines: right angle, 
perpendicular line and parallel line.  His none too clear explanations are:  
• When a straight line set up on a straight line makes adjacent angles equal to one another, 

each of the equal angles is right and the strainght line standing on the other is called 
perpendicular to that on which it stands (definition 10). 

• Parallel straight lines are straigth lines which, being in the same plane a being produced 
indefinitely in both directions, do not meet one another in either direction (definition 23). 
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results were viewed as certain.  The definitions, axioms, and postulates were 
viewed as certain, and so were the steps of reasoning contained in his proofs.  It 
follows that every provable theorem is established with certainty.  
 Geometry’s axiomatic method captured the imagination of philosophers 
and scientists.  It was viewed as a paradigm of good scientific method.   Indeed, 
since Euclid the axiom system has been the preferred format for the presentation 
of mathematical results.  When possible it has been applied in philosophy and 
the natural sciences.  Let me give you  two examples, one each from philosophy 
and physics. 
 The first is the axiom set laid down by Spinoza, a rationalist philosopher of 
the seventeenth century, in his treatise the Ethics.  From the following seven 
principles he attempts to deduce all the important truths of philosophy, both 
natural and moral. 
 
Spinoza (Ethics, 1670) 
1.   Everything which is, is either in itself or in another. 
2. That which cannot be conceived through another must be conceived through 

itself. 
3.  From a given determinate cause an effect necessarily follows; and, on the 

other hand, if no determinate cause is given, it is impossible that an effect can 
follow. 

4.  The knowledge of an effect depends upon and involves the knowledge of the 
cause. 

5. Those things that have nothing mutually in common with one another cannot 
through one another be mutually understood, that is to say, the conception of 
the one does not involve the conception of the other. 

6.   A true idea must agree with that which is the idea. 
7.  The essence of that thing which can be conceived as not existing does not 

involve existence. 
 

 The next example is the axiom set used by Isaac Newton in Principia 
Mathematica, the classical statement of the science of mechanics. These are the 
famous three Laws of Motion from which he deduces the body of theorems that 
constitute the truths of the subject.  You may well have studied these laws in a 
non-axiomatic form in high school physics. 3 

                                            
3 These laws are in Newton’s original formulations.  You may recall them as (1) a body at rest 
tends to remain at rest, and a body in motion tends to remain in motion, until acted upon by an 
external force, (2) f = ma, and (3) for every action, there is an equal and opposite reaction. 
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Newton's Three Laws of Motion (Mathematical Principles of Natural 
Philosophy, 1686) 

1.   Every body continues in its state of rest, or of uniform motion in a right line, 
unless it is compelled to change that state by forces impressed upon it. 

2.   The change of motion is proportional to the motive force impressed; and is 
made in the direction of the right line in which that force is impressed. 

3.   To every action there is always an equal reaction: or, the mutual actions of 
two bodies upon each other are always equal, and directed to contrary parts. 

 
 We have here a pretty picture of natural science.  Some propositions are 
empirical and cannot be known with certainty, but among these some are 
fundamental and have the status of laws.  We may adopt them as postulates in 
an axiom system and deduce from them by logical rigor an entire branch of 
empirical science.  The whole is then as secure as its basic postulates.  An 
example of such a natural science is Newton’s mechanics. 
 Natural sciences are to be contrasted with logic and pure mathematics. In 
the latter some propositions are known a priori  and are certain.  These may be 
laid down as axioms, and an a priori science then deduced from them with the  
aid of logic.  An example is supposed to be Euclid’s plane geometry.    
 In 1790, Kant advanced a systematic philosophy that gripped the 
intellectual world, especially Europe. He elaborated on the special status of logic 
and mathematics.  There is, he says, a deep reason why math and logic are 
transparent to reason.  Their laws express the very forms of thought.  The 
underlying nature of reality dictates that when we perceive something we 
organize the world in accordance with the rules of  logic and mathematics.  The 
details of his system are complex and subtle, but what concern us here today is 
the sort of logic and math he thought was the key to organizing reality. Kant was 
no logician or mathematician, and he adopts the non--specialists viewpoint.  By 
logic he means syllogisms and by math he means Euclid.   
 Among philosophers and mathematicians Kant’s views on the nature of 
logic and mathematics were widely accepted and extremely influential.  They 
came into conflict, however, with a niggling doubt that had been troubling 
specialists in geometry since ancient times.  Working out this doubt in the face of 
Kantian dogma was to precipitate the crisis in 19th century mathematics that 
gave birth to modern logic. 
 Let us look again at Euclid’s axioms.  All were supposed to be self-
evident.  They were so regarded from the ancient world onwards.  From the five, 
however, the fifth stands out.  It is by far the most verbose.  As such it is less 
likely to express an instantly obvious truth.  Indeed, even in ancient times it was 
viewed as odd.  In the fifth century, for example, Proclus thought it could be 
derived from the other four.  His proof, however, fails because it mistakenly 
assumes the very postulate it is trying to prove.4  But the postulate remained 

                                            
4 See Glenn R. Morrow, trans., Proclus, A Commentary on the First Book of Euclid’s Elements 
(Princeton: Princeton Unversity Press, 1970), ll. 371.10-373.2, pp. liv-lv, 290-291. 
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troubling and attempts to put in on sounder footing continued without much 
success, until the early 19th century. 
 Let us consider for a moment how we might prove that the fifth postulate 
follows from the other four.  One obvious strategy would be a reduction to the 
absurd.  Assume together with the first four postulates the hypothesis that the 
fifth postulate is false.  If we can then deduce a contradiction, we know that if the 
first four are true the fifth cannot be false, and is therefore true.  Attempts to 
deduce a contradiction along this line, however, failed.  This failure lead naturally 
to entertaining the opposite hypothesis, namely that the negation of the fifth 
postulate might be consistent with the first four postulates. But what would this 
mean? 
 It is clear how to prove inconsistency.  Just deduce a contradiction.  But 
how do you prove consistency?  This is a question in logical theory, the sort of 
question that had been moribund for centuries.  The mathematicians interested in 
the issue, however, proposed an answer.  One way to show that an axiom 
system is consistent is to show it is possible, i.e. provide an interpretation or 
situation in which all the axioms are true together.  After all, if they are 
inconsistent, they are never simultaneously  true.  Thus if they are consistent, 
there ought to be some possible situation in which they are all true together. 
 

B. Non-Euclidean Geometry5 
 In the 19th century it is was shown that in fact the fifth postulate does not 
follow from the other four.  An important step is reformulating the fifth postulate in 
a shorter but fully equivalent manner. John Playfair (1748-1819) proposed a 
revised version (also know in antiquity) stated in terms of parallel lines. 
 
Playfair’s Version of Euclid’s Postulate 5 
 Given a line and a point not on that line, there is exactly one line through 
 that point parallel to the given line. 
 
It was discovered independently by Karl Friedrich Gauss (1777-1855), Johann 
Bolyai (1802-1860), and Nikolai Lobachevski (1793-1856) that a consistent 
geometry would result by substituting for this postulate one inconsistent with it. 
The replacement specifies that through a point not on a  line there is more than 
one parallel to it. 

                                            
5 There are introductions at all levels to non-Euclidean geomentry.  For one that is non-technical 
and fun to read  I suggest Philip J. Davis and Reuben Hersh, The Mathematical Experience 
(Boston: Houghton Mifflin, 1981).  On the relation of non-Euclidean geometry to logic, I 
recommend Howard DeLong, A Profile of Mathematical Logic (Reading, MA: Addison-Wesley, 
1970).  On non-Euclidean geometry as a logistic system see Raymond L. Wilder, Introduction to 
Foundations of Mathematics, 2nd ed. (N.Y.: Wiley, 1967). 
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 Postulate 5 in  Lobachevskian Geometry 
 Given a line and a point not on that line, there are at least two distinct 
 lines through that point parallel to the given line. 
 
This system, not surprisingly, has some novel theorems.  For example, the sum 
of the  angles formed by a line bisecting two parallels is in general less than that 
of two right angles.  This geometry, unlike Euclid’s, also has the property that the 
measure of the least angle formed by the intersection of a parallel to the 
perpendicular of a line varies directly with the distance of the intersection from 
the line. 
 Soon after this discovery a third variety of geometry was discovered by 
Bernhard Rienmann (1826-1866) who observed that the angles of a triangle may 
be greater than that of two right angles and that a line and a point might well 
determine no parallel. 
 
Postulate 5 in Riemannian Geometry 
 Given a line and a point not on that line, there is no  line through that point 
 parallel to the given line. 
 
 By way of exploring Rienmann’s geometry let us see how it is an 
alternative to Euclid’s.  I said that both non-Euclidean versions of the fifth 
postulate were consistent with the first four postulates, and that the way you 
show this consistency is to construct a situation in which the first four postulates 
are true together with the new version of the fifth.  Let us do so for  Rienmann’s 
version.  Let us construct a model consisting of the points on the surface of a 
sphere, and let us identify a line as a great circles on the sphere’s surface (i.e. a 
circle which centers on the center of the sphere).  It is easy to see that the first 
four postulates are true.  Any two points on the sphere’s surface fall on some  
great circle, confirming postulate 1.  Any finite arch of a great circle is contained 
in some great  circle that is itself not a portion of another circle, satisfying 
postulate 2.  Any arch of a great circle from a point on the surface determines a 
circle (this circle would not normally be a “line,” i.e. a great circle)  on the sphere 
with that arch as its radius, verifying postulate 3.  Finally, all right angles are 
equal, postulate 4.    
 It is also true that Rienmann’s postulate 5 is true.  For consider any great 
circle on the sphere and any point off the circle.  Now imagine a second  a great 
circle passing through that point.  This circle will interact the original circle, and 
hence is not parallel to it.   Hence a “line” and a point determine no parallel. 
 It is also easy to see that the sum of the angles in a triangle is in general 
greater than that of two right angles.  For example, consider the equator of the 
sphere given in the figure below.  Consider in addition the sphere’s “north pole” 
point c.  Clearly c is not on the equator. Hence any great circle that passes 
through c will also intersect the equator.  Indeed, any such circle will be a line of 
longitude of the sphere, forming a right angle with the equator.  Now consider two 
points a and b on the equator, and the lines of longitude passing through them. 
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Notice also that cab and cba form right angles to the equator.  Hence the sum of 
the angles of the triangle cab will be greater than that of two right angles. 
 

 
 
By providing a model of the axioms, our discussion has proven the following 
result: 
 
Theorem. Rienmannian Geometry is consistent. 
 
The discussion also shows that Proclus and others were wrong in thinking that 
the first four postulates are sufficient for determining a Euclidean world.  The fifth 
postulate is necessary as well. 
 It is hard to overstate the shock that resulted from the discovery of non-
Euclidean geometry. No longer was geometry a paradigm case of a priori 
knowledge.  Indeed the question of which geometry was the right one, i.e. which  
was true in the actual world, became an open question.  Gauss and others 
started actually measuring the sum of the angles of large terrestrial triangles to 
see it they equaled 90 degrees. He found that within the margin of error of his 
measuring devices Euclid’s geometry seemed to be confirmed. In the 20th 
century, however, it was a version of Rienmann’s geometry that was 
incorporated into Einstein’s  theory of relativity. Geometry, in short, lost its status 
as  a priori knowledge, and doubt was sown about the rest of mathematics.  If 
geometry was not known a priori, then perhaps other branches of mathematics 
were not either. 
 

C. Logistical (Axiom) Systems 
 One immediate consequence of non-standard geometry was a new 
interest in the properties of axiom systems.  Mathematicians as a group became 
more sensitive to the difficulties of doing proofs. Beginning in the 19th century 
there was a widespread and quite significant elevation in the standard of rigor in 
mathematics generally.  Proofs and definitions became clearer and more 
detailed, reaching a standard of precision that has been maintained to the 
present day. Although it had been assumed that most mathematical subjects 
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were in principle axiomatizable, the details had never been worked out.  In the 
mid-19th century programs started to axiomatize the various branches of the 
subject.  Moreover, some mathematicians decided to make the steps of logical 
reasoning crystal clear.  To do so they proposed introducing a special symbolic 
notation for the key non-mathematical words from English, German and other 
natural languages that were used to bind mathematical expressions into 
sentences and proofs.  It took some decades for the symbolization to reach a 
standard form, but a consensus developed on the key ideas that needed to be 
symbolized and on the appropriate logical rules governing steps of reasoning. 
 In period from 1830 to 1930 the very notion of an axiom system and of its 
key properties became clearer and better defined.  Like many important ideas in 
science, the ideas themselves are not difficult to grasp once they are formulated 
clearly, but arriving at their definitions nevertheless was the result of many years 
of puzzling over the nature of proofs.   
 Let us pause now to state the definitions, which are now standard.  Our 
first goal is to define what it would be for a system, which we shall call S, to be an 
axiom system.  We begin by inventing a set of symbols to use in the notation of 
S, and agree upon conventions or grammar rules for writing formulas, known as 
sentences, in that notation.  Let us use the LS  to stand for the set of 
grammatical (well-formed) strings of symbols, called well-formed expressions 
of the system S.  Included in this set are the sentences of the system.  
Sometimes LS is called the language of S.   
 We can now define the notion of an axiom system.  It consists of a set of 
theorems deduced by logical rules from a set of axioms.  In addition there is 
usually a set of definitions that allows for the abbreviation in more familiar terms 
of longer expressions in the syntax. In the twentieth century such systems are  
called logistic because they are logically explicit, making each step of reasoning 
perfectly clear. 
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Logistic Systems 
    An axiom (logistic) system S for sentences LS is <AxS,RS,ThS,DS,DThS> s.t. 
  1. a set AxS of sentences from LS called axioms, 
  2. a  set RS of logical rules on LS called rules of inference, 
  3. the set ThS of theorems in primitive notation is defined 
                                inductively as follows:  
   a. if P is in AxS, then P is in ThS,  
   b. if P1,...,Pn are in ThS, and Q follows from P1,...,Pn by  
    some  rule in RS, then Q is in ThS 
   c. nothing else is in ThS; 
  4. a set of DS of abbreviative definitions of sentences of LS 

                                                      the form t=t′ or P↔Q.    
  5. the set DThS of theorems in defined notation is defined 
                                 inductively as follows:  
   a. if P is in AxS or DS, then P is in DThS,  
   b. if P1,...,Pn are in DThS, and Q follows from P1,...,Pn by  
    some  rule in RS, then Q is in DThS 
   c. nothing else is in DThS. 
 
 

The definitions introduce new symbols and notation into the system, and 
allow its formulas to express ideas not obviously expressed by the symbols of the 
system’s primitive notation used in AxS and RS.  In this case the abbreviating 
expressions (those that appear DThS but not in ThS) are not really part of the 
language and then do not require semantic interpretation.  For this reason these 
definitions are called both “abbreviative” and “eliminative.”  

When a definition functions as a kind of explaination what is being 
explained is the meaning of a defined expression that has an earlier history in 
and some sort of established meaning.  Because the meaning of the new 
notation is intended to be “captured” by the definitions, the definition should 
provide an “intuitively acceptable” paraphrases of the defined expression that 
match thes earlier usage, its “standard use” outside and prior to the system.  For 
example, It should match its use in earlier logic theory, the history of philosophy, 
or ordinary language.   

One advantage of eliminative definitions in an axiom systems  is that the 
defined ideas are in an important sense “explained” or “reduced to” the concepts 
that occur in the primitive notation of the axioms.  The definitions provide 
explanations because all the system’s theorems that are stated in “defined 
notation” follow logically as theorems from the axioms formulated in primitive 
notation.  Thus, there is a sense in which the definitions in DS fuction as a set of 
supplementary axioms to thse in AxS that set forth the meaning of the 
expressions they define. It was by means of definitions like these that Frege and 
Russell attempted to “reduce” arithmetic to logic.  In their axiom systems 
matheimatical notation is introduced by eliminative definitions that are formulated 
using only logical symbols, and the truths of mathematics follow as theorems 
from axioms formulated purely in logical notation.  When the defined terms are 
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replaced by their definienda (when they are “cashed out’), they disappear and the 
theorems are stated solely in the primitive notation of the system’s axioms and 
rules. 

Two additional points need to be made about eliminative definitions.  The 
first is that the entire string of signs that is defined, the definitions definiendum, 
must be regarded strictly speakaing as a syntactic unit.  Because it is merely an 
abbreviation for its definiens, any orthographic detail within the definiendum is 
purely accitdental.  It there only as a guide to identifying its definens.  For 
example, we shall shortly meet an eliminative definition of set abstract notation: 

 
Q[{x|P[x]}]     ↔def     ∃A(∀x(x∈A ↔ P[x])∧∀B(∀x(x∈A ↔ P[x])→B=A)∧ Q[A] 

 
Here {x|P[x]} looks like a set name.  It looks like the a singular term rougly 
equivalent to the English, “the set of all things of which P(x) is true.”  But that 
appearance is deceptive.  In reality all the definition provides as an orthographic 
substitue, namely Q[{x|P[x]}], that stands in place of the longer definendum 
∃A(∀x(x∈A ↔ P[x])∧∀B(∀x(x∈A ↔ P[x])→B=A)∧ Q[A].  In this definiendum there 
is no singular term at all standing for that set.  There are only variable, predicates 
and the various expressions in the formula Q[x].  In Q[{x|P[x]}], the symbol string 
{x|P[x]} is no more a referring expression than the part ]}.  Likewise, in Principia 
Mathematica  Russell’s famously introduced notation for the expression called a 
definite description, in logical notation 1x(P[x]), which is read in English “the one 
and only x of which P[x] is true.”  This expression in English clearly has stand 
alone meaning and is a referring expression, as in the indentity statement Venus 
is the star that appears first in the evening.  But in Russell’s definition it occurs 
only as part of a longer string and as such has no independent meaning: 
 
 Q[1x(P[x])]     ↔def     ∃x(P[x])∧∀y(P[y])→y=x)∧P[y] 
 
Russell made use of this technique to such a degree that the axiom system of 
Principia contains no singular terms at all – neither constants nor singular terms 
made up of factors.  In his philosophical work he suggested that proper names in 
English should likewise be understood via eliminative definitions that quantified 
only over sense-data. 

A second point to make about the parts of eliminative definitions is that 
although strictly speaking these orthographic parts are not part of the primitive 
language of the system and therefore do not require a semantic interpretation, if 
they the definitions are intendeded to provide genuine analyses of the the part, 
the definition has to conform to preanalytic usage.  If part of that usage is to treat 
the orthographic part as a referring expression, then its usage within the system 
has to be consistent with that usage.  A situation like this arrises in Principia 
Mathematica. In Russell and Whitehead’s axiomn system all the operators for the 
familiar operations in arithemetic, for example, though the symbols for addition 
and multiplication are introduced as orthographic parts of longer expressions that 
are defined in eliminative definitions.  Thus, strictly speaking, in formulas like 
2+3=7, + is not a functor that stands for the addition operation, and 2, 3, and 7 
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are not constants that stand for numbers.  Nevertheless, for the system to be 
plausible the axioms must be consistent with an interpretation that treats them as 
referring expressions and assigns to them their traditional referents.  This 
traditional assignment of referents to the operators and constants of 
arthememetic is called the standard interpretation of arithemetic.  It is important 
because it is used by Gödel in his famous proof that Principia is incomplete.  
What Gödel assumes can be stated in more general terms.  If an axiom system 
introduces expressions by eliminative definion, then any interpretation of its 
primitive terms must be extendable to an interpretation of its defined expressions 
that conforms with their preanalytic usage (i.e. it must conform to the “standard 
interpretation” of those terms – if there is one.)  

We now tintroduce some standard notions and notation for speaking about 
the parts of an axiom system: 
 
 
Definitions 
 We use the special notation ├SP  to mean that  P is a theorem of S  (or 
equivalently, that P is in ThS or in DThS.6  (It will be clear from the context 
whether we are speaking of ThS or in DThS.) 
 Likewise, not├SP means P is not a theorem of S 
 Let P be a sentence and X a set of sentences.  Then the finite series 
P1,...,Pn of sentences (often written as a series of lines down the page) is called a 
deduction or proof of P from premises in X, iff the last sentence Pn in the series 
is P, and for each Pi  of the series (for i=1,...,n), meets one of three conditions: 
   i. Pi is  an axiom (in AxS, or in either AxS or DS ) 
  ii.  Pi is a premise (is in X), or  
 iii.  Pi follows by some rule in RS from earlier members of the series. 

                                            
6 The symbol ├ as it is now used has two meanings.  The first is the one being explained here 
and is  “the following is a theorem,” as in “├P∧∼P” which says that P∧∼P is a theorem.  The 
symbol was first used by Frege (in the Begriffsschrift, 1879), and he viewed it a combination of 
two symbols: “|”,  meaning it is asserted as a theorem that, and the horizontal “—” meaning it is 
true that.  Hence we get the reading it is a theorem that.  Its second usage is related.  In this 
sense ├ is placed between a group of premises on its left and a conclusion on its right, and 
means  there is a proof from the premises to the conclusion,  for example “{P→Q,P}├Q” means 
there is a proof from P→Q and P to Q.  The two usages are related because in certain rules 
systems (called natural deduction systems -- there is an example below) all the theorems can be 
deduced in proofs in which all premises are systematically disgarded until at the end of the 
process the proof has no premises at all.  This only happens in the special case in which the 
sentence proven is logically necessary, and the premiseless proof corresponds to the intuition 
that a theorem of logic is always true, no matter what.  Let ∅ be the empty set.  Then one way to 
say P is a theorem of logic is ∅├P.  Thus ∅├Pis equivalent to what we said in the original 
notation by ├P.  The second notation is more general (and preferred in modern logic) because 
theoremhood is a special case of having a proof from premises, namely that case in which the 
premise set is empty. 
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We say P is (finitely) deducible  from X in S (which we abbreviate as X├SP) iff 
there is some deduction of P from X in S.7  A deduction in which all the lines are 
either axioms or follow from previous lines by one of the rules is called a proof 
and any sentence deducible from the axioms alone is said to be provable in S. 
 
Clearly the notions of provable sentence and theoremhood coincide. 
 
Theorem.  The following are equivalent: 
   P is a theorem of S  (written  ├SP). 
   There is some deduction of P in S from AxS  
                                   (or from AxS and DS). 
   P is provable in S  (written  AxS├SP). 
 
 Some axiom systems are successful and others are not.  Success turns 
out to be a complex phenomenon, and a variety of concepts are needed to 
explain it. These we shall call the properties of an axiom system.  Some of these 
are definable in completely syntactic terms because they are properties that are 
concerned solely with the way symbols are arranged on a page.   

Others however have to do with whether sentences are true.  Truth is a 
difficult notion and one that we will be returning to repeatedly in these pages.  A 
few remarks about it are required at this point.  Normally when we say a 
sentences is true this is short for saying it is true in what philosophers call “the 
actual world”, the world around us that we are talking about.  But in general there 
are other worlds as well, so-called “possible worlds”, that we could be talking 
about.  For clarity then we should indicate what world we are describing and treat  
truth as a property of sentences relative to a world.  We shall adopt the standard 
notation ╞ for the metalinguistic truth-predicate, and let A stand for a “model” or 
“possible world.”  The way language works is that relative to a world A the basic 
descriptive vocabulary is assigned referents.  Facts about how these referents 
relate to one another then determine the truth-value in A of sentences formed 
from that vocabulary.  Of special interest is what is called “the standard 
interpretation” of the language.  If there is one, we shall refer to this interpretation 
as the model of world S.  This is the assignment in which basic vocabulary 
stands for its usual referents in the actual world and sentences formed from it 
have the truth-values that they have in the actual world given their standard 
referents. 
  

                                            
7 In some of the theoretical material of later lectures we want to allow for the possiblility that the 
set of premises be countable but infinite. To cover such cases the notion of “syntactic deducibility” 
we introduce a symbol ├ for arguments in which there are only a finite number of premises, and 
distinguish it from  ├ which makes no specific requirment about how many premises there are.  
Accordingly, later we say X is finitely deducible from P in S.(in symbols X├SP) iff  there is 
some finite subset Y of X such that Y├SP. 
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Definition 
   A╞  P  means P is true in world (model)  A. 
   S╞ P  means P is true in standard interpretation  S. 
 
 

As a matter of convention, when we say P is true “without any 
qualification” (simpliciter) what we really mean is true in S or in the actual world. 
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Definitions.  Properties of Axiom Systems 
 
Syntactic Properties 
 Consistency: 
  If LS employs ∼ and ∧, we say  S is syntactically consistent iff  
   no contradiction is a theorem: for all P in LS , not├SP∧∼P, 
  A more general definition applicable to all LS is the following: 
   S is syntactically consistent iff for some P in LS , not├SP. 
 Independence: 
  A sentence P is independent in S iff neither P nor ∼P is a theorem  
   of S : not├SP and not├S∼P. 
Semantic Properties 
 Semantic Consistency: 
 S is semantically consistent  or satisfiable  
  iff there is some situation in which all the theorems of S are  
   true simultaneously 
  iff for some A, for any theorem P of S, A╞ P   
 Independence: 
 A sentence P is semantically independent in S 

           Iff there is some situation in which the axioms of S and P  
             are true, and another situation in which the axioms  

     and ∼P are true the theorems of S could be true together. 
   iff for some A, A╞P  and for any theorem Q of S, A╞ Q, and 
    for some A′, A′╞ ∼P  and for any theorem Q of S, A╞ Q.  
  An axiom system S  is categorical  
    iff there is only one model (or, more precisely, only isomorphic 

     models) in which it is true 
  iff  for any A and  A′, if for any theorem P of S, A╞P  and  
   A′╞ P, then A is isomorphic to A′ .   

Properties Relating Syntax and Semantics.  Let  S be the standard 
interpretation.  An axiom system S  is sound 

  iff  all its theorems are true 
 iff  for any P in LS, if ├SP, then P is true 
 iff for any P in LS, if ├SP, then S╞ P  

 An axiom system S is complete (relative to the standard model S)  
    iff  every true sentence in the language LS is provable 
    as a theorem  

  iff if P is true, then ├SP 
 iff if S╞ P, then ├SP 
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Conceptual Adequacy of an Axiom System 
 The axioms of S are conceptually adequate iff they are conform to the  
 traditional scientific usage.   
 The definitions of S are conceptually adequate iff 
  1. it is not possible to prove any new theorem with the   
   definitions that could not  be proved without them and  
  2. the definiens of each definition is synonymous to its   
   definiendum according to traditional scientific usage. 
 
 Ideally a system would contain only true sentences and it would leave out 
no true sentence.  That is, it would be both sound and complete.  If it were, it 
would automatically be consistent in both senses.  Sometimes before we know 
whether it is sound or complete, we can determine whether the other properties 
hold: whether it is consistent in one sense or the other, or both, whether any of 
the proposed axioms are independent, and whether it is categorical.  It turns out 
that sound and complete systems are difficult to construct, sometimes even 
impossible, and that categorical systems are very rare. 
 Let us conclude by using these ideas to summarize what was discovered 
in the 19th century about non-Euclidean geometry: 
 
Facts about Non-Euclidean Geometry 
• The negation of the fifth postulate is consistent with the truth of the first four. 
• The fifth postulate is independent of the first four. 
• The first four postulates are not categorical. 
• It is an empirical question which geometry is sound (i.e. true). 
 

D. Symbolic Logic 
  At this point in the lecture, I want to pause for a moment in our 
historical survey to introduce the standard notation and inference rules of modern 
logic.  Without these little bits of basic vocabulary it is really impossible to talk 
about modern logic.  Let us pause then to master eight logical symbols.8 
  

                                            
8 See Appendix I for alternative symbols are sometimes used in stead of these. 
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The Logical (Sycategorematic) Signs) of First-Order Logic: 
 Symbol:  English Translation: Name of the Logical Operation:  
 
 ∼  it is not the case that sentence negation 
 ∧ and conjunction 
 ∨ or disjunction  
 →  if .... then .... the conditional 
 ↔ if, and only if the biconditional 
 ∀  for all the universal quantifier 
 ∃ for some the existential quantifier 
 =  is identical to identity 
  
Though there are huge number of valid inference rules that are more or less 
useful, we shall only need to appeal in the course of these lectures to a handful.    
We combine these symbols with letters to form phrases and sentences. The 
letters we shall use are all from parts of speech familiar from ordinary grammar 
(e.g. nouns and verbs) but we shall use different typefaces for each of the 
various parts of speech we shall employ.  Which typeface is associated with a 
given part of speech is now a matter of convention, and the customary 
assignments are given in the table below.  
 
The Descriptive (Categrematic) Expressions of First-Order Logic: 
 
 Typeface: Part of Speech: 
 A,B,C  simple sentence 
 P, Q, R  sentences (both simple and complex) 
 x, y, z  variables (pronouns in English) 
 a,b,c,d   constants (proper nouns in English) 
 F, G, H  predicates (common nouns, adjectives, verb phrases in English) 
 f,g,h  operators (names of functions or operations, usually on numbers) 
 P[x]   a sentence P that contains what is called a free occurrence of the  
   variable x, i.e. an occurrence of x that is not contained within a fragment   
   of P that begins with x or ∃x.   P[x] is called an open sentence. 
 P[y]   the sentence that results from P[x] of replacing some or all of the free  
   occurrences of x by free occurrences of y 
 P[t]   the sentence that results from P[x] by replacing some of the free 
                                      occurrences of x by a term t.   A term is any proper name, variable 
                                      or function value. 
 
We may now combine the eight logical symbols with various typefaces to state 
what in the Middle Ages were called consequentiae and are today called 
consequences derived by rules of inference.  These are rules that if followed 
will always yield a valid, logically acceptable, argument.  Stating rules is 
sometimes tricky.  Logicians in the middle Ages became quite apt. 
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Examples of Mediaeval Consequentiae 
 
From the truth of the antecedent the truth of the consequent follows. 
 
From the opposite of the antecedent the opposite of the consequence follows. 
 
In modern logic, a conventionalized form, however, has developed for stating 
logical rules 
 
How to Write Inference Rules in Logic: 
 
Deduction Rules  
  
We use the display 
    P1 .... Pn 
     Q 
to mean: 
 
 From the sentences P1,...,Pn given as previously proven lines in an argument or as 

previously proven theorems in an axiom system,  it is permissible to infer the sentence Q 
as the next line in the argument or as an additional theorem in the axiom system. 

 
  

It will also be convenient to introduce a shorthand notation for logical 
equivalence.  Two sentences are logically equivalent when they are true in 
exactly the same cases.  Equivalents not only are logical consequences from 
each other, a sentence when it occurs as a part of a longer sentence may be 
replaced by its equivalent  without altering the truth-value of the whole.  For this 
reason equivalents are said to be substitutable.  We introduce the abbreviation 
⇔ to indicate that the sentences flanking it are logically equivalent: 

 
Substitution Rules 
 
We use the display   
                                                P ⇔ Q  
to mean: 
 
Let R of a line in an argument or a theorem in an axiom system, and let  P occur  as part of  R.  It 

is then permissible to infer a new line or theorem by replacing some occurrences of P by 
Q in R.  Similarly, Let R of a line in an argument or a theorem in an axiom system, and let  
Q occur as part of  R.  It is then permissible to infer a new line or theorem by replacing 
some occurrences of Q by P in R.   (Thus ⇔  means is substitutable anywhere for.) 

 
 
 The rules of classical logic that we shall refer to may be 

summarized using this notation.   In this text we shall actually use only a small 
handful valid rules, but it is useful at this point to meet examples of complete 
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rules sets.  We shall consider two.  Let us assume that the language for which 
the rules are formulated consists of a set  LSL of sentences ( of “sentence logic”) 
that are made up out of atomic (simple) sentences A,B, and C by means of 
parentheses and  the connectives ∼,∧,∨,→, and ↔. 
   The first set, which was invented by the American logician Irving Copi,9  is 
easy to use and very popular in introductory undergraduate courses.  Its 
terminology is widely used. 
  
Copi’s Nineteen Rules for Sentential Logic 
Deduction Rules 
 Conjunction    Simplification 
 P      P∧Q        P∧Q 
 Q      ∴P         ∴Q 
∴P∧Q 

Addition  Disjunctive Syllogism  Constructive Dilemma 
  P   P∨Q        P∨Q   P∨Q 
∴P∨Q   ∼P          ∼Q    (P→R)∧(Q→S) 
   ∴Q          ∴P    ∴R∨S 

Modus ponens Modus Tollens   Hypothetical Syllogism 
P→Q   P→Q     P→Q 
     P   ∼Q      Q→R  
∴Q   ∴∼P     ∴P→R 
 
Substitution Rules 
Association   Commutation DeMorgan's Laws 
P∧ (Q∧R)  ⇔  (P∧Q)∧ R P∧Q  ⇔  Q∧P  ∼(P∧Q) ⇔  ∼P∨∼Q 
P∨(Q∨R) ⇔  (P∨Q)∨R P∨Q  ⇔  Q∨P  ∼(P∨Q) ⇔  ∼P∧∼Q 

Double Negation  Implication          Transposition or Contraposition 
∼∼P  ⇔  P   P→Q  ⇔  ∼P∨Q P→Q  ⇔  ∼Q→∼P 

Tautology   Exportation    
P∧P  ⇔  P∨P  ⇔  P  (P∧Q)→R  ⇔  P→(Q→R) 

Equivalence 
P↔Q  ⇔  (P→Q)∧ Q→P)  ⇔  (P∧Q) ∨(∼P∧∼Q) 
 

                                            
9Though compete in the sense that it is adequate for deducing all valid arguments in sentential 
logic, Copi’s rule set has the curious feature that it is not possible to demonstrate tautologies 
using just his rules.  For that reason it is sometimes called “logic without tautologies.”  See Irving 
Copi, Symbolic Logic; Leo Simmons, “Logic Without Tautologies,” Notre Dame Journal of Formal 
Logic.  Tautologies are captured if Copi’s  rule Exportation is replaced with the “Axiom”  of 
Excluded Middle, viz.the rule that it is always correct to enter as a line in an argument or proof a 
sentence of the form P∨∼P. 
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Notice that the rules modus ponens and modus tollens are the mediaeval 
consequences cited earlier but formulated here in modern notation.   
 The second rule set, first proposed by Gerhard Gentzen and called 
somewhat misleadingly “natural deduction”, it is of more theoretical interest and 
is the one most commonly learned in more advanced logic courses.  (It is the set 
used in Chapter 2 in the completeness proof of first-order logic.) Instead of 
postulating a set of “logical truths” as axioms from which other “logical truths” are 
deduced, the system characterizes what steps or reasoning are valid.  These 
rules are broken down by the logical connectives.  For each connective the 
system provides two rules. One rule explains how to introduce a line in an 
argument that contains the connective, and the other rule tells how to deduce a 
new line without the connective from earlier lines containing it.  Since the rules 
explain how to “introduce” and “eliminate” connectives as a process of reasoning, 
they are said to explain how to “use” the connectives, and to explain their 
“meaning.”  These theoretical claims for the system will be discussed in Chapter 
2. 

 For the rule set to meet the somewhat contrived form of having exactly 
one introduction rule and one elimination rule for each connective,  the special 
“contradiction” or “falsehood” symbol ⊥ needs to be introduced.  It is treated as a 
kind of degenerate connective itself and given its own its introduction and 
elimination rules.   Intuitively all we need know about ⊥ is that it is a sentence 
that is always false, a kind of fixed contradiction. 
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Natural Deduction Rules for Sentential Logic 
 
Introduction Rules:    Elimination Rules: 
Contradiction Introduction   Ex Falso Quodlibet10 
P       ⊥ 
∼P       ∴P 
∴⊥ 

Reduction to the Absurd    Double Negation 
If  A1,...,An,∼P   then A1,...,An   ∼∼P 
   ∴Q∧∼Q     ∴P     ∴P 

Conjunction      Simplification 
P       P∧Q        P∧Q 
 Q       ∴P         ∴Q 
∴P∧Q 

Addition      Constructive Dilemma 
        P       P∨Q 
∴P∨Q       (P→R)∧(Q→S) 
       ∴R∨S 

Modus ponens   Conditional Proof  
P→Q     If  A1,...,An,P then A1,...,An 
P              ∴Q  ∴P→Q 
∴Q    
 
 These rules are usually justified in the semantics by referring to the 
meaning of the connectives.  This meaning is explained in terms of the way in 
which the connectives contribute to the truth of the whole sentence, and is 
usually set forth in tabular form in what are called truth-tables. The truth-tables, 
given below, explain how the truth-values (T for true, or F for false) for a complex 
sentence made up using a connective are determined from the truth-values of its 
parts.  A negated sentence, for example, is true if its part is false, and vice versa.  
A conjunction is true iff both its conjuncts are.  A disjunction is true iff at least one 
of its dijuncts are.  A conditional is false in only one case: when the antecedent is 
true and the consequent false.  A biconditional is true iff its parts have the same 
truth-values. 
  

                                            
10 From a falsehood (here a contradiction) infer anything whatever. 
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The Truth Tables for the Sentential Connectives 
 
      P  ⎪ ∼P      P  Q   ⎪ P∧Q ⎪  P∨Q⎪  P→Q ⎪  P↔Q 

T   ⎪   F T   T   ⎪    T ⎪    T ⎪    T    ⎪    T 
F   ⎪   T T   F   ⎪    F ⎪    T ⎪    F    ⎪    F 
  F   T   ⎪    T ⎪    T ⎪    T    ⎪    F 
  F   F   ⎪    F ⎪    F ⎪    T    ⎪    T 

 
Given the truth-tables it is fairly easy to explain why the standard inference rules 
are valid: if the lines given as premises of the rule are true, then the truth-tables 
insure that the conclusion of the rule is true also. 
 
Example.  Theorem.  Modus ponens is valid. 
Proof.  Suppose both premises P and P→Q is true.  But given the truth-table for 
P→Q the only case in which P→Q and P is true is the case in which Q is also 
true.  Therefore, Q must be true.  QED 
 
 The sentential connectives and their rules, however, capture only part of 
the logical syntax of language.   Many important arguments turn on the fact that 
sentences are written in subject-predicate form and employ the concepts of 
identity, all and some.  For these arguments we much enrich the syntax to what 
is  called first-order logic (also know as predicate logic or quantification 
theory). 
 In this richer syntax we allow for expressions that stand for individual 
things in the world.  These are called terms and they fall into three types: 
constants (proper names), variables (pronouns), or functor-values (names of 
the value of a function).  We also employ names for classes and relations called  
predicates.  We combine terms and predicate to form simple (atomic) 
sentences.  One of the relational predicates is the identity sign =. We also allow 
that the universal quantifier ∀ (read for all) and the existential quantifier ∃ (read 
for some) can be combined with a variable and be put at the front of a sentence. 
The set LFOL= of all sentences of first-order logic with identity is that made up 
of constants, variables, functors, and predicates by means of ∼,∧,∨,→,↔,=,∀, 
and ∃.  
 
Examples of Sentences in First-Order Logic 
 
First-Order Logic Mathematical English   Regular English 
∀xFx    For all x, x is F    Everything is F 
∃yLya   For some y, y bears L to a  Something bears L to a 
∀z(Fz→Gz)  For all z, if z is F, then it is G  All F are G 
∃x(Fx∧Hx)  For some x, x is F and it is G  Some F are H 
∀x∃yf(x)=y  For all x, and some y, f(x)=y        Everything has some f-value 

 

   1, Page  22. 



An Introduction to Metalogic  The Beginning of First Order Logic 

 For arguments using first-order logic we shall need only six additional 
inference rules, which for purposes of reference we state now. 
 
Natural Deduction Rules for First-Order Logic 
 
Introduction Rules:    Elimination Rules: 
 
Universal Instantiation    Universal Generalization 
   Where c replaces some x:      If c is typical of everything: 
 ∀xP[x]        P[c]  
      P[c]       ∀xP[x] 
 
Existential Instantiation    Existential Generalization 
   If c is a name of convenience that is later        If c replaces some x: 
   dropped in the proof, and c replaces all x:      P[c] 
 ∃xP[x]       ∃xP[x]    
    P[c]        
 
Law of Identity     Substitutivity of Identity 
The following is always true and a theorem:     If y replaces some x: 

∀ x(x=x)      t=t′ P[t] 
            P[t′]  
  

E. Application of Symbolic Logic to Arithmetic 
 Perhaps the first successful attempt in the 19th century to apply to 
mathematics the logistic method was the axiomatization of arithmetic advanced 
by Guiseppe Peano.11  We all know the elementary truths of arithmetic.  We may 
identify them with the truths of equality, inequality, addition, subtraction, 
multiplication, and division that hold among the positive whole numbers including 
zero.  Logicians traditionally call {0,1,2,3,...} the set of natural numbers, and 
abbreviate its name to Nn.  Peano was able to deduce the common truths about 
Nn from five axioms formulated in a notation of symbolic logic.  His symbolism 
uses just three undefined primitive terms: 
 
• the one-place predicate (class name) Nn that stands for the set of natural 

numbers Nn,  
• the operator S that stands for the successor operation (x+1=y) on Nn, and  
• the two-place predicate (“transitive verb”) ∈ that stands for the membership 

relation between elements and sets.12 
  

                                            
11 Richard Dedekin has previously formulated the axioms in 1888. 
12 ∈ is the Greek letter epsilon, the initial letter of the Greek copula e]inai, the verb to be. 

   1, Page  23. 



An Introduction to Metalogic  The Beginning of First Order Logic 

The Primitive (Unefined) Terms of Peano’s of Axiom System P: 
 
 Primitive Symbol: English Translation: Mathematical Idea: 
  
    0  the number 0 0     
    Nn  the set of natural numbers  {0,1,2,...}     
    S(x)=y  the successor of x is y the successor relation   
    ∈ is a member of  set membership 
  
 
Combining these terms with the symbols of symbolic logic Peano formulated an 
axiom system.   
 The version of the system we shall construct we shall call P.  First we 
make up the set LP of sentences in a formal language.  These will be all 
sentences of symbolic logic that we can make up from the primitive terms  Nn, S, 
and ∈, using the usual expressions of symbolic logic: the sentential connectives 
∼, ∧,∨,→, and ↔; the quantifiers ∀ and ∃; the identity symbol =; and variables 
x,y,z, etc. 
 To define the axiom system itself we must specify a set of axioms, rules 
and definition.  We shall use Peano’s five axioms and the logical rules given 
earlier. 
 
Peano's Axiom (Logistic) System for Arithmetic, the System P  (from 
Arithmetices Principia, 1889) 
      
1.  The Postulates (Axioms) for the System P : 
 
 Formulation in English:   Formulation in Logical Notation: 
 
1. 0 is a natural number.    ├P 0∈Nn 
2. Natural numbers are closed under successor.├P ∀x[x∈Nn →S(x)∈Nn)]  
3. 0 is the successor of no natural number.  ├P ∀x[x∈Nn →∼S(x)=0)] 
4. If the successors of two natural numbers ├P ∀x∀y([S(x)=S(y)]→x=y) 
      are the same, so are those numbers. 
5.  Mathematical Induction.  If 0 has a pro- ├P{0∈A∧x∀y([x∈Nn∧y∈Nn∧x∈A∧S(x)=y]→y∈A)} 
      perty (is in A) and if a natural number has       →∀x(x∈Nn →x∈A) 
      that property (is in A) only if its successor 
      does also, then all natural numbers have  
      that property (are in A). 
      
2.   The Inference Rules for the System P : 
 The rules of logic stated earlier. 
 
Given these axioms and elementary inference rules Peano was able to define 
other notions of arithmetic -- addition, multiplication, etc. -- and deduce the 
ordinary computational truths. 
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3.  Defined Expressions in P.   Some Definitions: 
 
       Expression Defined:          Definition:   English Translation: 
 1    S(0)     one 
 2    S(1)    two 
 3    S(2)    three 
 4    S(3),   etc.   four 
 
 For any n and m, 
  n+m    n+0=n and    plus 
     n+S(m)=S(n+m) 
 
4. Theorems in P.  Some simple theorems: 
  
Theorem   ├P  1+0=0 
Proof ├P  S(0)+0=S(0) def of + 
 ├P  1+0=1  def of 1 
 
Theroem  ├P  0+1=1 
Proof ├P  0+S(0)=S(0+0) def of + 
 ├P  0+S(0)=0 def of + 
 ├P  0+1=1  def of 1 
 
Theorem ├P  1+1=2 
Proof ├P  S(1)=S(1) axiom of = 
 ├P  S(1+0)=S(1) sub of = from previous theorem 
 ├P  1+S(0)=S(1) def of + 
 ├P  1+1=2  defs of 1 and 2 
 
  
Thus it appeared, for a time, that  arithmetic was axiomatizable. 
 

F. Application of Symbolic Logic to Set Theory 
 Another subject that was axiomatized and was of great importance to logic 
and mathematics was set theory.  In the second half of the 19th century the 
German mathematician Georg Cantor’s undertook a project to explain the 
infinite.13  In his long career he managed not only to solve many perplexing 
problems about the infinite that had puzzled thinkers for centuries, but also to 
make startling new discoveries and pose even deeper questions.   
 In his work Cantor found that before he could explain the infinite he had to 
first explain the notion of a “collection” or what we now call a set or class, 
because, he reasoned, it is sets that are either finite or infinite depending on 
“how many” things they contained.   But the notion of set is so simple and basic it 
is hard to see how it might be defined in even more basic terms.  The best 

                                            
13 A full discussion of Cantor’s project is to be found in Michael Hallett, Cantorian Set Theory and 
Limitations of Size (Oxford: Clarendon Press, 1984) 
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Cantor could do was to say that  sets are unities formed by  bring together within 
them all objects that possess a property in common. (In his private writings he 
speculates that the agent or underlying reality required to organize objects into 
collections and to sustain the distinct reality of the collection itself above and 
beyond its elements is God.)  He puts the idea as follows, using the concept of 
“objects following a law”  for what we would today refer to as objects  exhibiting 
the defining property of a set: 
 

By a ‘manifold’ or ‘set’ I understand ... every totality of definite 
elements which can be united to a whole through a law. (1883b, p. 
204, n. 1) 

 
 Though Cantor himself did not develop his definition formally, by the turn 
of the century others were translating it into the notation of symbolic logic and 
using it as an axiom in rigorous deductive statements of Cantor’s theory. In 1903 
the British philosopher and logician Bertrand Russell explained Cantor’s ideas in 
what has come to be the standard way.14  To do so he employees some special 
notation for talking about sets which I shall adapt today in their slightly revised 
modern form. 
 First we need a way to talk about the properties that an object must have 
in order to be in a set.  This is the “law” defining the set that Cantor speaks of in 
his informal characterization above.  Suppose for example we want to make up 
the set of all and only the things that are red.  Russell’s idea is to do so by using 
the sentence schema x is red.  A sentence schema of this sort, namely one that 
would be a complete sentence if its x were replaced by a proper name, was 
called by Russell a propositional function and is called today an open 
sentence.  The desired set then is the class of all x such that the open sentence 
x is red is true of x.  Indeed, according to Russell, “A class may be defined as all 
the terms satisfying some propositional function.” Let us use the notation P[x] 
and Q[x] to represent “propositional functions” (open sentences) containing the 
variable x. We then represent the set of all x that  satisfy P[x] by the notation 
{x|P[x]}, called a set abstract.  Likewise the set of all things satisfying Q[x] is 
{x|Q[x]}.   
 Notice that the abstract {x|P[x]} is the name of a set.  That is, it is a 
referring expression of a certain sort.  Together with the predicate ∈ it provides a 
new way to translate into symbols an ordinary subject-predicate sentence like 
Socrates is a human.  Let R be a logical predicate that translates the English 
adjective rational and A a predicate that translates animal. Assuming Aristotle’s 
definition, {x|Rx∧Ax} is then a name for the set of humans.  Let s be a constant 
(proper name) that translates Socrates.  Then Socrates is a human would be 
rendered in set theoretic notation by s∈{x|Rx∧Ax}.  Here s takes the role of an 
Aristotelian subject term, ∈ that of the copula, and {x|Rx∧Ax} that of an 
Aristotelian predicate.  Accordingly, sets may serve as the referents of predicates 
in traditional subject-predicate propositions, and therefore count as universals 

                                            
14 Bertrand Russell, Principles of Mathematics [1903] (N.Y: Norton), Chapter II, §§ 23 & 24. 
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according to Abelard’s semantic definition.  To the extend that mathematics is 
committed to set theory it is committed to traditional philosophical realism.  
Happily there is no danger of the sort of  paradox that concerned Boethius.  Let p 
be a constant that translates Plato.  Both s∈{x|Rx∧Ax} and p∈{x|Rx∧Ax} may be 
true without {x|Rx∧Ax} entering into the composition of either s or p.  (As we shall 
see shortly, the paradoxes of set theory lie elsewhere.) 
 Russell makes the informal idea of set precise by using axioms. Then 
Cantor’s sets, Russell says, obey two fundamental laws: 
 
Russell’s Axioms for Cantor’s Naive Set Theory: 
 
English Formulation: Logical Notation: 
 
1.  Principle of Abstraction:  
 
Some set contains all and only the elements      ∃A∀x(x∈A ↔ P[x]) 
x such that P[x] is true. 
 
2.  Principle of Extensionality: 
 
Two sets are identical if they have the same      A=B↔∀y(y∈A↔y∈B) 
members 
 
Though these axioms are elegant and theoretical perspecuous, it is possible to dededuce more 
useful versions by introducing set abstract notation.  
 
Definition of Set Abstract Notation 
 
Q[{x|P[x]}]     ↔def     ∃A(∀x(x∈A ↔ P[x])∧∀B(∀x(x∈A ↔ P[x])→B=A)∧ P[A] 
 
Q[{x|P[x]}]  means  “the open sentence Q(x) is true of the one and only set that contains all and 
only the elements of which the open sentence P(x) is true.”  
 
Theroems 
 Abstraction ∃A(A={x|P[x]}   and 
  ∀y(y∈{x|P[x]}↔P[y]) 
 
 Extensionality {x|P[x]}={x|Q[x]}↔ ∀y(y∈{x|P[x]}↔y∈{x|Q[x]) 
.   
 
 If we combine these two principles with several definitions we obtain the 
axiom system based on Cantor’s ideas known today as Naive Set Theory.  The  
definitions given below introduce the basic defined concepts: subset, the empty 
set, set intersection, set union, and the set of subsets (called the power set) of a 
set.  We let A, B, C, etc. stand for sets. 
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Definitions of Elementary Sets, Relations on Sets, and Functions on Sets:  
 
Notation:   English Translation:       Logical Definition:            Mathematical Terminology: 
x≠y        x is not identical to y     ∼(x=y)       non-identity or inequality 
x∉A       x is not an element of set A      ∼(x∈A)       non-membership 
A⊆B Everything in A is in B ∀x(x∈A→x∈B)  A is a subset of B 
A⊂B A⊆B & some B is not in A A⊆B∧∼A=B  A is a proper subset of B 
∅ or Λ set containing nothing {x| x≠x}  the "empty set" 
V set containing everything {x| x=x}  the universal set 
A∩B set of things in both A and B {x| x∈A∧x∈B}  the intersection of A and B 
A∪B set of things in either A or B {x| x∈A∨x∈B} the union of A and B  
A−B set of things in A but not in B {x| x∈A∧x∉B} the relative complement  
    of B in A 
−A set of things not in A {x| x∉A} the complement of A 
P(A) the set of subsets of A {B| B⊆A}  the power set of A 
 
These concepts have to do with sets and their elementary operations.  Cantor’s 
real objective, however, was to understand the infinite.  If we now add to the 
ideas above just three more three definitions about the size of sets, we can 
derive some of Cantor’s remarkable conclusions about the infinite.  
 First we need a definition of what it is for two sets to be of the same size. 
Cantor adopted the criterion that we be able to pair up each member of the first 
set with one and only one member of the second set, in what is called a 1 to 1 
correspondence.   
 Next we need a definition of what it is for one set to be bigger than 
another.  Clearly for one set to be smaller than a second, the first must be the 
same size as a proper subset of the second.  But this condition is not enough 
since there are infinite sets that meet this condition but which are nevertheless of 
the same size.  For example, the set of even whole numbers is the same size as 
the set of all whole numbers because we can put the two sets into 1 to 1 
correspondence: 2 with 1, 4 with 2, 6 with 3, 8 with 4, etc.  Hence one set is not 
bigger than the other.  But the set of even whole numbers meets the condition 
that it is in 1 to 1 correspondence with a proper subset of the whole numbers, 
because it can be put into 1 to 1 correspondence to itself which is a proper 
subset of the whole numbers.  Hence Cantor adds the extra condition that the 
relevant proper subset in question not be in 1 to 1 correspondence with the larger 
set.  Thus A is bigger than B iff B is in 1 to 1 correspondence with some proper 
subset of A that is not in turn in 1 to 1 correspondence with A.   
 Lastly we need the notion of a set’s being infinite.  There are a number 
of ways the infinite might be defined, but Cantor proposes to use one property 
that seems to be true of all and only infinite sets.  This property, moreover, is 
independent of the sort of entities that make up the set and does not rely on the 
existence of some standard system of counting or  measurement.  This is the 
property we have already seen exhibited by the set of whole numbers, namely 
that an infinite set can be put into 1 to 1 correspondence with one of its proper 
subsets.  
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Cantors Concepts of Set Size: 
 
 Notation: Translation into English: Logical Definition: 
 
 A≈B  A is the same size as B  there is a 1-1 mapping from A onto B 
 A<B  B is bigger than A  for some C, C⊂B and A≈C, but ∼(B≈C)  
 A is infinite     for some B, B⊂A and A≈B 
     
With these few notions Cantor was able to prove a remarkable result.  For every 
set there is at least one set that is bigger than it, namely its power set.  The proof 
in naive set theory is straightforward.15 
  
Theorem (Cantor). For any set A, A<P(A) 
 
Proof.  We show first that it is not the case that A≈P(A).  We do so by a 
reduction to the absurd. To begin the proof, we assume the opposite, that A≈
P(A).    Then, there is a 1-1 mapping f from A onto P(A).  Now consider the set: 
 B = {x| x∈A ∧ ∼x∈f(x)}. 
Clearly B is a subset of A.  Hence, since f maps A onto P(A), there must be  
some y in A, such that f(y)=B.  Consider now two alternatives. 
I.  Suppose first that y∈f(y).  Then, since f(y)=B, we may substitute identities and 
obtain y∈B.  But then by the definition of B, ∼y∈f(y).  Hence, y∈f(y)→∼y∈f(y). 
                                            
15This result is similar to the theorem that the real numbers have a greater cardinality that the 
natural numbers, Nn<R.  Assume for a reductio that there is a 1-1 mapping f from the decimal 
expansions of R to Nn. But if rn is the decimal expansion of r paired with n, we can define a 
decimal expansion d not paired with any n.  For any n,  let rn,m  be the m-th natural number in the 
decimal expansion of rn.  Define d by looking along the “diagonal” of the ordered decimal 
expansions: i.e. d is defined: for any n, dn= rn,n+1.  It follows that for any rn  , d≠ rn.  But because d 
is a decimal expansion, it corresponds to some real number, and that number is not in the range 
of f. But this contradicts our asssumtion.  QED.  

If instead of pairing natural numbers with decimal expansions of reals, one pairs 
elements of A with the ordered 0’s and 1’s of the range of the charactersistic functions of sets in 
P(A), as similar “diagonal proof” can be fashioned for A<P(A). 

 That one infinite set can be larger than another has been knows since ancient times.  
Philoponus, the first Christain philosophy to espouse Neoplatonism, rejected the pagan view that 
the cosmos had no beginning in time.  It takes Saturn 12 years to complete a revolution of the 
earth (or, as we now know, of the sun) and Jupiter 30 years.  Clearly Saturn has made more 
revolutions around the earth than Jupiter.  But if time had no beginning, then the number of times 
each has revolved the earth is infinite, and hence one infinite number would be larger than 
another, a conclusion thought to be absurd.  The argument was known to Arabic philosophers like 
al Ghazali and underlies Aquinas’ cosmological argument for the existence of God, which rejects 
an infinite regress in causes into the past as absurd. 

Galileo and Leibniz argued similarly against an “actual infinite.”  Clearly, the number of 
points on the hypotenuse AC of a right triangle ABC is greater than the number of points on its 
side AB.  But if, in fact, the sides were infinitely divisible, then the points on the hypotenuse AC 
could be mapped 1-1 to those on its side AB by simply dropping a line parallel to BC from each 
point on AC to a point on AB.  Thus one infinitiy would be both larger than and the same size as 
another.  Because this implication is contradictory, there could not be, they reasoned, an actual 
infinite.  See Richard Soroabji, Time, Creation and the Continuum (London: Duckworth, 1983), 
and Samule Levey, “Leibniz on Mathematics,” Philosophical Review 107  (1998), pp. 49-96. 
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II.  Suppose the opposite, alternative, namely that ∼y∈f(y).  Now, since y∈A by 
hypothesis, y meets the conditions for membership in B, briefly y∈B.  Then, since 
f(y)=B, by Substitutivity of identity, y∈f(y).  Hence, ∼y∈f(y)→y∈f(y). 
By I and II, it follows that y∈f(y) ↔ ∼y∈f(y).  But this is a contradiction.  Hence 
the original hypothesis is false, and we have established what we set out to 
prove, namely  it is not the case that A≈P(A).  There remain two possibilities: 
either P(A)<A or A<P(A).  However, we can apply the argument above to any 
B⊆A, showing that it is not the same size as P(A).  Hence we may generalize 
that for all B⊆A, ∼[B≈P(A)].  But logically, this fact entails that there no proper 
subset B of A such that B≈P(A). We have therefore eliminated the possibility that 
P(A)<A.  It follows that the only remaining alternative must be true, namely that  
A<P(A). QED 
 
This proof, like most proofs in modern mathematics, can in principle be recast 
entirely into the notation of symbolic logic so that no words from English remain.  
It is then possible to spell out the proof in detail citing for each step the relevant 
rule of inference that is applied.  Like most mathematicians, however, I shall 
leave the translation into symbols and the detailed derivation for you to do as an 
exercise. 

G. Reduction of Arithmetic to Logic and Set Theory 
 When Peano had axiomatized arithmetic and Cantor had worked out the 
notion of set, the stage was set for a remarkable synthesis.  The German logician 
Gottleb Frege was the first to see that the two theories could be combined by 
means of symbolic logic into a single axiom system. In the last decade of the 
19th century, Frege published an important work in which he deduced as 
theorems Peano’s postulates for arithmetic from a handful of more basic axioms 
from logic and set theory.  On the basis of his technical accomplishment, he 
advanced a hypothesis about the nature of mathematics generally.  Mathematics, 
he suggested,  was a part of logic. This thesis, known as logicism,  is rich in 
implications for mathematics, logic, and philosophy. 
 For the mathematician logicism explains what mathematics is all about, 
and what its methods should be.  Math turns out to consist of the working out of 
reason’s implications. Its method is the production of axiom systems that, in 
principle at least, could be formulated in symbolic logic. Non-Euclidean geometry 
then proves to have been a misleading storm in a teacup.  Whatever the 
peculiarities of geometry, arithmetic, the heart of mathematics, remains 
groundable in a priori truths of reason. 
 For philosophy logicism breathes new life into a species of rationalism.  
There still seems to be an important branch of science, namely mathematics, 
which consists of working out the implications of the self-evident principles of 
pure thought.    
 For logic logicism is the supreme validation.  Logic becomes the science 
of pure a priori reason.  Logic provides the symbolic language, reasoning 
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patterns, and axiomatic method  applicable to all the sciences, and for non-
empirical mathematics it provides in addition its basic truths. 
 To show how brief and elegant Frege’s sort of theory can be, I will now 
provide a statement of a basic axiom set sufficient for his purposes.  The system 
will be called F  (for Fregean Arithmetic).  We begin by specifying the set of 
sentences LF of the system.  Only two primitive symbols are necessary beyond 
those of logic, and these two concern sets: the set membership symbol ∈ and 
the set abstract {x|P[x]}.  (Here P[x] is an open sentence P containing the 
variable x.) 
 
Primitive Symbols of Fregean Arithmetic (the System F ): 
 
  Primitive English Symbol Example: Translation of the 
  Symbol: Translation: Name & Idea:  Example in English: 
 ∈ is a member of set membership x∈A x is a member of A 
 {x|P[x]}  set of  x such that P[x] set abstract {x|∃y(x=2y)} the even numbers 
 
 
 The set LF of sentences in the formal language will be all sentences of 
symbolic logic that we can make up from the primitive terms ∈ and  {x|P[x]}  by 
means of the usual expressions of symbolic logic: the sentential connectives ∼, 
∧,∨,→, and ↔; the quantifiers ∀ and ∃; the identity symbol =; and variables x,y,z, 
etc. 
 To define the axiom system  we must now specify a set of axioms, rules 
and definitions.  In place of Peano’s axioms using primitive ideas from arithmetic, 
Frege uses axioms from logic and set theory.  These may be divided into three 
sorts. 
 
The Three Kinds of Axioms for the Axiom System F 
• Axioms for sentence logic (which was then called the propositional calculus) 
• Axioms for predicate logic and identity, (then called the predicate calculus or 

quantification theory and now called first-order logic) 
• Axioms for set theory  
 
Since Frege’s original work in the 1890’s the required axiom set has been 
reduced and simplified.16 In place of  Frege’s original five axioms of the 
propositional calculus, I shall use a three axiom simplification first proposed by 
the Polish logician Jan Lukasiewicz in 1930.  Frege’s original axioms for the 
quantifiers were reduced and stated in a rigorously logistic system by David 
Hilbert and Wilhelm Ackermann  in 1922.  The three axiom version used here is 
                                            
16 Gottlob Frege, Grundgesetze der Arithmetik, vol. I (1893), vol. II (1903) (Jena: Verlag Hermann 
Pohle).  (A partial translation is avialable in Montgonery Furth, The Basic Laws of Arithmetic 
(Berkeley: Univ. of California Press, 1964).  Jan Lukasiewicz and A. Tarski, “Untersuchugen über 
den Aussagenlalkül,” C. R. Soc. Sci. Varsovie 23 (1930).  David Hilbert and Wilhem Ackermann, 
Mathematical Logic [1928] (N.Y.: Chelsea, 1950). W.V.O.Quine, Mathematical Logic [First 
ed.,1940] (N.Y.:Harper, revised ed.1951; Bertrand Russell, op. cit. 
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due to W.V.O.Quine (1940).  For naive set theory I shall use Russell’s two 
axioms of 1903.  Strictly speaking the axioms are called axiom schemata 
because each schema validate a set of axioms, namely the set of all sentences 
that have the same form as the schema.  (More precisely, an axiom is an 
instance of a schema obtained as the result of uniformly replacing in the schema 
all occurrences of non-logical letters by descriptive expressions of the 
appropriate grammatical type.)  One reason I have chosen this particular set of 
axioms is that it needs only the one rule of inference, modus ponens. 
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The System F  for Arithmetic. (Modeled on Frege’s, Grundgesetze der 
Arithmetik, 1893,1903): 
 
1.  The inference rules of F.   RF  contains just one rule: 
 If  ├F P and ├F P→Q, then  ├F Q  (modus ponens) 
 
2.  The Axioms of F.   The set AxF of axioms consist of all sentences of the 
following forms: 
 
Axioms of the Propositional Calculus (Sentence Logic) (Lukasiewicz , 1930) 
1. ├F P→(Q→P) 
2. ├F(P→(Q→R))→((P→Q)→(P→R)) 
3. ├F(∼P→∼Q)→(Q→P) 
 
Axioms of First-Order with Identity (Quine, 1940) 
4. ├F ∀x(P→Q)→(∀xP→∀xQ) 
5. ├F P→∀xP    where x is not free in P 
6. ├F∀xP[x]→P[y] where P[y] is like P[x] except for containing free occurrences 
of y     where P[x] contains free occurrences of x 
7. ├F∀x(x=x) 
8. ├F∀x∀y(x=y ∧ P[x]) → P[y]) where P[y] is like P[x] except for containing 
free occurrences of y where P[x] contains free occurrences of x 
 
Axioms of (Naive) Set Theory (Russell’s version of Frege, 1903) 
9. ├F ∃A∀x(x∈A ↔ P[x]) 
10. ├F A=B↔∀y(y∈A↔y∈B) 
 
Definition (Set Abstract) 
Q[{x|P[x]}] ↔df ∃A(∀x(x∈A ↔ P[x])∧∀B(∀x(x∈A ↔ P[x])→B=A)∧ P[A] 
 
Theorems (Abstraction for Set Abstracts) 
├F ∃A(A={x|P[x]} 
├F ∀y(y∈{x|P[x]}↔P[y]) 
 
Theorem (Extensionality for Set Abstracts) 
├F {x|P[x]}={x|Q[x]}↔ ∀y(y∈{x|P[x]}↔y∈{x|Q[x]) 
 
Reduction of n-place Relations to Sets of n-tuples 
 
Definitions 

<x,y> =df {x, {x,y}}    (ordered pair) 
<x1,…,xn,y>=df <<x1,…,xn,>y> (ordered n-tuple) 

 
Theorems (Propertes of Pairs and n-tuples) 
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├F <x,y>=<y,x> iff x=y  
├F <x1,…,xn>=<y1,…,yn> iff (x1=y1,…,&…& xn=yn) 
 
Theorems (Abstraction for Relations) 
├F ∃R∀x∀y (<x,y>∈R ↔ P[x,y]) 
├F ∃R∀y1…yn(<y1,…,yn>∈R ↔ P[y1,…,yn]) 
├F ∀x1y(<x,y>∈{<x,y>|P[x,yn]}↔P[x,y]) 
├F ∀y1…yn(<y1,…,yn>∈{<x1,…,xn>|P[x1,…,xn]}↔P[y1,…,yn]) 
 
Definitions                                   
AxB =df {<x,y>| x∈A∧y∈B}      Cartesian product of A and B  
A2 =df AxA            Cartesian product of A and A  
A1x…xAn+1 =df (A1x…xAn)xAn 
An =df A1x…xAn            Cartesian product of A1,…,An   
V2 =df VxV            The universal (binary) relation   
 
Theorems 
├F P(V2) = {R | R⊆ V2} the set of 2-place relations  
├F P(Vn) = {R | R⊆ Vn} the set of n-place relations  
 
Theorems (Extensionality for Relations) 
├F If R,R′∈P(V2), then  R=R′ ↔ ∀xy(<x,y>∈R ↔<x,y>∈R′)  
├F {<x,y>|P[x,y]}={<x,y>|Q[x,y]}↔∀xy( P[x,y] ↔ Q[x,y])  
 
├F If R,R′∈P(Vn), then  R=R′ ↔ ∀x1…xn(<x1,…,xn>∈R ↔<x1,…,xn>∈R′)  
├F {<x1,…,xn>|P[x1,…,xn]}={<x1,…,xn>|Q[x1,…,xn]}↔∀x1…xn(P[x1,…,xn] ↔ 
Q[x1,…,xn])  
 
 
 If we now add several of the elementary definitions of arithmetical ideas, 
we can state some of the theorems provable within the system. 
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3.  Definitions within  F. 
 
Symbol: English Translation:           Definition: 
S(n) the successor of n   n∪{n}  
 
0 zero   ∅ 
1 one    S(0) 
2 two    S(1) 
3 three   S(2),   etc. 
Nn the natural numbers  I{A|  0∈A & (x∈A→S(x)∈A)} 
n+m the sum of n and m  the element e of Nn such that there are some non- 
     overlapping sets A and B such that A≈n, B≈m, e≈(A∪B) 
n≤m n is less than m  n⊆m (for n and m in Nn) 
 
 Given these axioms and definitions it is possible to prove as theorems 
Peano’s postulates for arithmetic and from them in turn the truths of the simple 
arithmetic of the natural numbers. 
 
Theorems in  F. 
Peano's Postulates (as stated earlier) are theorems of F. 
  ├F 0∈Nn 

           ├F ∀x[x∈Nn →S(x)∈Nn)]  
  ├F ∀x[x∈ Nn →∼S(x)=0)] 
  ├F ∀x∀y([S(x)=S(y)]→x=y) 
  ├F{0∈A∧x∀y[x∈Nn∧y∈Nn∧x∈A∧S(x)=y]→y∈A)}→∀x(x∈Nn →x∈A) 
 
Peano’s Theorems are (therefore) also Theorems of F. 
  ├F 1≤3 
  ├F 2+2=4 

     
Since most mathematicians would identify the soul of mathematics with 
arithmetic, the success of this derivation goes a long way towards showing that 
mathematics is “part of” logic, and that the methods of mathematics should be 
those of the axiomatic logician. 
 
 

H. Logicism, Russell’s Paradox, and Principia  
 Socrates, the patriarch of philosophy, began the discipline by asking 
questions of the following form:  What is X?  He applied the question to justice, 
courage, beauty, piety, knowledge, and being.  Philosophers ever since have 
been asking the same thing in various ways.  The more basic the topic, the more 
difficult is to answer.  The question What is knowledge? generates the entire 
branch of philosophy known as epistemology.  The philosophy of science falls 
within epistemology, and a special division of the philosophy of science is the 
philosophy of mathematics.    
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 What is mathematics?  This is a question in the Socratic tradition that will 
concern us during this lecture.  It is the central question in the discipline known 
as the foundation of mathematics, a subject that overlaps mathematics, logic and 
philosophy. The question and its answers are intimately tied to formal logic.  We 
shall see how, with the aid of logic, researchers in this century have discovered 
that mathematics is a very strange beast indeed. 
 One answer to the question What is mathematics? is called logicism.  
This school asserts boldly that mathematics is, in a precise sense, part of logic.  
The truths of mathematics are supposed to be deducible as theorems from the 
laws of logic. 
 Logicism then adopts a basic position on the nature of mathematics. It 
asserts that mathematics is to be explained in terms of axiom systems.  On this 
view, mathematical activity consists of nothing more than the formulation of 
axioms systems about mathematical topics like geometry and arithmetic.  It 
follows that the appropriate scientific method for mathematics is nothing more 
than that of producing and appraising axiom systems.  That is, a mathematician 
is an applied logician. 
 We saw that in the 19th Century the discovery of non-Euclidean geometry 
complicated the picture.  Mathematical axioms like the parallel postulate could no 
longer be viewed as self-evident truths of reason.  Rather, a distinction had to be 
made that acknowledged that mathematical axiomatization alone was not 
sufficient for guaranteeing truth-in-the-actual-world or the practical applicability of 
mathematical results.  Mathematicians were forced to admit that empirical 
investigations were needed to supplement mathematics proper and that it is 
these extra-mathematical investigations that ultimately determined an axiom 
system’s utility.   
 Having made this admission, however, mathematicians could still 
regarded their daily tasks as consisting of proving theorems from abstract 
principles.  Their continuing success at axiomatizing various branches of 
mathematics lent credence to the overall picture.  Peano axiomatized arithmetic.  
Frege pointed the way to an even grander synthesis.  He based a single  system 
on the axioms logic and set theory, and then deduced Peano’s postulates as 
theorems.  In the language of the time, he “reduced” arithmetic to logic and set 
theory.   
 As soon as this pretty landscape was sketched, however, it was 
devastated.  Frege circulated his work to Russell prior to its publication, and 
Russell discovered that Frege’s axioms harbored a contradiction.  Frege, 
however, went ahead and published his work with a sad appendix sketching 
Russell’s discovery.  The blow was so severe that Frege writes that he even 
began to doubt the truth of arithmetic itself.   
 You can appreciate how deep the problem is.  On the one hand, the axiom 
system is short, and each of its axioms states an obvious truth, either about logic 
or sets.  On the other hand, a contradiction cannot be true.  Where does the 
problem lie?  A solution has occupied logic and mathematics well into this 
century, and we shall pursue in the next lecture.  Let us begin by stating 
Russell’s derivation of what is called Russell’s Paradox.  The proof is short and 
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simple.  It consists of applying the principle that any definable set exists.  
Russell’s strategy is to define the set {x|∼(x∈x)}, called Russell’s set.  It has the 
property that if something is in it, then it is not in it, and vice versa.  
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Theorem.  Russell's Paradox.  (Discovered by Russell and reported by Frege, 
Grudgesetze, Vol II., 1903): 
 The combined axioms of logic and naive set theory in the system F are 
 inconsistent. 
 
Proof  
Axiom 9 reads: 

1.   ├F∃A∀x(x∈A ↔ P[x])  

We existentially instantiate Line 1 for A using the name of convenience {x|P[x]}: 

2.   ├F∀y(y∈{x|P[x]}↔P[y]) 

Since P[x] is a schema that may be replaced by any open sentence with free-
variable x, let us apply it to the case in which P[x] is the formula ∼(x∈x).   
Then, P[y] would be ∼(y∈y), and Line 2 yields: 

3. ├F∀y(y∈{x|∼(x∈x)}↔∼y∈y)) 

Line 3 records the bare fact that an entity y is in Russell’s set {x|∼x∈x} if, and only 
if, y has the defining property of the set, namely ∼(y∈y).  Moreover, Line 3 is true 
for all values of y.  Since we may replace all occurrences of y in Line 3 with any 
entity, let us replace it with the entity named {x|∼(x∈x)}.   
That is, we obtain by Universal Instantiation from line 3 the instance: 

4. ├F {x| ∼(x∈x)} ∈ {x| ∼(x∈x)} ↔ ∼({x| ∼(x∈x)} ∈ {x| ∼(x∈x)}). 

But Line 4 is contradictory, being of the form  P↔∼P.  QED 
 
 This discovery caused a crisis.  On the one hand, Frege’s axioms were 
viewed as rightly capturing the ideas of logic and set theory. If these ideas are 
incoherent, then arithmetic may be incoherent as well.  On the other hand, if the 
axioms fail to capture the ideas properly, then a better, more accurate set of 
axioms should be sought.  Russell chose the second alternative and set about 
seeking a better axiomatization.  Thus began a major ten year collaboration with 
the philosopher-mathematician Alfred North Whitehead.  In 1910 Russell and 
Whitehead published the first volume of Principia Mathematica, a complex 
axiomatic effort to rescue set theory from paradoxes and to deduce from it the 
theory not only of the natural numbers but of the real numbers as well.17   Their 
solution to the paradoxes is to posit a structural organization on the universe of 
sets that assigned each set to a rank, called its type.  It requires that entities of  
type τ form sets of the next succeeding type  τ+1.  Conversely, sets of type τ+1 
are composed only of entities from type τ.  This restriction is introduced into 
Frege’s axioms for set theory by attaching to each variable a superscript 

                                            
17 Alfred North Whitehead and Bertrand Russell, Principia Mathematica, vols. I-III (Cambridge: 
Cambridge University Press, 1910-1911). 
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indicating its type.  The axioms are then revised so that the only theorems of set 
membership that can be deduced have ∈ flanked by an expression on the left 
that is of one type lower than the expression on its right.   Russell called his 
version of set theory the theory of types.   We shall call the new axiom system 
by its traditional name, PM (for Principia Mathematica).18 The language LPM of 
the new set theory is identical to that of LF except that all variables have a type 
superscript. The axiom system is likewise the same except that variables have 
type superscripts and type-sensitive axioms for set theory replace Frege’s two 
unrestricted axioms.  The revised system is described below. 
 
The Axiom System PM, the Simple Theory of Types. (Modeled on Whitehead 
and Russell, 1910) 
 
1.  The Axioms of PM.   The set AxPM is the same that of AxF  except that 
in axiom schemata 4-8, x  is replaced by xτ and y by yτ.  In addition axiom 
schemata 9 and 10 are replaced by: 
 
  9*.  ├PM∀yτ (yτ∈{xτ| P[xτ] } τ+1↔P[yτ] ),   for any P[xτ]  
10*.  ├PM ∀xτ+1∀yτ+1[xτ+1=yτ+1↔∀zτ (zτ∈xτ+1↔zτ∈yτ+1)]  
 
2.  The Inference Rules of PM.   The set RPM is the same as that of F,  
containing just modus ponens. 
 
 Is the new theory PM consistent?  Can we deduce a contradiction within 
it?  Proving an axiom system consistent is hard to do in principle.  We can prove 
it inconsistent if we can discover that a contradiction follows as a theorem.  It was 
in this manner that Russell showed that Frege’s system was inconsistent.  
However, PM was designed so that neither Russell’s  paradox, nor any other 
contradiction known to be provable in F, could be proven in PM.  Thus it appears 
that PM is in fact consistent.  Indeed, in the eighty years since the publication of 
the theory, nobody has found a contradiction.  All the axioms appear to be true 
and its inference rule valid.  Hence PM appears to be sound.  Moreover, within 
PM  it is possible to prove as theorems the basic laws of the branches of 
arithmetic that it endeavors to encompass.  Thus it appeared to be complete as 
well.  In the period 1910-1930, it appeared that the research enterprise known as 
logicism might well have succeeded.19 

                                            
18For those familiar with the basic notation of logic a good exposition of Russell and Whitehead’s 
theory is Irving M. Copi, The Theory of Logical Types (London: Routledge & Kegan Paul, 1971).  
A more rigorous statement of the axioms is given in Chapter 2. 
19 An entraining introduction to logicism and the logica personalities concerned is the graphic 
novel Apostolos Doxiadis and Christos H. Papadimitriou, Logicomix (N. Y.: Bloombury, 2009).  
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II. GÖDEL’S INCOMPLETENESS PROOF 

A. Kurt Gödel 
 In 1931 Kurt Gödel, a young Austrian logician, produced a mathematical 
proof of the falsity of logicism.  The proof is famous.   Though less well known to 
the general public, it ranks with items like the theory of relativity as one of the 
intellectual feats of the century.  What I shall do in the time remaining is sketch 
the highlights of this achievement.  Though the full proof is long and technical, its 
general strategy is quite accessible. 
 In a nutshell, what Gödel showed is that any axiom system powerful 
enough to prove Peano’s axioms for arithmetic would leave out at least one truth 
of arithmetic.  Let us begin by being very clear about what arithmetic is. 
 The Language Arithmetic. Arithmetic is written in a language.  In this 
regard arithmetic is like any other science.  The sciences investigate the world 
and record what they discover in sentences.  These sentences are all written in 
some language.  What is somewhat unusual about arithmetic is that its language 
is mathematical.  It consists of the symbols.  The use of symbols is dictated by 
the unusual subject matter of arithmetic.  For our purposes here we may identify 
arithmetic with the study of the natural numbers (the positive integers plus 0) and 
the operations of addition and multiplication.  The subject matter is precise and 
restricted.  The notation of symbolic logic was designed first by Frege and later 
by Russell and Whitehead in Principia Mathematica to talk about arithmetic.  In 
his original paper Gödel takes the axiom system of Principia as his reference and 
refers to its language.  He assumes that the part of the language that constitutes 
“arithmetic”, i.e. the part which states theorems that uses numerals, the 
arithmetic operations and relations, has a “standard interpretation.”  That is, he 
assumes that the numerals like ‘2’ stand for the number two, and that the 
operator S stands for the successor operation, that + stands for the addition 
operation, etc.  Thus he understands the set of theorems of the axiom system to 
be the closure under modus ponens of the set of axioms and definitions.  We 
shall call this axiom system in PM and its language LPM.  It is built up from a 
basic vocabulary that may be divided into the following “parts of speech:” 
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The  Parts of Speech of LPM 
 
Descriptive Expressions  Semantics : Referents in the Standard Interpretation 
Predicates:  =, ∈,  ≤,  etc.   stand for sets and relations on numbers  
Functors: 20  S,+,x    stand for operations on numbers 
Constants:  0,1,2,...,Nn    name particular numbers or structures composed of  
     numbers 
Variables: xτ,yτ,zτ,...,xτ+1,yτ+1,zτ+1,...   range over objects at the various levels in the hierarchy  
     of set-types.   
 
Logical Signs 
∼,∧,∨,→,↔,∀,∃,(,)   interpreted by truth-tables and compositional rules 
 
For simplicity we shall assume that by a sentence of arithmetic we mean a 
sentence written in the syntax of LPM.  
 Arithmetic Describes Facts in the Standard Interpretation and the Actual 
World.  Gödel assumes that the language of arithmetic has a standard 
interpretation over entities in the actual world, among which are numbers, and 
that this makes some formulas true and others false.  He moreover assumes that 
we by and large know which is which.    
 
The Standard Interpretation of LPM. 
 
By a standard interpretation of  LPM  which we shall call  S, we mean any interpretation over 
some set D (called the “domain”) that contains as a subset the set of all natural numbers, and has 
an the interpretation S that assigns referents to constants, predicates, and operators that meets 
the following conditions: 
1. for any numeral n (which is a constant), S(n) is the natural number conventionally assigned 

to n; 
2. S(=) is the identity operation,  
  S(∈) is the set membership relation, 
 S(Nn) is the set of natural numbers, 
  S(<) is the less than relation on natural numbers, 
  S(S) is the successor operation on natural numbers, 
  S(+) is the addition operation on natural numbers, and 
  S(x) is the multiplication operation on natural numbers. 
 We say a sentence P is true in S, or S╞ P, if P is determined to be true by the assignments S 
over the domain.21 
  

                                            
20 Here S is the name for the successor function, i.e. if x stand for n, then S(x) stands for n+1, and 
Nn is  the name for the set of natural numbers {0,1,2,...}. In the axiomatic development of PM most 
of the vocabulary mentioned here (including ≤,⊆,S,+,x,0,1,2,..., Nn) is in fact introduced by 
abbreviative definitions and does not appear as part of the primitive name, predicates, or 
functors.  All that is needed as primitives are ∈ and =.  The Axiom of Abstraction may even be 
rewritten as explained in Chapter 2 so as to avoid the notation for set abstracts which is then also 
introduced by definition:  
 9**.  ├PM∃yτ+1∀yτ (yτ∈yτ+1↔P[yτ]),   for any P[xτ]. 
21 The notion of true relative to an interpretation is explained in detail in Part II. 
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Examples of Sentences in LPM:  Truth-Value in the Standard Interpretation: 
 
 2+2=4       true 
 2+2=5       false 
 2≤3+6       true 
 3∈Nn       true 
 ∀xτ (xτ≤ S(27)→ xτ≤ S(28))    true 
 ∃xτ (xτx2=3)      false 

 
Contrasting Facts about Numbers and Sentences.  Anything, of course, 

may be grouped into sets, and this includes the words and symbols of a given 
language.  For example, the well-formed (“grammatical”) sentences of English 
form a set.  So too do the well-formed English sentences in the active voice.  
Indeed, the latter is a subset of the former.  Likewise the sentences of LPM may 
be grouped into sets.  It is the set of all well-formed sentences of PM.  An 
important subset of sentences of PM is the set of sentences of PM true in the 
standard model of arithmetic, which is known less formally as the set of 
“arithmetic truths.”  
 

   
 
These sets, moreover, are assumed to be part of the actual world.  That is, one 
of the sets of things which exist in our world is the set of grammatical sentences 
of English, another is the set of English sentences in the active voice.  The 
former contains the latter and a sentence describing that fact about sets would 
be true in the actual world.  Likewise the set of sentences of LPM exists in the 
actual world, and so too does the set of true sentences in LPM .  A further 
sentence saying that the latter is a subset of the former would likewise be true in 
the actual world. 
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Examples of Sentences:    Truth-Value in the Actual World: 
 
The set of English sentences in the active voice 
 is a subset of the set of English sentences.   true 
The set of English sentences is a subset of the set 
 of English sentences in the active voice.    false 
The set of truths in LPM  is a subset of the set of 
 sentences of LPM .      true 
The set of sentences of LPM is a subset of the set 
 of truths in LPM .       false 
 
A major feature of Gödel technique is to talk simultaneously about numbers and 
about language, about what numbers have what properties and about which sets 
of sentences in LPM  are subsets of others.  Thus, in what follows we shall be 
dealing not only with the truths of arithmetic (in the standard interpretation over 
the actual world), but also with truths about sets of sentences of LPM  (in the 
actual world).  It will be important to keep straight at each point whether we are 
talking about numbers or about  the language that talks about numbers. 
 Theorems and Truths: Completeness.  There is a distinction between the 
truths of arithmetic (relative to the standard interpretation) and the set of 
theorems of Principia Mathematica.  Frege, and later Russell and Whitehead, set 
out to axiomatize the truths of arithmetic.  Like most of us, they felt they already 
had a good idea of what these truths are, and they set about devising an axiom 
system to capture them.  If they were to succeed, then all the intuitive truths of 
arithmetic would follows from the axioms by the rules, and no truth would be left 
out.  The set of theorems of the system would be identical to the set of arithmetic 
truths.  In the language of logistic systems (Lecture 6), the axiom system would 
be complete.   
 
Definitions.  Let S be a logistic (axiom) system for arithmetic and S the standard 
interpretation for arithmetic:  
 S  is sound  means that for any P, if ├S P, then S╞ P  
 S  is complete  means that for any P, if S╞ P, then ├S P 
 
 When the context is clear, logicians generally shorten sound and 
complete to just complete.  Using this convention, then, Frege, and Russell and 
Whitehead were endeavoring to produce a complete system for arithmetic. Gödel 
showed that any such attempt would fail. 
 The issue may be depicted clearly with Venn diagrams.  The diagrams 
below show two worlds.  In each there are two sets, and in each world the two 
sets are identical, because their areas outside the intersections are empty 
(shaded).  The diagram on the right depicts what the actual world would be like if 
PM ‘s axiom system were successful. 
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  Sets A and B are identical  Completeness: 
       P is a truth of arithmetic iff ├ PMP 

 
What Gödel showed is that in fact neither the axiom system of PM,  nor any other 
axiom system, could be complete.  Given any proposed axiom system (in LPM), 
he provided a general method that would produce some standard truth of 
arithmetic (in LPM) that was not a theorem of the system.  This truth is stated in 
what is called the Liar Sentence.  He showed that with respect to PM (or any 
sound axiom system) that the standard model is rather depicted as follows: 

 

 
 
  Proof Strategy.   Gödel’s proof strategy turns on an obvious implication 
of completeness.  Suppose for the sake of argument that the  system PM  were 
complete.  Then, by definition, the set of truths written in the language LPM (“the 
truths of arithmetic”) and the set of theorems of PM  would coincide. Now 
arithmetic is a very subtle and complex language in which quite complex 
thoughts can be expressed.  Let us make a second supposition.  Suppose that 
the language of arithmetic were rich enough to talk about the set of theorems 
itself.  Suppose, in other words,  that  LPM  contains a predicate, let us call it Th, 
that stands for the theorems of PM.  It would then follow that Th  stood not only 
for the theorems of PM but also for the truths of LPM, because the completeness 
hypothesis guarantees that these two sets would be identical. It is at this point 
that a problem arises.  It has been known since ancient times that the Liar 
Paradox follows in any language that contains its own truth predicate.  Since, on 
our hypotheses, LPM contains Th that stands for the set of truths written in LPM, it 
should be possible to prove some sort of liar paradox, and Gödel does so. Such 
is Gödel’s proof.  It is a reduction to the absurd of the completeness hypothesis. 
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 Gödel built these insights into a proof.  First of all he showed that it is, in 
fact, possible for arithmetic to talk about its own theorems. Because it is possible 
to introduce by definition into the language LPM of Principia Mathematica, which 
contains among its primitive terms expressions like = and ∈, the standard 
descriptive terms of arithmetic, namely the predicates like and < and >, constants 
(numerals) 0,1,2,…, and functors like + and ×, it is possible to formulate in LPM all 
the formulas we would like to express about arithmetic.  Indeed, it is possible to 
formulate all the propositions of arithmetic, both true and false.  For example, the 
constants (numerals) 2, 4 and 5 can be introduced into the language of LPM by 
definition and so can the functor +.  Thus, both 2+2=4 and 2+2=5 are formulas of 
LPM.  The former is a “truth of arithmetic” because it is true under the standard 
interpretation S of LPM, i.e. 2+2=4 is true if + stands for the addition function, 2 
for the number two, 4 for the number four.  Likewise, 2+2=5 is false in the 
standard interpretations in which 5 stands for the number five.  For this reason 
LPM is called the language of arithmetic. 

Now, from of the axioms of Principia it is possible to prove as theorems 
the basic axioms of Peano arithmetic and from these the principle results of 
arithmetic generally including real number theory.22  That is, it is possible to 
prove within Principia most of what we think is true in arithmetic. Let us call Th all 
the theorems of Principia formulated in the language of arithmetic.  That is Th is 
the set of theorems of arithmetic.  Gödel showed that, in a sense, it is possible to 
formulate in Principia a predicate Th that in a sense names exactly this set.   

The constants and predicate of language of arithmetic under its standard 
interpretation stand for numbers, relations of relations on numbers, and functions 
on numbers.  They do not strictly speaking stands for syntactic entities like 
variables, constants, predicates, functors, formulas, or sets of formulas.  Th, 
however, is a set of formulas.  Gödel showed that although strictly speaking 
under S, the standard interpretation of LPM, the terms arithmetic do not stand for 
expressions in the language of LPM, there are in LPM sets of terms that stand in a 
1 to 1 relationship with to various parts of speech (types of expressions in LPM ), 
including a set of numbers that stands in a 1-1 relation to the set of formulas of 
LPM.  In addition, there are predicates that stand for sets and relations among 
these numbers.  In particular he showed that: 

• LPM  contains a set of terms that stand under S for a set of numbers 
that stands in 1 to 1 relationship to the set Th of theorems of LPM 
and  

• LPM  contains a predicate, called Th (in italics), that stands under S 
for these numbers.   

It follows that if n is a numeral, then n∈Th is a formula.  Moreover, if n stands for 
the number under S that stands in the 1 to 1 relation to the formula P, then n∈Th 
is true under S if and only if P is in Th.   That is, for any formula P, there is a 
formula in LPM that is true under S if and only if P is a theorem of arithmetic.  In 
short, whether a formula is a theorem can be expressed by a formula in LPM. 

                                            
22 On the linitations of the theory of real numbers provable in Principa, which makes use of the 
theory of types, see Irving M. Copi, The Theory of Logical Types (London: Routledge, 1971). 
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 It follows that if Principia were complete, then truth would also be 
expressible because truth and theoremhood would coincide by completeness.  In 
particular, if arithmetic were complete and the set Th of theorems coincided with 
the set of truths or arithmetic, then Th would be in effect a truth predicate 
because it would hold that n∈Th iff P is a truth of arithmetic, where n functions as 
a kind of indirect name of P.  The strategy (of Tarski’s proof of Gödel’s result) 
is a reductio, to show that on the assumption that the elements of Th stand in a 1 
to 1 to the set of truths of arithmetic, the liar paradox follows. 
 To prove that the language of PM does not contain its own proof 
predicate, it is necessary to employ a what is called the lair sentence.  This 
sentence says of itself that it is not true.  More formally, it possible to find a term t 
that replaces the variable x in the open sentence x is not true such that t has as 
its reference the Gödel number of the formula t is not true. The resulting formula t 
is not true is the liar sentence.  To construct this sentence Tarski made use of a 
more general fact about the expressive power of the language of PM:  any open 
sentence can be appied to some term so that the resulting formula says of the 
formula that the open sentence is true of it.  More formally, for any open 
sentence P[x] there is some term t that has as its referent the formula P[t].  This 
expressive property is called self-predication. Tarski simply applies this general 
fact about expressibility to the particular open sentence x is not true.   

Most of the work of the proof consists in proving three lemmas 
(intermediate metatheorems from which the final result follows): 
 
The Steps of Gödel’s Proof 
 
Lemma 1. Self-Predication.  Any open sentence can be predicated of itself.  
Lemma 2. Tarski’s Theorem.  No language that expresses its own syntax contains its own truth 
 predicate. 
Lemma 3. Expressibility of Theoremhood. Any sound axiom system for arithmetic, like PM, 
 contains a predicate Th that stands for the set of theorems of the system. 

 
 Both lemmas depend on the ability of arithmetic to, in a sense, talk about 
itself.  Let us pause for a moment to ask what it means to talk about arithmetic.  
What is arithmetic anyway?  It was essentially this question that Gödel had been 
investigating before he came upon his proof.  He was doing basic research on a 
deep question in mathematics: What is the nature of arithmetical calculation?  
His proof of incompleteness was a by-product of this more basic work. 
 

B. Strategy Part 1.  Arithmetical Calculations and Recursive Functions. 
 In some sense we all know what arithmetical calculation is.  We spend 
years as children learning the techniques of adding, subtracting, multiplying and 
dividing -- methods that apply in principle to any numbers, no matter how large. 
Moreover all examples of calculation share some common features. In the 
process, say, of multiplying,  we begin with the multiplicandum and the 
multiplicans, and by a short series of prescribed steps we arrive at their product.   
The process proceeds in steps that are themselves simple and relatively 
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foolproof.  Such calculation procedures are called algorithms.  Gödel was one of 
the first to investigate their properties, and he succeeded in advancing the first 
adequate definition for the concept. 
 There are many ways that the phenomenon of mathematical calculation 
might be explained, but Gödel hit upon a particularly useful one. He decided to 
define the set of calculable arithmetic operations by actually constructing it bit by 
bit. 
 Definitions by Abstraction.    Normally in philosophy or science we expect 
a set to be defined by providing a list of the necessary and sufficient conditions 
for membership within it. Such were Aristotle’s essential definitions. He defined 
the species human being by rational animal, a paraphrase intended to provide a 
list of individually necessary and jointly sufficient conditions for membership in 
the species.  Modern zoologists would probably offer a different characterization, 
but it would be essentially of the same sort.  It would provide a more satisfactory 
list of necessary and sufficient conditions.  In computer science what 
philosophers call definition by necessary and sufficient conditions is called an 
intensional definition.  In logic a definition of a set in terms of such conditions is 
often said to be by abstraction. 
  
Definition by Necessary and Sufficient Conditions (Abstraction) 
 
A definition by necessary and sufficient conditions, also called an 
intensional definition and definition by abstraction, has the following form: 
 
  P iff Q 
  A = B 
  A = {x| P[x]}  
 
The term to the left is called the definiendum (Latin past participle for the thing 
being defined), and the expression on the right the definiens (Latin active 
participle for the thing doing the defining.) In addition the definition must meet at 
least the following conditions: 
• The definiendum must be viewed as a grammatical unit, and the definiens  

must be a  phrase of the same grammatical type (a sentence or a set name). 
• The definiens and the definiendum must have the same meaning in ordinary 

language or scientific usage. (In philosophical jargon, they are said to have 
the same intention). 

• The definiens must not contain any expression defined in terms of the 
definiendum. 

 
Note that strictly speaking the identity sign in A = B, A = {x| P[x]}, and {x| P[x]}= 
{x| Q[x]} may be replaced by the biconditional.  We do so by replacing the identity 
assertion by a biconditional logically equivalent to it by means of the Axiom of 
Extensionality in set theory.  The equivalents are as follows: 
 A = B  means  ∀x(x∈A ↔ x∈B) 
 A = {x| P[x]} means  ∀y(y∈A ↔ y∈{x| P[x]}),  or  equivalently  
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     ∀y(y∈A ↔ P[y]) 
 {x| P[x]}= {x| Q[x]} means ∀z(z∈{x| P[x]} ↔ z∈{y| Q[y]}) ,  or  equivalently 
                                         ∀y(P[y]↔Q[y]) 
 
Hence all intensional definitions are at root biconditionals.  Accordingly, the 
definiendum and the definiens are said to be intentionally equivalent. 
 Definitions of this sort, however, are not without their problems.  It is 
precisely a definition by abstraction that generates Russell’s paradox.  We define 
the set {x|∼x∈x}.  Since we can define it, it becomes a legitimate instance of the 
universal quantifier in the Frege’s Principle of Abstraction, and we get the 
contradiction.  Other contradictions are also generable in the same way. 
 One possible explanation of the fact  that some definitions generate 
paradoxes is that the sets defined in these cases are very large.  Indeed it can be 
shown that they are transfinite (in the sense explained in Lecture 6): they are 
infinite but not mapable 1 to 1 onto the natural numbers. 
 Inductive Definitions.  There is a special subclass of intensional 
definitions, however, that is less problematic.  It permits the definition of infinite 
sets and does not generate paradoxes if the sets used in the definition are 
themselves unproblematic.  These definitions do not state categorically a list of 
necessary and sufficient conditions for membership but rather construct a set 
element by element.  
 The construction process begins by specifying some list of starting 
elements.  These are put into the set first.  Then some construction methods are 
stipulated.  Each method explains a way of starting with some elements already 
in the set, and then using them to find some new element that is then added to 
the set. The process is called a definition by induction, and the set is said to be 
obtained “by closing the set of initial elements under the operations of 
construction.” 
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A set A is said to be inductively defined in terms a of a set B of basic elements 
and a set of rules R as follows:23 
 1. (Basis Clause.)  All elements of  B are in A.  
 2. (Inductive Clause.)  If elements e1,...,em are all in A, and if some  
  rule in R applied to e1,...,em designates the element  en, then en is  
  in A. 
 3. (Closure Clause)  Nothing else is in A. 
 
 Gödel provided an inductive definition for the set of calculable 
mathematical operations.  He called these calculations recursive functions, but 
they are today know as the primitive recursive function.24   He used the format 
of an inductive definition.  First he chose a small number of operations that were 
obviously “calculations” and put these into a “basis set.” He then defined two 
ways in which (a finite number of) calculation operations might be combined into 
a single slightly more complex method of calculation.  He then closed the basis 
set under the two methods of “construction.” 
  

                                            
23Inductive definitions are a subvariety of definitions by abstraction because the inductive form 
may be restated using set theory into an identity that does not mention the definiendum in the 
definiens: 
 A = I{x| B⊆x ∧ ∀y1...∀yn∀r∀z[(y1∈x ∧ ... ∧ yn∈x ∧ r∈R ∧ R[y1...ynz]) → z∈x]}  
(Here I{x| P[x]} is set theoretic notation for the set of objects in common among the sets 
satisfying P, i.e. {y|∀z(P[z] → y∈z)}.) 
 When the elements of the set are themselves sets, and there are an infinite number of 
these, new members of the set may be constructed by yet a further method called transfinite 
recursion: if C⊆ A, the UC∈A.  In this book we shall be dealing only with countably infiite sets 
that are constructed without the use of transfinite recursion. 
24 Authors subsequent to Gödel now usually call these the primitive recursive functions to 
distinguish them from other broader definitions of recursion now current. 
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The Basic Primitive Recursive Functions 
 
The Successor Function S For any natural number x:        S(x) = x+1 
Constant Functions Kc    For a constant c:   Kc(x) = c 
Index Functions In    For the n-th position: In(x1,...,xn,...,xm)=xn 
 
Rules for Specifying New Recursive Functions from Old 
 
The Composition Rule: 
 
Simple Version.  If h and g are 1-place recursive functions, then the following 
defines a 1-place recursive function f: 
    f(x) = h(g(x)) 
 
General Version. If h is an m-place recursive function and g1,...,gm are all n-place 
recursive functions, then the following defines an n-place recursive function f: 
 
    f(x1,...,xn) = h(g1(x1,...,xn),...,gm(x1,...,xn)) 
 
The Recursion Rule: 
 
Simple Version.  If c is a constant and g is a 2-place recursive function, then the 
following defines a 1-place recursive function f: 
    f(0) = c 
    f(x+1) = g(x,f(x)) 
 
General Version.  If g is a n-place recursive function and h is a n+2 place  
recursive function, then the following defines a n+1 place recursive function f: 
    f(0,y1,...,yn) = g(y1,...,yn); 
    f(x+1,y1,...,yn) = h(x,f(x,y1,...,yn),y1,...,yn) 
 
 
Definition of Recursive Function.  The set  PRF of  (primitive) recursive 
functions is the set defined by induction from the set of basic elements {S,Kc,In} 
(for all constants c and positive integers n)  and the rule set {Composition, 
Recursion}: 
 1. (Basis Clause.)  {S,Kc,In}⊆ PRF 
 2. (Inductive Clause.)  if R is in {Recursion, Composition} and  
  f1,...,fm are all in  PRF and g is definable from f1,...,fm by R, then g is 
in    PRF. 
 3. (Closure Clause.)  Nothing else is in  PRF. 
 
 Notice that by this definition a function is (primitive) recursive simply by 
virtue of being a member of the set PRF.  A function may be in that set and we 
not know it.  It may be in the set while we only possess a poor definition of it, one 
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that is not calculable and which is not sufficient for showing it meets the defining 
conditions for being in PRF.  If however we are to show it is in PRF, we must be 
able to show it is either a basic function or is one definable from basic functions 
by means of recursion or composition.  These facts are relevant to the 
philosophical issue of whether the operations (a.k.a. functions) that the brain 
performs count as computable (recursive) functions.  To show that a function the 
brain performs is computable one would have to have a definition of that function 
that met the empirical requirements (whatever they might be) sufficient for 
knowing that it does in fact characterize a brain process.  In addition the 
definition would have to be such that we could prove it equivalent to a definition 
that met the membership conditions in PRF. 
 
Examples of PRF’s 
 
Calculation Operations Defined by the Recursion Rule. The two-place addition 
operation + is defined by recursion in terms of the one-place successor 
operation S:   
 x+0=x 
 x+S(y)=S(x+y) 
The 2-place multiplication operation x is defined by recursion in terms of the 
two-place addition operation +: 
 xx0=0 
 xxS(y)=(xxy)+x 
 
Calculation Operations Defined by the Composition Rule.  Given the constants a 
and b, we construct the linear function h with slope a and y-intersect b, namely  
y=ax+b as follows.  (Note that we can calculate y from a, b, and x.) 
 Let n be the number named by the constant c.  Then Kc is the constant 
function pairing any x with n.  Further, let I1 be the index function that assigns 
any x to itself.  Note that both Kc and I1 are basic recursive functions. Let a and b 
be constants (i.e. numerals). We define three functions f, g, and h by 
composition. 
 f(x)=Ka(x)xI1(x) (In traditional notation: f(x)=axx) 
 g(x)=Kb(x)+I1(x) (In traditional notation: g(x)=x+b) 
 h(x)=g(f(x))  (In traditional notation: h(x)=ax+b. 
Thus, by composition we have defined h, the equation for a line with slope a and 
y-intersect b. 
 
 Using recursive functions, Gödel was able to define a second important 
idea,  that of a decidable set of numbers.  Intuitively, a decidable set is one for 
which there is a testing procedure that allows us to “decide” whether a given 
element is contained in the set. 
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Definitions 
 A decision procedure or calculable characteristic function for a set C 
of natural numbers is a recursive function f defined for all natural numbers  n 
such  that f(n)=1 if n∈C and f(n)=0 if n∉C. 
 
 A set C is decidable  iff there is some decision procedure for C. 
 
Example of a Decidable Set:   The Set of Prime Numbers 
 We define a finite testing procedure f : For any number n, divide all 
 numbers less than n, one at a time, into n.   
 If none of these (other than 1 and n itself) divides without a remainder,  
  then n is in the set of prime numbers, and set f(n)=1   
 Otherwise n is not in the set, and set f(n)=0 
  
 As we shall see in the Chapter 3, recursive functions and decidable sets 
are of tremendous importance theoretically.  They underlie computer science and 
make computers possible.  What we are interested in today, however, are 
Gödel’s application of these ideas to the foundations of arithmetic.  
 

C. Strategy Part 2.  Gödel Numbering: Arithmetization of Syntax 
 What We Can Talk About in Arithmetic.  Let us look at the symbolic 
resources of the syntax in LPM.  Though limited, it includes key logical and 
mathematical expressions. It includes the expressions of logic (the connectives, 
the quantifiers, the identity sign, and type superscripted variables) as well as 
expressions for set theory and the definable expressions of arithmetic. With 
these ideas alone it is possible to write formulas in LPM  that name the key ideas 
used in calculation.  We saw in the last lecture how to define Nn, the name of the 
set of the natural numbers, and how to give a name (called a constant or 
numeral) to each individual natural number.  For example, the numeral 0 that 
names the number zero is a primitive symbol of the syntax. Using the primitive 
symbol S that stands for the successor operation, it is then possible to construct 
a name for the number one, namely S(0).  Likewise two has the name S(S(0)), 
etc.  We also saw how to define the operations for addition and multiplication.   
 Intuitively, when we say an expression E  in LPM  “expresses” or “stands 
for” a relation of arithmetic, we mean that the sentence made by predicating E of 
a series of numerals is true just when the numbers in fact have the relation E 
expresses. To make this idea clearer, let us establish some notation in the meta- 
and object languages to distinguish between a number and the numeral that 
stands for it.  Let us use bold face letters to stand for natural numbers.  For 
example, we say that n is a natural number.  Note that numbers are part of our 
world and hence n is one of the many entities that enters into the facts that make 
up our world.  The sentences of LPM  make assertions about these facts and talk 
about n.  The ones that assert facts that actually obtain are true.  Now, to talk 
about n, we switch to language.  Let us establish the convention that the 
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boldfaced underlined letter n  is a numeral (constant) in the syntax of LPM  that 
stands for the number n in the actual world, and which we have just named by  
‘n’ in the metalanguage. That is, n is a expression in language, specifically an 
expression of LPM,  that names the number n  which is an object in the actual 
world.   With this convention we can explain more clearly what it is for an 
expression in LPM to express or stand for a relation in the world.  Let us adopt the 
notation that P(x1,...,xk) is a sentence P containing free variables x1,...,xk. 
 
Definition  
 If R is an n-place relation on the natural numbers, then R is said to be 
 expressible in LPM iff there is some sentence P(x1,...,xk)  of LPM  such 
 that:  
  n1,...,nk stand in the relation R in S iff ╞SP(n1,...,nk) 
                   (i.e. n1,...,nk are elements in the domain of S and R is a relation  
                   on that domain such that <n1,...,nk>∈ R iff <S(n1),…, S(n1)>∈S(P)) 
 
 If C is a subset of the natural numbers, then C is said to be expressible 
 in LPM  if there is some sentence P(x) of LPM  such that, for any n: 
   
  n∈C iff it is a truth of arithmetic that P(n) . 
 
 
 The Arithmetization of Syntax. Gödel’s work on recursive functions 
suggested to him a way in which the notation of arithmetic might be used to talk 
about the syntax of the language of arithmetic itself.  The process of using the 
language of LPM  to talk about the expression LPM  is known as the 
arithmetization of syntax.   
 Suppose we could map a set of the numbers 1 to 1 with the set of  the 
theorems of PM in such a way that whatever was true of theorems was reflected 
in a corresponding fact about their numerical representatives, and vice versa. 
The numbers could then serve as “proxies” for the theorems themselves.  We 
could investigate the theorems by investigating their numerical proxies and then 
translating the facts discovered into facts about the theorems themselves.  
 Such correspondences are often used in mathematics.  Indeed, it is a 
common methodological practice in logic and mathematics to investigate the 
properties of one structure by discovering those of another structure isomorphic 
to it. 
 
Definition 
 
A mapping h the elements of structure S1 onto those of structure S2 is called an 
isomorphism (and h(x) in S2  is called the proxy of x in S1) iff  
 1. h is a 1 to 1 mapping, and  
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 2. each relation R on elements of S1 is paired with a relation Rh  of S2 
   in such a way that 
     x1,...,xn stand in relation R iff h(x1),...,h(xn) stand in relation Rh. 

 
It follows straight from the definition that the properties of proxies correspond to 
facts about the structure they represent. 
 
Theorem.  If there is an isomorphism h from structure S1 onto structure S2, then: 
 
       x1,...,xn stands in relation R in S1 iff h(x1),...,h(xn) stand in relation Rh in S2. 
 
 Gödel made proxies of elements in the syntax of LPM from numbers.  The 
process is called the arithmetization of syntax.  He was then able to investigate 
the properties of these numbers with the assurance that they directly reflected 
properties of the syntax itself.  He actually made numerical proxies for three 
different sets (structures) within syntax: 

• the primitive signs used to make up expressions; 
• the strings made up from these signs; 
• the ordered sequences (or series) of strings. 

He provided number proxies for each element of these three sets.   
 It is important to recall the difference between a sign and a string of signs.  
In LPM the (primitive) signs are: 
  ∈, =,  ∼, ∧, ∨, →, ↔, ∀, ∃, (, ), xn

m (for each n and m). 
These are put together (from left to right) in any combination to make up a 
string. For example, these sign may be used to make up the strings: 
 
     ∃x6

4(x6
4=x6

4) 
     )x345

2∼∼↔∈ 
 
The first happens to be a well-formed sentence of LPM and the second is not.  
Both however are strings.  A sequence (also called a series) of strings is an 
ordered list of strings.  For example, the display of two examples above is 
composed of two strings.  It is a series of length two.  Some series of strings are 
important, especially those series of sentences  that amount to proofs. 
 From the viewpoint of the general strategy of Gödel it is not important to 
know the details of how he assigned number proxies to each of these sets, and 
there are in fact many different ways to do so.  What is important, however, is 
that he was able to assign  a number substitute for each basic sign of LPM, for 
each string of these signs, and for each series of such strings.  Because it is well 
known and of some historical interest, Gödel’s original method of enumeration is 
given below. 
 Gödel Numbering. Before stating Gödel’s enumeration process, we must 
correct a fault that we let pass in the exposition of the basic signs of LPM.  So that 
the concepts definable in terms of them remain decidable, there must only be a 
finite number of basic signs.  We must then figure out some way to construct the 
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infinite number of variables of the form xn
m from a finite number of more basic 

signs. 
 One way to do so is to use just the two signs  x and  |.  We simply 
construe the superscript and subscript on the variable xn

m as short for stroke 
strings of the appropriate number, as follows: 
 

Definition of xn
m:           n strokes 

            } 
  xn

m =  (x|...|)|...| 
             { 
          m strokes 

 
For example, x4

8  is (x||||)||||||||. 
 The primitive signs of LPM are ∈, =,  ∼, ∧, ∨, →, ↔, ∀, ∃, (, ), x, and |.  
Each expression of the language then may be built up as a string from left to right 
of signs drawn from the finite vocabulary of thirteen items. For example, the 
string ∃(x||||)||||||||((x||||)||||||||=(x||||)||||||||) (which is ∃x4

8(x4
8=x4

8) in more familiar 
notation) is made up by stringing together the signs ∃, x, (, ), |, and = in a left to 
right order. 
 Assigning numbers to each sign is easy.  There are only thirteen of them, 
All we need do is assign one number to each.  Assigning numbers to strings, 
however is more complex.  We want a 1 to 1 mapping, and ideally one that 
allows us to recover the string in a simple way from the number that represents it.   
 To map a string onto its unique number, Gödel manufactured a number for 
the string from the signs that make it up.  Each of the signs that compose the 
string has its number.  In addition, it is possible to assign a number to each 
position in a finite string.  It is an easy matter then to define some function that 
computes a number from these two sorts of information.  Let us adopt the 
notation that at the i-th position is the sign Ei.  Further, let us assume that the 
position i has been assigned the number ni, and that the sign Ei itself has been 
assigned the numerical code mi.  We may now assign to “Ei at position i” the 
value of some number.  Let us use some numerical function f of ni and mi.  It 
does not matter what this function is, so let it be the operation of raising ni to the 
power mi, i.e.  nmi

i
.  Having assigned numbers, one  to each sign-position pair, 

we are ready to assign a number to the entire string of signs.  We must compute 
this number from those numbers assigned to the various sting-position pairs. As 
before, it does not matter what function we choose.  Let us use multiplication.  
Then, to the string E1...En, we shall assign the number nm1

1
x...xnmn

n
.  In this 

manner we may compute a unique number for each string.   
 The reverse direction, however, is trickier.  Given a number, we would like 
to be able to recover the unique string that it represents. To achieve this 
recoverability Gödel made use of the basic fact of number theory that every 
number is factorable into primes in only one way. 
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The Fundamental Theorem of Arithmetic 
 
 For every positive integer m there is a unique finite series of primes 
 p1,...pn, such that for each i=1,…,n,  1<pi≤pi+1) and there is a series of 
 exponents e1,...,en such that  
    m =  pe1

1
x...x pen

n
. 

 
Let us make the following suppositions: that m is a string code uniquely 
factorable into pe1

1
x...x pen

n
, that each prime pi indicates a position in the string, 

and each exponent encodes a basic sign.  We could then recover the string itself.  
The left-most sign is that  encoded by e1, the sign to its right by e2, etc. Gödel 
achieved recoverability, then, by encoding the positions by primes. We use the 
primes 2 and greater. In addition we assign a numerical code to each of the  
basic signs by a simple 1-1 stipulation.  We refer to the code number of a basic 
sign E by the notation bnEE

.  The Gödel number of the string E1....En, which we 
are now ready to define formally, is abbreviated nE1....En

: 
 
The Definition of Gödel Numbers 
 
Gödel Numbering of Basic Signs: 
The assignment bnEE

  of primes to basic signs E, called the Gödel number  of E, 
is defined by this list: 
 
 1   2   3   4    5   6     7    8    9    10   11   12   13  14 
 ∈  =   ∼   ∧    ∨   →   ↔   ∀    ∃    (      )     x      |    S 
 
Gödel Numbering of Strings: 
 
The Gödel number of the string E1....En, briefly nE1....En

, is defined as follows, 
where p1,...,pn are the first n primes greater than 1 as ordered by <: 
 

  nE1....En
 = p1

bnE1 x ... x pn
bnEn 

 
Gödel Numbering of Sequences of Signs: 
 
The Gödel number of the string S1....Sn, briefly snS1....Sn

, is defined as follows, 
where p1,...,pn are the first n primes: 
 

  nS1....Sn
 = p1

nS1 x ... x pn
nSn 
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D. Proof: Part 1.  Tarski’s Theorem  
 Gödel knew that there is a problem with truth-predicates.  Any self-
referring language generates paradoxes that contains a predicate true of all and 
only the sentences in that language that are true.  If all the relevant conditions 
were met in PM -- if PM were complete making the set of truths and the set of 
theorems identical, if its language LPM had Gödel numbers making it self-
referring, and if it also had a predicate Th  standing for the set of theorems -- 
then Th would be a truth-predicate in LPM.  It would stand for all and only the true 
sentences in Th, because it stands for the theorems and by hypothesis the 
theorems are the same as the true sentences. It should then be possible to prove 
a contradiction.   This is result that Gödel established.25  Before sketching the 
steps of the argument, however, we must look more deeply into why a language 
cannot contain its own truth-predicate.  What sort of contradictions are derivable 
and how? 
 
 The Paradox of the Liar.  Consider the famous liar sentence: 
 
(L)  This sentence is not true. 
 
The sentence L has always caused  headaches.  Grammatically, it is a negated 
subject-predicate sentence.  Consider its subject: this sentence.  In the context of 
L the subject refers to a sentence, namely the sentence L itself. Consider next 
the sentence’s predicate: is true.  We know what it means.  A sentence is true if 
what it says is the case.   (This is the view called the correspondence theory of 
truth, which we met in earlier lectures on Greek and mediaeval  logic.)  We also 
know the meaning of not: it changes a true sentence into a false one and a false 
to a true one. 
 If the same sentence contains self-reference, a truth-predicate, and 
negation, a paradox follows.  Consider the following line of reasoning.  By the 
Law of Excluded Middle, the sentence L is either true or false.  Suppose it is true.  
Then what it says must be the case.  But what it says is that the sentence is not 
true.  Suppose, on the other hand, that the sentence is false.  Then what it says 
is not the case.  Then it is not the case that it is not true.  That is, it is true.  In 
either case we get an absurdity. 
 A common reaction to the paradox is to blame the predicate is true.  This 
was the diagnosis of the logician Alfred Tarski who studied the Liar Sentence in 
detail in the 1930’s.  He admitted that self-predication is not generally 
problematic.  We frequently engage in self-reference in natural language.  We 
can say, for example: 
 

                                            
25 In the presentation here that subsumes the incompleteness theorem under the Liar Paradox 
and Tarski’s Theorem, I am following exposition of Raymond M. Smullyan, Gödel’s 
Incompleteness Theorem (New York: Oxford University Press, 1992). Smullyan’s account is both 
lucid and elegant.  He succeeds in organizing a complex subject in a way that makes the key 
ideas stand out.   In the historical note at the end of the lecture I summarize Gödel’s original proof 
strategy that employs the weaker assumption of ω-consistency. 
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 This sentence is in English. 
 This sentence consists of six words. 
 This sentence is in the passive voice. 
 This sentence contains a relative clause. 
 
These sentences are perfectly comprehensible.  We can not only understand 
them, but we can tell right away that the first two are true and the last two are 
false.  
 Let us adopt a convention from Tarski. When we underline a word or word 
group it losses its ordinary meaning and stands instead for the word or word 
group itself.  That is, instead of standing for things in the world, underlined words 
stand for the symbols themselves.  Consider the following sentences: 
 
 Socrates was a Greek philosopher. 
 Socrates was a Greek philosopher. 
 Socrates is a noun. 
 Socrates is a noun.  
 
Of these the second and third are false, and the first and fourth are true.  (In the 
Middle Ages a term with its usual referent is said to have personal supposition 
and to be term of first intention.  Those that stand for themselves have material 
supposition and are terms of second intention.  In modern logic, if a terms has 
its usual referent it is said to be used.  If it is standing for itself, it is said be 
mentioned. In this terminology the subject term of L is of second intention and 
has material supposition.  It mentions the very sentence that is being used.) 
 Tarski showed how to use this sort of convention to summarize a general 
feature of natural language:26 
 
Theorem.  Self-Predication in Natural Language 
 
The result may be expressed in the following increasingly precise but equivalent 
ways: 
• In natural language one can always fashion a sentence that makes a 

predicate P apply to that sentence itself by predicating P of a name we give to 
that sentence, for example C.  That is we fashion the sentence  C is P with 
the understanding that C  is a name for the very sentence C is P. 

• For any predicate P of natural language, there is some sentence C is P such 
that C stands for C is P: 

• There is some sentence C is P such that it is true that C = C is P. 

                                            
26 In his original discussion Tarski puts quotation marks around an expression that stands for 
itself.  Underlining is somewhat less confusing.  The original papers, both technical, are Alfred 
Tarski,  “The Concept of Truth in Formalized Languages” [1931], and “Foundations of the 
Calculus of Systems,” [1935], reprinted in Logic, Semantics, Metamathematics (Oxford: 
Clarendon Press, 1956).  For more readable accounts of Tarski’s work in his own words see his 
papers “Truth and Proof,” Scientific American (1969) 194, 63-77, and “The Semantic Conception 
of Truth,” Philosophy and Phenomenological Research (1944) 4, 341-375. 
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“Intuitive” Proof.  Let P be such a predicate.  Then This sentence is P is an 
example of the required sort.  In that sentence, this sentence stands for This 
sentence is P, and thus this sentence = this sentence is P  is true. QED. 
 
Tarski was then able to show that natural language could not contain its own 
truth-predicate. 
 
Tarski’s Theorem for Natural Languages 
 There is no predicate T in natural language such that, for any sentence P 
 in natural language, it is true that 
    P is T iff P 
 
Proof.  The proof is by reduction to the absurd.  Assume on the contrary  that 
there is such a predicate T such that it is true that 
 
(T)  for any P,   P  is T iff P 
 
 
Consider the sentence L below: 
 
(L)  This sentence is not T 
 
Let us apply T to L to deduce the following special case: 
 
(TL)  This sentence is not T is T iff this sentence is not T 
 
But notice that as a result of the meaning of this sentence in L, the following 
identity is true: 
 
(I)  this sentence = this sentence is not T 
 
Thus by substituting the identity of I into TL we obtain: 
 
(C)  This sentence is T iff this sentence is not T 
 
But C is a contradiction.  Hence the original assumption T must be false.  QED. 
 
 Applying the Liar to Arithmetic.  Gödel was able to prove in PM an 
analogue to Tarski’s Self-Predication Theorem. His technique is not to talk about 
the expressions themselves, but rather to talk about their Gödel numbers.  These 
Gödel numbers are “proxies” for expressions in that they stand in 1 to 1 
correspondence with them.  We do so here by augmenting the syntax of LPM  in 
two ways.  First of all we adapt the underlining convention used above so that if 
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E is an expression of LPM, we use its underlining  E to stand for Gödel number of 
E.  Second, we need a way to talk about the Gödel number of the results of 
substituting one expression for another.  We do so as follows.   If a, b, and c are 
expressions of LPM, then we specify that the expression  [a(b/c)] is a also a term 
in of LPM.  This term is going to stand for the Gödel number of the result of 
replacing occurrences of b by c in a.  We interpret it as follows. Consider an 
occurrence of the term b in [a(b/c)] when it occurs in a expression E.  We call that 
occurrence of b ephemeral if b is distinct from c.  It is “ephemeral” in such cases 

because it has been replaced by c and therefore is “not really there” in E.  Let ab
c 

be the result of substituting the expression c simultaneously for all non-

ephemeral occurrences of b in a.  Then, [a(b/c)] is interpreted as standing for ab
c 

.27 
 
Augmentation of the Standard Interpretation S of LPM, 
 
1. If E is an expression of LPM,  S(E) is the Gödel number of E, 
2. If a, b, and c are expressions of LPM, then S([a(b/c)])  is the Gödel number of 

ab
c  

 
Gödel showed that in LPM there is self-predication in the following sense: for any 
open sentence, there is some numeral in the language that can be used to make 
a self-referential sentence out of that open sentence.  The numeral stands for the 
very number that is the Gödel number of the sentence when the numeral 
occupies the position of the variable.   
 

                                            
27 In his original proof, Gödel does not introduce new terms to stand for ab

c .  He rather assigns a 

Gödel number to ab
c  and used its numeral as we are using  [a(b/c)].  For expository purposes the 

current procedure is simpler and presents no problem in principle because, as we shall see in 
Chapter 2, a first-order syntax may always be expanded to include a denumerable number of new 
terms (i.e. put in 1-1 correspondence to the natural numbers) and an interpretation (in this case 
the “standard interpretation” ℑ relative to S of arithemetic in LPM) extended to assign referents to 
them. 
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Theorem.  Self-Predication in PM. For any open sentence P(x) of LPM, 
 there is some sentence P(nJ) of LPM  such that  nJ “stands for” P(nJ) in the  
 sense that it is a truth of arithmetic that nJ = nP (nJ

 ). 
 
Proof.  The proof consists of describing (an ingenious) way to make up the 
required P(nJ) from P(x).   Let  P(x) be an open sentence of LPM  and v a 
variable.  Then it is a fact of substitution that: 
 

(i)  P[P[v(v/v)](v/P[v(v/v)])]= P[v(v/v)] v
P[v(v/v)]  

 
Moreover, by the augmentation (2) of S above, 
 

(ii) S( [P[v(v/v)](v/P[v(v/v)])] ) = the Gödel number of  P[v(v/v)] v
P[v(v/v)]  

 
Further, by (1) of the augmentation of S above,  
 
(iii) S(n P[P[v(v/v)](v/P[v(v/v)])] ) = the Gödel number of P[P[v(v/v)](v/P[v(v/v)])] 
 
Hence, by substituting the identity of (i) into (iii), 

(iv) S(n P[P[v(v/v)](v/P[v(v/v)])] ) = the Gödel number of P[v(v/v)] v
P[v(v/v)]  

 
By substituting the identity of (ii) into (iv), 
 
(v) S([P[v(v/v)](v/P[v(v/v)])]) =  S(n P[P[v(v/v)](v/P[v(v/v)])]) 
 
Hence by the truth-conditions for =-statements in LPM, the following is a truth of 
arithmetic (.i.e. is true in S): 
 
(vi) S╞ [P[v(v/v)](v/P[v(v/v)])]  =  n P[P[v(v/v)](v/P[v(v/v)])] 
 
We summarize the results so far:  for P(x), the name n P[P[v(v/v)](v/P[v(v/v)])] 
 and the sentence P(n P[P[v(v/v)](v/P[v(v/v)])])  are such that: 
 

S╞ [P[v(v/v)](v/P[v(v/v)])]  =  n P[P[v(v/v)](v/P[v(v/v)])] 
 
Hence by existential generalization from the particular case of 
[P[v(v/v)](v/P[v(v/v)])] , there is some numeral nJ and sentence P(nJ) such that  
 S╞ nJ = nP (nJ

 )..  
QED. 
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Tarski’s Theorem for PM 
 There is no open sentence T(v) in LPM  such that, for any sentence P in 
 LPM, 
    S╞ T(nP) ↔ P 
 
Proof.  The proof is by reduction to the absurd.  Assume on the contrary  that 
there is a predicate T such that the following is a truth of arithmetic: 
 
(T)  For any P, S╞ T(nP) ↔ P 
 
Consider the open sentence ∼T(x).  We know by the self-predication theorem, 
that there exists a sentence J, namely, 
 
(J)  ∼T(nJ) 
 
such that (regardless of whether it is true or false) the subject term of the 
sentence refers to the sentence itself.  That is, it is a truth of arithmetic,  
(I)  S╞ nJ = n~T (nJ

 ) 

 
Let us instantiate T, taking for P the special case J : 
 
(TJ)  S╞ T(n~T (nJ

 )) ↔ ∼T(nJ) 
 
 
Then by substituting the identity of I into TJ, we obtain a truth of arithmetic: 
 
(C)  S╞ T(nJ) ↔ ∼T(nJ) 
 
But C is a contradiction.  Hence the original assumption must be false.  QED. 
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E. Proof: Part 2.  Expressibility of Theoremhood  
 Gödel was able to show that the notion of theoremhood is expressible in 
arithmetic.  That is, he was able to show that the syntax of LPM contains a 
predicate Th that stands for the set Th, the set of numerical proxies (Gödel 
numbers) for the true sentences of the syntax. Gödel’s approach was to work out 
some very general conditions in which concepts are expressible in arithmetic and 
then show that the set of theorems meets these conditions. 
 What Gödel noticed was the relatively obvious fact, once you think about 
it, that much of arithmetic consists of talking about calculations, or in other words 
about recursive functions and decidable sets.  He was able to show that LPM is 
completely adequate to the task.  Within its syntax it is possible to talk about 
every kind of arithmetical calculation.  He showed that every recursive function is 
expressible. 
 
Theorem.  Recursive Expressibility in LPM.   
 Every recursive function and decidable set is expressible in LPM: 
 
 1. If R is an k-1-place recursive function on the natural numbers, there is 
some  sentence P(x1,...,xk)  of LPM  such that, for all n1,...,nk:  
  n1,...,nk stand in the relation R iff  S╞ P(n1,...,nk,); 
 
2. If C is a decidable set of natural numbers, there is some sentence P(x) of 
 LPM  such that, for any n: 
  n∈C iff S╞ P(n). 
 
Proof Strategy.  The proof consists of two parts: 
• finding in arithmetic a way to name (define a predicate for) each of the basic 

recursive functions, and 
• given the names of the functions to which the processes of recursion and 

composition are applied, finding a way in arithmetic to name the functions that 
result from the process.   

It will follow that every recursive function “has a name.”  Since arithmetic contains 
notation for identity, set membership and the logical operators, Gödel was in fact 
able to manufacture these names.  (The formulas involved are somewhat 
complex and technical, so we shall not present them here.) Since decidable sets 
are just special cases of recursive functions, every decidable set will be 
expressible as well. 
 
 Unfortunately Gödel was not able to use the criterion of decidability 
directly to show that theoremhood is expressible, because theoremhood in 
arithmetic is, in fact, not decidable. He was able, nevertheless, to make up a 
complex sentence that applied to theorems by talking about another set that is 
decidable.  Since this more basic set is decidable, it is expressible, and he used 
its predicate to define Th.  
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 The key decidable idea is the relation is-a-deduction-of.  Though there is 
no method for coming up with a proof, there is one for testing whether any series 
of sentences constitutes a proof.  This situation which at first sight seems 
paradoxical in fact accords well with the experience of every logic student.  
Those of you who have actually tried to come up with proofs in logic classes are 
very familiar with the fact that it is hard to do.  There is no easy way to invent a 
proof, and doing so is rather a matter of creativity than simple method.  But once 
you have a candidate for a proof, it is a very easy matter to check whether it is in 
fact it makes any mistakes.  Two basic facts underlie this situation.  On the one 
hand, there is  no algorithm for testing whether a sentence is theorem of 
arithmetic (or even of first-order logic28).  On the other hand, it is possible to 
devise simple testing procedures that will decide whether any series of 
sentences is a proof in an axiom system.   
 Let us make this concrete for the case of arithmetic.  We begin by 
focusing on the relation is-a-deduction-of that holds between a proof and the 
sentence it proves. This relation is decidable. Gödel shows that it is so indirectly 
by proving that a relation on Gödel numbers, which he called Ded, is decidable.  
If nD is the Gödel number of the deduction D, and nP the Gödel number of the 
formula P, then the relational fact Ded(nD, nP) on numbers holds exaclty when D 
is a decution of P in PM.   In addition it is possible to show that Ded is decidable.  
It follows then by the expressiblity theorem that Ded is expressible by some open 
sentence in LPM. 
  
Definition.  Ded(nD, nP) iff D is a deduction of P in PM. 
 
Theorem. Decidability of Deducibility in PM.  
  The relation Ded is decidable. 
 
 
Proof Sketch. The test for whether D is a genuine deduction goes roughly as 
follows. We start by taking the Gödel number nD of D.  From it we obtain the 
Gödel numbers, in order, of the sentences that make up D: nP1

 ,...,nPk
 .  For each 

nP 
m

  (for m<k), the sentence Pm must either be an axiom or follow from earlier 
sentences in the D by the rule modus ponens.  If so, D is a genuine deduction of 
P and nD stands in the relation Ded to nP.  If not, then it isn’t.  Whether P is or is 
not is entirely evident by inspection.  Hence, Ded is decidable. 
 

                                            
28 Unlike arithmetic, first-order logic (the logic of the sentential connectives, ∀ and ∃) is complete 
in the special sense that its valid arguments can be inductively defined by transparent syntactic 
methods.  However, there is no decision procedure for testing whether a sentence is a logical 
truth of first-order logic (and hence a theorem in the complete axiom system).  This result, known 
as the undecidability of first-order logic, is important and will be discussed in Part III.  Here, 
however, it is relevant to note the following. Since all sciences include logic, the truths of logic are 
a subset of those of arithmetic.  Moreover, if a subset is undecidable, so is the set itself.  Thus, 
arithmetic must be undecidable. 
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The expressibility theorem tells us that since Ded is decidable, it is expressible in 
the syntax of LPM by some open sentence, which we will arbitrarily decide to call 
Ded.  Thus, we write Ded(x,y)  to “say” in LPM that “x is (the Godel number of) 
deduction of (a formula with Gödel number) y,” and we state the special case that 
D is a deduction of P by the sentence Ded(nD, nP).   
 
Corollary.   Expressibility of Deducibility in LPM.. 
   There is some sentence Ded(x,y) of PM  such that, for any  
   nD,nP : 
    Ded(nD,nP) iff  S╞ Ded(nD, nP). 
 
 
By employing the sentence Ded(x,y), we reach the objective of defining within LPM  
a predicate Th that stands for Th, the set of Gödel numbers of the theorems of 
PM.  We use the sentence ∃yDed(y,x), which is true for the value nP of x exactly 
when nP is the Gödel number of a theorem of PM.  In LPM we may write 
∃yDed(y,x)  to say  “x is( the Gödel number of) a proof,” which is just another way 
of saying x is a theorem.   Thus, we define Th(y) as ∃xDed(x,y). 
 
Definition.  Th is {nP| ├PM P} , i.e. the set of Gödel numbers of  theorems in PM. 
 
Theorem.  Expressibility of Theoremhood in LPM.  
  The set Th is expressible in LPM : 
   there is some sentence Th(x) of LPM such that, for any nP : 
    nP∈Th iff S╞  Th(nP ). 
 
Proof Sketch. Since Ded is decidable, it is expressible in LPM  by some 
predicate, which we may call Ded.   
 Moreover, since Ded is expressible by Ded, the open sentence 
∃xDed(x,nP) “says” (the equivalent in Gödel numbers of the fact) that it is true that 
P is proven in some deduction, or in other words ├PMP.  Hence ∃xDed(x,nP)  is a 
truth of arithmetic exactly when nP∈Th.  Thus Th is expressible in LPM.   
 
 We may diagram the expressibility of Th by Th as follows: 
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The Expressibility of Th in LPM : nP∈Th iff Th(nP ) is a truth in LPM 

 

F. Proof of Incompleteness 
 Let us summarize the situation. The predicate Th is true of the set of 
numbers Th that stand as proxies for the theorems of PM, and we are using the 
notation Th(nP) to say in LPM that the sentence with Gödel number nP is a 
theorem of PM.   
 The full situation may be depicted in a diagram.  The picture below 
illustrates first that numerals (constants) in LPM stand for numbers which are in 
turn proxies for sentences, and second that predicates of LPM  stands for sets of 
numbers, which in turn are proxies for a set of expressions. The predicate Th in 
particular stands for the set of numbers that are proxies for the theorems of PM. 
  

 

 
  
 We have the predicate Th that we know expresses in LPM the set of 
theorems of  PM,  and via Gödel numbers we have the resources such that for 
any sentence P of LPM there is some numeral in the language  that is the name of 
the Gödel number of P.  Indeed, the expressibility of Th  by Th insures that we 
can say in LPM that a sentence is a theorem of PM.  By negation then we can say 
that something is not a theorem.   
 One curious consequence of this ability is that some self-referring 
sentences must be true. In particular, the Liar Sentence which says of itself that 
it is not a theorem must be true. 
 
Definition 
 
By the Liar Sentence we mean the following sentence: 

(J)    ∼Th(nJ)  
in which J stands for the sentence itself, and which is such that we may formulate 
a  truth of arithmetic: 
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     S╞ nJ = n~ Th (nJ
 ) 

 
What J says, namely that it itself is not a theorem, must be true -- if in fact the set 
of theorems of PM is consistent. Gödel was able to prove this fact. 
 
Theorem.  If  PM is consistent, then not ├ PM ∼Th(nJ) 
 
Though we shall not need to appeal to this result in the  proof of incompleteness 
set forth below,  its derivation is part of Gödel’s original proof strategy and it is 
outlined in the supplementary material at the end of the lecture.   
 Supposing we have proven the previous theorem. For the sake of 
argument let us now entertain the hypothesis (to be refuted) that PM is complete. 
Gödel saw that something then goes wrong. If PM were complete, there should 
be no true sentence that is not a theorem.  But the Liar sentence is such a 
sentence.  It is a true non-theorem. Completeness therefore must be a false 
hypothesis. Such is the strategy of Gödel’s original proof.  The contradictory 
picture it draws is the following: 
 

 
 
 The argument that Gödel uses to establish the properties of the Liar 
Sentence, which are somewhat technical, are sketched in the supplementary 
material appended at the end of the chapter. It is possible however to show 
incompleteness in a simpler way that does not  draw upon the Liar sentence.  
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Incompleteness follows directly from the impossibility of a truth-predicate 
(Tarski’s Theorem) and the expressibility of theoremhood.  The results needed 
are summarized below. 
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Summary of Results 
 
Lemma 1.  Tarski’s Theorem for PM 
 There is no open sentence T(v) in LPM  such that, 
   for any sentence P in LPM,  S╞ T(nP) ↔ P. 
 
Lemma 2.  Expressibility of Theoremhood in LPM.  
  The set Th is expressible in LPM : 
   there is some sentence Th(x) of LPM such that, for any nP : 
     nP∈Th iff S╞ Th(nP ). 
 
The Incompleteness Theorem (Gödel). 
     PM  is incomplete. 
 
Proof (from Tarski’s Theorem) 
 
The proof strategy is to show that if PM  were complete then Tarski’s Theorem 
would be false.  Since Tarski’s Theorem is true, it would then follow that PM  
could not be complete.  Let us assume completeness: 
 
(Completeness) For any P in LPM, ├PM P  iff it is a truth of arithmetic that P. 
 
We claim then that the open sentence Th(x) meets the conditions for a truth-
predicate for LPM, namely: 
 
(T)  For any P, S╞ Th(nP) ↔ P 
 
Proof of T: 
 
 S╞ Th(nP ) iff nP∈Th    By the Expressibility of Th 
   iff ├PM P    By the definition of Th 
  iff S╞  P  By Completeness 
Hence S╞ Th(nP )↔P.  Hence T is true.  But by Tarski’s Theorem, T cannot be 
true.  Hence the original assumption of completeness must be false.  QED. 
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 The true situation drawn upon by the proof is diagrammed below.  The 
picture represents the expressibility of Th, the arithmetization of syntax (Gödel 
numbering), and Tarski’s theorem.  It also illustrates the non-provability of the 
Liar Sentence, which is  proven in the supplementary section below. 
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G. Supplementary Material: Gödel Original Proof Strategy 
 In his original work Gödel offers a somewhat more complex proof and 
establishes a strong version of the incompleteness theorem.  The version 
presented above makes use of Tarski’s Theorem.  It is the simplest and clearest 
way to prove the theorem.  In proving Tarski’s Theorem, however, we make the 
implicit assumption that arithmetic is itself true.29 Gödel’s original version makes 
a weaker assumption that PM is in a sense consistent.  In this section we shall 
review the highlights of Gödel’s original proof strategy. 
 
 
Definition 
 If R is an k-place relation on the natural numbers, then R is said to be 
 provable  in PM iff there is some sentence P(x1,...,xk)  of LPM 
 (containing only x1,...,xk as terms)  such that:  
   
  ├PM P(n1,...,nk) iff n1,...,nk stand in relation R in arithmetic. 
 
 Let C be a subset of the natural numbers.   C is said to be provable  in 
 PM  if there is some sentence P(x) of LPM (containing only the term x) 
 such that, for any n:  
 
  ├PM P(n) iff n∈C 
 
 

                                            
29 To see how Tarski’s Theorem assumes the truth of arithmetic, let us rephrase the theorem.  It 
says: for any predicate T(v), there is some P such that ╞ ST(nP)↔P is false.  By “is false” here we 
mean that the sentence is false in our world in which the axioms of PM (arithmetic) are true.  
Hence the theorem assumes the static perspective of the actual world as the determiner of 
judgments of truth or falsity of sentences in LPM.  
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Theorem.  Provability.  Every recursive function and decidable set is provable. 
 If R is a k-place recursive function, we can find an open   
 sentence P(x1,...,x1+k) of LPM  that defines a primitive recursive function 
and 

define a predicate Prd(x1,...,x1+k) to mean P(x1,...,x1+k) such that  
for any n1,...,nk,m, 

 
   if  R(n1,...,nk)=m in arithmetic, then ├PM Prd(n1,...,nk,m) 
 
Proof Strategy. The proof proceeds in two stages.  First Gödel shows that basic 
recursive facts are provable.  That is, he shows we can prove any relational 
sentence in which the relational predicate is one that expresses a basic recursive 
function and in which the subject terms are all numerals for specific numbers.   
The second step consists of showing a complex conditional: if it is possible to 
prove such facts about the recursive functions used to define a more complex 
recursive function, then it is possible to prove such facts for the complex 
recursive function so defined. The proof itself, which we shall not attempt here, is 
long and complex, embodying much of the detail and journeyman’s logic of 
Gödel’s original publication. 
  
 It is important for our over-view that we understand what the theorem 
says.  It assures us that so long as we are talking just about specific numbers 
and asserting facts about whether they obey recursive functions or fall in 
decidable sets, there is some way to express that proposition and prove it in PM.  
When combined with the soundness theorem, the theorem amounts to a sort of 
partial completeness.  Recall that an axiom system is sound if its axioms are 
true and its rules are valid (preserve truth).  First we state the Soundness 
Theorem and then combine it with the previous result to state partial 
completeness. 
 
Theorem.  Soundness of PM. For any P in LPM, 
 
   If ├PM P,  then  S╞ P  
 
Proof Sketch.  The proof strategy is straightforward. Gödel assumes that all the 
axioms of PM are true.  It is easy to show (by truth-tables) that modus ponens is 
valid, i.e. that if premises of modus ponens are true, then the conclusion is also 
true.  Since all the theorems are proven from the axioms (which are assumed to 
be true) by modus ponens (which preserves truth), it follows that all the theorems 
are true. 
 
We now combine the  two previous theorems. 
 

  2, Page  72. 



An Introduction to Metalogic  The Beginning of First Order Logic 

Corollary.  Partial Completeness of PM.  If R is a recursive function, we can 
 find an open sentence P(x1,...,x1+k) of LPM  and define a predicate   
 Prd(x1,...,x1+k) to mean P(x1,...,x1+k) such that, for any n1,...,nk,m, 
 
   R (n1,...,nk)=m in arithmetic iff ├PM Prd(n1,...,nk,m) 
 
The part of PM  that is complete consists of those theorems that use numerals 
and predicates that express recursive functions. 
 Let us now apply these results to the case of the relation Ded which is 
decidable and to the set Th which is not. 
 
Corollary.  Provability of Deducibility in Theorem. 
  The relation Ded is provable: 
  there is some sentence Ded(x,y) of LPM such that, for any nD,nP: 
   Ded(nD,nP)  iff  ├PM Ded(nD, nP) 
 
Proof.  The provability of Ded follows from the earlier theorems that establish 
that Ded is decidable and that every decidable set is provable. QED 
 
 
Lemma.  Provability is provable (P is provable iff it is provable that it is 
provable). For the predicate Th that expresses the set Th = {nP| ├PM P}: 
 
   ├PM Th(nP ) iff ├PM P 
and 
   ├PM ∼Th(nP )  iff  ├PM ∼P 
 
Proof Sketch. 
 Assume first that ├PM Th(nP ).  Then by soundness Th(nP) is a truth of 
arithmetic.  Since Th(nP ) expresses membership in Th, nP∈Th.  Hence by the 
definition of Th, it follows that├PM P. 
 Assume next that ├PM P.  Then there is some deduction D of P such that 
Ded(nD,nP).   By the provability of Ded for the predicate Ded which expresses it, 
├PM Ded(nD,nP). Then by logical inference in PM  (namely an existential 
generalization from Ded(nD,nP))we obtain ├PM(∃x)Ded(x, nP).  But (∃x)Ded(x, nP) is 
by definition the same as Th(nP).  Hence ├PM Th(nP).   
 The negated version of the theorem follows by the logic of negation. QED. 
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Corollary. Provability of Theoremhood in PM.  
 
 ├PM Th(nP )  iff  ├PM P  iff   nP∈Th   iff   S╞  Th(nP ) 
 
Proof 
 ├PM Th(nP )   iff   ├PM P     from a previous theorem 
 
   iff    nP∈Th    by the def of Th 
 
   iff    S╞  Th(nP)  by the Expressibility of Th 
QED 
 
 
Corollary on Deducibility. Not ├ PM P iff, for all nD in Nn, ├PM ∼ Ded(nD,nP) 
   
 Equivalently,  ├PM P iff, for some nD in Nn, not├PM ∼ Ded(nD,nP) 
 
Proof    
(1) ├PM P   iff  ├PM(∃x)Ded(x, nP)   previous proof 
(2)   iff for some nD in Nn, Ded(nD,nP) Soundness 
(3)  not├PM P  iff for all nD in Nn, not Ded(nD,nP) 2 and negation 
(4)   iff for all nD in Nn, S╞ ∼Ded(nD,nP)     meaning of ∼ 
QED 
 
 
 
Review of the Liar Sentence J.  Consider the open sentence ∼Th(x).  We know 
by the self-predication theorem, that there is some sentence J, namely, 
 
(J)  ∼Th(nJ) 
 
such that there is a truth of arithmetic: 
 
(I)  S╞  nJ = n~ Th (nJ

 ) 

  
Moreover, since identity is a decidable relation when asserted between 
numerals, I insures: 
 
(PI)  ├PM  nJ = n~ Th (nJ

 ) 

 
It is necessary now to appeal to various concepts of consistency.   The core idea 
of syntactic consistency was defined in the previous lecture, and we restate the 
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definition below.  Let S  stand for an arbitrary axiom system, and let P stand for a 
sentence in the syntax of S. 
 
Definitions   
 S  is (syntactically) consistent iff for some P, not ├S P 
  (Equivalently,  S is consistent iff not for some P, ├S P∧∼P) 
 S  is (syntactically) inconsistent iff for all P, ├S P 
  (Equivalently,  S  is consistent iff for all P, not ├S P∧∼P) 
 
Theorem.  If  ├ PM is consistent, then not ├ PM ∼Th(nJ) 
 
Proof 
 (1)  PM  is consistent  hypothesis of the theorem 
 (2)  ├PM ∼Th(nJ)   hypothesis for a reductio 
 (3)  ├PM ∼Th(n∼Th (nJ

 ))  PI and the substitutivity of = 
 (4)  ├PM ∼∼Th(nJ)   by the provability of Th earlier 
 (5)  ├PM Th(nJ)   by double negation 
 (6)  not ├PM ∼Th(nJ)  since (2)-(5) are contradictory 
QED 
 
 A second and weaker notion of  consistency requires that within the axiom 
system S the theorems related to the existential quantifier are consistent, though 
there may be an inconsistency elsewhere: no sentence beginning with ∃ (for 
some) is contradicted by theorems that assert specific instances.  That is, if it is 
provable that a property holds of some number, then it should not be provable of 
every number individually that it does not have that property.  This notion too is 
syntactic since it talks about what is provable and proof is a matter of syntax.  It 
is customary to call this idea  ω-consistency, because ω (the Greek letter 
omega)  is another name in mathematics for the set of natural numbers Nn. 
 
 S  is ω-consistent iff for any open sentence P(x),   
   if ├S ∃xP(x), then for some n in Nn, not ├S ∼P(n) 
 S  is ω-inconsistent iff there is some open sentence P(x),   
   for all n in Nn, ├S ∼P(n), but ├S ∃xP(x). 
 
The weaker notion of syntactic consistency entails the stronger. 
 
Theorem.  If S is inconsistent, then S is  ω-inconsistent. 
 
Proof.  If S is not consistent then every sentence is provable, all the sentences 
required for  ω-inconsistency are provable.  QED 
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Corollary.  If S  is  ω-consistent, then S  is consistent. 
 
Theorem.  If ├PM is  ω-consistent, then not ├PM Th(nJ) 
 
Proof 
(1) PM  is  ω-consistent    hypothesis of the theorem 
(2) ├PM Th(nJ)     hypothesis for a reductio 
(3) ├PM ∃xDed(x, nJ)    by the definition of Th 
(4) S╞ ∃xDed(x, nJ)    by soundness 
(5) for some nD in Nn, Ded(nD,nP)  meaning of ∃ (def of truth) 
(6) Ded(nD,nP)     existential instantiation 
(7) ├PM Ded(nD,nJ)    partial completeness 
(8) ├ PM ∃xDed(nD,nJ)    existential generalization in PM 
(9) PM  is consistent    1 and a previous theorem 
(10) not ├ PM  ∼Th(n∼Th (nJ

 ))   the previous theorem 
(11) for all nD in Nn, ├PM  ∼ Ded(nD, n∼Th (nJ

 )) corollary on Deducibility 
(12) for all nD in Nn, ├PM  ∼ Ded(nD,nJ)  ID and substitutability of = 
QED 
 
Theorem.  S╞ ∼Th(nJ) 
 
Proof 
(1) not ├PM ∼Th(nJ)     hypothesis for reductio 
(2) for all nD in Nn, ├PM ∼Ded(nD, n∼Th (nJ

 ))  lemma on Deductibility 
(3) for all nD in Nn, ├ PM ∼Ded(nD,nJ)   ID and substitutivity of = 
(4) for all nD in Nn,  S╞  ∼Ded(nD,nJ)   soundness 
(5) S╞  ∀x∼Ded(x,nJ)     meaning of ∀, def of truth 
(6) S╞  ∼∃xDed(x,nJ)     quantifier negation 
(7) S╞  ∼Th(nJ)      definition of Th 
QED 
 
 
Corollary.  Incompleteness (Gödel’s Original Version). 
   If PM  is consistent, then PM  is incomplete. 
 
Proof.  Since PM is consistent, we know from a previous theorem that not 
├PM∼Th(nJ).  On the other hand, we have just proved that the sentence ∼Th(nJ) of 
PM is true.  Therefore, there is some sentence of PM  that is true but not 
provable in PM.  The system is therefore incomplete.  QED    
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III. EXERCISES 

A. Skills: Formal Proof in the System F.  
 Here is an example of a proof in F.  It established that ├F A→A.  
 
1. ├F((A→((A→A)→A))→((A→(A→A))→(A→A))) axiom schema 2 
2. ├F(A→((A→A)→A))     axiom schema 1 
3. ├F((A→(A→A))→(A→A))     modus ponens on 1 
and 2 
4. ├F(A→(A→A))      axiom schema 1 
5. ├F(A→A)       modus ponens on 3 and 4 
 
Both Copi’s system of logic for sentential logic and Gentzen’s natural deduction 
system are much easier to use than this axiomatic system.  But logicians still 
understand axiom systems to be the most exact way to state a mathematical or 
logical theory.   
 
 Exercises 
1. Give an informal proof in Gentzen’s system, in a proof that has no 

assumptions, that ∼A→(A→B). 
2. Give a formal proof in the system F  that  ├F ∼A→(A→B). Each line should 

either be an instance of an axiom schema or follow from previous lines by 
modus ponens.  (Hint.  In applying axiom schemata, different letters may be 
replaced by the same sentence, and these sentences may themselves be 
complex.  It helps to work both forward and backward, to and from sentences 
that fit the form of modus ponens.  The proof is not long but it is not obvious.) 

B. Skills: Informal Proofs in Naïve Set Theory  

i. Naïve Set Theory: The Notion of Implicit Definition. 
The motivation for axiomatic set theory is to give the concept of set a kind of 
“analysis” or “explanation.”  In the history of philosophy the notion of property or 
quality had always been an obscure term.  Functionally there had always been a 
close correlation between property-talk and set- or collection-talk.  For example, 
in Aristotle’s metaphysics Socrates is rational is necessarily equivalent to 
Socrates is a member of the species human being.   Philosophically property was 
never given a plausible explicit definition, nor its conditions for identity spelled 
out.  By using axiomatic methods, however, Cantor and subsequent researches 
in axiomatic set theory have been very successful at explaining the notion of set, 
the functional equivalent of property. 

In axiom system ideas are “explained” in two ways. The first is in explicit 
definitions.  These consist of a series of abbreviations that supplement the 
axioms and inference rules of the system and allow new terms to abbreviate 
longer expressions in the system.  Often these abbreviations take the form of bi-
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conditionals and serve the function of a traditional definition by necessary and 
sufficient conditions.  For example, in the axiomatized set theory below the notion 
of union is introduced by definition: A∪B is an abbreviation for {x|x∈A∧x∈B}. The 
latter captures the “meaning” of the former.  

But not all terms in a system can abbreviate others because the system 
has to start with some basic vocabulary.  This consists of the so-called “primitive 
terms,”  the expressions used in writing the axioms themselves.  But the axioms 
in a sense explain these terms.  Together with the system’s inference the axioms 
determine all the theorems deducible using primitive terms.  If the system is 
sound and complete, it fully circumscribes the use of the sentences to assert 
what is true.  In this way their “meaning” is explained.  “Axiomatizations” of 
concepts in this way is one of the major methodological differences between 
logic and mathematics, on the one hand, and traditional philosophy on the other.  
Though there have been sporadic attempts by philosophers to axiomatize their 
ideas (e.g. Proclus and Spinoza) their attempts were technical failures.  
Advances in mathematics over the past two hundred years have opened this 
method to philosophical work.  The analysis of set as the functional equivalent of 
property is an example of its success. 
 

ii. The Axioms and Definitions of Naive Set Theory 
 
Axioms: 

Abstraction:       ∀y(y∈{x|P[x]}↔P[y])      (in its practical form) 
 

Extensionality:  A=B ↔  ∀x(x∈A ↔ x∈B)    
    or equivalently,             {x|P[x]}={x|Q[x]}  ↔ ∀y(y∈{x|P[x]}↔y∈{x|Q[x]) 
 
Definitions :                                  Technical Name: 
x≠y x is not identical to y ∼(x=y)          non-identity or 
   inequality 
x∉A x is not an element of set A ∼(x∈A) non-membership 
A⊆B Everything in A is in B ∀x(x∈A→x∈B)  A is a subset of B 
A⊂B A⊆B & some B is not in A A⊆B∧∼A=B  A is a proper subset of B 
∅ or Λ set containing nothing {x| x≠x}  the empty set 
V set containing everything {x| x=x}  the universal set 
A∩B set of things in both A and B {x| x∈A∧x∈B}  the intersection of A and B 
A∪B set of things in either A or B {x| x∈A∨x∈B} the union of A and B  
A−B   set of things in A but not in B {x| x∈A∧x∉B} the relative complement  
    of B in A 

−A or Error! Bookmark not defined.A-   set of things not in A {x| x∉A} the 
complement of A 
P(A) the set of subsets of A {B| B⊆A}  the power set of A 
 
Much of applied metatheory consists of “showing” in the metalanguage that 
entities are in sets, and students of logic need to be able to use naïve set theory 
to do this.  Proofs in metatheory are informal.  There are roughly three sorts of 
assumptions you can assume in metatheory:  
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• the informal appeal to the truths and inference rules of system of first-
order logic (e.g. the rules of Copi or Gentzen summarized earlier),  

• the “axioms” and definitions of naïve set theory, and 
• obvious facts of arithmetic and syntax.  

The problems below consist of proving facts about sets.  Your proofs should be 
informal, using Copi’s or Gentzen’s rules cited earlier. You must also use the two 
axioms of naïve set theory and the set definitions above.  In applying the axioms 
and variables be sure to change variables as necessary so you do not state an 
instance of an axiom or rule that uses the same variable for two or more 
variables that are kept distinct in the original.   

Take special note of the Principle of Abstraction.  As the Principle says, an 
element y is shown to be in the set {x|P[x]} by showing it possesses the set’s 
defining property P[y].  In practice, however, applying the axiom can be confusing 
because the defining property is often rather complex.  A one-placed (monadic) 
“property” is expressed by an open sentence P[y] that contains only one free-
variable y.   This variable may occur in more than one place.   But as long as P[y] 
only contains the one free-variable, it can be a complex sentence, containing 
various clauses joined by connectives, numerous predicates, constants, 
quantifiers and other variables bound by the quantifiers that occur someplace 
within P[y].30   

 
Example.   Theorem.  A∩B⊆B. 
 
Proof.  Consider an arbitrary x and assume for conditional proof that x∈A∩B.  
Hence by the definition of intersection, x∈{y| y∈A∧y∈B}.  [Notice the need here 
to change variables to avoid confusion.]  Hence by the Principle of Abstraction, x
∈A∧x∈B.  Hence by simplification (∧ elimination), x∈B.  Thus by conditional proof 
(→ introduction), it has be proven that x∈A∩B→x∈B.  Since we have been 
general in x (i.e. since x has be “arbitrary”), we may universally generalize (∀ 
introduction), getting ∀x(x∈A∩B→x∈B).  Thus, by the definition of subset, 
A∩B⊆B.  QED. 
 
Exercises.  Give informal proofs of the following in first-order logic using the two 
axioms and the definitions.  Once a fact is proven, you may use it as an 
assumption in later proofs.   
 

3. A⊆A 
4. A∩B⊆B∪A 
5. −A⊆−(A∪B) 
6. ∅⊆A 
7. A⊆V 

                                            
30 In Chapter 2 we shall meet 2-place relations, set of “ordered-pairs,” defined by formulas with 
two free-variables, and more generally n-place relations consisting of sets of ordered n-tuples 
defined by open sentences with n free-variables.   
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8. A⊆A     
9. (A⊆B ∧ B⊆A) ↔ A=B 
10. −(A∪B)=−A∩−B 
11. −A=V−A 
12. A⊆ P(A) 

iii. Relations 
Axioms and Definitions.  A generalized and more complete set of axioms and 
definitions is give below that extend set theory to relations.  
 
Definitions: 

<x,y> = {x, {x,y}}  
<x1,…,xn,y>= <<x1,…,xn,>y> 

 
Theorems:   <x,y>=<x,y> iff (x=y & y=x) 

          <x1,…,xn>=<y1,…,yn>= iff (x1= y1 & … & xn= yn) 
Axioms : 
 

Abstraction:31       ∀y1,…,yn(<y1,…,yn>∈{<x1,…,xn>|P[x1,…,xn]}↔P[y])    (in its 
practical form) 
 

Extensionality:  R=R′ ↔ ∀x1…xn(<x1,…,xn>∈R ↔<x1,…,xn>∈R′)  
   

    An Equivalent Version     {<x1,…,xn>|P[x1,…,xn]}={<x1,…,xn>|Q[x1,…,xn]} ↔ 
                                                                          ∀x1…∀xn( P[x1,…,xn] ↔ Q[x1,…,xn])  
 

Definitions :                                   
AxB Cartesian product of A and B {<x,y>| x∈A∧y∈B}  
A2 Cartesian product of A and A AxA 
An Cartesian produce of A1,…,An A1x…xAn  
V2 The universal (binary) relation VxV  
P(V2) the set of 2-place relations  
P(Vn) the set of n-place relations  
 
R is a binary relation   R⊆V2 

R is a n-place relation   R⊆Vn 

f is a 1-place function f is a binary relation and ∀x∀y∀z((<x,y>∈f ∧ <x,z>∈f)→y=z) 
f is a n+1-place function f is an n-place relation and  
                ∀x1…xn∀y∀z((<x1,…,xn,y>∈f ∧ <x1,…,xn,z>∈f)→y=z) 
 
If f is a 1-place function,    f(x)=y means <x,y>∈f 
  If f(x)=y, then x is an argument of f and y is a value. 
  Domain(f) = {x| ∃yf(x)=y} 
  Range(f) = {y| ∃yf(x)=y} 
  f –1 = {<y,x,>| f(x)=y)}    f –1 is called the inverse of f  
If f is a n-place function,    f(x1,…,xn)=y} means <x1,…,xn,y> 
  If f(x1,…,xn)=y, then <x1,…,xn> is an argument of f and y is a value. 

                                            
31 Technically in set theory this “axiom” follows as a theorem from the Principle of Abstraction as 
previously given for sets.  The proof requires the introduction of order n-tuple in terms of sets: 
<x,y> = {x, {x,y}} and <x1,…,xn,y>= <<x1,…,xn,>y>. 
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  Domain(f) = {<x1,…,xn>| ∃yf(x1,…,xn)=y} 
  Range(f) = {y| ∃yf(x1,…,xn)=y} 
f(Ainto>B)  f is a 1-place function, Domain(f), and Range(f)⊆B 
f(Aonto>B)  f is a 1-place function, Domain(f), and Range(f)=B 
f(A1-1 onto>B) f is a 1-place function, Domain(f), Range(f)=B, and  
           f –1 is a 1-place function 
f is a partial function on A ∃C∃B(C⊂A & f(Cinto>B)) 
 
Exercises.  Give informal proofs of the following: 

13. ∀x(x ⊆ V2 iff x∈ P(V2)) 
14. A2 ⊆ V2  (Here show: ∀x∀y(<x,y>∈ A2  iff <x,y>∈ V2 , and appeal to 
extentionality) 
15. {<x,y>| (x × x) = y} is a function.    
16. {<x,y>| (x × x) = y}-1 is not a function. 
 

C. Logistic Systems 
 

17. Consistency.  In elementary logic you met the distinction between 
syntactic consistency (leading by a derivation to a contradiction) and 
satisfiability (true in some structure or model).  In which sense of 
consistency was Reinmannian Geometry shown consistent and Frege’s 
Grudgesetze inconsistent? Why? 

18. Reduction.  In the Grudgesetze and again in Principia Mathematica the 
attempt was to “reduce” one theory to another, i.e. arithmetic to logic and 
set theory.  In your own words formulate what would be the necessary 
conditions for such a reduction to be successful.  Notice what is meant by 
“theory” here.  (These ideas still grip discussions of reduction in the 
philosophy of science.) 

D. Gödel’s Proof: Technical Details  
In each of these computations show each step of your work 
 

19. What is the Gödel number of the (ungrammatical) expression:  ∼∈∈? 
20. Express 420 as the product of primes listing the primes in order from least 

to greatest. 
21. What expression is such that 192 is its Gödel number?   

a. Explain the difference between the number two, the numeral 2, and 
the Gödel number 2, 

b. Explain the difference between the set of proofs in PM,  Ded, and 
Ded, 

c. Explain the difference between the set of theorems of PM, Th, Th, 
and the truths of arithmetic. 

d. Gödel makes an assumption that arithmetic has a at least one 
standard model.  Try to characterize how that assumption is made 
in the proof.   Is the assumption plausible? 
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E. Gödel’s Proof: Theoretical Implications 
 

22.  In a short essay summarize for yourself (in terms that you will be able to 
understand five years from now): 

a. the proposition that Gödel proved, 
b. why it is interesting, 
c. the general strategy of his proof including any features that are clever 

or interesting. 



   

Chapter 2 

 First-Order Logic Soundness and Completeness 

 

I. STANDARD LOGICAL THEORY 

 
 In Chapter 1 logic was defined as falling into two parts, syntax and semantics. 
Over the last sixty-five years a standard version of formal logic has evolved.  Its 
more elementary version that explores the logical properties of the sentential 
connectives is known as propositional  or sentential logic.  The fuller account 
extends to the logic of subject-predicate sentences and quantifiers and is known as 
quantificational, predicate, and most commonly first-order logic. What is 
important from our perspective is the fact that the logical properties of arguments 
written in its syntax have been studied in great detail. Indeed, though less than a 
century old, first-order logic is often called classical logic.  Its axioms systems and 
deduction rules have become the standard against which all innovations in logic are 
measured. Most of what makes up the body of “discoveries” that constitutes the 
science of logic consists of details  about the syntax, semantics, and proof theory of 
first-order logic.  
 Accordingly, if we state something in first-order logic, its syntax, semantics, 
and proofs are clear, much clearer than they would be if  written in  natural 
languages like English, which are still poorly understood.  But what makes first-order 
logic important is not just its clarity, but its expressive power.  Using its restricted 
resources, it is possible to state most mathematical and scientific theories. When 
science is written in first-order logic, it is eminently clear, and this clarity has 
important consequences for the scientific method.  If a deduction is offered, or a 
mathematical computation that plays the role of a traditional “deduction” (as is often 
the case in computer science), we can tell instantly whether is its formally valid.   We 
thus know how to verify a large number of sentences. Up to certain limits we can 
even calculate the consequences of hypotheses, and hence what we should look for 
by way of indirect confirmation when the hypotheses themselves cannot be directly 
confirmed.  We also know what it is for a theory to be inconsistent  with itself or with 
other propositions.   
 It is for such reasons that first-order logic has become a kind of lingua franca 
used by practicing researches in mathematical fields like logic, mathematics, 
computer science, and the branches of the empirical sciences that lend themselves 
to mathematical methods. After this introduction, you will be able to spot scientists 
who are using logic without telling you.  Indeed, the rather barbarous mathematical 
English in which virtually all math and many science books are written is really a 
compromised version of first-order syntax. Without explaining what they mean, 
authors sprinkle their writing with references to variables, constants, equations, 
proofs, theorems, and use turns of phrase like for all x, and  for some y. This talk is 
intended to be understandable to people who only know English, but it masks the 
fact that the researcher is really thinking in first-order logic and conveying his 
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thoughts in a precise way to readers who know it also.  When we are finished, you 
should have some understanding of this esoteric language and an appreciation for 
why it is used when possible. 
 

A. Grammar 

i. Parts of Speech 
   A Simple Grammar: Sentential Logic.  The first step in defining any grammar 
consists of laying down initial building blocks.  These are called the atomic 
expressions.  Next a finite set of grammar rules is laid down for the construction of 
longer molecular expressions.  The full set of well-formed expression is then 
defined as consisting of all expressions that can be built up from the atoms by the 
rules.  Let us begin by considering the grammar of sentential logic. Let atomic 
formulas consist of all indexed sentential letters  Pi, for any positive integer i.  There 
is one grammatical rule for each of the sentential connectives: ∼,∧,∨,→, and ↔.32 
 
Syntax of Sentential Logic  
 
A syntax SL for sentential logic consists of the sets AFSL, RSL and FSL meeting the following 

conditions: 
AFSL, called the set of  atomic formulas (or sentences) of SL, is some subset of the sentence 

letters:  P1,..., Pn,.... 
RSL, called the set of grammatical rules of SL, consists of five rules, one for each connective: 
 R~ constructs ∼x from any string x; i.e. R~(x)=∼x 
 R∧ constructs (x∧y) from strings x and y; i.e. R∧(x,y)=(x∧y) 
  R∨ constructs (x∨y) from strings x and y; i.e. R∨(x,y)=(x∨y) 
 R→ constructs (x→y) from strings x and y; i.e. R→(x,y)=(x→y) 
 R↔ constructs (x↔y) from strings x and y; i.e. R↔(x,y)=(x↔y) 
FSL, the set of (well-formed) formulas (or sentences) of SL is defined inductively as follows: 
 1. Basis Clause.  All formulas in AFSL  are in FSL. 
 2. Inductive Clause. If P and Q are in FSL, then the results of applying the rules R~,R∧,R∨,R→, 

and R↔ to them, namely  ∼P, (P∧Q), (P∨Q), (P→Q), (P↔Q), are all in FSL; 
 3. Nothing is in FSL  except by clauses 1 and 2. 
 
 A More Complex Grammar: First-Order Logic.  The syntax for first-order logic 
is a more complex.  Though sentential logic has a number of grammar rules, it has 
only one “part of speech:” all expressions are sentences, either simple or complex.  
First-order logic goes beyond sentential logic is “parsing” the structure of simple 
sentences into more detailed grammatical components.   The building blocks of 
simple sentences fall into three broad categories: singular terms, functors, and 
predicates. 
 A singular term, broadly speaking, is a word or phrase that stands for a 
single entity in the universe. But what counts as an “entity in the universe” is a 
question for philosophers.  Indeed, it is a central question in that branch of 
                                            
32 Strictly speaking, not all these connectives are needed, because some may be introduced from 
others by definition.  For example, if the grammar has just two rules, one for ∼ and one for ∧, then the 
other connectives may be defined: P∨Q as ∼(∼P∧∼Q), P→Q as ∼P∨Q, and P↔Q as (P→Q)∧(Q→P). 
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metaphysics called ontology.  In logic “an entity” is any existing thing that the 
speaker intends to talk about.  In a somewhat circular manner, we tell that the 
speaker intends that a particular thing exists by the fact that he uses a singular term 
to stand for it.   In this way language is supposed to mirror the world.  Corresponding 
to the entities existing in a world are the singular terms of the language that refer to 
them. In logic, moreover, “the universe” includes not only people, places and things, 
but also somewhat controversial mathematical entities like numbers.   Whether 
mathematicians are justified in referring to such “things” is disputed by philosopher 
of mathematics.  Physical theories written in a first-order language likewise usually 
presuppose non-common sense entities.  The laws of physics, for example, talk 
about  forces, times, places, and other exotic particles and entities.  First-order logic 
names and “quantifies over” whatever sort of entities the theory in question 
presumes to talk about and name.  It is these that constitute its “universe” or 
“domain.”  
 As in natural language, singular terms in logic fall into three types: constants, 
variables, and the mathematically important class of terms made up of functor or 
operation symbols.  These correspond roughly to proper names, pronouns, and 
expressions that make up noun phrases that begin with the. 
 Playing the role of proper names are constants. Syntactically these are lower 
case letters from the beginning of the alphabet: a, b, c, d,.... Just as a proper name 
in English, like Socrates, stands for an individual thing, so too a, b, and c are 
supposed to stand for things.  Some first-order languages, in particular arithmetic, 
has among its constants the numerals: 1, 2, 3, ....  It is assumed that these are 
names for numbers -- 1 naming the number one, 2 the number two, etc. (The 
Romans used a different set of names, I for one, II for two, etc.) These expression 
are called constants because, unlike pronouns, they have a reference that is fixed 
no matter what  expressions they appear within. 
 The role of pronouns is taken by expressions called variables.  These are 
lowercase letters from the end of the alphabet, x, y, z, ....  Like pronouns they 
function as what linguists call anaphora, expression whose referent varies from 
sentence to sentence depending on some previous term in the speech context.  The 
symbol that plays the role in a sentence of fixing the referent of a variable is called a 
quantifier.  For example, if a variable x follows the quantifier for all, which called the 
universal quantifier and represented symbolically by ∀, then x stands for every 
individual entity in the universe.  If it follows the expression for some, which is called 
the existential quantifier and represented by ∃, x stands for at least one existing 
thing.  How the referent of x can vary in this way, sometimes standing for everything 
and sometimes for at least one thing, is what the semantics of quantifiers explains.    
 The third type of singular term in logic is a complex phrase roughly analogous 
to natural language’s noun phrases that begin with the.  These are composed of two 
sorts of parts.  One is a singular term or series of terms.  The other is a new type of 
expression called a functor.  The purpose of the functor is to produce a complex 
singular term when attached to shorter singular terms.  In English, for example, the 
matrix the wife of .... approximates a functor.  When it is combined with the singular 
term Socrates, it yields the singular noun phrase the wife of Socrates, which stands 
for an entity, the same one that serves as the referent of the proper name 
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Xanthippe.  Likewise, the state between ---- and ~~~ combines with a series of two 
singular terms.  When joined with the names Nevada and Colorado, it produce a 
long noun phrase the state between Nevada and Colorado that is co-referential with 
the name  Utah.   
 Semantically we say that functors stand for functions or operations.  What 
are functions and operations?  Philosophers wonder.   They are clearly not normal 
physical objects.  Mathematicians often speak of them as “rules.”  These rules take 
inputs (called arguments) and yield outputs (called values). The rule picked out by 
the wife of takes a man as an argument and yields his spouse as its value. In truth, 
functors and functions have been inspired by the needs of mathematics.  Familiar 
expressions like + and x are functors that stand for operations on numbers -- they 
stand for the functions or “rules” addition and multiplication.   Syntactically we 
combine the functor + with the numerals 2 and 5. to make up a complex singular 
term 2+5.  Semantically, + stands for the addition operation on numbers, 2 for the 
number two, and 5 for the number five.  The complex singular term 2+5 stands for 
the result of applying the addition rule to the numbers two and five.  We know that 
this is the number seven.  We also know that 7 is a numeral that stands for seven.  
Hence the two singular terms 7 and 2+5, the former simple and the latter complex, 
stand for the same entity in the world, the number seven. 
 In addition to singular terms and functors, there is a third variety of new  
atomic expression in first-order logic, predicates.  These are roughly what logicians 
since Aristotle have called predicates in subject-predicate propositions.  In natural 
languages like English, predicates take many forms.  An important variety consists 
of the so-called one-place or monadic predicates.  These combine with a subject 
term to yield a complete sentence.  They include intransitive verbs like ....runs, 
common nouns and adjectives combined with forms of the verb to be, as in  ....is a 
human and ....is rational.   You may recall from the history of philosophy that the 
semantics of such predicates generated centuries of debate in the Middle Ages.  If 
predicates of this sort stand for something, that sort of entity is rather odd, and was 
traditionally called (in the terminology of Abelard) a universal.  In the syntactic 
theories of natural languages as developed by modern linguists, sentences are 
usually treated as being formed from a noun phrase and a verb phrase.  It is the 
verb phrase that assumes the role of the traditional predicate. 
 Also included in the set of predicates are so-called two and higher place 
predicates.  These are terms that require two or more singular terms to make up a 
simple sentence.  Examples from English include transitive verb forms like ....loves----
, verbs-preposition combinations like ....is hiding under---, and combinations of 
comparative adjectives with the verb to be, as  in  ....is taller than-----.   Semantically 
such a “predicate” is traditionally said to stand for a relation, a category of entity 
even more mysterious  than ordinary universals.  (In modern linguistics relational 
predicates of this sort are treated by verb phrases that incorporate names for the 
direct object, indirect object, or other names  mentioned in the verb phrase.) 
 In logic predicates are represented by uppercase letters F,G,H. etc.  Defining 
their semantic role, however, is more difficult.  The universals and relations of 
traditional philosophy hardly seem clear or precisely enough to be used in serious 
science.  A more adequate substitute is found in set theory.  Modern logicians 
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generally say that predicates stand for sets.  Sets are held to be much clearer than 
universals because we have a detailed theory that explains how they work.  The two 
laws of naive set theory (the axiom system F of Chapter 1 that captures Russell’s 
rendering Frege’s ideas on sets)  are repeated below with their English translations. 
 
The Axioms of  Naïve Set Theory 
 
The Principle of Abstraction.  Any set that can be defined exists, containing all and only the objects 
meeting the definition: 
 
   ∃A∀x(x∈A ↔ P[x])  
 
The Axiom of Extensionality.  Two sets are identical if, and only if, they have exactly the same 
members:  
  ∀x∀y[x=y↔∀z(z∈x↔z∈y)]   
 
The Principle of Abstraction provides an existence criterion for sets, and explains 
their “composition.”  The Axiom of Extensionality provides a criterion for their 
identity.  From the two an entire theory may be deduced filling out the properties of 
sets.  This theory is then a kind of “science” that “explains” sets.  Sets are, in this 
sense, quite well explained.33  It is for this reason that philosophers like Quine thinks 
that it is a philosophical advancement to employ talk of sets in place of what 
philosophers have called properties, which obey no law like the Principle of 
Abstraction explaining when they apply nor any like the Principle of Extensionality 
setting out their “identity conditions”.34 
 Moreover, both relations and functions can be explained as special sorts of 
sets.  Recall that in high school  algebra functions are associated with their solution 
sets.  In set theory both relations and functions are identified with sets. A two-place 
relation is treaded as a set of order-pairs.  For example, the relation x loves y is 
represented by the set of all pairs <x,y> that make the sentence “x loves y” is true.  
This set is represented symbolically as {<x,y>| x loves y}, read “the set of all 
ordered-pairs <x,y> such that x loves y.”  Thus, <Romeo,Julliet>, <Julliet,Romeo>, 
<Helen, Paris>, <Paris,Helen>, <Menelaus,Helen>} are all in this set, but 
<Helen,Menelaus> is not – hence the Trojan War.  The three  place relation x is 
between y and z is similarly treated as a set of ordered triples.  Thus, <Cincinnati, 
Lexington, Dayton> and <Cincinnati,Dayton,Lexington> are in this set but 
<Dayton,Lexington,Cincinnati> is not.  An n-place relation is in general defined as a 
set of ordered n-tuples  <a1,...,an> that stand to one another in the manner dictated 
by the relation in question.    An n-place function is defined as a set of ordered  n+1-
place  “tuples” <a1,...,an,b> such that the functional “rule” assigns to the “input 
values” a1,...,an (called an argument of the function), the output value b (called the 
value of the function for arguments a1,...,an ). 

                                            
33 This claim is greatly overstated and must be qualified because of the important fact that the axiom 
system of naive theory is formulated above it entails a contradiction.  Rather sophisticated 
reformulations of the system are necessary to avoid contradictions, and it is these more complex 
systens that properly “explain” what sets are. This branch of logic is called axiomatic set theory. 
34 See W.V.O. Quine, Set Theory and Its Logic. 
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 We are ready now to see the statement of the full grammar for FOL. 
 

The Syntax of First-Order Logic 
 
A syntax for first-order language FOL consists of a series of sets (“parts of speech”) VblsFOL, 

ConsFOL, FuncsFOL, PredsFOL, TrmsFOL, AFFOL and FFOL, and the rule set RFOL meeting the 
following conditions: 

We stipulate that the following sets exist, called sets of atomic (or basic) expressions: 
 the (infinite) set of variables: VblsFOL ={v1,...,vn,...}; 
 some set ConsFOL of constants (proper names) drawn from (i.e.  subset of): {c1,...,cn,...}; 
 some set PredsFOL of predicates drawn from: {P0

1,...,P0
n,...;P1

1,...,P1
n,...;…;Pm

1,...,Pm
n,...;…} ; it is 

stipulated that P0
1 is ⊥, called the contradiction symbol  (it’s meaning is explained below); 

 some set FuncsFOL of functors drawn from: {f11,...,f1n,...;…;fm1,...,fmn,...;…}. 
The set RFOL of grammatical rules includes R~,R∧,R∨,R→, and R↔ from sentential syntax and three 

new rules: 
 RAF takes a symbol x and a string of n items y1...yn and makes up the string xy1...yn:  
   i.e. RAF(x,y1,...,yn)= xy1...yn; 
 RFunc takes a symbol x and a string of n items y1...yn and makes up the string x(y1...yn);  
   i.e. RFunc(x,y1,...,yn)= x(y1...yn); 
 R∀ takes the sign x and string y and makes up the string ∀xy; i.e. R∀(x,y)=∀xy. 
The set TrmsFOL of terms  is defined inductively:  
 1. Basis Clause. All constants and variables are terms (i.e. VblsFOL and ConsFOL are subsets 

TrmsFOL).  
 2. Inductive Clause. If t1,...,tn are terms and fn  is a functor, then the result fn(t1...tn) made up by 

apply to them the rule RFunc  is a term.  
 3. Nothing else is a term. 
The set AFFOL of atomic formulas of FOL generated by TrmsFOL, PredsFoL, and FuncsFOL is the set 

of all Pn
mt1...tn  made up by applying the rule RAF to a predicate Pn

m and the string of terms t1,...,tn. 
The set FFOL of formulas (also called the language) generated by TrmsFOL, PredsFoL and FuncsFOL 

is inductively defined: 
 1. Basis Clause.  If P is in AFFOL then P is in FFOL (i.e. AFFOL is a subset of FFOL). 
  2. Inductive Clause.  If P and Q are in FFOL, and v is a variable, then the strings ∼P, (P∧Q),  

(P∨Q), (P→Q), (P↔Q), and ∀vP that result from applying to them the rules  
R~,R∧,R∨,R→, R↔, and R∀ are all in FFOL. 

 3. Nothing else is in FFOL. 
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ii. Syntactic Conventions and Abbreviations  
 

We shall follow the customary conventions of using special typefaces to 
indicate parts of speech.  
 

Typographic Conventions for Part or Speech in First-Order Syntax 
 
The following expressions, with and without subscripts, ranges over the part of speech indicated: 
 
  Typeface   Part of Speech 
  a,b,c      constants 
  v,w,x, and y   variables 
  Pn     n-place predicates 
  fn     n-place functors 
  P, Q, and R    formulas 
  X,Y and Z   sets of formulas 
 
 
 Since we shall have occasion to refer in some detail to expressions written in 
first-order notation, let us pause here to define some terms. 
 Basic Expressions.  Linguistics believe that in natural languages the set of 
basic expressions is finite.  In logic, however, we abstract away from natural 
language – it is always better in mathematics to be as abstract as the subject matter 
allows – and define the basic sets of constants, predicates, and functors in a way 
that permits them to be countably infinite.  The set of variables is even required to be 
infinite. Though it is infinite, we construct the set from  a finite number of more basic 
signs.  We do this by understanding a subscript  or superscript to be, strictly 
speaking, a series of n vertical strokes.  Thus constant c5  is really c|||||, v9 is v|||||||||,  
P2

4 is (P||)|||| and  f37 is (f|||)|||||||. 
 
Example.  The infinite set C={c1,...,cn,...}, which contains the expressions from which the constants of 
a syntax are taken, may be constructed (i.e. defined inductively) by concatenation from just the two 
symbols c and | as follows: 
 1. c is in C; 
 2. if x is in C, then  x| (i.e. the result of concatenating x  to the left of |) is also in C; 
 3. nothing else is in C. 
 
In a similar way the basic sets of variables, predicates, and functors can be 
constructed. 
 Predicates.  We read the super- and sub-scripts of Pn

m as indicating that it is  
the m-th predicate of degree n.  Let us first explain what degrees are.   
 Predicates of degree 1, namely P1

1,...,P1
m,...(called one-place predicates), 

are intended to function like the common nouns, adjectives and intransitive verbs of 
natural language.  They stand for sets.   
 Predicates of degree 2 (also called two-place predicates), namely 
P2

1,...,P2
m,..., function like transitive verbs or comparative adjectives.  They stand for 

binary relations, which in set theory are sets of ordered-pairs.   
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More generally, Pn
1,...,Pn

m,... are n-place predicates standing for n-place 
relations, which in set theory are sets of ordered n-tuples <d1,...,dn> of elements of 
the “domain.”   

There is also the special “degenerate” case predicates of “degree 0:”  
P0

1,...,P0
m,... These are followed by 0 terms.  They are intended to look and function 

semantically just like the atomic sentences letters of sentential logic.  Their inclusion 
provides a simple way to replicate within the syntax and semantics of first-order logic 
the standard syntax and semantics of sentential logic.   They insure that in fact the 
set FSL of formulas in sentence logic is a subset of the set FFOL of formulas in first-
order logic.  In this way sentential logic proves to be a special case of first-order logic 
in a very literally sense. 
  Of these predicate letters of 0-degree, a.k.a. atomic sentences, the very first 
one P0

1 is singled out for special attention.  We stipulated that it is ⊥ and call it the 
contradiction symbol.   Later in the semantics we will require that it is always false.  
The symbol is useful in stating logical rules like reduction to the absurd. 
 Functors. We use the notation fnm for the m-th n-place functor.  This is the  m-
th functor that stands for an n-place function. Such symbols mainly occur when the 
language is being used to express mathematics.  
 Connectives. A formula is called a truth-function if it does not contain the 
quantifier ∀ or ∃, and is made up from atomic formulas by the connectives ∼,∧,∨,→, 
and ↔.  (A truth-function may contain variables.) An atomic sentence or its negation 
is called a literal. 
 Quantifiers.  In the primitive syntax as defined above there is only one 
quantifier, the universal  quantifier ∀ (read for all).  The existential quantifier ∃ (for 
some) is then introduced by definition. 
 
Definition of the Existential Quantifier 
   ∃vP         is an abbreviation for  ∼∀v∼P 
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iii. Substitution 
 
Substitution depends on several preliminary ideas. 

Preliminary Definitions  
• An occurrence of a term t in P said to be free in P if  
      If t is a variable v then its occurrence is not part of some formula ∀vQ or ∃vQ in P, or 
 If t contains an occurrence of a variable v, then that occurrence of v is not part of some  

  formula ∀vQ or ∃vQ in P; 
  otherwise the occurrence of t is said to be bound.  
• A term or literal that does not contain a variable is said to be grounded.  
• An occurrence of a  term t′  is free for (replacement by) a term t (which may be complex and 

contain variables) in P iff, for any variable v that is in t, the occurrence of t′ in P is not part of 
some formula ∀vQ or ∃vQ in P. 

• A formula without free variables is customarily called a sentence.  
• A formula  P is called general if all its quantifiers occur on the outside (leftmost side) of P in the 

sense that P is some E1v1...E1vnQ such that {E1,...,En}⊆{∀,∃}  and Q is some truth-functional 
formula in which neither ∀ nor ∃ occur.  Such a  general formula E1v1...EnvnQ is said to be 
universal if all Ei are ∀. 

 
The Substitution Function  
 
A substitution function for terms in FFOL is a partial function σ from TrmsFOL (i.e. σ need not be 
defined for all arguments in its domain TrmsFOL) into some subset of TrmsFOL and is defined 
recursively, or as we shall usually say, inductively as follows: 
 Atomic Case.  If t is some variable v or constant c, then σ(t), if defined, is in TrmsFOL, 
 Molecular Case. If t is a complex term fn(t1...tn) and σ (t1)... σ(tn) are all defined, then 

σ(fn(t1...tn ))=fn(σ(t1)... σ(tn)).  If any of  σ(t1)... σ(tn) are undefined, so is σ(fn(t1...tn )) (hence 
making σ a partial function). 

 
Examples 
 
Intuitively, t′ is free for t in P means it is OK to replace t' by t because doing so will not change the 
over all pattern of bound and free variables in a way that would make the new variable bound where 
the one it replaces was free. 
• The occurrence f(x,y) is free for g(x,z) in Ff(x,y) because the occurrence of f(x,y)  in Ff(x,y) is not 

part of any ∀xQ or ∃xQ, nor part of any ∀zQ or ∃zQ in Ff(x,y), where x and z are the variables in 
g(x,z).  Here the variables of g(x,z) remain free in the new formula. 

• The occurrence f(x,y) is not free for g(x,z) in ∀z(Ff(x,y)→Gz) because the occurrence of f(x,y)  in 
∀z(Ff(x,y)→Gz)  is part of some ∀zQ or ∃zQ in ∀z(Ff(x,y)→Gz).  If g(x,z) where to replace f(x,y) 
in ∀z(Ff(x,y)→Gz) its variable z would be bound, the result being ∀z(Fg(x,z)→Gz), whereas all 
the variables of the term being replaced, namely f(x,y), are free in  ∀z(Ff(x,y)→Gz 

 
The substitution function is extended to formulas in three ways. 
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Substitution for All Free Terms 
 
The extension  of a substitution function σ to sentences, for all free terms, is defined inductively 
as follows: 
Atomic Case.  (Pnt1...tn)σ = Pnσ(t1)... σ(tn) 
Molecular Case. (∼P)σ=∼(Pσ) 
   (P∧Q)σ= (Pσ ∧(Qσ) 
   (P∨Q) σ= (Pσ ∨(Qσ) 
   (P→Q) σ= (Pσ →(Qσ) 
   (∀vP)σ=∀v(Pσ) if both the terms replacing are free in the result and the  
                                    terms being replaced are free in the original,   
                                    where these conditions are defined as follows: if σ(t) is defined, then 
      the replaced term t is free in (∀vP), i.e.:  
        for any v′ in t,  v′ is free in (∀vP), and 
    the replaced terms t are free for the replacing term σ(t), i.e.:  
                                                no variable in a replacing term becomes bound: 
      for any variable v that is in t, the occurrence of σ(t)  in P is not 
      part of some formula ∀vQ in P. 
     Otherwise (∀vP)σ  is undefined. 
 
We introduce now some simpler notation for substitution. 

Simplified Substitutional Notation 
 
We introduce the notation P[t1...tn] to indicate a formula P that may contain the terms t1...tn.   
 
We then use the simplified substitution notation P[t ′1,...,t ′n/t1...tn] to indicate the result of substituting 
in P for all free occurrences of t1...tn respectively by  t′1,...,t′n.   Formally, P[t ′1,...,t ′n/t1...tn] is defined 
as Pσ where σ is substitution function for FFOL  and σ(t′i)=ti. 
 
Sometimes rather than list all terms being substituted, it is more convenient to refer first to a sentence 
P using the notation P[t1...tn] and then later to P[t ′1,...,t ′n/t1...tn] by the even more abbreviated  
notation P[t ′1,...,t ′n].  Thus, the earlier mention of P[t1...tn] simply means that we are dealing with the 
formula P and that we are selecting for special attention the terms t1...tn, which may or may not be in  
P.  In the same context if we then later refer to P[t′1,...,t′n],  we are then referring to the result of 
substituting t′1,...,t′n for t1...tn in  P, i.e. to P[t′1,...,t′n/t1...tn]. 
 
Examples.  If a ti does not occur in Pn

mt1...tn, then its replacement by t′i makes no change in Pn
mt1...tn.  

In the extreme case in which there are no occurrences of any t1...tn in P, then 
Pn

m[t′1,...,t′n/t1...tn]=Pn
mt1...tn,   Moreover, substitution is only a partial operation on terms and formulas.  

If there is even one occurrence of ti that is not free in P or is not free for σ(ti), then Pn
m[t′1,...,t′n/t1...tn] is 

undefined. 
 
Fx[y/x]  = Fy 
Fz[y/x]  = Fz  x does not occur in Fz. 
Fx∧Gy[y/x] = Fy∧Gy 
(∀xFx)[y/x]  undefined The occurrence of x in ∀xFx is not free. 
(∀y(Fy∧Gx))[y/x] undefined The occurrence of x in ∀y(Fy∧Gx) is not free for y. 
(Fx∧(∀y(Fy∧Gx))[y/x] undefined One occurrence of x in Fx∧∀y(Fy∧Gx) is not free for y. 
 

  2, Page  92. 



An Introduction to Metalogic  FOL Soundness and Completeness 

 Substitution for Some Free Terms 
 
An extension of a substitution function σ to sentences, for some free terms, is a partial function 
from FFOL  to FFOL defined inductively as follows: 
Atomic Case.  (Pnt1...tn)  σ= Pnt′1...t′n, such that for any i≤n, either t′i = ti  or t′i= σ(ti)  
Molecular Case. (∼P) σ=∼(Pσ) 
   (P∧Q)σ= R∧S such that R=Pσ or S=Qσ 
   (P∨Q)σ=R∨S such that R=Pσ or S=Qσ 
   (P→Q)σ= R→S such that R=Pσ or S=Qσ 
   (∀vP)σ= ∀v(Pσ) if for any t such that σ(t) is defined, then 
    1. for any v′ in t,  v′ is free in (∀vP), and 
    2. for all t in (∀vP), t is free for σ(t) in (∀vP). 
      Otherwise (∀vP)σ is undefined. 
P[t′1,...,t′n//t1...tn], read “a result of substituting in P for some free occurrences of t1...tn by of 
respectively some of t′1,...,t′n” is defined as Pσ where σ is substitution function for FFOL  for some free 
terms and σ(t′i)=ti. 
Substitution for All Terms:  Alphabetic Variance 
 
The extension  of a substitution function σ to full sentences, for all terms, is a partial function 
from FFOL  to FFOL  defined inductively as follows: 
Atomic Case.  (Pnt1...tn) σ = Pnσ(t1)... σ(tn) 
Molecular Case. (∼P)σ= ∼(Pσ) 
   (P∧Q)σ= (Pσ ∧(Qσ) 
   (P∨Q)σ= (Pσ ∨(Qσ) 
   (P→Q)σ= (Pσ →(Qσ) 
   (∀vP)σ= ∀σ(v)(Pσ) if the replacing terms are free in ∀vP 
          (define as  before).         
     Otherwise (∀vP)σ is undefined. 
P is an alphabetic variant of Q, briefly P≡Q, iff there is some 1-1 substitution function σ for FFOL for 
all terms such that  for all constants c,  σ(c)=c, and Q=Pσ. 
 

 

Metatheorem 1-1.   If P σ is well defined, Pσ is an alphabetic variant of P, i.e.  P≡Pσ. 

 
Examples of Alphabetic Variants.  Let σ be a full extension substitution function for all terms. 
 
Fx[y/x]=Fy 
(∀x(Fx∧Gx))[y/x]= ∀y(Fx∧Gx)[y/x]= ∀y(Fx[y/x]∧Gx)[y/x])= ∀y(Fy∧Gy) 
(∀xFx∧Gx)[y/x]=(∀xFx)[y/x]∧Fx[y/x]=∀xFx∧Fy 
(∀xFx∧Gx)[x/x]=(∀xFx)[x/x]∧Fx[x/x]=∀xFx∧Fx 
(∀y(∀xFx∧Gy))[z/x]=∀y((∀xFx∧Gy)[z/x])=∀y((∀xFx)[z/x]∧Gy[z/x])=∀y(∀zFz∧Gy) 
(∀y(∀xFx∧Gy))[x/x]=∀y(∀xFx∧Gy[x/x])=∀y((∀xFx)[x/x]∧Gy[x/x]))=∀y(∀xFx∧Gy) 
(∀y(Hy∧∀x(Fx∧Gy)))[y/x]= undefined, y is not free for x in ∀y(Hy∧∀x(Fx∧Gy)) 
(∀z(Hz∧∀x(Fx∧Gy)))[y/x]=∀z((Hz[y/x]∧∀x(Fx∧Gy)[y/x]))=∀z(Hz∧∀x(Fx∧Gy)[y/x])=undefined, 
 because y is not free for x in ∀x(Fx∧Gy) 
 
 
 One important special variety of first-order languages are those that have the 
power to express what logicians call numerical identity.  (The term was coined by 
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Aristotle.)  In this sense the only thing identical to an object is itself.  If you count the 
number of things identical to x there is only one, x itself.)  To do so in a first-order 
language we single out the first two-place predicate P2

1, and  stipulate that it be the 
traditional identity predicate =.  (Also instead of writing =xy as rule RAF officially 
requires, we usually use the more natural order typical of European languages x=y, 
and its negation ∼x=y as x≠y.) We call this syntax first-order logic with identity.  
Later in its semantics we stipulate that =  stands for the (numerical) identity relation. 
 
The Syntax of First-Order Logic with Identity 
 
A syntax for first-order logic with identity is any first-order syntax in which P2

1 in PredsFOL is =. 
 
 Another important type of first-order language is set theory.  Most of modern 
math and science can in fact be written in this notation. Its minimal syntax contains 
no constants and only three predicate: the contradiction sign, the predicate = for 
identity and the predicate ∈ for set membership.   
 The type theoretic syntax of Principia Mathematica is a special case.  It is 
what is called a many-sorted first-order language with a special variety of variables 
assigned to each sort.  In LPM the type τ is assigned a variables to form vτ.  Such 
variables are introduced into a first-order syntax by means of sortal predicates.  The 
syntax specifies that for each type, which is understood to be a set, there is a special 
one-predicate, called its type predicate, that is set aside to stand for (take as its 
extension) that type in the standard interpretation of the syntax. Since LPM needs no 
other one-place predicates, we may simply specify that there is some P1

i for each 
positive integer i, and introduce type-indexed variables as quantifications relative to 
this predicate.  That is,  Q[vτ] will mean for all v of type i, Q[v]. 
 
Example.35  A (minimal) set theoretic syntax is any first-order logic with identity such that the set of 
constants is empty and there are only three predicates, as follows: 
 P0

1 is ⊥ 
  P2

1 is = 
 P2

2 is ∈ 
The language LPM of type theory is a set theoretic syntax that has the further specification that there 
is a predicate P1

τ, for each i≥0  and that   
   Q[vτ

i]  means  ∀v(P1
τv→Q[v]) 

                                            
35The special set theoretic notation {x|P[x]} (read the set of all x such that P[x]) is not part of the basic 
(primative) vocabulary of firs-order set theory because it is introduced by definition as follows.  Let us 
adopt the convention that by Q[{x|P[x]}] we mean the syntactic string of symbols Q that contains 
within it as a part the expression {x|P[x]}. When used in logic (e.g. in axiomatic set theory) this string  
is understood as an abbreviation for a longer formula: 
  Q[{x|P[x]}] means ∃y{∀x(x∈y↔P[x]) ∧ (∀z(∀x(x∈z↔P[x])→z=y)} 
It follows that, being an abbreviation, Q[{x|P[x]}] is a well-formed formula of the syntax iff 
∃y{∀x(x∈y↔P[x]) ∧ (∀z(∀x(x∈z↔P[x])→z=y)} is. 
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B. Semantics 
 
 Semantics is that branch of logic in which the meaning of expressions is 
explained. It is important for logic because it is in semantics that good and bad 
arguments are distinguished.  The good ones, called valid, transmit truth from the 
premises to the conclusion.  To explain validity, semantics must accordingly explain 
truth, the more basic notion.  Truth in turn is explained in terms of the 
correspondence of expressions with the world.  A simple sentence is true if in its 
world its terms pick out entities that stand in the relation picked out by the predicate.  
The truth-value of atomic formulas is thereby assigned. The truth-values of complex 
formulas made up by connectives are calculated by truth-functions, one for each 
connective,  from the truth-values of its parts. Once truth is defined, then the key 
logical ideas can also be defined.  A sentence is a logical truth (tautology in 
sentence logic) if it is always true, and an argument is valid if whenever its premises 
are true, so is its conclusion.  This is the general picture that must be applied to the 
details of sentential and first-order syntax. 
 

i. Sentential Semantics   
 Its application to sentential logic is straight forward.  Atomic sentences are 
simply assigned a truth-value T or F indicating their descriptive success in a given 
world.  There are as many “worlds” (or more accurately, world types) as there are 
different assignments of T and F to these atoms.  The truth-values of molecular 
sentences are then calculated by truth-tables. It is customary to call an assignment 
of truth-values to sentences an interpretation or valuation. If the syntax contains 
sentences from a language that describes the things that exist in our world, then one 
of these interpretations will record the truth-values the sentences have in the world 
we actually inhabit. This assignment in a sense recreates the actual world, and for 
some purposes may serve as a kind of crude proxy for the “actual world” itself, much 
as a novel, which may be viewed as a set of sentences, represents a possible world.  
The formal definition of the semantics runs as follows. 
 
The Semantics for Sentential Logic 
 
An interpretation (or valuation) for the set FSL of formulas of an SL language generated by AFSL is 
any assignment ℑ of a truth-values T or F to the formulas in FSL that meets the following conditions: 
• ℑ assigns to every atomic sentence in AFSL  either T or F; 
• ℑ assigns to negations, conjunctions, disjunctions, conditionals and biconditionals the truth-value 

calculated by the truth-tables from the truth-values that ℑ assigns to its parts. 
The formula P is a tautology (abbreviated ╞SLP) iff for all ℑ, ℑ assigns T to P. 
The argument from P1,...Pn,... to Q is valid (abbreviated, P1,...Pn,...╞ SLQ) iff for any ℑ, if ℑ assigns T 
to all of P1,...Pn,..., then ℑ assigns T to Q. 
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ii. First-Order Semantics 
 
 First-order semantics is more complex.  Though not as complicated as natural 
languages like English, a first-order syntax nevertheless has several different parts 
of speech, sentence types and varieties of atomic expression.  The meanings in a 
world for the group of expressions as a whole is defined  “recursively.”  First the 
referents in the world for the atomic expressions – constants, constants, variables, 
predicates, and functors – are assigned referents.  Then, rules are defined for each 
complex expression type that fixes its referent or truth-value.  There is a rule that 
specifies the referent of a complex term as a whole given the referent of its functor 
and those of its argument-terms already determined.  There is a rule that specifies 
the truth-value of a subject-predicate sentence given the referents of its singular 
terms and its predicate.  There are rules that calculate the truth-values of sentences 
made up of the sentential connectives given the truth-values of their parts.  Lastly, 
there is a rule that determines the truth-value of a universally quantified sentence 
given that of its open sentence.  All these specifications add up to a definition of truth 
for  sentences. 
 The Domain and the Interpretations of the Atomic Descriptive 
Expressions. Before the referents of the descriptive terms can be fixed it must be 
determined what entities make up the “world”.  It is from within this broad set that the 
terms take their meaning.  These are the entities that exist in that world, and it is 
these that the variables and quantifiers are said to “range over.”  Thus the first step 
is to fix this set, which is called the domain of discourse.  In standard first-order 
logic this is always required to be some non-empty set D.  It is therefore an 
assumption of the semantics of first-order logic that in every world there is at least 
one existing entity.  There are as many possible domains, however, as there are 
non-empty sets, and each set may be viewed as consisting of the entities that exist 
in a possible world – possibilia they are called in mediaeval logic.  Atomic descriptive 
expressions – constants, functors, and predicates – then are assigned referents 
relative to a given domain, and from these the truth-values for sentences are 
calculated. The descriptive expressions are those that have a fixed referent no 
matter where they occur.  (Variables stand for entities but their referent varies 
relative to the position the occupy in a formula.)  An assignment of meaning to these 
fixed expressions is called an interpretation relative to D and is represented in this 
book by the letter ℑ. To interpret expressions, therefore, we need to specify both a 
domain D and the interpretation function ℑ that maps basic descriptive expressions 
to their referents relative to D.  Using the conventions of algebra for representing an 
“abstract structure”, we combine  D and ℑ into an ordered pair <D,ℑ>, which is 
called a model or structure and given a single letter name, for example A.   
 A model is the “mathematical” construct corresponding to our intuitive notion 
of a possible world.  As we shall see, given the syntax and a model, we will be able 
to assign referents to all the referring expressions of the language, and fix a truth-
value – the truth-value in that model – for every sentence.36 
                                            
36 More accurately, a model represent a world type or set of worlds.  It is perfectly possible for there to 
be two worlds that are the same as far as the objects and sets named by the language go but differ 
from one another because there are some entities that are unnamed and that differ in the two worlds 
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It is traditional to name models with German Goth (fraktur) letters: A,B,C,D,….  With 
this background, we are now ready to go into a little more detail about the referents 
of the various atomic descriptive expressions. 
 Constants.  Constants stand for “things” in the domain.  Relative to a model 
their referents at every occurrence in any expression of the language is fixed.   Thus 
relative to a domain D, we specify that a constant c stands for a fixed single entity 
ℑ(c) in  D. 
 Predicates. Intuitively, predicates stand for sets of entities in the domain or 
relations that hold among these entities.  Relations too, strictly speaking are sets 
because in set theory an n-place relation is a sets of n-tuples. Thus, if Pn is an n-
place predicate, its interpretation ℑ(Pn) is an n-place relation on D. The set of all 
ordered pairs from D is conventionally named D2, the set of all ordered triples by D3, 
and the set of all ordered n-tuples by Dn.  Since P2 is a two-place predicate, ℑ(P2) is 
some set of order-pairs.  This fact may be written ℑ(P2)⊆D2.  In general ℑ(Pn)⊆Dn.   
 We are almost ready to explain how the truth-values of sentences and the 
referents of complex singular terms are to be calculated given the domain D and the 
interpretation ℑ of its constants, predicates, and functors.  First, however, we need 
some more information. We need to know for each free variable what entity in the 
domain it stands for. 
 Variables and Variable Assignments. Like constants, variables stand for 
“things” in the domain, but like pronouns and unlike constants their referents vary 
from occurrence to occurrence, from sentence to sentence. The interpretation ℑ 
does not fix the meaning of free or bound variables.  Rather ℑ only assigns referents 
to those expressions that have fixed meanings in a model no matter what sentence 
they are in. An expression of this type, which is called a descriptive term in modern 
logic and categorematic term in mediaeval logic, is such that if one of its 
occurrences is assigned a meaning in the model, then every other occurrence, no 
matter what larger expression it is contained within, continues to have that meaning 
in that model.  Relative to a given model, its occurrences all have  a single meaning 
invariantly across all syntactic contexts.   In first-order logic expressions of this type 
consist of just the constants, predicate letters, and functors. Unlike these terms, 
variables do not have a fixed meaning, but vary in their referent while the meanings 
of descriptive terms remain the same.  While a constant will stand for the same 
individual, and a predicate the same set or relation, in every occurrence, a variable 
is said to “range over” groups of referents.  In for all x, John loves x, for example, 
John and loves have fixed meaning, but the second occurrence of x refers back to 
the universal quantifier for all x (in linguistic terminology it functions as an 
“anaphora”) and ranges over ranges over everything that exists. In the sentence for 
some x, x loves Mary, the second occurrence of x refers back to the existential 
quantifier for some x and ranges over some things in the domain.  In the sentence 
for all x, John loves x and for some x, x loves Mary the second and fourth 
occurrences of x refer back to different quantifiers and range differently over the 

                                                                                                                                       
because they exemplify properties or relations that have no predicates in the language.  These worlds 
will then be different, but they would determine the same model.   
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domain.  The occurrences of the variable have different meanings, i.e. range over 
referents in systematically different ways, according to their grammatical context. 

Let us address specifically the semantics of free variables.  Free variables 
function somewhat like pronouns and proper names.  They stand for things.  In 
formal logic we idealize natural language.  Just as we do not allow constants to be 
ambiguous, once interpreted we do not permit a free variable to name more than 
one thing, although we do allow that once interpreted two different  free variables 
may name the same thing.  Once its meaning is fixed, it has only one referent.   
Viewed mathematically, a fixing of the variables’ meanings is a many-one mapping, 
a function from the set of variables into the domain of existing entities.  In logic it is 
called a variable assignment relative to the model.  Relative to a domain D and 
interpretation ℑ, a variable assignment is a function that pairs each variable with a 
unique entity in D.   We shall use lower case letters s, with and without prime 
markers and subscripts, to stand for variable assignments.   Recall that for a single 
D and ℑ,  there will be as many such s as there are ways to map the set of variables 
into D.37 

Consider the formula  John loves x.  The referents of John and loves are fixed 
relative to D by  the function ℑ that specifies the meaning of all descriptive terms.  
But to interpret the x we need in addition a variable assignment s.  Hence to 
determine the truth-value of the sentence John loves x three “parameters” need to 
be fixed, D, ℑ, and s.  Thus,  John loves x is true relative to <D,ℑ> and s if, and only 
if, the individual ℑ(John) bears the relation ℑ(loves) to the individual s(x). 
 

iii. Inductive Definition of the Interpretation of Terms.   
First order-logic contains not only constants, which are the logical equivalents 

of proper names, and free variables, the logical equivalents of pronouns,  but also 
complex singular terms made up out of these by functors.  Functors stand for 
functions that take arguments from the domain and map them to values also in the 
domain.  They are regarded as descriptive terms.  A functor has a fixed meaning in a 
model <D,ℑ>, and it is fixed by the interpretation function ℑ.  If fn is an n-place 
functor, then its referent ℑ(fn) is a function (also called an operation) that maps n 
entities from D, taken in the specified order, to some entity dn+1 in D. 

Several notational conventions have evolved to talk about this fact.  First, a 
sequence of n entities from D taken in a specific order is represented as an n-tuple 
<d1,...,dn>.  Thus, the fact that ℑ(fn) pairs any <d1,...,dn> with a unique dn+1 is written 
symbolically as  ℑ(fn)(d1,...,dn)=dn+1.  Likewise, there is a convention that the set of 
all functions from a set B into a set A is symbolized as AB, and that the set of 

                                            
37 The notation s for variable assignments, as well as the idea itself, is due to Tarski.  To specify a 
variable assignment in a domain D, he used the device of an infinite sequence of entities d1,...,dn  of 
elements from, D and named this sequence s.  His convention was to  “read off” the referents of 
variables from the sequence, which strictly speaking does not mention the variables themselves.  His 
rule was that the first variable v1 stands in s  for the first entity in s, namely for d1, and in general the 
n-th vaiable in the syntax stands for the n-th entity in s, namely for dn .    It is now more common to 
view an assignment of objects to variable as we have defined it here, i.e. as a mapping (function) 
from the set of variables into D. 
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functions from the set B2  (the set of all the ordered pairs from B, which is also called 
B×B) into A is  A(B2 ).   Thus the fact that  ℑ(f1) is a function from D into D may be 
expressed ℑ(f1)∈DD

                                           

, as that ℑ(f2) is a function from D2 into D as ℑ(f1)∈D(D2)  In 
general it is required that ℑ(fn)∈D(Dn).38 

In set theory, the family (set) of all subsets of a set A is called the power set 
of A and is symbolized  P(A).  Now, since a relation is some set of n-tuples, it is a 
subset of the set of all n-tuples.   Hence instead of writing ℑ(P2)⊆D2, we could state 
the same fact by saying it is a subset of the set of all ordered pairs made up of 
elements from D, i.e. as  ℑ(P2)∈ P(D2).  In general, for any n-place predicate Pn,   
ℑ(Pn)∈ P(Dn). 
 This wealth of notation allows us to talk about the “categories” that 
correspond to “parts of speech”.  We are treating parts of speech here as sets of 
descriptive expressions – terms, predicates, functors, and formulas.  Since Aristotle, 
the set of entities corresponding to a part of speech has been called  a category.  
According to standard first-order semantics, then, the category of terms is D, that of 
n-place predicates is  P(Dn), that of n-place functors is D(Dn), and that of formulas is 
{F,T} (this set is also known as 2={0,1}).  These are the modern descendants of 
Aristotle’s famous list of categories: substance, quality, quantity, time, place, etc.  
The descriptive terms of modern logic are, thus, what were called categorematic  
terms  in mediaeval logic, i.e. the terms that stand for entities in the world, the terms 
that correspond to a “category” of real existents.  The so-called “logical expressions”, 
e.g. ∼,∧,∨,→, ↔, ∀, (, and ), on the other hand, do not stand for entities,  they are 
the syncategorematic expressions of modern logic, the ones that “go along  with” 
(syn=with in Greek) the genuine categorematic ones.   

What do syncategoremata do?  We can say that they provide a syntactic 
mark indicating that a grammatical rule has been applied because though they do 
not themselves have referents or truth-values, they are added to shorter referring 
expressions in the syntactic construction of a longer referring expression.   Thus the 
formation rule in syntax for negation is marked by the negation sign: ∼ is added to P  
to  make up ∼P.  The rule for making up a conjunction P∧Q from P and Q is marked 
by the introduction of the logical sign ∧.   

If this convention were to be followed systematically, there should also be a 
two additional logical signs, one for functor combinations and one for atomic 
sentences, i.e. one to signal that the terms t1...tn and the functor fn are put together in 
the formation rule for the complex term fn(t1...tn), and another to signal that t1...tn and 
Pn are put together in the atomic formula formation rule to construct the formula 
Pnt1...tn.  In first order syntax, however,  these rules are marked not by a special 
logical sign but simply by the word order (concatenation) of the component 
expressions.   A functor combination is indicated by the concatenation in order of the 

 
38 The origins of this notation and that for relations is a bit baroque. For example, the notation 
ℑ(P2)⊆D2 derives from the following customs. The set of all pairs of elements from D, traditionally 
called DxD, which is called the Cartesian product of D with D (because it is a generalization of 
Descartes’ original investigations of the  real number plane called RxR, or  R2.   The exponential  
notation is used because if there are n objects in R, then there are n2 objects in RxR.       

  2, Page  99. 



An Introduction to Metalogic  FOL Soundness and Completeness 

functor, an open parenthesis, the terms, and a closed parenthesis, and the formation 
of an atomic formula by the concatenation of the predicate with its terms. (In 
mediaeval logic, Latin was the language of logic, and it does contain what was 
recognized as a syncategorematic term marking the joining of a subject and a 
predicate to form a simple proposition, namely the verb to be, which was called the 
copula.)  Though logical signs lack referents, there is still a sense in which they 
have “meaning”, because corresponding to each formation rule, marked by its 
characteristic logical sign, there is a “semantic rule”.  This is a rule in the semantic 
theory that states how the referents of the immediate parts of an expression 
determine that of the whole.   Each formation rule, moreover has its own such 
semantic rule.  Corresponding to the negation formation rule, and its marker ∼, it the 
negation truth-function, and corresponding to the rule for conjunction and the marker 
∧ is the conjunction truth-function.  Likewise each of the other connectives has its 
truth-function.  As we shall see shortly, there are also distinctive rules for the rule 
constructing complex terms, for the rule constructing atomic formulas, and for the 
rule constructing universally quantified formulas and its marker ∀.  The meaning of 
logical signs, in other words, may be said to be “explained” by their corresponding 
semantic rules. 

Let us turn then to the task of defining, in general terms relative to a model 
<D,ℑ> and variable assignment s, the referent of a complex singular term fn(t1...tn) 
made of an n-place functor fn and the singular terms t1...tn.  Since in the syntax the 
set of terms (simple and complex) is defined by induction, so is the notion of the 
referent of a term.  The inductive definition has a basis clause and an inductive 
clause.  In the basis clause the referent of the basic terms (constants and free 
variables) is defined.  Note that these have already be fixed by  ℑ for constants and 
by s for variables.  In the inductive step the referent of complex term fn(t1...tn) relative 
to <D,ℑ> and s is defined on the assumption that the referents of each of its 
immediate parts t1...tn have been defined relative to any model and variable 
assignment for that model.   
 The only domains, interpretations and variable assignments relevant to 
determining the referent of fn(t1...tn) in <D,ℑ> and s are <D,ℑ> and s themselves. 
The specific condition is simply that the object paired with fn(t1...tn) is that determined 
by applying the function ℑ(fn) to the n-tuple of objects in the domain named by its 
immediate parts taken in order, i.e. by applying the function ℑ(fn) to < ℑA

s (t1),..., ℑA
s 

(tn))>.  The entire definition may be written very simply:  
   
Basis Clause.   ℑA

s(t)=ℑ(t) if t is a constant, and  ℑA
s(t)=s (t) if t is a variable 

Inductive Clause.   ℑA
s(fn(t1...tn))= ℑ(fn)( ℑA

s(t1),..., ℑA
s(tn)). 

 

iv. Inductive Definition of the Interpretation of Formulas.   
Definition of Truth or Satisfaction.   The central part of the semantic theory 

is the actual definition of truth in a model.  More precisely, truth-in-a-model must be 
relativized to yet a further parameter.  It only makes sense if a variable assignment 
is also fixed.  Thus, what  is defined is  “truth-in-a-model relative to a variable 
assignment”.  For this relativized notion of truth Tarski coined the technical name 
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satisfaction.   Thus the first step is to define for an arbitrary formula P what it is for P  
to be satisfied  relative to a model <D,ℑ> and variable assignment s.  (We shall find 
later that for some formulas, namely sentences, the extra parameter carries no 
special information because a sentences does not differ in truth-value across 
variable assignments.  At that point, we will have motivation to define a non-
relativized notion of truth as “satisfaction over all variable assignments.”  It is 
important to see, however, that this later non-relativized notion of truth depends on 
the prior definition of satisfaction because satisfaction is used to define non-
relativized truth.)   

Since the set of formulas is defined by induction, so is the notion of 
satisfaction.  Since the basic elements in the construction of formulas are atomic 
formulas, the basis step in the definition of satisfaction consists in stating 
“satisfaction conditions” for atomic formulas.  In the inductive step of the definition, 
however, there are multiple clauses, one for each grammar rule used in the inductive 
definition of formula.  There is one for each connective and one for the universal 
quantifier.   

Basis Clause: Subject-Predicate Sentences.  It is at this point that we  
define for an atomic formula Pnt1...tn the statement: 

 Pnt1...tn is satisfied relative to model <D,ℑ> and variable assignment s. 
This statement is customarily abbreviated by two equivalent notations 

As╞Pnt1...tn,     or 
 ℑA

s(Pnt1...tn)=T 
where A=<D,ℑ>. 

To review, let us list what determines the truth-value of Pnt1...tn in <D,ℑ> and 
s.  There are three things:  

(1) the entities  ℑA
s(t1),...,  ℑA

s(tn) named by the singular terms t1...tn,  
(2) the set or relation picked out by the predicate  ℑA

s(Pn), and  
(3) whether the entities  ℑA

s(t1),...,  ℑA
s(tn)  stand in the relation (or are in the set)  

ℑ(Pn).  If they do, the sentence is satisfied; otherwise it is not.   
In brief, the atomic formula is true relative to these parameters if the terms name 
entities that in order fall in the relation named by the predicate.  The rule below 
states this idea precisely.  It does so in two equivalent forms. The second uses set 
theoretical notation and makes use of the fact that  ℑ(Pn) is understood as a set of n-
tuples.    
 

As╞Pnt1...tn  (equivalently  ℑA
s(Pnt1...tn)=T)    iff     ℑA

s(t1),...,  ℑA
s(tn) stand in relation  ℑA

s(Pn). 
As╞Pnt1...tn  (equivalently  ℑA

s(Pnt1...tn)=T)    iff    < ℑA
s(t1),...,  ℑA

s(tn)>∈ ℑ(Pn). 
 
Inductive Clauses: Formulas Made Up from ∼, ∧, ∨, →, and ↔.  The next 

task is to define satisfaction for of a complex formula made by sentential connective 
relative to <D,ℑ> and s in terms of the satisfaction of its immediate parts.   For the 
connectives the only domains, interpretations and variable assignments relevant to 
determining the satisfaction of a term in <D,ℑ> and s are <D,ℑ> and s themselves. 
Each connective has its own inductive clause which is essentially an appeal to its 
traditional truth-table: 
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As╞ ∼P iff not As╞P;    or  ℑA
s(P)=T iff  ℑA

s(P)≠T 
As╞P∧Q iff (As╞P and As╞Q);    or  ℑA

s(P∧Q)=T iff,  ℑA
s(P)=T and  ℑA

s(Q)=T 
As╞P∨Q iff (As╞P or As╞Q); or  ℑA

s(P∨Q)=T iff,  ℑA
s(P)=T iff  ℑA

s(Q)=T 
As╞P→Q iff (not As╞P or As╞Q); or  ℑA

s(P→Q)=T iff,  ℑA
s(P) ≠T or  ℑA

s(Q)=T 
As╞P↔Q iff (As╞P iff As╞Q); or  ℑA

s(P↔Q)=T iff,  ℑA
s(P)=T iff  ℑA

s(Q)=T 
 
Inductive Clause: Formulas Made up from the Universal Quantifier.  In 

the syntax of first-order logic, the formula ∀xPx has as its immediate parts P and x.  
Intuitively, ∀xP is satisfied if Px is satisfied when its free variable x ranges over the 
entire domain. But what does it mean for a variable x to “range over” entities in the 
domain?  The idea is explained by means of variable assignments.  We may use 
they to that the universal formula ∀xPx is satisfied if Px would be satisfied no matter 
what x stands for. In other words, ∀xPx is satisfied exactly when Px is satisfied 
under every possible assignment of a referent to x.    

Let us be more precise.  The general framework dictates that we are trying to 
come up with a inductive definition of truth or, as it is called in this context, 
satisfaction. 39  The definition begins with the basis step (which we have already 
stated) that determines for each atomic formula, each model, and each variable 
assignment for the model, whether or not the formula is satisfied.  Next comes the 
inductive step.  For each grammar rule, it specifies the conditions under which the 
formula produced by the rule is satisfied relative to a model and variable 
assignment.  Here it is assumed, and it is indeed necessary for the definition to be 
well-defined, that the conditions have be previously defined that specify when the 
formula’s immediate parts are satisfied relative to a model and variable assignment.  
The inductive clauses for the sentential connectives, which were just stated above, 
fit this form.  In the case of the universal quantifier the whole formula is ∀xPx and its 
immediate part is Px.  The task then is to explain when ∀xPx is satisfied relative to a 
model <D,ℑ> and variable assignment s.  It is assumed that the conditions are 
already defined that specify  when Px is satisfied relative to a model and variable 
assignment.  It is important to note that this prior specification extends beyond the 
single model <D,ℑ> and assignment s.   We assume we know what it is for Px to be 
satisfied relative to any model and variable assignment.  It would not be sufficient to 
restrict attention to just D, ℑ, and s because knowing whether Px is satisfied relative 
to them alone would tell us only whether the formula Px is satisfied by a single entity 
in the domain, namely s(x).  But what we need to know is whether everything in D 
satisfies Px.  Let us then draw on the fact that we have previously defined not just 

                                            
39 It is also called a recursive definition, but the terminology needs some explanation.  Any definition 
that defines a relation or function by first definiing it for some basic elements, and then defining its 
application to an output on the assumption that it is defined for its input is called a recursive 
definition on analogy with the process of definition of functions “by recursion” in Gödel’s theory of 
primative recursive function where functions are defined this way by the technique called “recursion”.  
If a relation is understood as a set of n-tuples, a recursive definition in this broader sense is simply 
another name for an inductive definition of a set of n-tuples. This use of “recursive” is however rather 
broader than Gödel’s because it does not make the requirement imposed in Gödel’s special theory 
that the inputs or the outputs of the function being defined “by recursion” are “calculable functions”.   
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what it is for Px to be satisfied relative to a <D,ℑ> and s, but relative to <D,ℑ> and 
any variable assignment whatever for <D,ℑ>. 

To see how it is legitimate to appeal to this broad set of variable assignments, 
let us look a little deeper into the process of defining satisfaction by induction.  Let us 
refer to satisfaction by  the symbol ╞.40  Strictly speaking, ╞ is a 5-place relation that 
holds relates a formula P and the three “parameters” necessary for determining 
satisfaction to a truth-value V.  The three parameters that need to be specified in 
addition to P itself are a domain D, an interpretation ℑ over D, and a variable 
assignment s relative to D and ℑ   Accordingly, we speak of P as true  or satisfied 
relative to a model <D,ℑ> and variable assignment s for <D,ℑ>.  Since any 5-place 
relation in set theory is really a set of 5-tuples, ╞ is really a set of 5-tuples 
<P,D,ℑ,s,V>.  Thus, strictly speaking, the set theoretic notation for the fact that P is 
satisfied in <D,ℑ> relative to the s is <P,D,ℑ,s,V> is a member of a relation (in this 
case a set of 5-tuples) incated by the symbol╞.  Because the symbol ╞ has other 
uses – for example it is used to say the argment from P to Q is valid in the notation 
p╞Q, or to say that P is a logical truth in the notation ╞P – let us use another symbol 
for the 5-place relation.  Let us call it Sat and call it the satisfaction relation.  Thus, 
we will write  

<P,D,ℑ,s,V>∈Sat  
which means 

In the structure <D,ℑ> relative to variable assignment s the formula P has the 
truth-value V. 

As we shall see the later, there is a briefer and more common notation for this fact 
that is easier to read:: 
 As╞P  
or  

 ℑA
s(P)=T. 

Our goal at this point is to explain how the 5-place relation Ref is defined using an 
inductive definition.  For that purpose let us use Ref as the name for that set of 5-

                                            
40 The notation needs some explanation.  Historially the single turn-style ├ was introduced by Frege 
in his Begriffscrift.  The horizonal part − is translated “it is true that”, and ther vertical part  as “it is a 
theorem that”. Hence ├ meant “it is a theorem that it is true that…”  This composite sense was 
simplified in later logic so that ├ meant just “it is a theorem that …”  ├P has aways retained its 
syntactic sense to mean relative to some axiom system  “P is provable by a formal deduction from the 
axioms by the rules of proof “.  It is now also extended to arguments but still in a syntaxtic sense.  
Thus X├P  means relative to an axiom system “P is provable from X and the axioms using the rules 
of proof.”  The double turnsyle ╞ (some books use ╟) was introduced to indicate a semantic relation.  
It may be limited to a single formula as in ╞P  in which case it means “P is a logical truth, i.e. true in 
all interpretations” and it is also extended to arguments to indicate a valid argument, also a semantic 
notion.  Thus X╞P means ”the argument from X to P is valid”.  Now, given this history, the notation 
As╞P seems anomalous because As is a “world”, not a set of formulas.  However, we might think of a 
“world” as a story, as for example the set of sentences contained between the covers of a novel.  This 
is exactly the way a “model” was conceived in the 1940’s before Tarski invented the current notion.  
Such a “world-as-set-of-formulas” was called a state description (by Carnap, e.g in Meaning and 
Necessity) and a model set (by Hinttikka, e.g. in Knowledge and Belief).  The notation dates from this 
period.  Thus  As╞P may be read as “from the true formulas of the world As the formula P follows in a 
valid argument”.  This is a long-winded substitute for saying “P is true in the world As.” 
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tuples and set out how it constructed in the inductive manner. Like every inductive 
definition the definition of Ref will has basis and inductive steps. 

The basis step defines the set of basic elements of Ref from which all others 
are constructed.  This “starter set” is the set of all atomic formulas satisfied in some 
model under some variable assignment.   We have earlier explained how this set is 
defined in terms of <D,ℑ> and s.  The basic set is:  

 
{<Pnt1,...,tn,D,ℑ,s,V>| <D,ℑ> is a model, s is a variable assignment for <D,ℑ>  & 
either < ℑA

s(t1),..., ℑA
s(tn)>∈ ℑ(Pn)  and V= T, or < ℑA

s(t1),..., ℑA
s(tn)>∉ ℑ(Pn)  and V=F} 

 
 Thus for any atomic formula Pnt1,...,tn, any D, any ℑ , and any s, either 
<Pnt1,...,tn,D,ℑ,s,T> or <Pnt1,...,tn,D,ℑ,s,F> will be in Ref but not both.  The clause 
above makes the determination (defines) in a single stroke for all atomic formulas, 
all models and all variable assignments.   

Next comes the definition’s inductive step.  For each grammar rule Ri of the 
syntax a method is described for constructing new 5-tuples in Ref from old.  It is 
assumed that it has already been determined for each of a formula’s immediate 
parts, each model and every variable assignment for that model whether the part is 
satisfied or not.  The rule takes this information and formulates a satisfaction 
condition for the whole appropriate to its grammar and meaning.    

Let us be a bit more precise.  Let the whole formula be P  constructed from 
the immediate parts Q1,…,Qn by grammar rule Ri.   Let V rage over truth-values 
(these will usually be T and F).  Then, in general, there is some condition Ci  such 
that:   

 
<P,D,ℑ,s,V>∈╞ iff   condition Ci is met by some elements of the (previously defined) set 
   {< Qi,D′,ℑ′,s′,V′ >| Qi is an immediate part of P, <D′,ℑ′> is a model, s′ is a variable 
  assignment for <D′,ℑ′>, and Qi,D′,ℑ′,s′,V′>∈ Ref } 
 

Note that the set {<Qi,D′,ℑ′,s′,V′>| Qi is an immediate part of P, <D′,ℑ′> is a 
model, and s′ is a variable assignment for it} is a large.  In particular, in the definition 
above in the various <Qi,D′,ℑ′,s′,V′> in the definiens (right side) ,  D′ may be 
different form the D in the definiendum (left side),  ℑ′ may differ from the ℑ in the 
definiendum, and s′  from the s in the definiendum.  Thus, the truth of P relative to 
one world and interpretation (namely <D,ℑ> and s) is in general explained in terms 
of the truth of immediate part Qi  relative to other worlds <D′,ℑ′> and variable 
assignments  s′. 

Here are some examples.  Sentence logic is simplest.  The definition of 
satisfaction of ∼P in a world and variable interpretation stated earlier may now be 
reformulated to fit this form:  

<∼P∧Q,D,ℑ,s,T>∈Ref iff, {<P,D,ℑ,s,F>} ⊆ Ref 
<∼P∧Q,D,ℑ,s,F>∈Ref iff, not {<P,D,ℑ,s,F>} ⊆ Ref 

The definition of satisfaction of P∧Q in a world and variable interpretation stated 
earlier may now be reformulated to fit this form:  

<P∧Q,D,ℑ,s,T>∈ Ref iff, {<P,D,ℑ,s,T>, <Q,D,ℑ,s,T>} ⊆ Ref 
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<P∧Q,D,ℑ,s,F>∈ Ref iff, not {<P,D,ℑ,s,T>, <Q,D,ℑ,s,T>} ⊆ Ref 
First-order logic contains quantified formulas that have truth-conditions that depend 
on (are defined in terms of) multiple variable interpretations but relative to the same 
model: 

<∀xP,D,ℑ,s,T>∈ Ref iff {<P,D,ℑ,s′,T>|  for some s′ , s′  is an x-variant of s} ⊆ Ref 
<∀xP,D,ℑ,s,F>∈ Ref iff not {<P,D,ℑ,s′,T>|  for all s′ , s′  is an x-variant of s} ⊆ Ref 

Modal logic contains formulas in a model that depend on the truth of its parts in wide 
ranges of other models.  For example,  �P (read “Necessarily P”)  is true in one 
model <D,ℑ> and variable assignment s iff  its part P is true in every model <D′,ℑ′> 
and every variable assignment s′  for <D′,ℑ′> every world and assignment whatever 
(in the so-called S5 interpretation):  

<�P,D,ℑ,s,T>∈ Ref iff, {<P,D′,ℑ′,s′,T>|  for some D′, some ℑ′, some s′ , 
<D′,ℑ′>is a model and s′ is a variable assignment for <D′,ℑ′>} ⊆ Ref 

<�P,D,ℑ,s,F>∈ Ref iff, not {<P,D′,ℑ′,s′,T>|  for some D′, some ℑ′, some s′ , 
<D′,ℑ′>is a model and s′ is a variable assignment for <D′,ℑ′>} ⊆ Ref 

The important point is that, in the inductive step, when we state conditions defining 
whether  <P,D,ℑ,s,V> is in Ref, we may draw on the fact that for each immediate 
part Qi of P, we have already defined when <Qi,D′,ℑ′,s′,V′> is in Ref, for every non-
empty set D′, for every interpretation ℑ′ for D′, for every assignment s′  for any 
<D′,ℑ′>, and for every truth-value V′.41 
                                            
41   Note on the Inductive Definition of Terms. Though the extra detail was not necessary earlier in 
stating the inductive definition of the interpretation of terms, strictly speaking that definition is likewise 
a induction over a four-place relation.  Let us revisit that definition briefly using the vocabulary just 
introduced.  Strictly speaking what is being defined by induction for terms is a set, which we may call 
for the moment Ref, that is a set of 5-tuples <t,D,ℑ,s,d> that joins a term t, domain D, interpretation 
ℑ, and variable assigment s, to a referent d of t in D.  The basis step defines the set of of 5-tuples in 
which t is a constant or variable.  It is the set in which the term is mapped onto what it is assigned by 
ℑ if it is a constant or by s if it is a variable.  The “starter set” for term reference then is: 

{<t,D,ℑ,s,d>| <D,ℑ> is a model, s  is a variable assignment for <D,ℑ> and d=ℑ(t) if t is a constant 
and d=s(t) if t is a variable}.   

Or more briefly, for any constant or variable t, 
<t,D,ℑ,s,d>∈Ref iff,   d=ℑ(t) if t is a constant, and d=s (t) if t is a variable 

The inductive step states membership conditions for <fn(t1...tn),D,ℑ,s,d> in Ref in terms some 
condition C that must hold on the elements of Ref for the immediate parts t1...tn of  fn(t1...tn): 
 

<fn(t1...tn),D,ℑ,s,d>∈Ref     iff  the condition C holds for specified elements of  
{<t1,D′,ℑ′,s′,d′>|ti is an immediate part of fn(t1...tn),  
<D′,ℑ′> is a model, s′ is a variable assignment for <D′,ℑ′> 
and, for some d1...dn in D′,  
<ti,D′,ℑ′,s′,d1>∈Ref,…,<tn,D′,ℑ′,s′,dn>∈Ref, and 
d′=ℑ′(fn)(d1...dn)} 

 
The only domains, interpretations and variable assignments relevant to determing the referent of a 
term in <D,ℑ> and s are <D,ℑ> and s themselves.  The specific condition C is simply that the object 
paired with the complex term be that determined by applying the function named by the functor to the 
n-tuple of objects in the domain named by its immediate parts taken in order: 
 

<fn(t1...tn),D,ℑ,s,d>∈Ref     iff  <t1,D,ℑ,s,d1>∈Ref,…,<tn,D,ℑ,s,dn>∈Ref and d=ℑ(fn)(d1...dn) 
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Variants of a Variable Assignment.  Intuitively, to know whether ∀xPx is 
satisfied in a model <D,ℑ> relative to s, we need to know that everything in D 
satisfies its immediate part Px. How can we formulate that condition?  As is now 
clear, we can assume that we know what it means for Px to be satisfied not only in 
<D,ℑ> and  s, but in any model and variable assignment for that model.  In particular 
we can assume that we know what it means for Px to be satisfied not just relative to 
s but also in any variable assignment for the model <D,ℑ>.  That is, we have already 
defined what it means to say Px is satisfied in <D,ℑ> for any interpretation of x. We 
can use that fact to formulate what it would be for Px to be true for every entity in D.  
Let us consider some examples of elements of the domain.  Let us assume that d1, 
d2, d3 are in D.   Now let us vary the assignment that s makes to x so that x changes 
its referent to stand for these three things, but at the same time we want to require 
that s not change any of the assignments it makes to the other free variables in the 
in syntax.  We define three new assignments, one for each di.  Each is called an x-
variant of s.  Let us call these new assignments s1, s2 and s3.  They are to be like s 
except that s1(x)=d1, s2(x)=d2, and s3(x)=d3.  Since in set theory each variable 
assignment is really a set of pairs <v,d> such that v is a variable and d is the object 
assigned to v, to make the new assignments, we simply take the pair <x,s(x)> out of 
s and replace it with a new pair giving x its new assignment.  We take a subset out 
with the complementation operator  − and put one in with the union operator ∪: 

s1= s − {<x,s(x)>}∪{<x,d1>}  
s2= s − {<x,s(x)>}∪{<x,d2>} 
s3= s − {<x,s(x)>}∪{<x,d3>} 
It is by varying the referent of x in s through all its x-variants that x is made to 

range over the entire set D.  (Note that below to insure that there is an x-variant for 
every object in the domain, we allow s to be an x-variant of itself.) 

Sentences Made Up by the Universal Quantifier ∀.  In the context of the 
inductive clause, we know by hypothesis whether Px is satisfied in s1, s2 and s3.  In 
fact, by hypothesis it has been previously defined for any x-variant s′ of s whether 
Px is satisfied relative to s′ in <D,ℑ>.  We therefore have a way to say “Px is 
satisfied by every element d of the model <D,ℑ>” and can do so in vocabulary that 
by hypothesis is already well defined: 

for any x-variant s′ of s, Px is satisfied in s′ . 
It is this clause, which is formulated in terms of variable assignments, that we use to 
state the conditions under which the universally quantified expression ∀xPx  is true 
in <D,ℑ> relative to s: 
                                                                                                                                       
If we adopt the convention of assuming that the domain D of ℑ is clear from the context, we can adopt 
the simplifying notation: 
 

ℑs(t)=d    means   <t,D,ℑ,s,d>∈Ref 
 
and the entire definition may be written very simply:  
   

Basis Clause.  ℑs(t)=ℑ(t) if t is a constant and ℑs(t)=s (t) if t is a variable 
Inductive Clause.  ℑs(fn(t1...tn))= ℑ(fn)(ℑs(t1),...,ℑs(tn)). 
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As╞∀xPx (equivalently,  ℑA

s(∀xPx)=T)    iff    for any x-variant s′ of s, As’╞Px (equivalently,  ℑA
s´(Px)=T)    

 
Intuitively, if in every x-variant of s ′ of s, s′(x) is something to which  ℑ(John) bears 
the relation ℑ(loves), then ℑ(John) bears the ℑ(loves) relation to everything.  In other 
words, in that case the sentence for all x, John loves x is true in D relative to ℑ and 
s.  Likewise, for some x, John loves x is true in D relative to ℑ and s some x-variant 
of s ′of s, ℑ(John) bears the relation ℑ(loves) to the individual s′(x).  Accordingly, 
though the existential quantifier is not included in the primitive syntax, it is introduced 
by definition:  
 

∃xP   is an abbreviation of   ∼∀x∼P  
 
This definition insures: 
 
As╞∃xPx (equivalently,  ℑA

s(∃xPx)=T)    iff    for some x-variant s′ of s, As’╞Px (equivalently,  ℑA
s´(Px)=T)    

 
When a sentence that contain both free and bound variables, like for all x, y 

loves x, is evaluated relative to D, an interpretation ℑ, and a variable assignment s,  
it is ℑ that fixes the referent of the predicate loves because the role of ℑ is to 
interpret the descriptive terms.  But it is s that fixes the referent of the free variables, 
in this case y.  It is also s that determines the relevant variants for evaluating 
quantifiers.  In this case there is a universal quantifier for all x and hence the 
relevant variants will be x-variant, and they will be variants of x relative to s.  Note 
that if s′    is a x-variant of s, then s′ retains the same values as s for variables other 
than x, and hence  s′(y)=s(y). Thus,  for all x, y loves x is true in D relative to ℑ and 
s, iff, in every x-variant of s′ of s, s′(y) (which is the same as s(y)) bears the relation 
ℑ(loves) to the individual s′(x).  In this case, s′(y) (which is the same as s(y))  is an 
individual, ℑ(loves) is a relation in D, and there are as many different x-variants s′ of 
s and as many individuals s′(x) as there are entities in the domain.    
 Truth Simpliciter.   The function  ℑA

s assigns a referent to an expression 
relative to three things: (1) the domain D of A, (2) the assignment ℑ of referents to 
atomic expressions in D, and (3) the variable assignment s that determines the 
referent of each variable in D.  All three “parameters” are needed to interpret 
formulas.   

There are some formulas however for which specifying a variable assignment 
is irrelevant.  We have already met the case of atomic formulas in which there are no 
variables.  All we need to know for the truth-value of Pnc1...cn when c1...cn are 
constants is ℑ(c1),...,ℑ(cn), and ℑ(Pn).  Another case consists of sentences without 
free-variables.  A closed formula,  which called a sentence in first-order terminology, 
is  true either in all variable assignments or in none. That is, it follows from the 
definition of  ℑA

s  that: for any closed formula P, 
 
for some s,  As╞P  is equivalent to           for all s,  As╞P. 
for some s,   ℑA

s(∀xPx)=T is equivalent to           for all s,   ℑA
s(∀xPx)=T 
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While we do need the notion of variable assignment to figure out whether a 
universally quantified formula is true, once we know it is true, relativizing truth to a 
particular variable assignment is irrelevant because it is true in all of them. 
Accordingly, a closed formula is said to be true simpliciter (i.e. true regardless of 
variable assignment) iff it is true in any or all variable assignments. 
 Normally the case in which a variable assignment is absolutely relevant the 
truth is one in which the formula contains a free-variable. The free-variable functions 
much like a pronoun, and a variable assignment s functions as its “context of use” 
that fixes its referent within the wider world, which is represented in the formalism by 
the parameters  D and ℑ.  There is, however, a second reading of free-variables that 
is found among mathematicians and logicians.  It is not a usage common among  
non-specialists because ordinary people do not write formulas with free-variables.  
But it is common to see in mathematics books or on the blackboard in a math class 
a formula with free-variables like: 
 
 The formula for the line l is y = ax + b 
 
Here the intention is that the variable really is not free.  There are really universal 
quantifiers “understood” for be binding the variables.  That is, what is intended may 
be expressed more fully by: 
 
 For the line l , for any x and for any y, <x,y>∈l  iff  y = ax + b 
 
That is, in technical work formulas with free-variables are often used as if their 
variables were all bound by universal quantifiers. 

This usage is captured in first-order semantics by extending by the idea of 
truth simpliciter to include open formulas.   That is, we adopt a general definition for 
any formula P whether it contains free variables or not:  

 
P is (simply) true relative to D and ℑ (abbreviated as A╞P or  ℑA

s(P)=T)  is defined to 
mean: 
   for all s,  As╞P  
or equivalently,  
   for all s,   ℑA

s(P)=T 
 

By this definition, if P is an open formula, it is simply true when it is true in all 
variable assignments.  When the open formula P is simple true in this sense, it 
follows automatically that its universal closure ∀v1,…,vnP is also simply true.  
Conversely if the universal closure  ∀v1,…,vnP is true in any variable assignment, it 
is true in all, and hence the open formula P is true simpliciter.  That is, given the 
definitions of simple truth,  the following equivalents hold  for any formula P (open or 
closed): 
 
   P is (simply) true  iff for all s,  As╞P     (equivalently,  ℑA

s(P)=T) 
iff for all s,  As╞∀v1,…,vnP  (equivalently,  ℑA

s(∀v1,…,vnP)=T) 
iff for some s,  As╞∀v1,…,vnP   (equivalently,  ℑA

s(∀v1,…,vnP)=T) 
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(We shall prove these facts more formally later in the chapter.) 

It is traditional to extend the turnstile notation to simple truth.  The definition 
is: a formula P is true (simpliciter) relative to A=<D,ℑ>, (abbreviated A╞P) iff, for all 
s,  As╞P 42

.  
Let us summarize the facts so as to contrast head-on the two notions, (1) 

satisfaction relative to a variable assignment and (2) truth simpliciter.  First, let us 
consider satisfaction.  All formulas, both with and without variables, and both open or 
closed, must first have the notion of satisfaction relative to a variable assignment 
defined for them, for it is this notion that is the very basic notion of truth.  This is the 
general concept that is defined inductively for all formulas.  Satisfaction relative to a 
variable assignment is also more basic than truth-simpliciter because the former 
concept is actually used in the definition of the latter.  But even though satisfaction 
must be defined for all formulas and is the more basic notion of truth, it carries a 
parameter that fails to mark a semantic difference for a important class of formulas, 
namely sentences.  Formulas with no variables and those without free variables 
(sentences)  are either satisfied in every variable assignment (relative to a model) or 
in none.    For sentences there is no information content in the specification of any 
particular variable assignment.  For these the generalization to truth-simpliciter is no 
more than the dropping of an uninformative parameter. If a sentence is ever satisfied 
by any variable assignment it is automatically true simpliciter. But for open formula 
there is a huge distinction between satisfaction relative to a variable assignment and 
truth simpliciter, i.e. satisfaction in relative to all variable assignments.  Being 
satisfied in some variable assignments is no guarantee that a formula is satisfied in 
all.   In fact there is a general rule that an open formula is satisfied in all variable 
assignments if and only if its universal closure is satisfied in all.  That is, the only 
open formulas that are true simpliciter are those that in that world say the same thing 
as the universally quantified version of the formula.  The custom has therefore 
evolved among mathematicians and logicians to speak of open formulas as simply 
true as an alternative way of saying its universal closure is simply true, and the 
usage in terms of open formulas allows one to avoid writing down a visually 
distracting and unnecessary list of initial universal quantifiers.    

Logical Truth and Validity. Recall that each model A=<D,ℑ>  with the 
assignment ℑ relative to  domain D is a kind of “possible world:”  D specifies what 
exists in that world and ℑ what descriptive terms stand for.  As we have said, one of 
these interpretations will be a close approximation to the actual world if its domain is 
made up of the things that actually exist and the assignment pairs familiar words to 
their actual referents.  Likewise the set of all interpretations is an approximation to 
the set of all possible worlds.  They are accordingly suited for use in the formal 
definitions of the  logical idea traditionally defined in terms of possible worlds.  
Logical truth, for example, is traditionally distinguished by the fact that its truth is 
invariant across worlds: it is truth “in all possible worlds.”  A valid argument is 
likewise defined as one such that   in any possible world w, if the premises are true 

                                            
42 This is another sense of the turnstile derived from the early practice of understanding a model A as 
state description.  
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in w, then the conclusion is also true in w.  In the theory possible worlds are 
represented by models. Hence, P is defined to be logical truth (which we 
abbreviate as ╞P ) iff, for all models A=<D,ℑ>, A╞P.  Likewise by definition the 
argument from X to P is said to be valid, and that X logically or semantically 
entails P (abbreviated as X╞P) iff, for all models =<D,ℑ>, if (for all Q in  X,  A╞Q) 
then A╞P.   

In many logic books the notion of validity is extended  from arguments to 
embrace formulas as well. When applied to formulas validity is just a synonym for 
logical truth.  This seemingly equivocal notation is justified later by proving a 
metatheorem that the logical truth of a formula corresponds to the “degenerate case” 
in which it is a valid consequence of the empty set:  ╞P  (where ╞ has the meaning 
of logical truth) holds if and only if  ∅╞P holds (where ╞ has the meaning of valid 
argument).  Note that that ∅╞P is by definition a disguised universally quantified 
conditional, namely:  

for any A, if (for any Q,  if Q∈∅, then A╞Q) then A╞P.  
 But the antecedent of this conditional, namely,  

for any Q,  if Q∈∅, then A╞Q  
is always true, because its antecedent (namely, Q∈∅) is always false.  But if the 
antecedent of a conditional is T, then the truth-value of the conditional is the same 
as that of its consequent.  The consequent is this case is A╞P.    
Hence this antecedent essentially “drops out” and the original conditional is 
equivalent to  

for any A, A╞P. 
Hence the following are all equivalent: 

∅╞P 
for any A, if (for any Q,  if Q∈∅, then A╞Q) then A╞P 
for any A, A╞P 
╞P  

 
With these remarks as introduction we can state the semantics of first-order 

logic quite succinctly.   
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v. Formal Statement of the Primary Semantic Definitions 
 

The Semantics (Model Theory)  for First-Order Logic.     Let FFOL be a first-order language. 
 
A model or structure for basic expressions of FFOL  relative to a non-empty domain D and an 
interpretation operation ℑ is any A=<D,ℑ>, that meets the following conditions: 
• D≠∅. 
• Every constant c is assigned by ℑ to an object in D.  That is, ℑ(c)∈D. 
• Every n-place predicate is assigned by ℑ to an n-place relation on objects in D.  There are three 

special cases: 
  1.  If n=1, then ℑ(P1)⊆D, i.e. a one place predicate P1 stands for a subset of D. 
  2.  If n>2, then ℑ(Pn)⊆Dn, i.e. ℑ(Pn) is an n-place relation on elements of D, i.e. some set of n-

tuples drawn from Dn.   If the syntax specifies that first 2-place predicate P2
1  is the identity 

predicate =, then it is required that ℑ(P2
1) be the identity relation on D. 

  3.  If n=0, then ℑ(P0
i)∈{T,F}, i.e. 0-place predicates function semantically like sentence letters 

of sentential logic in that they do require any terms to their right and they stand for a truth-
value.  Furthermore, the syntax specifies that the first 0-place predicate P0

1 is the contradiction 
sign ⊥.  It is required that ℑ(⊥)=F, i.e.  ⊥ always takes the value F. 

• Every n-place functor fn is assigned by ℑ to an n-place function (also called an operation) on 
objects in D. That is, ℑ(fn)∈DDn. 

 
Let A=<D,ℑ> be a model.   
 
A variable assignment over D for FFOL  is any function s of mapping the set of variables into D.  
 
An interpretation ℑ relative to a model A=<D,ℑ> and an assignment s of the variable over D for 
FFOL, briefly ℑA

s, is defined inductively:  
• Basis Clause.   If t is a constant, then ℑA

s(t)=ℑ(t). 
    If v is a variable, then ℑA

s(v)=s(v). 
• Inductive Clause.  If t is some complex term, then fn(t1...tn), ℑA

s(fn(t1...tn))= ℑ(fn)(ℑA
s(t1),...,ℑA

s(tn)). 
 
P is satisfied in model A=<D,ℑ> relative to an a variable assignment s over D for FFOL 
(abbreviated equivalent as  As╞P or ℑA

s(P)=T) is defined inductively:  
• Basis Clause.  An atomic formula Pnt1,...,tn  is T in ℑA

s, iff the objects picked out by its terms under 
ℑA

s (in order) stand in the relation picked out in ℑ by its predicate. In symbols  
  As╞Pnt1,...,tn iff <ℑA

st1),..., ℑA
s(tn)>∈ ℑ(Pn) 

or equivalently, 
   ℑA

s(Pnt1,...,tn)=T) iff < ℑA
s(t1),..., ℑA

s(tn)>∈ ℑ(Pn) 
• Inductive Clauses. The satisfaction of a molecular formula relative to variable assignment is 

broken down into case one for each formation rule of the syntax:  
  As╞ ∼P iff not As╞P;   or  ℑA

s(∼P)=T iff  ℑA
s P)≠T 

  As╞P∧Q iff (As╞P and As╞Q);   or  ℑA
s(P∧Q)=T iff,  ℑA

s(P)=T and  ℑA
s(Q)=T 

  As╞P∨Q iff (As╞P or As╞Q);or  ℑA
s(P∨Q)=T iff,  ℑA

s(P)=T or  ℑA
s(Q)=T 

  As╞P→Q iff (not As╞P or As╞Q); or  ℑA
s(P→Q)=T iff,  ℑA

s(P) ≠T or  ℑA
s(Q)=T 

  As╞P↔Q iff (As╞P iff As╞Q);or  ℑA
s(P↔Q)=T iff,  ℑA

s(P)=T iff  ℑA
s(Q)=T 

  As╞∀xPx iff for any x-variant s′ of s, As’╞Px, or  ℑA
s(∀xPx)=T iff for any x-variant s′ of s,  ℑA

s(Px)=T 
   
P is true (simpliciter) in A=<D,ℑ>  (abbreviated A╞P) iff, for all s over D, As╞P. 
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The existential quantifier is introduced by definition, and its truth-conditions 
directlu follow from the above definitions: 
 
The Existential Quantifier 
 

 ∃vP  abbreviates  ∼∀v∼P  
 
 ℑA

s(∃xPx)=T iff for some x-variant s′ of s,  ℑA
s(Px)=T 

 
Proof.  The proof consists of applying the above definition, the clauses for the satisfaction-conditions 
of the universal quantifier and negation, and logical equivalents for quantifiers and negations in the 
metalanguage:  ℑA

s(∃xPx)=T iff [by the abbreviation]  ℑA
s(∼∀x∼Px)=T iff [by satifaction conditions for 

negation] not( ℑA
s(∀x∼Px)=T) iff [by the satisfaction conditions for the universal quantifier] not( for all x-

variant s′ of s,  ℑA
s(∼Px)=T) iff [by logical equivalence for quantifiers in the metalanguage] for some all 

x-variant s′ of s, not  ℑA
s(∼Px)=T) iff [by satisfaction conditions for negation] for some all x-variant s′ of 

s, not not  ℑA
s(Px)=T) iff [by a truth-functional equivalence in the metalanguage] for some all x-variant 

s′ of s,  ℑA
s(Px)=T. QED. 

 
 

These are the definitions which we shall use in the rest of the chapter 
because they are customary and likely to be found in other logic books.  It is useful, 
however, to reformulate the definitions now that they are fresh in a way that exhibits 
more clearly their inductive structure.  Let us pause to recast the notion of the 
interpretation of terms, which we shall call her Ref, and satisfaction, which we shall 
call here Sat, in a way that makes explicit that their definitions are inductive and that 
what is being defined in each case is really a 5-place relation.  That is, let us make 
clear that what is being defined is a set of 5-tuples.  Each 5-tuple begins with its 
“arguments”.  These consists of an expression plus its three “parameters” – a 
domain, an  interpretation, and a variable assignment.   The five tuple concludes 
with its ”value”, the referent or truth value that is paired with its argument by that 
relation.  If <t,D,ℑ,s,d>∈Ref, then Ref assigns the argument <t,D,ℑ,s>  the value d.  
If <P,D,ℑ,s,T>∈Sat, then Sat assigns the argument <P,D,ℑ,s>  the value T.  Since 
the 5-place relation assigns a unique value to its 4-place argument, it is a 4-place 
function, and it is correct reformulate <t,D,ℑ,s,d>∈Ref as Ref(t,D,ℑ,s)=d, and  
<P,D,ℑ,s,T>∈Sat as Sat(P,D,ℑ,s)=T.   
 
Ref is defined inductively as follows: 
1. Basis Clause.  {<t,D,ℑ,s,d>| <D,ℑ> is a model, s  is a variable assignment for <D,ℑ> and d=ℑ(t) if 
t is a constant and d=s (t) if t is a variable}⊆ Ref. 
2. Inductive Step.   
    {<fn(t1...tn)),D,ℑ,s,d> | <t1,D,ℑ,s,d1>∈ Ref, …, <tn,D,ℑ,s,dn>∈ Ref, and ℑ(fn)(d1,...,dn)=d } ⊆ Ref.   
3. Nothing else is in Sat. 
 ℑA

s(t)=d relative to a model <D,ℑ> is then defined as <t,D,ℑ,s,d>∈ Ref. 
 
Sat is the defined inductively as follows:   
1. Basis Clause.  {<Pnt1,...,tn,D,ℑ,s,V>| <D,ℑ> is a model, s is a variable assignment for <D,ℑ>  & 
either < ℑA

s(t1),..., ℑA
s(tn)>∈ ℑ(Pn) and V=T, or < ℑA

s(t1),..., ℑA
s(tn)>∉ ℑ(Pn) and V=F}⊆Sat.   

2. Inductive Clause.  There are  
• If <P,D,ℑ,s,F>∈Sat, then <∼P,D,ℑ,s,T>∈ Sat. 
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• If <P,D,ℑ,s,T>∈Sat, then <∼P,D,ℑ,s,F>∈ Sat. 
• If <P,D,ℑ,s,T>∈ Sat and <P,D,ℑ,s,T>∈ Sat, then <P∧Q,D,ℑ,s,T>∈ Sat. 
• If <P,D,ℑ,s,F>∈ Sat or <P,D,ℑ,s,F>∈ Sat, then <P∧Q,D,ℑ,s,F>∈ Sat. 
• If <P,D,ℑ,s,T>∈ Sat or <P,D,ℑ,s,T>∈ Sat, then <P∨Q,D,ℑ,s,T>∈ Sat. 
• If <P,D,ℑ,s,F>∈ Sat and <P,D,ℑ,s,F>∈ Sat, then <P∨Q,D,ℑ,s,F>∈ Sat. 
• If <P,D,ℑ,s,F>∈ Sat or <P,D,ℑ,s,T>∈ Sat, then <P→Q,D,ℑ,s,T>∈ Sat. 
• If <P,D,ℑ,s,T>∈ Sat and <P,D,ℑ,s,F>∈ Sat, then <P→Q,D,ℑ,s,F>∈ Sat. 
• If <P,D,ℑ,s,T>∈Sat and <P,D,ℑ,s,T>∈Sat, or <P,D,ℑ,s,F>∈Sat and <Q,D,ℑ,s,F>∈Sat, then 

<P↔Q,D,ℑ,s,T>∈ Sat. 
• If <P,D,ℑ,s,T>∈Sat and <P,D,ℑ,s,F>∈╞, or <P,D,ℑ,s,F>∈Sat, and <Q,D,ℑ,s,T>∈Sat, then 

<P↔Q,D,ℑ,s,F>∈ Sat. 
• If {<P,D,ℑ,s′,T>|  s′ is a x-variant of s}⊆Sat, then <∀xP,D,ℑ,s,T>∈ Sat. 
• If  {<P,D,ℑ,s′,F>|  s′ is a x-variant of s}is not empty and is a subset of Sat, then <∀xP,D,ℑ,s,F>∈ 

Sat. 
3. Nothing else is in Sat. 
 
As╞P or, equivalently  ℑA

s(P)=T, relative to a model A=<D,ℑ>, is then defined as <P,D,ℑ,s,d>∈Sat. 
 
 
 The virtue of this formulation is that it exhibits how an inductive condition can 
in principle be formulated so that it draws on facts about the 5-tuples associated of 
component expressions that range beyond a single domain, interpretation or model.  
In particular, the clause for the universal quantifier declares that <∀xP,D,ℑ,s,T> is in 
Sat only if a range of 5-tuples <P,D,ℑ,s′,T> are in Sat, where the various s′ in 
question meet a certain condition (viz. that they are x-variants of s).    In modal, 
tense, intensional, and indexical logics – all of which introduce new syntactic  
“wholes” and “parts” not found in the syntax of FOL, some of which we shall meet in 
Chapter 4 – have inductive clauses admitting a n-tuple for a “whole” that draw on 
facts about n-tuples for “parts” that not only a range over variable assignments but 
over models and other relevant indices.   
 Let us now introduce the rigorous definitions for the semantic versions of 
“logical” concepts – logical truth, validity, and satisfiability.  These are defined in 
terms of models. 
 
• P is an FOL logical truth (abbreviated ╞ FOL P) iff, for all models A,  A╞P. 
• An argument from the (possibly infinite) set X of premises to conclusion P is  valid in FOL 

(abbreviated X╞ FOL P) means for all models A, if (for any Q, if Q∈X, then A╞Q)  then A╞P. 
 If X is some finite set we usually drop the brackets and rewrite {P1,...Pn,...}╞ FOL Q as P1,...Pn,...╞ 

FOL Q. 
 It is common to abbreviate the fact that A assigns T to all formulas in X, i.e. the fact that (for any 

Q, if Q∈X, then A╞Q),  by the locution “A  satisfies X”.   Using this terminology, X╞ FOL P iff, for all 
A, A satisfies X. 

• P is FOL satisfiable iff, for some A, A╞P. 
• A set X  of formulas is satisfiable iff, there is some A such that for all P in X, A╞P. 
 
 
Example.  ∀xFx╞Fc 
Proof.  Let A=<D,ℑ> be arbitrary and assume for conditional proof that A╞∀xFx.  Then by definition, 
for any s,  As╞∀xFx  or in alternative notation that  ℑA

s(∀xFx)=T.  Let us instaniate for s.  Hence, 
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 ℑA
s′(∀xFx)=T.   Hence by definition, for any x-variant s′ ′of s′,  ℑA

s′ ′ (Fx)=T. Since this is universally true 

for all such x-variants, let us instantiate for that x-variant, call it s′′, such that s′′ (x)=ℑ (c).  Hence  
 ℑA

s′′  (Fx)=T.  Then by definition  ℑA
s′ ′ (x)∈ ℑ(F).  Since by definition e have stipulated that s′′ (x)= ℑA

s(c), 
by substitutivity of identity,  ℑ(c)∈ℑ(F).  Let us consider an arbitray s′′′.  Now, for any s it is true by 
definition that ℑ(c)= ℑA

s(c).  Let us instantiate this fact for s′′′ :  ℑ(c)= ℑA
s′ ′ ′ .  Hence by substitutivity of 

identiy,  ℑA
s′ ′ ′ (c)∈ℑ(F). Hence by definition,   ℑA

s′ ′ ′ (Fc)=T.  Since s′′′ is arbitray, we may universally 
generalize, for all s,  ℑA

s(Fc)=T, or in alternative notation  As╞Fc.   Hence, by definition, A╞Fc.  Since A 
is arbitrary, we may generalize: for all models A, if A╞∀xFx  then A╞Fc.  Hence by definition, 
∀xFx╞Fc. QED. 
 
Example.  ∀x(Gx→Hx), ∀x(Fx→Gx)  ╞  ∃x(Fx∧Hx)   
Proof.  Define A=<D,ℑ> such that D={1,2}, and ℑ(F)=∅ and ℑ(G)=∅ and ℑ(H)={1}.  We show three 
propositions: 
 (1)  A╞∀x(Fx→Gx).       

(2)  A╞∀x(Gx→Hx).       
 (3)  A  ╞ ∃x(Fx∧Hx)   
(1)  Let s be an arbitray variable assignment over D, and let s′ be an arbitray x-variant of s.  Hence  
ℑA

s′ s′(x)∉ ℑ(F).  Now by definition,  s′(x)=  ℑA
s′ (x).  Hence by substitutivity of identity,   ℑA

s′ (x)∉ℑ(F).  
Hence by definition  ℑA

s′ (Fx)≠T.   Hence by truth-functional login in the metalanguage, either  ℑA
s′ 

(Fx)≠T or  ℑA
s′ (Gx)=T.     Hence, by definition,  ℑA

s′ (Fx→Gx)=T.  Since s′ is an arbitray x-variant of s, 
we may generalize, for any x-variant s′ of s,  ℑA

s′ (Fx→Gx)=T.  Hence by definition,   ℑA
s∀x (Fx→Gx)=T.  

Since s is arbitray, we may generalize, for any variable assignment s of A,  ℑA
s∀x (Fx→Gx)=T.  Hence 

by definition,  ℑA
s∀x (Fx→Gx)=T, or in alternative notation A╞∀x(Fx→Gx).   

(2) is shown mutatis mutandis,  by replacing F with G, and G  with H, in (1). 
(3) Let us define s to a the arbitray variable assignment over D, such that it assigns all variables to 2, 
i.e. s(x)=2 (it doesn’t matter how it is defined really).  Now let s′ be an arbitrary x-variant of s: Clearly, 
since ℑ(F)=∅, s′(x)∉ℑ(F). Moreover, by definition,   ℑA

s′ (x)=s′ (x).  Hence   ℑA
s′ (x)∉ℑ(F).  Hence, by 

definition,   ℑA
s′ (Fx)≠T.  not ( ℑA

s′ (Fx)=T and  ℑA
s′ (Hx)=T).  Hence, not ( ℑA

s′ (Fx∧Hx)=T).  Now since s′ is 
an arbitrary x-variant of s, we may generalize from the case of s′ :  for any x-variant s′  of s, not( ℑA

s′ 

(Fx∧Hx)=T).  Further, we may existentially generalize over s to get: for some  s, for any x-variant s′  
of s, not( ℑA

s′ (Fx∧Hx)=T).   But this is logically equivalent in the metalanguage to the fact that not (for 
all s, for some x-variant s′  of s,  ℑA

s′(Fx∧Hx)=T).  That is, by definition,  not (for all s,  ℑA
s′ 

∃x(Fx∧Hx)=T), which in turn by definition means  not(A╞ ∃x(Fx∧Hx)). 
Since (1)-(3) hold, we may existentially generalize from the case of  A and conclude that there is 
some model in which the premises of the argument are true but the conclusion false.  Hence it is 
invalid.  QED. 
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C. Proof Theory 

i. Axiom Systems   
Proof theory is that branch of syntax that studies how valid arguments may be 

described in entirely formal terms, i.e. in terms of the shapes and physical properties 
of signs.  In the earliest attempts at  proof theory it was the notion of logical truth that 
was captured, and the tool for doing so was an  axiom system specified in a 
completely syntactic manner.  Let us begin a classical example, the axiomatization 
of  “tautology” in sentence logic. 
 
Example.  An Axiom System for the Tautologies of Sentence Logic. 
 
Let P and  Q be formulas of some sentential language SL. 
 The set ├SL of  theorems of SL is defined inductively.  It is the smallest set containing the axioms 
and closed under a single    “construction rule”, which called an “inference rule” in an axiom system,   
modus ponens. 
 
1.  Basis Clause.  The set of AxSL of axioms for SL, which is defined as the set of all instances of the 
axiom schemata 1-3, is a subset of ├SL. 

1. ├SL P→(Q→P) 
2. ├SL(P→(Q→R))→((P→Q)→(P→R)) 
3. ├SL(∼P→∼Q)→(Q→P) Basis Clause.  The set AxSL is a subset of ├SL 

2.  Inductive Clause,  Modus Ponens:  If P∈├SL and P→Q ∈├SL, then Q∈├SL.  
 It is more conventional (but less transparent) to express the fact that P∈├SL by the notation ├SLP, 
 and then to state the rule using this notation: 

     If ├SLP and ├SLP→Q, then  ├SLQ 
3.  Nothing else is in ├SL 
 
We say a sentence Q follows deductively from a finite set {P1,...,Pn} of formulas in ├SL for SL 
(abbreviated P1,...,Pn├SLQ) iff (P1→(P2→...,Pn))→Q ∈├SL.   
We extend the notion of deduction to possibly infinite sets of premises X by saying X├SLQ iff, there is 
some finite subset {P1,...,Pn} of X such that P1,...,Pn├SLQ. 
 
 Notice that the “single” turnstile ├ now has several meanings when used in 
connection with axiom systems.  Its first meaning is to name the set of theorems ├SL. 
It is used to say that a sentence is in the set of theorems.  Thus,  ├SLA∨∼A is another 
way of saying A∨∼A ∈├SL.  The second usage of ├, however, is introduced above.  
In this usage {P1,...,Pn}├SL Q  the turnstile is flanked on the left by a set of sentences 
{P1,...,Pn} and on the right by a single sentence Q.  Intuitively, it asserts that the 
relation of “syntactic deducibility” holds between the two as premises and 
conclusions.  But really, in axiom systems this talk is strictly speaking somewhat 
misleading because an argument is “proven” indirectly by showing that its 
corresponding conditional is a theorem.  That is, strictly speaking the fact expressed 
as {P1,...,Pn}├SL Q  really means (P1→(P2→...,Pn))→Q ∈├SL.  For example, 
{A,A→B}├SLB  says that  the sentence (A∧(A→B))→A  is in ├SL.   
 Note that ├ is used only for finite premise sets.  Strictly speaking, in the 
notation {P1,...,Pn}├Q, using the small (non-bold) turnstile ├, the notation is correct 
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(well defined) only if the  number of sentences to the left is finite, because  the 
notation is short for ├SL(P1→(P2→...,Pn))→Q in which is the single sentence 
(P1→(P2→...,Pn))→Q  is made up of only a finite number of signs.  It is this limitation 
that motivates the introduction of the boldface turnstile ├, which must be 
distinguished from is cousins.  It is used when premises set might be infinite.    Thus, 
X├SLQ is defined in terms of ├, and says that there is some finite subset of {P1,...,Pn} 
of X , such that {P1,...,Pn}├SLQ. 
 
 We now introduce vocabulary for extending the set of theorems to include 
“non-logical axioms,” as we do in science when we supplement the laws of math and 
logic with those of physics and chemistry.  These latter cannot be proved from logic 
and math alone (otherwise the empirical sciences would merely be branches of 
mathematics), but must be added to the original axioms.  Such an expanded set is 
called a “theory.” 
  

Th is a sentential theory  in L with non-logical axioms A  iff Th is the set of all ├SL consequences of 
A, i.e. 

   Th = {P |  A├SLP}  

 
 Let us now switch languages and talk about the same syntactic ideas in the 
richer syntax of first-order logic.  Its set of local axioms includes those of sentential 
logic but also two axioms to capture the logical truths that depend on the meaning of 
subject-predicate assertions and the quantifiers all and some. 
 
Example.  An Axiom System for the Logical Truths of First-Order Logic. 
 
├FOL (the constructive) set of theorems of FOL is  defined inductively as the smallest set containing 
the axioms of FOL and closed under modus ponens: 
 
1.  Basis Clause.  The set AxFOL of axioms for a first-order language, which is defined as the set of  
all instances of the axiom schemata 1-6, is a subset of ├FOL.  Schemata 1-3 are the same as those 
above for AxSL.. 
  4. ├FOL ∀x(P→Q)→(∀xP→∀xQ) 
  5. ├FOL P→∀xP   where x is not free in P 
  6. ├FOL∀xP[x]→P[y] where P[y] is like P[x] except for containing free occurrences of y 
    where P[x] contains free occurrences of x 
2.  Inductive Clause, Modus Ponens.   If  ├FOLP and ├FOLP→Q, then  ├FOLQ 
3.  Nothing else is in ├FOL 
 
We say a sentence Q follows deductively from a finite set {P1,...,Pn} relative to ├FOL and L 
(abbreviated P1,...,Pn├FOLQ) iff (P1→(P2→...,Pn))→Q is in ├FOL.   

We extend the notion to possibly infinite sets of premises by saying X├FOLQ iff there is some finite 
subset {P1,...,Pn} of X such that P1,...,Pn├FOLQ. 
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 We have defined ├FOL so that if X├FOLQ holds only if there is a finite subset 
{P1,...,Pn} of X from which the conclusion  Q can be deduced, i.e. P1,...,Pn├FOLQ.  It 
follows by definition (i.e. trivially) that any deduction is provable only from a finite 
number of premises.   
 

Metatheorem 1-2  

(Finite Deductibility)  X├FOLQ iff  there is some finite subset {P1,...Pn} of X  such  
      that P1,...Pn├FOLQ. 
 
 
 First-Order Theories. Historically, the great expressive power of first-order 
syntax combined with the possibility its axiomatization made a huge impression on 
scientists both in and out of mathematics in the early decades of this century.  Any 
scientific theory, it was thought, could be put into first-order syntax and its “laws” 
added to its logical axioms to generate all the truths of the science as the deductive 
consequences of this enlarged set of “axioms.”  Recall that an extension of an axiom 
system beyond the axioms of logic is called a theory.  
 
Definition 
 

A set Th is a first-order theory  with non-logical axioms A iff   Th = {P |  A├FOLP}. 
 
 
  Let us illustrate the notion of theory by two important examples.  The first 
extends the axioms of logic to include those of identity.  The second extends them 
further to include the laws (“axioms”) of set theory in the manner of Russell. 
 
 For identity theory we employ a first-order syntax with the special two-place 
predicate =. 
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Example of a First-Order Theory:  The Truths of First-Order Logic with Identity. 
 
The set ├FOL=  is the set defined inductively as the smallest set containing the axioms below and 
closed under modus ponens. 
1.  Basis Clause.  The set  AxFOL= of axioms for first-order logic with identity consists of all 
instances of the axiom schemata 1-8.  Axiom schemas 1-6 are given above. 
7. ├FOL= x=x 
8. ├FOL= x=y ∧ P → P[y//x] 
2.  Inductive Clause, Modus Ponens.   If  ├FOL= P and ├FOL= P→Q, then  ├FOL= Q 
3.  Notion else is in ├FOL=.   
 
For set theory let us first specify the syntax LPM.  This is a first-order syntax with 
identity that has no constants or functors, and only the following predicates (in 
addition to =): the two-place predicate, and a countably infinite series of one-place 
predicates P1,...,Pn,... (called type predicates).  Let us the subscripts of these 
predicate be called type indices, and we let τ range over these indices.  Let Q[x] 
be any formula containing the variable x.  We  introduce by definition a special sort 
of variable for each type,    Intuitive,  Pτ is a predicate that is true of  the entities in 
the type τ.  We now define quantified expressions using  type variables xτ  that  
“range over” entities in the type τ. 
 
Definition of Type-Variables 
   
 ∀xτQ[xτ]  means  ∀x(Pτx→Q[x]) 
 ∃xτQ[xτ]   means  ∃x(Pτx∧Q[x]) 

 
In general, a first-order syntax with specially variables defined in this manner by 
restriction to specific predicates is called a many-sorted logic and the predicates 
are called sortal predicates.  Accordingly, the syntax LPM of the simple theory of 
types is an example of a theory written in a many-sorted syntax.  Its axiom set 
consists of all the logical axioms of first-order logic with identity plus the two axioms 
that Russell uses to formulate Cantor’s key intuitions about sets -- in a way that 
avoids the paradoxes. 
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Example of a First-Order Theory.  The Axiom System PM, the Simple Theory of Types. 
(Modeled on Whitehead and Russell, 1910) 43 
 
├PM is the set inductively defined as the closure of its axioms given below under modus ponens: 
1.  Basis Clause.  The set AxPM of axioms of ├PM, which is defined as the set of (1) all instances of 
the 1-8 (of AxFOL=)  altered so that x  is everywhere replaced by xτ and y by yτ and (2) all instances of 
the  schemata 9 and 10, is a subset of ├PM. 
  9.  ├PM∀yτ (yτ∈{xτP[xτ]}τ+1↔P[yτ]),   for any P[xτ]   
10.  ├PM ∀xτ+1∀yτ+1[xτ+1=yτ+1↔∀zτ (zτ∈xτ+1↔z∈yτ+1)] 
2.  Inductive Clause, Modus Ponens.   If  ├PM P and ├PM P→Q, then  ├PM Q.  
3.  Notion else is in PM. 

ii. Natural Deduction   
In the 1930’s the German logician Gerhard Gentzen proposed a reorientation 

of proof theory.  The proper study of logic on his view is not the truths of logic, but 
valid arguments.  Logical truths, he observed, are really a special case of valid 
arguments in any case.  P is a logical truth iff its opposite logically implies a 
contradiction.  Indeed it is possible to prove several equivalent formulations. 
  

                                            
43 Strictly if the syntax of set theory is limited to the primitive set of descriptive predicates ∈ and =, 
then the notation for set abstract {x | P[x]} must be introduced by defintion, as would be the type 
superscripts.  Doing so is straight forward, and axioms 9 and 10 as written above then follow as 
theorems.  We begin by partitioning the set VblsFOL of variables into a denumerable series of 
denumerable subsets VblsFOL(1),…, VblsFOL(n), one for each type.  We let τ rang over 1,…,n,…, and 
affix to each variable in VblsFOL(τ)  a superscript τ.   Intuitively VblsFOL(τ) is the set of variables of type 
τ. We then state a version of axiom 9 using only the primative notation: 
 
9*.  ├PM∃ xτ+1∀yτ (yτ∈xτ+1↔P[yτ]),   for any P[xτ] 
 
We must also augment this axiom with two eliminative definitions.  The first defines the notation 
1xτP[xτ], called a definite description.  1xτP[xτ] functions like a singular term and is read “the one 
and only xτ  such that P[xτ]”.  It is always used combined with predicates or open sentences as in  
Q[1xτP[xτ]] which is read “the one and only xτ  such that P[xτ] is such that Q[xτ]”. In the current syntax, 
it is used only in assertions of membership, to say that something is an element of 1xτP[xτ] or that it is 
an element itself of a set .  The two cases are defined as follows: 
 
Definitions: yτ∈1xτ+1P[xτ+1] =def ∃xτ+1 (Pxτ+1 ∧∀zτ+1 (Pzτ+1→ zτ+1=xτ+1)∧ yτ∈xτ+1) 

1xτP[xτ] ∈ yτ+1 =def ∃xτ (Pxτ ∧∀zτ (Pzτ→ zτ=xτ)∧ xτ∈ yτ+1) 
 
That is, yτ∈1x+1P[xτ+1]] means there is an xτ+1  such that (i) it satisfies the open sentence P[xτ+1], (ii) it 
is the only xτ+1  such that P[xτ+1], and (iii) this xτ+1  is such that yτ∈xτ+1. Using this notation we are now 
able to introduce by eliminative definition the set abstract notation itself: 
 
Definition:  {xτ |P[xτ]}τ+1  =def 1yτ+1( xτ∈yτ+1↔ P[xτ]) 
 
From 9* and the definitions it is then possible to prove 9 as a theorem. 
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Metatheorem 1-3.  The following are equivalent and interdeducible: 

 ╞P  P is a logical truth (or P is valid) 
 ∼P╞⊥   ∼P logically implies a contradiction 
 ∅╞P  P follows (“vacuously”) from no premises. 
 
Axiomatic theories, moreover, were shown by Gödel to be  poor explications of 
mathematical method.  Why should logic be lumbered with it?  Rather the proper 
study of logic is arguments.  Proof theory accordingly should direct its syntactic 
resources primarily towards explaining arguments rather than logical truths.  If 
arguments are explained, then so will be the special case of logical truths. He 
proposed, therefore, to provide  a purely syntactic constructive account of “good 
argument.”   
 Accordingly, Gentzen proposed formal proof rules that do two things.  First, 
they yield a purely syntactic constructive definition of the intuitively valid arguments.  
Second, they explain how to use connectives and quantifiers in proofs.    

Let us review the construction.  It is, first of all, a set of arguments.  But what 
is an argument?  We shall consider it to be an ordered pair consisting of a finite 
string of premises P1,...,Pn and a conclusion Q.  That is, an argument  or, as it is 
customary to call it in natural deduction theory, a deduction, is understood to be a 
pair of the form <{P1,...,Pn }, Q>  such that P1,...,Pn  are its premises and Q is its 
conclusion. 

Now, some arguments are valid and others invalid.  In sentential logic, 
<{P,P→Q},Q> is valid but <{Q,P→Q},P> is invalid.  Let us use ╞ as the name for the 
set of valid arguments as that idea is defined semantically, i.e. <{P1,...,Pn }, Q>∈╞ 
iff for any A, if A╞ P1, …, A╞ Pn then A╞Q.  Thus, <{P,P→Q},Q>∈╞ but 
<{Q,P→Q},P>∉╞. 
 Now Gentzen’s goal is to provide a purely syntactic definition of a set that 
captures all and only the arguments in ╞.  Let us call this set that is defined 
syntactically by the name ├.  To say that ├ is defined syntactically means that its 
defining conditions will mention only the physical shape of formulas.  The semantic 
definition of ╞ by contrast reaches well beyond syntax because it is defined in terms 
of domains, interpretations, reference, satisfaction and true.  Gentzen’s goal then is 
to define ├ in pure syntactic terms but in such a way that it happens to exactly the 
same arguments that are in ╞.  That is, when all is said and done, it is his goal to be 
able to show that ├ and ╞ are coextension.  This coincidence will be proven in what 
is called the soundness and completeness theorem: 
 
For any <{P1,...,Pn }, Q>,  <{P1,...,Pn }, Q>∈├  iff <{P1,...,Pn }, Q>∈╞. 
 
(We will actually prove something stronger.)  Since the axiom of extensionality in set 
theory says that two sets are identical iff they have the same elements, Gentzen’s 
goal (and the soundness and completeness theorem) may be reformulated.  It is to 
show that ├ =╞.   
 But first we must define ├ and do so in a purely syntactic way.  How is this to 
be done?  By syntactic construction:  ├ is defined inductively in a way that the 
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concepts used in its defining clauses only appeal to syntactic ideas.  The 
construction is fairly straightforward.   

First in its basis clause the set of basic elements (the “starter set”) is 
specified.  We require some initial arguments that we know independently are valid 
but that we can specify in purely syntactic terms.  We use a particularly trivial and 
obvious set of arguments: all those that “beg the question.”   Let us pick out the 
special case of circular arguments that repeat as its conclusion one of its premises.  
Let us call any deduction <{P1,...,Pn }, Q> such that for some i, Q=Pi a basic 
deduction.  Now, circular arguments have been reviled since Aristotle and labeled 
as a fallacy (petitio principii), but their “error” is that they are trivial or uninformative, 
not that they are invalid.  On the contrary, there couldn’t be a more obviously valid 
argument:  <{P,Q,R},Q>  is obviously valid because in any world w if P,Q, and R are 
true in w, then clearly Q is true in w.  Moreover, you can tell that a basic deduction is 
valid by a finite physical inspection of symbols on the page:  move from left to right 
checking each premise to see whether it is the same shape as the conclusion.  
(Note that by definition a basic deduction has only a finite number of premises.)   
Thus the “starter set” for ├  is the set of all basic deductions. 

Next construction rules are defined that put new elements (deductions) in to ├ 
given that other elements (deductions) are in ├.    These rules must be formulated 
solely in syntactic terms.  They have the form: 
If <{P1,1,...,Pm,1 }, Q1>, …, <{P1,k,...,Pn,k }, Qk> are all in ├  and meet syntactic 
condition C, then <{P1,...,Po }, Q> which meets syntactic condition D is in├. 
But we do not want to put just any arguments into ├.  We want to put in just valid 
arguments.  So, the rule must be designed with this ulterior motive in mind.  It should 
be formulated so that it introduces just valid arguments.  Now if all the “starter set” 
arguments are valid, and if the construction rules introduce just valid arguments, it 
will follow that all the arguments in ├ are valid.  So, though the construction rules 
must be formulated solely in syntactic terms, they should be written so as to identify 
new valid arguments to add to├  from other valid arguments already in ├.  If the 
construction rules really do produce valid arguments from valid arguments, the 
system is called sound.  Moreover, we want enough rules to insure that we manage 
to get all the valid arguments into ├.  If they succeed in capturing all the valid 
arguments, the system is called complete.  Coming up with a set of rules, 
formulated only in syntactic terms, that manages to capture in ├ all and only the 
valid arguments, and then proving that you have done so, it no small 
accomplishment. 
 Indeed, providing a twofold characterization of the same set, once as ╞ and 
again as ├ , provides an extremely satisfying explanation of two divergent traditions 
in logic.  One is that logical truth and validity is a matter of form.  Aristotle, for 
example, showed that all the valid syllogistic moods could be reduced by syntactic 
appeal to a small group of syntactic rules to the perfect syllogisms Barbara and 
Celarent, and all logic students from the  in the Middle Ages through the 19th century 
learned to do these syntactic reductions in elementary logic courses.  Kant, to cite 
another example, says a proposition is logically true if a contradiction can be 
formally deduce from its negation.  Moreover, because they are syntactic, proofs are 
easy to check.  Hence whether a formal deduction concludes with a contradiction as 
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its last line is a fact that is “epistemically” obvious in some basic sense.  Logical 
truths in this sense are thus “evident” as a matter of form.  Many philosophers, like 
Kant, have even said they are known a priori, i.e. independently of sense 
experience.  It is this formal notion of logic that is captured by ├.   

On the other hand, logic has always been claimed to be about what is 
necessary, and necessity is in turn explained in terms of possibilities.  The necessity 
of logical truths, says Aristotle, makes them true at all possible times in world history.   
Leibniz says they are true in all possible worlds.  This is the semantic sense of logic 
captured by ╞.  The identity of the two notions shows that both are right, that there 
are two  conceptually independent routes to the same important idea.   
 The successful definition of ├ and ╞ , and the subsequent proof that the two 
are identical satisfies most logicians.  The combination of (1) the set theoretic 
definition of model and its standard definition of╞, (2) the syntactic construction of ├ 
using traditional rules of logic, and (3) proofs that ╞ and ├ are coextensive is called 
classical logic.   Gentzen’s methods are important because provides a way for 
classical logicians to show the soundness and completeness of their systems.    
 But Gentzen had a further philosophical objective.  One reaction to the 
paradoxes of set theory is to say that the original  formulations of set theory 
advanced by Cantor and Frege were naïve.  The paradoxes show, in fact, that the 
subject matter is more complex than they thought.  One reaction is to improve their 
axiom systems in ways that avoid contradictions.  Researchers who have followed 
this course have developed the branch of logic called axiomatic set theory.   

Quite a different philosophical reaction, however, is to say that the paradoxes 
show that the entire notion of set is confused.  Such logicians claim that set theory is 
suspicious in a number of ways.  The principle of abstraction is overly generous in 
the number of sets that it asserts exists.  Not just any open formula determines a 
set.  There must be some further restriction placed on the sets.   One proposed 
condition is that the sets be “constructed.”   Another dubious feature of Cantor’s 
theory  is the use of  reduction to the absurd and excluded middle in its proofs.  (If 
you look back at the relevant proofs in Chapter 1, you will see these being used.)  
Thus there are schools called intuitionistic logic and constructivist mathematics 
that insist that sets should be introduced only by construction and that logic should 
eschew certain classical rules like reductio and excluded middle.  Gentzen 
sympathized with the intuitionistic doubts. 

But semantics as we have developed it thus far as made extensive use of 
sets.  Domains are sets.  The interpretation function and satisfaction relation are 
sets of n-types.   Model theory is highly set theoretic.  Formal semantics, then, is 
highly dubious according to intuitionistic logicians.  But if we cannot make use of 
sets, how can we do semantics?  How can we have a theory of meaning?  What 
intellectual resources would be safe and legitimate if you were an intuitionist?  
Maybe these “safe concepts” – whatever they would be – could be used to formulate 
a theory of  meaning. 
 One branch of logic that seems to be intutionistically safe is syntax.  Its sets 
are either finite or countably infinite (at least in classical logic), and when infinite they 
are constructed by syntactic epistemically transparent methods.  It is hard to see 
how a contradiction could sneak in.  Perhaps there could be a purely syntactic 
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account of meaning.  If so, then this could be embraced by intuitionists and 
constructivists because sets in syntax are all constructive.   

Now, one sense of meaning is use.  If we knew how to use the connectives of 
sentential logic and the quantifiers of first-order logic, we could be said to 
understand their meaning.  (As philosophy students know, Ludwig Wittgenstein 
devoted the latter part of his career to developing a very powerful philosophy of 
language that explicates the meaning as use thesis.)  But how do logicians use the 
logical signs?  In proofs.  If we knew how we in fact use logic signs in proofs, we 
would know their meanings.  But how do we use them?  Gentzen’s observation is 
that we introduce them into new lines of a proof, and we eliminate them from lines 
already there.  That’s all we do with them.  If we could codify in purely syntactic 
terms how we do this, if we could codify the introduction and elimination rules for 
each logical sign, we would have a theory of meaning for logic in the meaning as 
use sense.  Gentzen proposed such a rule set.  He has one introduction and one 
elimination rule for each logical sign.  (As we shall see, to get just one introduction 
and one elimination rule for each, it is necessary for him to adopt the fiction that the 
contradiction sign ⊥ is a “zero-place connective.”)   Indeed, because the Gentzen’ 
rules characterizing ├ are more like ones logicians actually use in practice, much 
more so that the convoluted and obscure proofs necessary in axiom system, he 
called his system “natural” deduction.   

  To summarize, then, Gentzen proposed a construction rule set for ├ which 
is such that (1) it is co-extensive with ╞ as defined in standard model theoretic 
semantics and (2) provides an introduction and elimination syntactic “meaning as 
use” rule set.    
 Now it is a bit inconsistent to say, on the one hand, that sets make no sense 
and therefore we should jettison semantic model theory with its definition of ╞ in 
terms of models,  and, on the other hand, insist that when we define syntactic rules 
constructing ├ they should be chosen so that ├  is identical to ╞.  Why bother with 
making ├ identical with ╞,  if ╞ doesn’t make any sense?  A good question.   
 On one level Gentzen’s rule set can be viewed as a pure effort in classical 
logic to provide a constructive account of ├ that is provably coextensive with ╞.  
When the theory is presented in this way, the rules used to construct ├ are classical.  
They include classical rules like reductio and excluded middle that strict intuitionists 
question.  On another level, set theoretic semantics can be rejected and the 
introduction and elimination rules read as an account of logical meaning.  When this 
is done the construction rule set is modified so that it does not include reductio or 
excluded middle. Let us use ├Int to name the set of deduction produced by the 
intuitionistic rules set.  In summary, then, it is possible to characterize by syntactic 
different sets of syntactic introduction rules two sets: ├  (of classical logic) and ├Int 
capturing the deductions intuitionists accept.  ├ exactly coextensive with ╞ as 
defined in classical model theoretic semantics.  Even without a model theoretic 
semantics├Int “explains” the meaning of logical signs because in its introduction and 
elimination rules it provides an account of their use, and does so without appeal to 
controversial classical rules like reductio and excluded middle.    

Curiously, despite their doubts about sets intuitionistic logicians have 
nevertheless advanced modified definitions of model, defined for them a validity 
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relation ╞Int, and shown it to be coextensive with their modified ├Int.  These results 
are both technically interesting  and conceptual puzzling, but they are unfortunately 
a topic we cannot pursue in this book.  (See for example, Michael Dummett, 
Elements of Intuitionism.) 
 

iii. Natural Deduction for Sentential Logic   
 

The rules Gentzen uses to construct the set ├SL,  which we shall call the set of 
acceptable deductions, are familiar from elementary logic.    What is novel is their 
theoretical use, and the notation used to formulate them.  Instead of set theoretic 
formulations, it is customary to write X├P  to mean <X,P>∈├, and to state the 
construction rule  

 
If <X1,P1>∈├  and … and <Xn,Pn>∈├, then <Y,Q>∈├ 

 
in “tree” notation: 

    X1├P1, … Xn├Pn 
Y├Q 

 
The notation allows for an elegant statement of the definition of ├SL from the 
perspective of graphic design, but the reader should keep the real set theoretic 
meaning in mind.  We are now ready to state the natural deduction syntactic 
definition for├SL in classical logic. 
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A (Classical) Natural Deduction Systems for Sentential Logic 
A deduction is any pair <X,P> such that X is a finite set of formulas and P a formula in a sentential 
language SL. 
1.  The Basic Elements.  The set BD of basic deductions is the set of all deduction  <X,P> such 
that P∈X. 
2. The Construction Rules. We adopt the following abbreviations: 
  X├SL-NDP    for    <X,P> is in ├SL-ND; 
  X,Y├SL-NDP   for  X∪Y├SL-NDP;    
  X,P├SL-NDQ for   X∪{P}├SL-NDQ; 
  P1,...,Pn├SL-NDQ for  {P1,...,Pn}├SL-NDQ;  
  ├SL-NDP   for   ∅├SL-NDP. 
 
The set RND-SL of Natural Deduction (construction) Rules for Sentence Logic: 
 
  Introduction (+) Rules   Elimination (-) Rules 
 
 ⊥ X├SL-NDP Y├SL-ND∼P 44        X├S-ND ⊥ 
       X,Y├SL-ND⊥    X-{∼P}├SL-NDP   
 
       Classical Rule  ( Intuitionistic Rule 
 ∼    X├SL-ND ⊥     X├ SL-ND∼∼P   X├SLP Y├INT-ND∼P 
   X−{P}├SL-ND ∼P        X├SL-NDP     X,Y├INT-NDQ 
 
 ∧ X├SL-NDP Y├ SL-NDQ    X├SL-NDP∧Q X├SL-NDP∧Q 
     X,Y├SL-NDP∧Q        X├SL-NDP   X├SL-NDQ 
 
 ∨   X├SL-NDP   X├SL-NDQ  X├SL-NDP∨Q   Y├SL-NDR   Z├SL-NDR 
  X├SL-NDP∨Q X├SL-NDP∨Q       X,Y−{P},Z−{Q}├SL-NDR 
 
 →  X ├SL-NDP     X├SL-NDP     Y├SL-NDP→Q 
  X−{Q}├SL-NDQ→P              X,Y├SL-NDQ 
 
    Thinning   X├SL-NDP 
      X,Y├SL-NDP  
   
3.  The Set of (Acceptable) SL Deductions. The relation ├SL-ND   is defined inductively: 
 i. BD is a subset of  ├SL-ND; 
 ii. If d1,...,dm are in ├SL-ND and dn follows from d1,...,dm by one of the above (classical) 
   rules, then dn is in ├SL-ND; 
 iii. nothing else is in ├SL-ND. 
 

We extend the notion of deduction to possibly infinite sets of premises X by saying X├SL-NDQ relative 
to ├SL iff, there is some finite subset {P1,...,Pn} of X such that P1,...,Pn├SL-ND Q. 
 

                                            
44 Strictly speaking ⊥+ is  not a true introduction rule because it mentions another connective in its 
input argument (viz. ∼).  Note, however, that  ⊥+ is directly provable using →− if ∼P is defined as 
P→⊥.  Depending on which connectives are primitive (e.g. ⊥ or ∼ combined with ∧,∨, or  →) various 
of the rules will be come redundant and provable. Here we opt for the full set. 
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 It is helpful to associate with the Gentzen rules their traditional names: ⊥- is 
ex falso quodlibet (from a falsehood anything follows), ∼+ is reductio ad absurdum, 
→+ is conditional proof, and → - is modus ponens ∼- is half of double negation, ∧+ is 
conjunction, ∧- is simplification, ∨+ is addition, and ∨- is constructive dilemma. 
 The definition of ├FOL requires introduction and elimination rules for the 
universal quantifier.  Below we also include rules for the existential quantifier though 
they are redundant. 
 
A (Classical) Natural Deduction Systems for First-Order Logic 
A deduction is any pair <X,P> such that X is a finite set and P a sentence in an FOL-ND language. 
1.  The Basic Elements.  The set BD of basic deductions is the set of all deduction  <X,P> such 
that P∈X. 
2. The Construction Rules. We adopt the following abbreviations:  
 
  X├FOL-NDP    for   <X,P> is in ├FOL-ND; 
  X,Y├FOL-NDP    for  X∪Y├FOL-NDP;  
  X,P├FOL-NDQ  for   X∪{P}├FOL-NDQ; 
  P1,...,Pn├FOL-NDQ  for   {P1,...,Pn}├FOL-NDQ; 
  ├FOL-NDP   for   ∅├FOL-NDP. 
 
The set RFOL-ND of Natural Deduction (construction) Rules for First-Order Logic:  the set  
RND-SL plus the four rules: 
 
 Introduction (+) Rules        Elimination (-) Rules 
 
 ∀ X├FOL-NDP[v′ /v]    X├FOL-ND ∀vP[ 
  X├FOL-ND ∀vP       X├FOL-NDP[t/v] 
  where v′  is not free in any P∈X 
 
In addition we add two redundant rules for the existential quantifier: 
 
 ∃ X├FOL-NDP[t//v]  X├FOL-ND ∃vP      Y,P[v′ /v]├ FOL-NDQ       (if v′ is not free in 
  X├FOL-ND ∃v ′P   X,Y├FOL-NDQ        X,Y, ∃vP or Q) 
 
3.  The Set of (Acceptable) FOL-ND Deductions. The relation ├FOL-ND  is defined inductively: 
 i. BD is a subset of  ├FOL-ND; 
 ii. If d1,...,dm are in ├FOL-ND and dn follows from d1,...,dm by one of the above rules,  
  then dn is in ├FOL-ND; 
 iii. nothing else is in ├FOL-ND. 
 
We extend the notion of deduction to possibly infinite sets of premises X by saying X├FOL-NDQ 
relative to ├FOL-ND iff, there is some finite subset {P1,...,Pn} of X such that P1,...,Pn├FOL-ND Q. 
 
 Additional natural deduction rules are needed for proofs using identity in 
FOL=.  Only two rules are needed, a version of the axiom of self-identity and one for 
the substitutivity of identity. 
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Additional Rules for FOL=-ND 
 
  Introduction Rule for Identity  Elimination Rule for Identity 
 
     X├P     X├P Y├t=t′ 
   X├t=t       X,Y├P[t′//t] 
 

Metatheorem 1-4.  The following deduction is provable:  ∅├ t=t 

 
Examples of Natural Deduction Proofs in Sentential Logic.  These metatheorems each assert 
that a given deduction is provable in the natural deduction system (i.e. that the deduction is in the 
constructive set ├SL-ND  of “provable deductions.”)  The assertion (at the “root” of the tree) is proven by 
actually presenting the proof tree which describes a construction that shows step by step how the 
deduction is arrived at from the basic deductions that occupy the “leaves” of the tree). 
 

Metatheorem 1-5.   P├ ∼∼P  (That is, the deduction <P,∼∼P> is in the set of pairs├SL-ND  .) 

 
P├P    ∼P├ ∼P∼⊥+ 
    P, ∼P├⊥ ∼+ 
     P├ ∼∼P 
 

Metatheorem 1-6.  P,∼Q├∼(P→Q)  (That is, the deduction <{P,∼Q},∼(P→Q)> is in the set of pairs├SL-

ND  .) 

 
P, P→Q ├P    P, P→Q ├ P→Q  →- 
  P, P→Q ├Q   ∼Q├∼Q  ⊥+ 
  P, P→Q, ∼ Q ├ ⊥ ∼+ 
  P,∼Q├ ∼(P→Q) 
 

Metatheorem 1-7.  ∼Q├∼(P∧Q) 

 
P∧Q ├P∧Q ∧- 
P∧Q ├Q  ∼Q├∼Q   ∼+ 

 Q├∼(P∧Q) 
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An Intuitionistic Natural Deduction Systems for the Valid Arguments of First-Order Logic 
 
Intuitionistic logic has the same rule as classical logic except for ⊥- and ∼-.  The intuitionistic versions, 
which are weaker than their classical counterparts, are:  
 
     X├INT-ND⊥   ⊥-I    X├ INT-NDP   Y├ INT-ND∼P  ∼-I 
     X├INT-NDP                 X,Y├INT-NDQ 
Let us call the set constructed from basic deductions by this rule set ├Int-SL-ND   
 
Examples of Proving Metatheorems by Constructing Intuitionistic Proof Trees  
 

Metatheorem 1-8.   Intuitionistic ⊥- is a derivable rule using Classical  ∼ rules: 

Proof:      X├⊥   ∼+ 
    X-{∼P}├∼∼A  ∼-     
  X-{∼P}├A  Th 
     X├A 
(This tree shows a general method for adding <X, A> to ├Int-SL-ND  if <X,⊥> is already a member.) 

Metatheorem 1-9.   Intuitionistic ∼- is a derivable rule using Classical  ∼-:    

Proof:     Y,├∼P  Th 
  X├P Y,∼Q├∼P  ∼+ 
        X,Y,∼Q ├⊥  ⊥+  
          X,Y├∼∼Q  ∼- 
         X,Y├Q 
 

Metatheorem 1-10.  ∼P,∼Q├∼(P∨Q)  in Intuitionistic Logic.  (That is, the deduction 
<{∼P,∼Q>},∼(P∨Q)> is in the set of pairs ├Int-SL-ND  .) 

       P├P    ∼P├∼P  Q├Q    ∼Q├∼Q  ∼-I        P├P    ∼P├∼P  Q├Q    ∼Q├∼Q  ∼-I 
P∨Q├P∨Q     P,∼P├R       Q,∼Q├R  ∨-  P∨Q├P∨Q     P,∼P├∼R       Q,∼Q├∼R  ∨- 
 P∨Q,∼P∼Q├R      P∨Q,∼P∼Q├∼R  ∼+ 
    ∼P,∼Q├∼(P∨Q) 
 

Metatheorem 1-11.   In Classical Logic,  ├P∨∼P  (That is, the deduction <∅,P∨∼P> is in the set of 
pairs ├SL-ND  .) 

          P├P  ∨+ 
∼(P∨P)├∼(P∨P)  P├P∨∼P  ⊥+ 
 ∼(P∨P)├⊥ ⊥- (the classical rule) 
 ├P∨∼P 
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Metatheorem 1-12.  In intuitionistic logic,  ├∼∼(P∨∼P) .  ├P∨∼P  (That is, the deduction 
<∅,∼∼()P∨∼P> is in the set of pairs ├Int-SL-ND  .) 

        P├P  ∨+ 
∼(P∨P)├∼(P∨P)  P├P∨∼P  ⊥+ 
 ∼(P∨QP├⊥  ∼+ 
 ├∼∼(P∨∼P) 
 

II. COMPLETENESS OF FIRST-ORDER LOGIC 

 

A.  Introduction 

i. Strategy 
  In this section we state and prove the so-called soundness and completeness 
theorem for first-order logic.  The result is fundamental to the entire enterprise of 
constructing a proof system.  It shows that the set of natural deduction rule are 
successful in their goal.  They “capture” all the valid inferences of the language and 
leave none out.  In the “soundness theorem,” it is shown that every argument 
provable by the rules is in fact valid.   In the “completeness theorem”  the converse 
is proven – that every valid argument is provable by the rules.  (Note that in less 
precise contexts “soundness and completeness theorem is often shortened to just 
“completeness”.) 
 Going through the proof in detail is a standard part of logic course introducing 
the subject to students in specialized fields like  philosophy, mathematics, and 
computer science.   The presentation here is designed to facilitate its role as an 
introduction.  The semantics stated earlier in the Chapter follows the original form of 
Alfred Tarski in its notation and in the two stage development, in which “satisfaction 
in a model relative to a variable assignment” is defined first and then in terms of it 
the notion of “truth in a model.”   The syntax also follows Tarski in allowing for 
vacuous quantifiers and for well-formed formulas containing free-variables which are 
viewed as logically equivalent to their universal closure.   The completeness proof in 
this section employs a method that is very elegant and regarded as the standard.  It 
is due to Leon Henkin who developed it originally for axiom systems.  It is adapted 
here to the natural deduction system stated earlier, which is itself a standard version 
of a natural deduction system for first-order logic based on the ideas of Gerhard  
Gentzen and Dag Prawitz.  Though there are more streamline versions of the syntax 
and semantics, and other ways to prove completeness, the ideas used here are 
what most logicians have in the back of their minds as the standard account.  It this 
that students are assumed to be familiar with, and it is to this that the proof theory 
and semantics of more innovative logics are compared.  The various steps in the 
completeness proof are spelled out in detail, including the necessary background 
metatheorems.  In reading the proofs, there are several things the reader should 
keep on the lookout for – when you find them, make a note of it:   
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• the logical manipulation of quantifiers and connectives in the metalanguage to 
prove facts about the connectives and quantifiers in the object language, 

• in proofs by induction how the inductive hypothesis is spelled out and used, 
• cases in which specific clauses in the definition of “satisfaction relative to a 

variable assignment” are used to restate facts about the truth-value of a complex 
formula in terms of more basic facts about the interpretation of its atomic parts, 

• steps in proofs in which logical ideas like validity and satisfiability, proof theoretic 
ideas like consistency and proof, and syntactic ideas like substitution and 
alphabetic variance are unpacked by definition. 

 

ii. Background Metatheorems 
 
 We begin by stating background metatheorems needed later in the Henkin 
completeness proof.  The first metatheorem established how free variables should 
be read in the standard Tarski semantics.  They are in a sense two-faced.  Relative 
to a model and an interpretation of its variables, the variables function like pronouns.  
They have a single referent much like proper names, and they are used to state 
facts about individuals that are not generally true of everything in the domain.  When 
we have abstracted from the variable assignments however, and are evaluating a 
formula relative to the model as a whole, open sentences are logical equivalent to 
their universal closures. 
 

Metatheorem 1-13.   The following are equivalent and mutually interdeducible: 

   1. A╞P    
   2. for all s, As╞P  
   3. for all s, As╞∀vP 
 
Proof.  We show that each entails its successor.   
1. That 1 entails 2 follows by the definition of “truth simpliciter in a model.”   
2. Assume for all s, As╞P.  Consider now an arbitrary assignment s′.  Now consider any v-
variant s′′  of s′.  By universal instantiation, then As′′╞P.  But then As′╞∀vP. Since s′  is typical of all 
assignments, we may generalize, for all s′,   As′╞∀vP. 
3.   Assume that for all s, As╞∀vP.  Then for all s and all v-variant s′  of s,  As′╞P. Consider now 
an arbitrary assignment s′′. Then by universal instantiation, for all v-variant s′′′  of s′′,  As′′′╞P.  But s′′ 
is a v-variant of itself.  Therefore, again by universal instantiation, As′′╞P. 
But since s′′ is arbitrary, we may generalize for all s, As╞P, i.e. A╞P.  
 
 In some sense it is obvious that it does not matter what variables you use to 
state a fact, and that it is possible to state the same fact using different variables.  
This truth is captured by means of the concept of alphabetic variance.  A formula 
and its alphabetic variant are logically equivalent. 
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Metatheorem 1-14 (Alphabetic Variance).  If Pσ  is an alphabetic variant of P relative to some 
substitution function σ for all terms,  then for all A, A╞P  iff A╞ Pσ. 

Proof.  The proof is by induction.  The proposition to be proven is really a universal quantification 
over formulas in the metalanguage: 
  For any formula P in ForFOL, if Pσ  is an alphabetic variant of P relative to some full 

substitution function σ,  then for all A, A╞P  iff A╞ Pσ. 
The “property” that must be shown to hold for all formulas in ForFOL is sated in the open sentence: 
 if …σ  is an alphabetic variant of … relative to some full 

substitution function σ,  then for all A, A╞…  iff A╞ …σ. 
In the proofs basic step we show that the property holds if the blank … is filled by an atomic formula 
Pnt1…tn. In the inductive step we much consider each formation rule for formulas.  For each rule, we 
assume in the induction hypothesis that the property holds of the immediate parts of the formula, and 
then show it holds for the formula itself. 
Basic Step.  The atomic case follows directly from the previous metatheorem.  For let (Pnt1…tn)σ= 
(Pnt1...tn) σ = Pnσ(t1)... σ(tn) be an alphabetic variant of Pnt1…tn relative to a fill substitution function  σ. 
 Let A be arbitrary and assume A╞ Pnt1…tn 

 Let v1…vm be the variables from among t1…tn and let s be arbitrary. 
 By the previous metatheorem, for any s′ if s′ is a variant of s with respect to v1…vm  

  then As′╞ Pnt1…tn 
 Define s′′ such that s′′ (vi)=s(σ(vi)) for i =1,…,m. 
 Therefore, by universal instantiation, As′′╞ Pnt1…tn 
 That is, <s′′ (t1),…,s′′ (tn)>∈ℑ( Pn) 
 Hence by substitutivity of identity,  <s(σ(t1)),…,s(σ(tn))>∈ℑ( Pn) 
 Thus, As╞ Pnσ(t1)…σ(tn) 
 But since s is arbitrary we may generalize, for all s, As╞ Pnσ(t1)…σ(tn) 
 That is, A╞ Pnσ(t1)…σ(tn) 
 Hence if A╞ Pnt1…tn, then A╞ Pnσ(t1)…σ(tn) 
 The converse is proven similarly. 
 Hence, A╞ Pnt1…tn iff A╞ Pnσ(t1)…σ(tn) 
  Since A is arbitrary we may universally generalize, for all  A, A╞ Pnt1…tn iff A╞ Pnσ(t1)…σ(tn) 
Inductive Step 
Connectives. The cases for the connectives follow immediately from the inductive hypothesis and the 
fact that if the immediate parts of a formula formed by a connective are logically equivalent, so is the 
whole. (The details are left to the reader as an exercise.) 
Universal Quantifier.  In the case of the universal quantifier, we assume as the inductive hypothesis: 
   for all A, A╞P iff A╞Pσ. 
We then show that: 
   for all A, A╞∀vP iff A╞(∀vP)σ. 
Let A be arbitrary.  We note that each of the following lines is equivalent to the line beneath:  
   A╞∀vP      Assumption 
  for all s,   As╞∀vP    (by definition) 
  for all s and all v-variant s′  of s,  As′╞P  (by definition) 
  for all s and all v-variants s′  of s,  As′╞(Pσ) (by the induction hypo.) 
  for all s and all σ(t)-variants s′  of s,  As′╞(Pσ) (by sub. of =) 
  for all s,   As╞∀σ(t)(Pσ)    (by definition) 
  A╞∀σ(t)(Pσ)     (by definition) 
   A╞(∀vP)σ     (by definition) 
Since these are equivalents: A╞∀vP iff A╞(∀vP)σ.   Since is arbitrary we may universally generalize: 
for all  A, A╞∀v P  iff A╞(∀vP)σ .   QED. 

  2, Page  131. 



An Introduction to Metalogic  FOL Soundness and Completeness 

 The following metatheorem assures us that adding new constants to the 
syntax does not alone alter the truth-value of any sentence written in the syntax as it 
was before the introduction of the new names.  What was true of everything and 
something remains the same, and what was true of the individuals we could name 
remains the same. 
 
Definition. FFOL is a sublanguage of  F′FOL iff ,TrmsFOL⊆ Trms′FOL,and PredsFOL⊆ Preds′FOL. 

Metatheorem 1-15   

If   1.  FFOL is a sublanguage of  F′FOL, 
 2.  A=<D,ℑ> is a model for FFOL  and         
 3.  A′=<D,ℑ′> a model for F′FOL,  ℑ⊆ℑ′  
then, any P of FFOL,  if  s is a variable assignment for A, s′ is a variable assignment for A′L, and s⊆s′,  
then  ℑA

s(P)=ℑ′s′(P).   
 
Assume the antecedents 1-3 of the theorem.   
 
We must first show a lemma: 
 If the antecedents 1-3 above hold, then 
  for any t, if  t∈TrmsFOL , if  s is a variable assignment for A, s′ is a variable assignment  
  for A′L, and s⊆s′,  ℑA

s(t)= ℑA′
s′ (t).   

 
We assume the antecedents 1-3 of the theorem, and then show the consequent by induction because 
the set TrmsFOL is inductively defined: 
Atomic Case. Let t be a constant or variable in TrmsFOL.   Assume s is a variable assignment for A, s′ 
is a variable assignment for A′L, and s⊆s′. If t is a constant in FFOL, ℑ is defined for t.  Moreover, since 
ℑ⊆ℑ′, ℑ(t)=ℑ′(t) and hence for any s and s′,  ℑA

s(t)=ℑA′
s′ (t).   If t is a constant in FFOL, s is defined for t.  

Moreover, since s⊆s′, s(t)=s′(t),  and hence for any ℑ and ℑ′,  ℑA
s(t)= ℑA′

s′ (t).    
Molecular Case. Assume as the induction hypothesis that: 
 if s is a variable assignment for A, s′ is a variable assignment for A′L, and s⊆s′,  
 then  ℑA

s(ti)= ℑA′
s′ (ti) for i =1,…,n.  

 We show: 
 if s is a variable assignment for A, s′ is a variable assignment for A′L, and s⊆s′,  
 then  ℑA

s(f(t1… tn))= ℑA′
s′ (f( t1… tn)).   

Assume s is a variable assignment for A, s′ is a variable assignment for A′L, and s⊆s′.  Now,  ℑA
s

(f(t1… tn))=ℑ(f)(ℑA
s(t1),…, ℑA

s(t1)) [by the definition of ℑA
s]=ℑ′(f)( ℑA′

s′ (t1),…, ℑA′
s′ (t1)) [by the induction 

hypothesis and the substitutivity of identity] = ℑA′
s′ (f(t1… tn)). 

 
We now prove the main theorem. We assume the antecedents 1-3 of the theorem, and then since the 
set FFOL is inductively defined, we show the consequent by induction: 
 
 Atomic Case.  The result follows directly from the definitions of ℑA

s,  ℑA
s′, lemma, and the 

substitutivity of identity.   ℑA
s(Pnt1… tn)=T iff < ℑA

s(t1),…,  ℑA
s(tn)>∈ℑ(Pn) [by the definition of ℑA

s] iff  
<ℑA′

s′(t1),…, ℑA′
s′(tn)>∈ℑ(Pn) [by the lemma and the substitutivity of identity] iff  <ℑA′

s′(t1),…,ℑA′
s′ (tn)>∈ℑ′(Pn)  

[since ℑ is defined for Pn and ℑ⊆ℑ′] iff ℑA′
s′ (Pnt1… tn )=T [by the definition of ℑ′s′]. 

Molecular Cases    
The Connectives. The cases for the truth-functional connectives follow directly from the definition of 
ℑA

s,  ℑA′
s′, and the inductive hypothesis. (We leave the details as an exercise.)  

Universal Quantifier: ∀vP. We assume as the induction hypothesis : 
  if  s is a variable assignment for A, s′ is a variable assignment for A′L, and s⊆s′,   
 then  ℑA

s(P)= ℑA′
s′ (P).  
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We show: 
  if  s is a variable assignment for A, s′ is a variable assignment for A′L, and s⊆s′,   
 then  ℑA

s(∀vP)= ℑA′
s′ (∀vP).    

Assume s is a variable assignment for A, s′ is a variable assignment for A′L, and s⊆s′.  Since s⊆s′, 
any v-variant of s′′ of s is a subset of some v-variant of s′′′ of s′, and conversely any v-variant of s′′′ 
of s′, contains as a subset some v-variant of s′′ of s.  Hence, for any v-variant of s′′ of s,  ℑA

s′′(P)=T iff 
for any v-variant of s′′′ of s′, ℑA′

s′′′(P)=T).  Hence   ℑA
s(∀vP)=T iff [by the def of ℑA

s] (for any v-variant of 
s′′ of s,  ℑA′

s′′ (P)=T) iff [by what was just proven] (for any v-variant of s′′′ of s′, ℑA′
s′′′ (P)=T) iff [by the def 

of ℑA′
s′] ℑA′

s′ (∀vP)=T.  QED. 
 
Definitions  
 
1.  F′FOL is an infinite extension of a language FFOL  iff FFOL is a sublanguage of  F′FOL and Vbls′FOL 
and Cons′FOL each contain denumerably many new expressions not present in VblsFOL or ConsFOL, 
and let A′, B′, C′ range over the models of F′FOL   
2.  If F′FOL is an infinite extension of a language FFOL, there a mapping h from the set M′FOL of 
models of F′FOL into the sets MFOL of models of FFOL is defined as follows: 
 h(A′) is the unique A=<D,ℑ> such that A′=<D,ℑ′> and ℑ is the restriction of ℑ′  to TrmsFOL 

  and PredsFOL of FFOL.   
Clearly h(A′)  meets to conditions for being a member of the set MFOL of models of  FFOL, and  h maps  
M′FOL onto MFOL. 
3. Let [A′]h be {B′ | B′∈MFOL and h(B′)= h(B′)}  
4. Let ≡h be the relation on the set of models M′FOL of F′FOL defined as follows: 
   A′≡hB′ iff, for some C∈M′FOL,  A′∈[C′]h and B′∈[C′]h 
 
The results below follow directly from the previous metatheorem. 
            
Corollary. The family { [A′]h |   A′ is a model of F′FOL} is a partition of M′FOL (i.e. no two members of 
the family have non-empty intersections and every model in M′FOL is in some member of the family).  
Equivalently,  ≡h is an equivalence relation (i.e. ≡h is reflexive, transitive, and symmetric).  
 
Corollary. If X is a set of formulas of FFOL and F′FOL is an infinite extension of FFOL, then 
  X  is satisfiable in FFOL  iff X  is satisfiable in F′FOL. 
(Clearly if X is satisfied by a model A  of FFOL,   then there is some B′ of F′FOL,   such that B′ satisfies 
X, namely any B′ such that h(B′)=A.  Conversely, if B′ of F′FOL satisfies X, there is some of A of FFOL,   
that satisfies X, namely that A such that h(B′)=A. )  
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 The next metatheorem is interesting historically and conceptually. It states in 
the terminology of modern logic the logical  “consequence” that in mediaeval logic 
was called the decent and assent from a universal to singulars.  It also states the 
precise conditions under which a universally quantified formula is equivalent to the 
“infinite” conjunction of its instances.    This equivalence is historically important in 
modern logic because it underlies what was ultimately a failed attempt the truth-
conditions of the universal quantifier.  By an instance of a universally quantified 
formula  ∀vP let us mean any formula P[c/v] such that c is a constant.  Since 
conjunctions must all be infinite in length there is really no such thing as an infinite 
conjunction in first-order syntax.  But by the infinite conjunction of instance of 
∀vP  let us mean the set of all instances { P[c/v]  | c∈ ConsFOL}. The so-called 
substitution interpretation of the quantifier is the following proposed statement of 
the truth-conditions for ∀vP: 
 

As╞∀vP iff, for all c∈ ConsFOL, As╞P[c/v] 
 
Though proposed by pioneers in formal semantics (e.g. by Carnap in Meaning and 
Necessity), it suffers from serious problems.  First of all that there are some models 
with domains too big to be named by constants.  There are, for example, domains 
that are non-countably infinite, like  the set of real numbers.  But by definition the set 
ConsFOL is at most countably infinite.  Hence there are some elements of a non-
countable domain that would not have a name.  Hence everything that does have a 
name in such a model might fall in the extension of a predicate P, and hence ∀xPx 
would be true in that model given the substitution interpretation, yet there be 
elements of the domain that are not in the extension of P.   Even in models that are 
countably infinite, the definition of a model does not require that everything in the 
domain be assigned by ℑ to some constant.  Hence, the things named could all be in 
the extension of P and hence ∀xPx would be true on the substitution interpretation, 
yet some things would fail to satisfy Px.  In the special case in which everything in 
the domain is named by some constant the substitutional equivalence does hold.  It 
is that fact that is shown in the following metatheorem. 
 

Metatheorem 1-16. “Substitutional” Interpretation of the Quantifiers.  If A=<D,ℑ> is a model and 
ℑ maps ConsFOL onto D (i.e. every element in D is assigned some constant from ConsFOL), then 

    ℑA
s(∀vP)=T iff, for all c∈ ConsFOL,  ℑA

s(P[c/v])=T. 
 
Proof. If-part:  assume for conditional proof that   ℑA

s(∀vP)=T.  Hence for any v-variant s′ of s,   
ℑA

s′(P)=T. Let s′′ be the v-variant of s such that s′′(v)=ℑ(c).  Then by universal instantiation,  ℑA
s′′(P)=T.  

Since  ℑA
s′′(v)=ℑ(c)= ℑA

s′′(c), by an earlier theorem  ℑA
s′′(P)= ℑA

s′′(P[c/v])=T.  Further since v does not 
occur in P[c/v],  ℑA

s(P)= ℑA
s′′(P[c/v])=T.  Then-part: Assume for all c∈ ConsFOL,  ℑA

s(P[c/v])=T. We show 
that for any v-variant s′ of s,  ℑA

s′(P)=T.  We do so by reductio.  Assume that there is a v-variant s′′ of 
s,  ℑA

s′′(P)=F. Since ℑ maps ConsFOL onto D, there is some constant, call it c′ such that ℑ(c′)= s′′(v).  
Hence   ℑA

s′′(c′)= ℑA
s′′(v), and by an earlier theorem since  ℑA

s′′(P)=F,  ℑA
s′′(P[c′/v])=F. By an earlier 

theorem, however, since v is not free in P[c′/v],  ℑA
s′′(P[c′/v])=   ℑA

s(P[c′/v]), absurd.   QED. 
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 The following metatheorem establishes the validity of the substitutability of 
identity. 
 

Metatheorem 1-17 . Substitution of Identity. 

For any formula P in FFOL, if t and t′ are terms that contain no occurrences of variables bound in P,  
A=<D,ℑ> is a model in MFOL, and s a variable assignment such that  ℑA

s(t)= ℑA
s(t′),  then   

ℑA
s(P)= ℑA

s(P[t//t′]), and hence  ℑA
s(P)= ℑA

s(P[t/t′]), 
 
Proof.  Since FFOL is inductively defined the theorem is proven by induction. 
 Atomic Case.  Assume the antecedent of the conditional to be proven.  For an atomic 
formula Pnt1… tn the consequent follows directly from the definitions of substitution and ℑA

s, and the 
substitutivity of identity.  (The details are left as an exercise.) 
 Molecular Cases 
Sentential Connectives.  The cases for the truth-functional connectives follow directly from ℑA

s, the 
inductive hypothesis and the definition of substitution.  (The details are left as an exercise.) 
Universal Quantifier: ∀vP.   Assume the antecedent of the conditional to be proven and the inductive 
hypothesis:  
  if the conditions in the antecedent are met,  
  then for all the immediate parts P of ∀vP,    ℑA

s P)= ℑA
s(P[t//t′]. 

Then,  ℑA
s(∀vP)=T iff  (for any v-variant of s′ of s,  ℑA

s′(P)=T) [by the def of ℑA
s] iff (for any v-variant s′ of 

s,  ℑA
s′(P[t//t′])=T) [by the induction hypo.] iff  ℑA

s(∀vP[t//t′])=T) [by the def of ℑA
s].  QED. 

 
It is by reference to this metatheorem that the standard natural deductions rules for 
identity are shown to be sound.  

  2, Page  135. 



An Introduction to Metalogic  FOL Soundness and Completeness 

 The next metatheorem states a somewhat obvious but useful fact.  The 
interpretation of variables that do not occur in a formula are irrelevant to its truth. 
 

Metatheorem 1-18 

If A=<D,ℑ> is a model in MFOL, s′ is a v-variant of s, and v is a variable of FFOL that does not occur in 
P, then  ℑA

s(P)= ℑA
s′(P). 

 
Proof.  Since the theorem is really a universal quantification over the set of formulas FFOL, which is 
inductively defined, the proof is by induction.   
 Atomic Case.  Assume A=<D,ℑ> is a model, s′ is a v-variant of s, and v is a variable of FFOL 
that does not occur in Pnt1… tn. The consequent that  ℑA

s(Pnt1… tn)= ℑA
s ′( Pnt1… tn) follows directly from 

the definitions of ℑA
s, the substitutivity of identity, and the fact that since v does not occur in  P, s and 

s′ assign the same values to the terms in P.   
 Molecular Cases   
Sentential Connectives.  The cases for the connectives follow directly from ℑA

s, the inductive 
hypothesis and the definition of substitution.  (Details are left as an exercise.)   
Universal Quantifier: ∀v′ P.  To simply the verbiage of the proof, let us use the abbreviation “s′ =vs” 
for “s′ is a v-variant of s.”  Assume as the induction hypothesis: 
  If A=<D,ℑ> is in MFOL,  s′ =vs, and v is a variable of FFOL that does  

not occur in P, then  ℑA
s(P)= ℑA

s′(P). 
Assume also the antecedent of the conditional to be proven: 
 A=<D,ℑ> is in MFOL,  s′ =vs, and v is a variable of FFOL that does  

not occur in ∀v′ P,” 
By two conditional proofs we show that  ℑA

s(∀vP)=T iff  ℑA
s′(∀vP)=T.  For the first assume the 

antecedent that (1)  ℑA
s(∀vP)=T.  Assume further for a reductio that the consequent is false, i.e. that 

(2)  ℑA
s′(∀vP)=F.  By (1) and the definition of   ℑA

s, it follows that for any s′′ ,  if s′ =v′ s,  ℑA
s′′(P)=T.  Let 

us consider one such, namely s′′′.  Hence  ℑA
s′′′(P)=T.   By (2), there is some s′′′ ,  s′′′=v′ s′,  ℑA

s′′′(P)=F.  
Let us consider this s′′′.  Hence  ℑA

s′′′(P)=F.  Now define s′′′′  as follows: s′′′′ (v′ )=s′′(v′ ), s′′′′ (v)= 
s′(v)= s′′′ (v), and for all v′′ other than v and v′,  s′′′′ (v′′ )=s(v′′ )=s′(v′′ )=s′′′ (v′′ ).  Now, s′′′′ =vs′′  
because s′′′′ (v)=s′(v), s′′(v)=s(v) and s′ =vs.  Since s′′′′ =vs′′ and  ℑA

s′′(P)=T,  it follows by the 
induction hypothesis that  ℑA

s′′′′(P)=T.  On the other hand, s′′′′ =vs′′′  because s′′′′ (v)=s′(v)=s′′′ (v), 
and an assignment is a v-variant of itself.  Since s′′′′ =vs′′′ and  ℑA

s′′′(P)=F,  it follows by the induction 
hypothesis that  ℑA

s′′′′(P)=F.  But  ℑA
s′′′′(P)=T and  ℑA

s′′′′(P)=F is a contradiction.  Hence by reductio   
ℑA

s′(∀vP)≠F, and thus  ℑA
s′(∀vP)=T.  Thus by conditional proof, if  ℑA

s (∀vP)=T then  ℑA
s′(∀vP)=T. The 

converse is proven similarly.  Hence  ℑA
s(∀vP)=  ℑA

s′(∀vP).  QED. 
 

B. Soundness 
 We are now ready to proceed to the proof of the soundness and 
completeness results themselves.  First we establish soundness by a straightforward 
inductive argument. 
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Metatheorem 1 -19  (Soundness). ├FOL=-ND⊆╞ FOL=.   Or equivalently: 

    For any X and P, if X├FOL-ND P then X╞ FOL =P. 

We show first that ├ ⊆╞: 
  for any <X,P>, if <X,P>∈├, then <X,P>∈╞,     

or equivalently, 
 for any <X,P>,  if X├P, then X╞P 

Let us first review the general form of an inductively defined set and an inductive definition.  We show 
that the open metalinguistic property “__∈╞” is true of every element of the constructive set ╞.  Recall 
that if C is a constructive set, it is defined by induction in terms of set BE of basic elements BE and 
some rules Ri : 

Basis Clause.  BE⊆C  
Inductive Clause.  If e1∈C,…,en∈C and Ri(e1,…,en)=em, then  em∈C   

In generally, to show some condition “Q(x)” in the metalangauge olds of every element in C, we give 
an inductive proof that falls into two parts. 

Basis Step.     Show: for all e, if e∈BE, then Q(e). 
Inductive Step.   Assume (induction hypothesis): Q(e1,…,Qen).   

       Show: Q(em ) where Ri(e1,…,en)=em 
Proof.  We show the property “__∈╞”  holds for every element <X,P> of the set ├.   
Basis Step. We show “__∈╞”  holds first for all elements <X,P> of the set BD of basic elements of ├. 
That is, we show:  
  for any <X,P>,  if  <X,P> in BD, then <X,P> ∈╞P,      
or in equivalent notation, 
    for any <X,P>,  if <X,P> in BD, then X╞P.  
It is clearly  the case that if <X,P> in BD, then X╞P because by the definition of BP if <X,P> is a basic 
deduction, then X∈P.  Thus, if all the formulas in X are satisfied in a model, P will also be satisfied. 
 
Inductive Step.  For each rule Ri , assuming (as an induction hypothesis) that  “__∈╞” is true of all 
the inputs of Ri, we must show that “__∈╞” is true of the output of  Ri.  Let <X1,P1>, …,<Xn,Pn> be the 
inputs of Ri, and <Y,Q> its output.  We must show the conditional: 
 If “__∈╞” is true of each of <X1,P1>, …,<Xn,Pn>, then “__∈╞” is true of <Y,Q>. 
This formulation of what is to be proven may be rephrased in two equivalent ways: 
  If <X1,P1>∈╞  and … and <Xn,Pn>∈╞, then <Y,Q>∈╞ 
  If X1╞P1  and … and Xn╞Pn, then Y╞Q. 
It is the latter of these formulations that is more customary.  But the steps leading to it show that it is 
merely a way of stating the conditional that if the inputs deduction of the construction rule of ├ have 
the property in question (validity), the output deduction does to.  It is this conditional that must be 
proven for each rule.  Fortunately each such conditional has an antecedent that we can assume to be 
true (its induction hypothesis).  In each case, the conditional is proven by an appeal to the induction 
hypothesis, the satisfaction conditions for the formulas in the deductions, and the definition of validity. 
Let us break the proof down, listing for each construction (inference) rules, the conditional that must 
be proven: 
  
         Rule:         Inductive Hypotheses            To Prove: 
 ⊥-Introduction: if X╞P and X╞ ∼P,   then  X╞⊥ 
 ⊥-Elimination: if X╞⊥    then  X╞P 
 ∼-Introduction: if X╞⊥    then  X−{P}╞∼P 
 ∼-Elimination: if X╞∼∼P    then  X╞P 
 ∧-Introduction: if X╞P and Y╞Q   then  X╞P∧Q 
 ∧-Elimination: if X╞P∧Q    then  X╞P 
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   if X╞P∧Q    then  X╞Q 
 ∨-Introduction: if X╞P    then  X╞P∨Q 
   if X╞Q    then  X╞P∨Q 
 ∨-Elimination: if X╞P∨Q,  Y∪{P}╞R,  Z∪{Q}╞R then  X,Y,Z╞R 
 →-Introduction:  if X╞P     then  X−{Q}╞Q→P  
 →-Elimination:  if X╞P→Q,   Y╞P   then  X,Y╞Q  
 ∀-Introduction: if X╞P[t/v]   & v is not free in any P∈X then  X╞∀vP 
 ∀-Elimination: if X╞∀vP    then  X╞P[t/v] 
 ∃-Introduction: if X╞P[t//v]   then  X╞∃vP 
 ∃-Elimination: if X╞∃vP, Y,P[t/v]├Q  &  
      v  is not free in X∪Y∪{∃vP,Q}  then  X,Y╞Q 
 =-Introduction if X╞P    then  X╞t=t  
 =-Elimination of X╞P and  Y╞t=t′   then  X,Y╞P[t′//t] 
  
We prove one case as an example, ⊥-Introduction.  In set theoretic notation we must show: 
   If  <X,P>∈╞ and <X,∼P>∈╞ then <X, ⊥>∈╞  
Let us assume X╞P and X╞ ∼P.  If both X╞P and X╞ ∼P, then X cannot every be satisfied.  Hence the 
conditional if X is satisfied, then ⊥ is satisfied is true because its antecedent is false.  This holds for 
any model.  Hence for any model if X is true in it so is  ⊥.  But that means X╞⊥.  QED. 

 

C.  Completeness 
  The first step in establishing the converse of soundness is the introduction of 
several proof theoretic concepts.  The key idea of Henkin’s proof is to define a set of 
sentences that is a proxy for a model in the sense that it contains all and only the 
sentences true in that model.  In the early days of formal semantics before Tarski 
had introduced the idea of model in the sense we are using it, logicians actually 
used these sets, known then as state descriptions or model sets as the semantic 
proxies for possible worlds.  As “worlds” however they have many of the drawbacks 
of the substitutional interpretation of the quantifier.  They assume that all the objects 
in a world can be represented by a constant.  In general, however, this assumption 
is not true – think of the “world” of the real numbers.  There are however some 
worlds in which every entity is named by a unique constant.  In the proof Henkin 
uses the sentences in the “state description” to describe one such model.  The 
model is particularly interesting because its domain, the set of entities that exist in 
that world, are syntactic entities.  They are the terms that appear in the formula of 
FFOL itself used in the state description.  Not only is the set of terms countable, and 
hence open to the possibility of having each of its elements assigned a name, but it 
is also ready to hand and clear.  We know by construction that the set TrmsFOL 
exists.  Moreover, since it is a set of syntactic entities, the nature and properties of 
its elements are particularly accessible epistemically.  To a logician, referring to sets 
of syntactic entities is much preferable to referring to sets of entities that exist 
outside mathematics or that are drawn from more controversial parts of mathematics 
itself, like  transfinite or non-constructible sets.  Later we shall see that similar 
“syntactic” models, i.e. models in which the domain of objects consists of 
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expressions of the syntax itself, figure prominently in Herbrand’s techniques for 
proving first-order logic is undecidable, and in the metatheory underlying logic 
programming and computer languages like Prolog. 
 The proof progresses in steps.  The relevant set of formulas is first shown to 
be consistent.  It is then shown to be maximal in the sense that it contains every 
formula or its negation,  Lastly, it is shown to be saturated in the sense that it 
contains a universal formula iff it contains all its instances, much as the substitutional 
interpretation would have it. 
  

Definition. X is consistent  iff  not(X├FOL-ND⊥) 
     iff  not( for some finite subset Y of X, Y├⊥) 
     iff for all finite subsets Y of X, not(Y├⊥) 
 

Metatheorem 1-20.  X is consistent  iff  not(for all P, X├P), and  for some P,  not(X├P). 

 X is inconsistent  iff for all P,  X├P. 
 
 
 
Definition. X is maximally consistent iff, X is consistent and for any P, either P∈X or ∼P∈X. 
   

Metatheorem 1-21. If X is maximally consistent, then X is closed under ├ in the following sense: 

   for any P, if X├P then P∈X. 
. 
Corollary.   If  P and Q  are alphabetic variants and X is maximally consistent, 
  then  P∈X iff  Q∈X. 
 
(The proof presupposes the fact that if P≡Q then P├Q and Q├P,  which follows by induction from the 
definition of ≡ and the rules for universal quantifier introduction and elimination.) 
 
 
Definition. X is saturated iff, X is maximally consistent  and  
  for any ∀vP in FFOL, ∀vP∈X iff (for all c∈ ConsFOL, P[c/v]∈X). 
 

Metatheorem 1-22. If X is saturated, then for any P, P∈X iff X├P. 

 

Metatheorem 1-23. X is saturated iff, X is maximally consistent  and for any ∃vP in FFOL.,  

   ∃vP∉X iff (for some c∈ ConsFOL, ∼P[c/v]∈X). 
 
 
 Henkin provides a general technique for expanding a consistent set to a 
saturated one. The construction consists of defining an inductive set from an initial 
consistent set taken as the set of basic elements of the construction.  Once the set is 
constructed, it must be progressively shown that it is consistent, that it is maximal, 
and that it is saturated. 
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Metatheorem 1-24 (Expansion of Consistent to Saturated Sets.).  If Y is consistent set of formulas of 
FFOL, then there is an infinite extension F′FOL of FFOL such that  Y may be extended to (i.e. is a subset 
of) a saturated set Y* in F′FOL.. 

 
Proof.  We first construct some infinite extension F′FOL of FFOL. We first specify two denumerable 
series: {vi} of variables and {ci} and constants that do not appear in formulas in FFOL, and add these to 
the terms of  FFOL to construct the set of formulas F′FOL.  We assume the set F′FOL  may be placed in 
ordered as a denumerable series {Pi}.  We now define a denumerable  series {Yi}   of subsets of F′FOL  
by induction: 
 Basis Step: Y0=Y. 
 Inductive Step:  Assume Yn  is defined.  We now define Yn+1 by first defining an intermediate 
set An as follows: 
  if {Yn,∀vnPn} is consistent, then An=Yn∪{∀vnPn}; 
  if {Yn,∀vnPn} is inconsistent, then An=Yn∪{∼Pn[cn/vn]}. 
Note that cn does not occur in Yn.   We now define Yn+1 in terms of Yn and An. 
  if An∪{Pn} is consistent, then Yn+1=An∪{ Pn }; 
  if An∪{Pn} is inconsistent, then Yn+1=An. 
Note that this construction is unique, i.e. each {Yn,∀vnPn} determines one and only one An and each 
An∪{Pn} one and only one Yn+1. 
The desired set Y*  is then defined as U{Yi}, i.e. as { Pi| for some Yi,  Pi∈Yi}. 
 Claim 1: each Yi is consistent.  

Assume for a conditional proof that Yn+1├⊥.  We show first that An├⊥. By excluded middle, 
either An,Pn├⊥ or not(An,Pn├⊥).  If the latter, then An∪{Pn} is consistent and Yn+1=An∪{ Pn }.   But then 
by the sub. of =, Yn+1 is consistent, contrary to our original assumption.  Hence, An,Pn├⊥ and An∪{Pn} 
is inconsistent.  Thus, then Yn+1=An.  Hence, by sub. of = into the original assumption, An├⊥. Now 
again by excluded middle, either Yn∪{∀vnPn}├⊥ or not(Yn∪{∀vnPn}├⊥).  If the latter Yn∪{∀vnPn} is 
consistent and An=Yn∪{∀vnPn}.  But then by An├⊥ and sub., Yn∪{∀vnPn}├⊥ and Yn∪{∀vnPn} is 
inconsistent, which is absurd.  Hence Yn∪{∀vnPn}├⊥ and An=Yn∪{∼Pn[cn/vn]}.  We show that Yn├⊥ by 
the following proof tree: 
 
            Yn∪{∼Pn[cn/vn]}├⊥ (given)   ∼- 
        Yn├∼∼Pn[cn/vn]     ∼- 
   Yn∪{∀vnPn}├⊥ (given)  ∼+    Yn├Pn[cn/vn]    ∀+ 
     Yn├∼∀vnPn         Yn├∀vPn    ⊥+ 

      Yn├⊥ 
 
By conditional proof, then, if Yn+1├⊥, then Yn├⊥, for any n.   

Assume now for a reductio that there is some set in Y*, call it Yi+1, that is inconsistent.  But 
then Yi is inconsistent, and similarly for all Yk for k<i, including Y0.  But by the proof’s original 
assumptionY0 is consistent, an absurdity.  Hence all Yi are consistent. 
 Claim 2: Y* is consistent.  Suppose for reductio that Y*├⊥.  Then for some finite subset X of 
Y*, X├⊥.  Moreover, since X is finite, there is some Yi⊆Y* such that X⊆Yi.  But since Yi is consistent, 
so is X, which is absurd. 
 Claim 3: Y* is maximal.  Suppose for reductio that Y* is not maximal. Then there is some Q 
such that neither Q∈Y* nor Q∉Y*. Since Q∈F′FOL, there are some i and j such that Q=Pi and ∼Q=Pi.  
We show that both Yi,Pi├⊥ and Yj,Pj├⊥. Consider the first. Since Q=Pi and Q∉Y*, Pi∉Yn+1. Now for a 
reductio  suppose that {Yi, Pi } is consistent, and Yn+1=An∪{Pn}.  Hence Pn∈Yn+1,  Pn∈Y* or in other 
words Pn∈Y* contrary to our assumption.  Similarly, it is shown that Yj,Pj├⊥.  Now, let k be the greater 
of i and j.  Then both Yj⊆Yk andYj⊆Yk.  Hence since both {Yi, Pi}  and {Yj,Pj} are inconsistent so are 
{Yk,Pi} and {Yk,Pj}, otherwise known as {Yk,Q} and {Yk,∼Q},.  We construct a 

  2, Page  140. 



An Introduction to Metalogic  FOL Soundness and Completeness 

 tree: 
                                       Yk,∼Q├⊥ (given) 
    Yk,Q├⊥ (given)                               Yk├∼∼Q    ∼+ 
        Yk├∼Q                       Yk├Q    ∼- 
          Yk├⊥ 
 
But we have previously shown that Yk is consistent.  Hence, contrary to our assumption, Y* is 
maximal. 
 Claim 4: Y* is saturated. We show that for any ∀vnP in F′FOL, ∀vnP∈Y*  iff (for all c∈Cons′FOL, 
P[c/v]∈Y*). Let ∀vnP be an arbitrary universal quantification in F′FOL.  If Part:  Assume ∀vnP∈Y*.  
Since Y* is maximal, an earlier theorem assures that it is closed under ├.  Therefore, Y*├∀vP.  Let c 
be an arbitrary constant in Cons′FOL.  By ∀- it follows that Y*├P[c/v].  Since d is arbitrary this holds for 
all c∈Cons′FOL .  Only-If Part:  Let P be the n-th member of {Pi}, i.e. P=Pn, and assume for all 
c∈Cons′FOL, P[c/v]∈Y*.  For a reductio assume {Y*,∀vnPn} is inconsistent.  Then, An= Yn∪{∼Pn[cn/vn]}, 
and ∼Pn[cn/vn]∈Y*.  But by universal instantiation, P[cn/v]∈Y*, and thus Y* is inconsistent, contrary to 
what has previously been proven.  Therefore, {Y*,∀vnPn} is consistent. Hence, An=Yn∪{∀vnPn}.  But 
then ∀vnPn∈An and thus ∀vnPn∈Y*.  QED. 
 
Henkin now links the syntactically defined saturated set, to the semantics, showing that it is in fact the 
“state description” of some model.  Proof is by construction of the appropriate model, i.e. by defining 
it.  Once the model is defined, it is shown step by step that it satisfies the set.  The model is defined in 
reference to a consistent set X.  The domain of the model consists of the set TrmsFOL of terms, in the 
interpretation function ℑ of the model terms name themselves, and an n-place predicate Pn includes 
in its extension any n-tuple <t1,...,tn> of terms that occur in some formula Pnt1,...,tn  in the reference set 
X and or in any alphabetic variant of a formula in X.  The structure defined will be clearly meet the 
conditions for being a model.  It will have a non-empty domain and an interpretation function 
assigning referents to constants and predicates.  Moreover, it will be shown that the reference set is 
true in this model. 
  

Metatheorem 1-25 (Satisfiability).  If X is a saturated set of FFOL., then X is satisfiable in FFOL.. 

 
Proof.  We construct a model A=<D,ℑ> in MFOL as follows: D=TrmsFOL and ℑ is defined as follows: 
 For any c∈ConsFOL,  ℑ(c) = c; 
 For any fn∈FuncsFOL,  ℑ(fn) = {<t1,...,tn>| tn+1= fn(t1...tn)}; 
 For any Pn∈ PredsFOL,  ℑ(Pn) = {<t1,...,tn>|  all alphabetic variants Q of 
            Pnt1,...,tn∈X such that Q∈X} 
 
Lemma. For all P [(for all variable assignments of s,  ℑA

s(P)=T ) iff (for some variable assignments of 
s,  ℑA

s(P)=T)].  [The lemma asserts that for this particular statement the universal case is equivalent to 
the existential.] 
  
Atomic Case.  If Part: trivial.  Only-If Part: Assume for some s, call it  s′, that  ℑA

s′(Pnt1,...,tn)=T and 
assume further that s′′ is an arbitrary variable assignment. Observe that for any variable assignments 
of s′ and s′′, PnℑA

s′(t1),..., ℑA
s′(tn)  and Pn ℑA

s′′(t1),..., ℑA
s′′(tn) are alphabetic variants, hence since X is 

maximally consistent we know by an earlier metatheorem that Pn ℑA
s′(t1),..., ℑA

s′(tn)∈X iff  
PnℑA

s ′′(t1),..., ℑA
s′′(tn)∈X.  Therefore, 

  ℑA
s′(Pnt1,...,tn)=T  only if < ℑA

s′(t1),..., ℑA
s′(tn)>∈  ℑA

s′(Pn)  
   only if < ℑA

s′ (t1),..., ℑA
s′ (tn)>∈ {<t1,...,tn>|  Pnt1,...,tn∈X} 

   only if PnℑA
s ′ (t1),..., ℑA

s′ (tn)∈X 
   only if PnℑA

s′′(t1),..., ℑA
s′′(tn)∈X 
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Since s′′ is an arbitrary variable assignment, we may generalize for all s,  ℑA
s(Pnt1,...,tn)=T. 

 
Molecular Case. Inductive Hypothesis: for any immediate part Q of P∈FFOL,  
       for all variable assignments of s,  ℑA

s(Q)=T iff for some  
     variable assignments of s,  ℑA

s(Q)=T 
 
Negation. If Part: trivial.  Only-If Part: Assume for some s,   ℑA

s(∼Q)=T iff for some s,   ℑA
s(Q)=F iff  [by 

the induction hypo.] for all s,   ℑA
s(Q)=F iff for all  s,   ℑA

s(∼Q)=T.  
Conjunction. If Part: trivial.  Only-If Part: Assume for some s,   ℑA

s(Q∧R)=T.  Then for some s,     
ℑA

s(Q)=T, and for some s,    ℑA
s(R)=T.  Hence, by the induction hypo., for all s,    ℑA

s(Q)=T, and for all s,    
ℑA

s(R)=T.  Hence, for all s,    ℑA
s(Q)=T, and   ℑA

s(R)=T, i.e.  ℑA
s(Q∧R)=T. 

Disjunction. If Part: trivial.  Only-If Part: Assume for some s,   ℑA
s(Q∨R)=T.  Then for some s,     

ℑA
s(Q)=T or  ℑA

s(R)=T.  Assume it is s′ and Q such that  ℑA
s′(Q)=T. Thus,  ℑA

s′(Q∨R)=T.  Then by the 
induction hypo., for all s,    ℑA

s(Q∨R)=T.  Likewise if it is it is s′ and R such that  ℑA
s′(R)=T, it follows 

that   ℑA
s(Q∨R)=T. 

Conditional. If Part: trivial.  Only-If Part: Assume for some s,   ℑA
s(Q→R)=T.  Then for some s,     

ℑA
s(Q)=F or  ℑA

s(R)=T. .  Assume it is s′ and Q such that  ℑA
s′(Q)=F. Thus,  ℑA

s′(Q→R)=T.  Then by the 
hypo., for all s,    ℑA

s(Q→R)=T.  Likewise if it is s′ and R such that  ℑA
s′(R)=T, it follows that    

ℑA
s(Q→R)=T. 

Universal Quantifier. If Part: trivial.  Only-If Part: Assume for some s,   ℑA
s(∀vQ)=T.  Then by an earlier 

theorem, for all s,   ℑA
s(∀vQ)=T.  QED.  

 
The main theorem will follow directly from the following lemma, which we are now ready to show by 
induction: 
 
Lemma.  For any P∈FFOL, A╞P iff  P∈X. 
 
Atomic Case.  
 
A╞ Pnt1,...,tn  iff for all variable assignments s,     ℑA

s(Pnt1,...,tn)=T              [def of A╞ Pnt1,...,tn] 
 iff  for all variable assignments s,  < ℑA

s(t1),..., ℑA
s(tn)>∈  ℑA

s(Pn)   
          [def of  ℑA

s(Pnt1,...,tn)=T] 
  iff  for all variable assignments s,   
           < ℑA

s(t1),..., ℑA
s(tn)> ∈ {<t1,...,tn>|  Pnt1,...,tn∈X          [def of   ℑA

s] 
 iff for all variable assignments s,  PnℑA

s(t1),..., ℑA
s(tn)∈X     [Principle of Abstraction] 

   iff for the variable assignments s′ such that for any variable v, s′(v)=v, 
  PnℑA

s′ (t1),..., ℑA
s′ (tn)∈X                     [by universal instantiation and the lemma] 

   iff Pnt1,...,tn∈X     [by the def of s′ for any ti of  t1,...,tn,   ℑA
s′ (ti)= ti ] 

 
Molecular Case.    Inductive Hypothesis:  for any immediate part Q of P∈FFOL,  
   A╞Q       iff     Q∈X. 
   for all variable assignments s,   ℑA

s(Q)=T  iff Q∈X. 
   for some variable assignments s,  ℑA

s(Q)=F iff Q∉X. 
  
Negation. A╞∼Q iff all s,   ℑA

s(∼Q)=T iff for all s,   ℑA
s(Q)=F iff [by lemma] some s,   ℑA

s(Q)=F iff [by 
hypo.] Q∉X iff ∼Q∈X. 
Conjunction. A╞Q∧R iff all s,   ℑA

s(Q∧R)=T iff, for all s, ( ℑA
s(Q)=T and  ℑA

s(R)=T) iff, (for all s,   
ℑA

s(Q)=T) and (for all s,  ℑA
s(R)=T) iff ,Q∈X and R∈X iff [by closure of X under ├] Q∧R∈X. 
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Disjunction. A╞Q∨R iff all s,   ℑA
s(Q∧R)=T iff, for all s, ( ℑA

s(Q)=T or  ℑA
s(R)=T) iff, (for some s,   

ℑA
s(Q)=T) or (for some s,  ℑA

s(R)=T) iff [by lemma] (for all s,  ℑA
s(Q)=T) or (for all s,  ℑA

s(R)=T) iff, [by 
hypo] Q∈X or R∈X .   If Part: Assume A╞Q∨R.  But  then Q∈X or R∈X .   in either case [by closure of 
X under ├] Q∨R∈X. Only-If Part:  Assume: Q∨R∈X.  Hence X├Q∨R. Assume for a reductio that 
neither Q∈X nor R∈X .  Hence ∼Q∈X and ∼R∈X, and X├∼Q and X├∼R.  But then X is inconsistent as 
the following proof tree demonstrates: 
 
Q├Q (basic) X├∼Q (given)    +⊥ R├R (basic) X├∼R (given)    +¬ 
 X,Q├ ⊥                                                     X,R├⊥              X├Q∨R    ∨- 
     X├⊥ 
 
But since X is consistent by assumption, we have a contradiction.  Thus, either Q∉X or R∉X.  That is, 
by the hypo. either for some s,   ℑA

s(Q)=T or for some s,   ℑA
s(R)=T. Hence by the lemma for all s,    

ℑA
s(Q)=T or, for all s,   ℑA

s(R)=T.  Thus, by quantifier logic, for all s,   ℑA
s(Q)=T or  ℑA

s(R)=T, or in other 
words,  there is no  ℑA

s(Q)=F and  ℑA
s(R)=F.  Suppose now for a reductio that it is not the case that 

A╞Q∨R. That is, there is some s,   ℑA
s(Q∨R)=F.  Thus, for some s,  ℑA

s(Q)=F and  ℑA
s(R)=F.  But this 

contradicts what we have just shown.  Hence,  ℑA
s(Q∨R)=T. 

Conditional.   We show first:  X├∼Q or X├S, iff X├Q→S.   Suppose first that X├∼Q or X├S.  Now either  
X├S, X├∼Q→S by →+.  On the first alternative X├Q→S follows as the following tree establishes: 
  X├∼Q (given)    ∨+  Q├Q (basic)  ∼Q├∼Q (basic)    ⊥+       
      X├∼Q∨S  S├S  Q,∼Q├S)    ∨- 
    X,Q├S)    →+ 
    X├Q→S 
On the other alternative X├Q→S follows by →+.  Conversely, if neither X├∼Q or X├S in a maximally 
consistent set X, then ∼Q∉X and S∉X.  But then ∼S∈X and hence X├∼S.  But then X is inconsistent. 
Hence, X├∼Q or X├S, iff X├Q→S.  Now,  Q→S∈X iff X├Q→S [by closure] iff (X├∼Q or X├S) [by what 
was shown above] iff (∼Q∈X or S∈X) [by closure] iff (Q∉X or S∈X) [by maximality] iff (for some s,   
ℑA

s(Q)=F) or (for all s,  ℑA
s(S)=T) [by induction hypo.] iff (for all s,  ℑA

s(Q)=F) or (for all s,  ℑA
s(S)=T) [by 

lemma] iff (for all s,  ℑA
s(Q)=F or  ℑA

s(S)=T) [by quantifier logic] iff (for all s,  ℑA
s(Q→S)=T) [by definition] 

iff A╞Q→R.   
Universal Quantifier. A╞∀vQ iff for all s,   ℑA

s(∀vQ)=T [by definition] iff for all s,  for all c∈ ConsFOL,    
ℑA

s(Q[c/v])=T [by an earlier theorem] iff for all c∈ ConsFOL, for all s,   ℑA
s(Q[c/v])=T [by quantifier logic] 

iff for all c∈ ConsFOL, Q[c/v]∈X [by induction hyp.] iff ∀vQ∈X [by saturation].  QED. 
 
Corollary.  If X is consistent, then X is satisfiable. 
Proof.  Let X be a consistent set of FFOL.  Let X be expanded to a saturated superset Y* of F′FOL as in 
the next to last theorem. By the previous theorem, then, Y* is satisfiable.  By a yet earlier theorem, 
then, X of FFOL is also satisfiable. QED. 
 
 Lastly, the pieces of the proof are brought together.  It is shown by appeal to 
the definitions of satisfiability, valid argument and consistency that the two 
metatheorems previously proven establish the completeness result. 
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Metatheorem 1-26 

For any X  and P of FFOL,  X├ FOL P iff X╞P. 
 
Proof.  The If Part follows by the soundness metatheorem.  Only-If Part.  We note first the following 
consequences of the definitions: 
 

 X├ FOL P iff for some finite subset Y of X, Y├P 
   iff for some finite subset Y of X, Y,∼P├⊥ 
   iff for some finite subset Y of X∪{∼P}, Y├⊥ 
   iff some finite subset Y of X∪{∼P} is (finitely) inconsistent  
   iff X∪{∼P}  is inconsistent  
Assume X╞P. Then, 
 

X╞P  iff  X∪{∼P} is not satisfiable 
   only if  X∪{∼P} is inconsistent (by previous theorem) 

   iff  X├ FOL P    QED. 

 

Metatheorem 1-27 (Finite Deductibility).   

 X├FOL-NDQ, iff there is some finite subset {P1,...Pn} of X  such that P1,...Pn├FOL-NDQ. 

Metatheorem 1-28 

Equivalence of Axiomatic and Natural Deduction Theory. 
   X├FOLQ, iff X├FOL-NDQ 
 
The result follows trivially from the definition of X├FOLQ. 
 

D. Further Metatheorems 
 The semantic fact corresponding to finite deducibility is called finitary 
semantic entailment or compactness.   Proving it directly without appealing to facts 
about syntax is quite non-trivial.   Here however it will sufficed to remark that it 
follows directly from the soundness and completeness theorems together with finite 
deducibility,  
  

Metatheorem 1-29 (Compactness) 

 Entailment Formulation: 
  X╞Q iff, there is some finite subset {P1,...Pn} of X such that P1,...Pn╞Q. 
 Satisfiability Formulation: 
  X is satisfiable iff every finite subset of X is satisfiable. 
 
 Lastly we state a metatheorem that is an intriguing “inexpressibility result,” the 
proof of which will not be given here.  It states that, in certain respects, we cannot 
tell from the sentences true in a model how many entities exist in the model.   
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First, if a model is infinite, we cannot tell how big an infinite set its domain is.  
Although infinite sets may vary in size -- because as Cantor taught us there are 
some infinite sets that are bigger than others -- what is called the "downward" part of 
the theorem tells us we cannot distinguish among these in worlds if we are writing 
about them only in the language of first-order logic.  If a set of sentences (e.g. the 
axioms of some science) are true in a countably infinite world, then it is true in an 
infinite world of any size whatever. We call a domain countably infinite iff it may be 
put in one to one correspondences with the natural numbers.  We call it non-
countable iff one of its subsets may be put in one to one correspondence with the 
natural numbers but the set as a whole cannot.  An example of a non-countably 
infinite set is the set of real numbers. 

Second, if our syntax lacks the identity predicate, we cannot using formulas 
written in the syntax of first-order logic, even limit the number of objects in the 
domain to a finite number.  We cannot make up a formula equivalent to saying "there 
are only 20 entities" in such a way that that formula is true iff the domain has only 
twenty entities in it.  The "upward" part of the theorem tells us that no matter what 
formula we write there is some infinite  world that makes it true. 
 
 

Metatheorem 1-30 (Skolem-Löwenheim)  

 
Downward Skolem-Löwenheim Theorem. X is satisfiable in some model  with a countably infinite 
domain if, and only if, X is satisfiable in some model with a non-countably infinite domain. 
 
Upward Skolem-Löwenheim Theorem. If X is satisfiable in some model  with a finite domain, then X 
is satisfiable in some model with a countably infinite domain. 
 
 
Note that once we introduce the identity predicate into the language, the upward part 
of the theorem fails to hold.  Using identity we can express the cardinality of the 
domain.  For example, 
 

∃x∃y∃z(x≠y∧y≠z∧x≠z∧∀w(w=x∨w=y∨w=z)) 
 
says there are exactly three things in the domain in the sense that one can prove the 
following: 
 

Metatheorem 1-31.  For,  A=<D,ℑ> 

  
  A╞∃x∃y∃z(x≠y∧y≠z∧x≠z∧∀w(w=x∨w=y∨w=z)) iff the cardinality of D is 3 
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III. EXERCISES 

A. Skills 

i. Syntactic Construction Trees.     
 
Examples of ConstructionTrees 
 

bove are examples of construction trees.  The “leaf” nodes are occupied by atomic 

t 
 

ound and Free Occurrences.

A
descriptive expressions (constants, variables, or predicates).  Each descendent 
node is occupied by a non-logical expression (term or formula).  Each descendan
consists of the application of a formation rule from the syntax.  The inputs to the rule
are the  expressions in left to right order occupying the immediately superior nodes 
and the output of the rule is the expression occupying the descendent node.  The 
tree thus records in a step by step process the stages by which the expression on 
the root (bottom) node is “constructed”  and added to the set of formulas. 
 
B   Exercise 1.  In the trees above: 

each variable on a leaf (node) that is free (i.e. is above no formula 

 variable on a leaf that is free for y (i.e. is above no 

t is free for x. 
 is free for y.   

 
a. Circle 

beginning with ∀x or ∃x). 
b. Put a square around each

formula beginning with ∀y or ∃y). 
c. Circle each constant on a leaf tha
d. Put a square around each constant on a leaf that
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Drawing Trees.  Exercise 2.  Below are formulas P[e/e′ ] in which and expression e 

t e′  on 

ete a 

t well 

a. (∼Fx→∀xRxa)[a/y] 

[ f(x,a,y)/a] 

,y)/x] 

 
3. Partial and Total Substitution in Trees

is substituted for another e′ in an original formula P.   For each draw a construction 
tree for the formula P  as it is before any substitution is made.  Then, carefully draw 
into the tree each occasion of substitution.  You do this by altering the expressions 
on the nodes.  Start systematically at each top (leaf) node of the tree.  If the 
substitution of e for e′ is well defined for the expression at that node, cross ou
that node and carefully write above it e.   Proceed down the tree’s branches, 
replacing e′  by e at each node (crossing out e′ and writing above it e) in the 
increasingly complex formulas that occupy the tree’s nodes, but do not compl
replacement at a node if the substitution of e for e′ is not well defined for the 
expression at that node.  If you arrive at a node at which the substitution is no
defined, circle that node and halt any further substitution beneath that node. 
 

b. (∼Fx→∀xRxa)[a/x] 
c. (∼Fx→∀xRxf(x,a,y))
d. ∃y(∼Fx→∀xRxf(x,a,y))[x/y] 
e. ∃y(∼Fx→∀xRxf(x,a,y))[ f(x,a
f. ∃y(∼Fx→∀xRxf(x,a,y))[ f(b,a,z)/a] 

.  Exercise 3.  There are two notions of 

a. ∃y(∼Fg(x,a)→∀xRxf(x,a,y))[b/a] 

. (∼Fg(x,a)∧Rzxx)→∀xRxf(x,a,y))[ g(x,a)/x] 

 

substitution of e  for e′ in P: either an expression e replaces every occurrence of an 
expression e′ and the result is written P[e/e′ ], or e replaces some (i.e.  one or more) 
occurrence of e′ in P and the result is P[e//e′ ].   For each of the formulas below draw 
a construction tree exhibiting the difference in their syntactic structure.  Draw the 
construction tree for the formula before the substitutions are made and then indicate 
on the tree each substitution-at-a-node by crossing out the expression replaced and 
writing above it the expression that replaces it.  If at some node the substitution is 
undefined, circle that node and write in a short explanation of why the substitution is 
undefined. 
 

 ∃y(∼Fg(x,a)→∀xRxf(x,a,y))[b//a] 
 
b
 (∼Fg(x,a)∧Rzxx)→∀xRxf(x,a,y)) [ g(x,a)//x] 

Alphabetic Variation in Trees.  Exercise 4.   
[z/y].  

xRxf(x,a,y)) 

 

a. Draw a tree for ∃y(∼Fx→∀xRxf(x,a,y))
b. Why is it an alphabetic variant of  ∃y(∼Fx→∀
 but  ∃y(∼Fx→∀xRxf(x,a,y))[x/y] is not?  
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ii.  Proof Theory.   
 
 Constructing Classical Proof Trees.  Exercise 5.  Using the rules for classical 
natural deduction in first-order logic (pages 125 and 126), construct a proof tree (like 
those on page 127) for each of the following: 
 

a. P∧∼Q├ ∼(P→Q) 
b. P→Q├ ∼P∨Q 
 

Intuitionistic Proofs.  Exercise 6.  By referring to the classical proof tree for P→Q├ 
∼P∨Q (above), explain why it cannot be proven using the rule set for intuitionistic 
logic. 
 

iii. Semantic Entailment and Validity  
 
Semantic Metatheorems on Validity.  Give informal proofs in the metalanguage of  
the following.  Set up the proofs when applicable as conditional proofs or reductions 
to the absurd.  Reformulate assertions by applying definitions (e.g. of  X╞ FOL P, A╞P,  
ℑA

s , s, and ℑ).  In particular, reformulate assertions of the form  ℑA
s(P)=T into facts 

about the referents, under ℑ and s, of the atomic parts of P. 
 
Exercise 7 

a. ∀x(Fx→Gx) ╞ FOL ∀xFx→∀xGx 
b. ∀xFx→∀xGx  ╞ FOL   ∀x(Fx→Gx) 
c. ∀x(Fx→Gx), ∃x¬Gx ╞ FOL∃x¬Fx 
d. ╞ FOL ∀x∃y(x=y)     
e. Fa ╞ FOL ∃xFx 
f.  If ╞ FOL  P→ Q then P ╞ FOL  Q.    

(Note:  the converse holds if P and Q are sentences.) 
g. ∀x(Hx→Gx), ∀x(Fx→Gx)  ╞ FOL   ∀x(Fx→Hx) 
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iv. Inductive Proofs 
 
 
The general form of an inductive definition of a set C.  One or more basic sets B1,…,Bn and rules 
(relations) R1,…,Rm defined.  Then C is defined by three clauses:  
 
Basis Clause. All basic sets  B1,…,Bn are subsets of C;  

Inductive Clause. For any rule Ri, if Ri is an n+1-place relation, then for any x1,…,xn,xn+1, if x1,…,xn 
are all in C and <x1,…,xn,xn+1>∈ Ri , then xn+1∈C. 

 
Closure Clause.  Nothing else is in C. 
 

General Form of Steps in an Inductive Proof 
 To Prove:  For all x, if x∈C then P[x]. 

 Basis Steps (one step for each i=1,…,n). 

   Step i.  Assume x is arbitrary and that x∈Bi .   

  Show: P[x].   

 Inductive Steps (one step for each i=1,…,m). 

 Step i  Induction Hypothesis.  Let x1,…,xn,xn+1 be arbitrary.  Assume:  P[x1],…, P[xn] 
  Show:   If <x1,…,xn,xn+1>∈ Ri then P[xn+1]. 
 
Proofs by Induction  Exercise 8.  Complete the inductive proof for both the atomic 
case and the cases of the sentential connectives in Metatheorem 1-17 . Substitution 
of Identity.  Complete the proof also for the cases of the sentential connectives in  
Metatheorem 1-18. 
Do so methodically.  For each metatheorem write down on a page the numbers 1-6 
and complete the following steps.   (This exercise will take up paper, but it is worth 
taking the case to spell out the details): 

1. Name the inductive set C that is at issue. 
2. Name the set of basic elements of C. 
3. State carefully the open metalinguistic sentence  P[x] that is being 

shown to hold for all x in C. 
4. List all the assumptions that given the formulation of the metatheorem 

you are allowed to assume before you start to prove “for all x in C,  
P[x]”. 

5. For Metatheorem 1-17 . Substitution of Identity.  Pτrove the atomic 
case. 

6. For each sentential construction rule used to define C: 
a. Write out the inductive hypothesis that you may assume for 

that rule.  That is, write out what it means to say that the inputs 
of that rule have P[x]. 

b. Prove the inductive step.  That is, given the inductive 
hypothesis (that the inputs of the rule satisfy P[x]), prove that 
the output of the rule satisfies P[x]).  You will need to refer to 
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several thighs: (1) the definition of the construction rule itself 
(i.e. to what the rule does to the inputs), (2) the inductive 
hypothesis for that rule, and (3) other facts that are relevant.   

v. Metatheorems   
Exercise 9.  The metatheorems pages  130-139 are only of marginal interest in 
themselves.    They are proven in the text, however, because each is crucial later at 
some point in the proofs of the main completeness theorems (page 139 and later).  
As you read   later proofs, note (page and line number) where each of the earlier 
metatheorems (note its number) is used.    
 

B. Theory and Ideas  

i. Existence   
Exercise 10.  In formal languages a distinction is drawn between descriptive 
(categorematic) and logical (syncategorematic) terms.  Descriptive terms are 
assigned referents or truth-values.  Logical signs do not directly have referents or 
truth-values.  Rather each is represented in the syntax by its own grammar rule 
and in the semantics by a corresponding clause the definition of ℑ (in sentential 
logic) or  ℑA

s (in first-order logic).  The grammatical clause explains how the 
logical sign is used to build up a “whole” expression from immediate parts, and its 
semantic clause states the conditions that determine the referent or truth-value of 
the whole given the referents or truth-values of its immediate parts.  But it is hard 
to decide sometimes whether an expression in natural language is descriptive or 
logical.  Consider the verb to exist in English.  Write a short discussion on 
whether it is descriptive or logical.  Here are some points to consider.   
• Suppose an “existence predicate” E  (read exists) were added to first-order 

syntax as, say, P1
1.   What would ℑ(E) be?  How might it be defined?  Would 

it have the same definition in every model? 
• Are there any valid “logical” arguments in English that turn on the syntax of 

exists, i.e. ones that can be described in purely syntactic terms or that hold 
because of the shape of the formulas regardless of which descriptive 
constants, functors, or predicates occur?   

• If exists occur is the syntax, it is used to combine with immediate parts to form 
a whole.  What part of speech is this “whole” and what are the parts of speech 
of the immediate parts it combines with?  What sort of entities do the whole 
and parts refer to?  Things?  Sets?  Relations? Truth-values?  Can you 
formulate a semantic rule that would tell you what the whole (made up using 
exists) refers to give what the parts refer to? 

• Translate╞ FOL = ∃y(x=y) into English.  Discuss whether it mean the same as x 
exists?  

ii. Truths of Logic and Valid Arguments 
Exercise 11.  Presumably we have some idea from real life and natural language 
what arguments are valid and what sentences are trivially true before we ever 
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study logic.  Indeed, these “intuitions” are used to critically evaluate logical 
systems, both syntactic proof theory (axiom and natural deduction systems) and 
semantic theories with their “truth-conditions” and definitions of valid argument.  
Here are some controversial validities of first-order logic:  

1. ╞ FOL P∨∼P 
2. P, ∼P╞ FOL Q 
3. ╞ FOL ∃x(Fx∨∼Fx) 
4. Fa ╞ FOL ∃xFx 
5. ∀x(Gx→Hx), ∀x(Fx→Gx)  ╞  /  FOL∃x(Fx∧Hx) 

Select one or two of these that your intuitions suggest may in fact not be really 
valid, and discuss whether and why your intuitions should have any bearing on 
the acceptability of first-order logic as a “scientific theory.” 

 

iii. Intuitionistic Proof Theory as Semantics: Meaning as Use 
Exercise 12.  Intuitionistic logicians and, more generally, constructivist 
mathematicians reject classical semantics because of its use of excluded middle, 
reductio and non-constructive sets.  Gentzen’s natural deduction proof system (of 
introduction and elimination rules) has been proposed as an alternative “semantic” 
theory of “meaning” even though it is really a syntactic theory that is formulated 
completely in terms of the spatial arrangement of symbols on the page.  Explain the 
argument for the thesis that this syntactic proof theory could be considered a theory 
of meaning, and offer some critical remarks (for or against) its success as a theory of 
meaning.    

iv. Henkin’s Proof of Soundness and Completeness   
Exercise 13.  In a short essay spell out for yourself in terms that you will be able to 
understand later (say, in twenty years): 

1. what the soundness and completeness theorem says, 
2. why it is interesting, 
3. the general strategy of Henkin’s proof, and 
 

 
 



   

Chapter 3 

 Effective Process and Undecidability  

 

I. CALCULATION, ALGORITHMS AND DECIDABLE SETS45 

 

A. Introduction  
It was logicians or philosophers with an interest in logic that first 

envisioned and actually built the earliest computers.  Ancient Greek 
mathematicians had discovered simple algorithms for some basic calculation in 
arithmetic, like Euclid’s algorithm for greatest common devisor (defined below).  
We learned similar procedures in elementary school, like the technique for long 
division.   Such procedures turn a human being into a paper and pencil, flesh and 
blood  calculating machine.  Numbers are feed in, the procedure is applied by 
rote, and it terminates in a sort time with a set of final numbers. No thinking or 
judgment is required beyond careful rule following. 
 In the Middle Ages and again in the sixteenth century the philosophers 
extended such calculation beyond simple arithmetic.   An intriguing but 
notoriously unsuccessful example was the calculation procedure proposed by the 
14th-century Spanish philosopher Raymond Llull.  Llull constructed various 
mechanical devices for predicting the future.  These consisted of concentric disks 
of increasing diameter mounted on a central axis so that they could rotate one on 
top of anther.  Mystical symbols representing forces governing the world are 
written around their outer edges.  A row of symbols one from each disk is then 
created by their alignment one above the other along a “spoke” of the disk.  
These combinations of symbols had special meaning,  expressing a proposition 
of some sort. By rotating the disks, a “proposition” along one spoke describing 
one state of affairs was automatically correlated with another on a different 
spoke.  By this means its was believed the future could be predicted.  Kings and 
queens, including Elizabeth I of England, who hired practitioners of this art for 
advice, esteemed the system.46   

Though Llull’s device was essentially superstitious, it inspired the 
seventeenth century German philosopher Gottfried Wilhelm Leibniz (1646-1716) 
to more serious work. What was important about Llull’s invention was that it was 
a machine.  It provided a purely mechanical manipulation of crude, highly visible 
physical objects, in a finite and prescribed procedure, one with clear beginning 
and ending points, and clear steps in between. In a series of essays Leibniz 
designed paper and pencil calculation procedures that likewise had clear 

                                            
45 I am indebted to Jennifer Seitzer for reading over sections 1-4 and for helping me in the correct 
usage of Computer Science. 
46 On Llull’s machines see Martin Gardner, Logic Machines, Diagrams, and Boolean Algebra 
[1958] (N.Y.: Dover, 1968). 
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beginning and end points, and a finite number of simple and transparent 
intermediate steps. His procedures were directed to topics in logic, the validity of 
various syllogistic inferences.  Leibniz’ procedures were different in an important 
way from Aristotle’s “reductions” of the valid syllogistic moods to Barbara and 
Celarent.  Proofs, even Aristotle’s reductions, are not automatic.  They require 
ingenuity on the part of the prover.  Leibniz’ method, in contrast, required no 
thought or originality, and could be applied by a dunce.  So long as the steps 
were correctly followed, it was sure to produce an answer in a short period of 
time.47  Leibniz went further in his experiments with calculation and actually 
constructed a machine that would do addition.48  At roughly the same time in 
France Blaise Pascal (1623-1662) constructed an even more elaborate machine 
for simple mathematical calculations.  Though proposals to mechanize logic did 
not resurface until the twentieth century, experiments in arithmetical calculators 
continued.  By the start of twentieth century large offices were equipped with 
extremely bulky devices that clerical staff used to add long strings of numbers.  
These evolved into the mechanical office adding machine.  In recent decades, 
however, there has been a quantum leap in calculation with the invention of the 
computer, a device that depended on advances in theoretical logic. 

B. The Concept of Calculation 
You will recall that one of the major projects in the foundations of 

mathematics in the last century was to axiomatize arithmetic, and that in the 
thirties Kurt Gödel advanced the subject in several ways.  He brought the class of 
simple arithmetical calculations like addition and multiplication within a larger 
class of numerical calculations in general – called the (primitive) recursive 
functions – and provided an inductive definition of this class.   

The mathematician wants to understand this wider class of numerical 
calculations because he wants to understand the general properties of arithmetic.  
Philosophers too are interested in calculation, but not because they are 
specifically interested in arithmetic.  What interests philosophers about addition, 
multiplication and other automatic calculating procedures is clarity of knowledge 
they provide.  Philosophers have always been concerned to explain how we 
know anything – the subject is called epistemology.  Knowledge that possesses 
certainty is particularly interesting.  Over the centuries philosophers have 
become more and more skeptical of the existence of any certainties at all, but 
mathematical calculation remains one serious candidate.  What is calculation and 

                                            
47 The mnemonic names for the valid moods given to them in the Middle Ages did allow for the 
automatic construction of a “proof”, but they do so because the syllogistic is trivial.  There are only 
a small finite number of valid moods.  One could simply memorize all of them.  Because it is finite, 
this list itself would count as a calculable function.  It is only when the set of validities becomes 
infinite that the problem of defining a calculable decision function becomes interesting. 
48 See especially his paper De arte combinatoria, translated and explained in G.H.R.Parkinson, 
Leibniz, Logical Papers (1966: Clarendon Press, 1966).  His techniques were designed to yield a 
proof for a true propsition in a finite number of steps and to terminate without a proof for a false 
proposition.  Hence, in the later language of this section, they were algorithms intended to both 
produced proofs and to serve as a decision procedure. 
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what about it makes it certain, if in fact it is certain?  These are philosopher’s 
questions.  
 Both mathematicians and philosophers, then, want to know what 
calculation is.  What is unclear as they start out is what sort of answer they are 
looking for.  How is calculation to be explained?  What would an explanation look 
like?  How would we know if we had a good one? 
 Gödel provided an answer of a sort in his inductive definition of the 
(primitive) recursive functions. What is a calculation?  His answer is that it is a 
member of PRF.  It is the model of an inductive definition that Gödel used to 
“explain” calculation.    There is a good deal to be said about this definition as 
an “explanation.”  It was the first of a series of attempts find an inductive 
accounts of calculable functions in the period from 1930-1950.  These attempts, 
which were independent and based on quite different ideas, all ended up defining 
exactly the same set.  Gödel’s work was completed in 1931. In 1936 Alan Turing, 
an English logician, defined the notion of a Turing machine and a Turing 
computable function.  Turing’s abstract machines are simple computers that 
when combined can compute any computable function.  In 1947 the Russian 
logician A. A. Markov defined the notion of algorithm, a set of directions for 
calculating an answer from given numerical inputs.  Markov’s algorithms are the 
abstract versions of computer programs, and they define the set of “program 
calculable” functions.  These and other definitions are equivalent in a rigorous 
sense: it can be shown by mathematical proofs that a function is in one of these 
sets iff it is in another.  In this case the Axiom of Extensionality in set theory says 
the two sets are identical.   The coincidence of the different approaches suggests 
very strongly that there is a genuine phenomenon in the world that the different 
approaches have all captured with different ropes.  This is the set of calculable 
functions. 
 It must be admitted, however, that there is something unsatisfactory about 
inductive definitions as “explanations,” especially to a philosopher who wants to 
see into the “essence” of things.  Recall that Socrates and Aristotle set the 
standard of philosophical insight when they required that explanations take the 
form of definitions. Aristotle insisted that a definition lay bare a species’ nature or 
essence – understood as its genus restricted by its characteristic difference. In 
general philosophers still look askance at “definitions” that fail to list the 
necessary and sufficient conditions for a term’s application.   
 Axioms are all right if they are the best explanation available.  Such, for 
example, is the philosopher’s typical attitude to set theory.  Sets cannot be 
defined directly, so we must be satisfied with their characterization by a set of  
axioms, which are sometimes said to “implicitly” define the primitive terms they 
contain.  In the case of set theory the main primitive term is that for set 
membership.  Another example of a primitive term not directly definable is time.  
What is time?  It would be most satisfying to have a definition.  The best physics 
has to offer, however, are basic laws of nature in which the concept of time occur 
as primitive terms.  (Consider Newton’s laws f=ma, where a (acceleration) is d/t2.  
Here a time variable appears as an undefined primitive.) 
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 Inductive definitions have the same drawback as axioms.  They tell you 
how to construct a set but they do not give you its “conceptual content.”  They do 
not say what the objects in the set have in common.  Perhaps some important 
sets just do not have common features, and the traditional quest for necessary 
and sufficient conditions is a misguided scientific enterprise.  Maybe so.  But an 
attempt at a straightforward traditional definition of a calculable function is 
revealing. 
 If this idea is to be defined, the definition must include as a minimum 
numerical calculations.  In principle however there is no reason to limit such 
processes to numbers.  It seems we could apply the same sort of mechanical 
procedure to other sorts of entities, like symbols or any manageable hunks of 
matter.  An adding machine, for example, is entirely physical, as is a computer.  
The inputs and outputs are material objects, but the process is like calculations 
on numbers in that it works quickly and reliably.  The formal name for the more 
general phenomenon not restricted to numbers is effective process.  This is the 
idea we want to define. Before attempting to do so, however, let us have some 
more examples of effective processes.  These we need to guide our later 
abstraction.   
 We shall define a series of what are technically called algorithms, a set of 
directions for an effective process.  Computer programs generally fall in this 
class.  Each has a definite starting point, and a finite series of rules in a set order.  
The process begins by applying the first rule that fits to the starting point.  It 
process proceeds to a new step to it the first applicable.  In this way the process 
produces more steps by proceeding down the rule list, skipping any rule that has 
a condition of application that does not fit the current step.  If the procedure does 
not stop because a rule says to stop or because no rule is applicable, the 
procedure returns to the top of the rule list and starts applying them all again, in 
their prescribed order. If the definition has no “glitches,” the process will not go in 
circles, or run on forever.  Rather, after completing a finite number of steps, there 
will be a step to which no rule is applicable or there will be a rule that says at that 
step the process is to “stop”. 
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Example 1.  The Addition Operation. 
 We begin with a recursive definition of the addition operation + in terms of 
the successor operation S:  
  x+0=x 
  x+S(y)=S(x+y) 
We can use + to define an algorithm for calculating n+m, for any numbers n and 
m, on the assumption that we can apply the successor operation to any number. 
Accordingly we can write an algorithm to  calculate n+m as follows: 
Starting Point: 
  Write m imbedded n S’s as follows: 
   S(S(...(S(S(m))))) 
   14243 
        n S’s 
Step 1.  If there is a numeral c,  and it is inside the expression S( ).    
  Calculate S(c) and rewrite the expression on the line beneath  
  replacing S(c) with the numeral for its successor. Go to Step 1.  
Step 2.  If there is a numeral c,  and it is not inside the expression S( ), 
  stop. 
The numeral you finish with is the name for the sum of m+n. 
 Example.  4+3 
    3 S’s 
    678 
    S(S(S(4))) 
    S(S(5)) 
    S(6)   
 
Example 2.  Euclid's Algorithm: the Greatest Common Divisor of m and n. 
 
Starting point:  write the numerals for any pair of natural numbers m,n. 
Step 1. If n≤m, and n is on the left, move to the line below and write m,n.  
Step 2. If n ≠ 0, divide m by n and move to the line below and write n,r  
  where r is the remainder. Go to Step 1. 
Step 3. if n = 0,  move to the line below, write m,  and stop. 
 
Examples 
 3,17                            8,12 
 17,3                            12,8 
 3,2                               8,4 
 2,1                               4,0 
 1,0                               4 
    1 
The number on the lowest line is the GCD of m and n. 
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Example 3.  Formulas  in Polish Notation. 
 
Starting Point: 
 Write down a (non-empty) string of symbols. 
 Append the symbol e for the empty string at the right-hand end of the  
  string. 
 Set the counter c so that c=1, and write that value for c beneath the  
  string to the left. 
 Go to the leftmost sign in the string. 
 
Step 1. If the sign is  P,Q, or R, set counter to c=c-1, write the new value  
  of c under the sign, and move to the sign on the right. Go to Step 1. 
Step 2. If the sign is N move to the sign on the right. Go to Step 1. 
Step 3. If the sign is K,A,C,E,  set counter to c+1, write the new value of c  
  under the sign, and move to the sign on the right.  Go to Step 1. 
Step 4. If the sign is other that A,B,C,N,K,A,C, or E, stop. 
Step 5.  If the sign is the empty string e, stop. 
 
The procedure produces a final (rightmost) value for c.  If c=0, the string is a wff 
in Polish Notation, and if c≠0, it is not. (It is the possibility of such simple 
algorithms that makes Polish Notation a favorite of computer programmers.) 
 
Examples 
   CANNABKBNAe                NAEANBKCAe    NAEANBKCKe 
1 2 3     2 12 1   0               1    23 2   1 21 0  1   2 32   1 21 
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Example 4.  A Test for Tautologies, Contradictions, and Valid Arguments 
(with a Finite Number of Premises) in Sentence Logic 
 
Starting point.  Convert the item to be tested into a single wff P.  (An argument 
P1,...,Pn to Q is converted into the conditional (P1∧...∧Pn)→Q.) Next determine 
the  2n possible assignments of T or F to the atomic sentences of P.  Put these 
assignments into some fixed order, and write in order a copy of the grammatical 
tree of P, one for each assignment.  In each tree writing next to each atom in the 
tree the truth-value it has in that assignment.   Move to the leftmost tree. 
 
Step 1.  If some node in the tree has no value assigned to it, find the most north, 

then west (highest, then leftmost) node whose predecessor nodes all 
have truth-values assigned to them.  Assign to this node the truth-value 
determined by the truth-table for the connective introduced at that node. 
Go to Step 1. 

Step 2. If every node in the tree has no value assigned to it and there is a tree to 
the right, go to that tree and then go to step 1. 

Step 3. If every node in the tree has no value assigned to it and there is no tree 
to the right, stop. 

 
If at the end the roots of all the trees are assigned T, the sentence is a tautology.  
If they are all F, it is a contradiction.  If some are T and some are F, it is neither. 
 
Example.  Testing  P∨∼P 
 
There is one atomic sentence P in P∨∼P and therefore 21=2 assignments of 
truth-values:  P is T of P is F.  There are accordingly two trees: 
 
                              P,T                                                    P,F 
   |         | 
         P,T             ∼P,F                                P,F             ∼P,T 
    \              /            \              / 
                P∨∼P,T                                              P∨∼P,T 
 
The root of all trees is marked with T.  Therefore the sentence is a tautology .  
 
 Given these examples, it is possible to abstract the general features 
characteristic of calculable functions in general.  First of all there is a clear entity 
with which the process starts (the “starting point”).  There are a finite number of 
manipulations or steps, commencing with the starting point, such that it is clear at 
each step what entity (“input”) is given at the beginning of the step, what it is that 
must be done to it during the step, and what entity (“output”) results from 
applying the step.  It is clear when the finite process terminates and what entity is  
finally produced (the “end point”).  What is especially interesting to philosophers 
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is the clarity at each stage.  It is possible to know at each point what is going on, 
and to know it with what approaches certainty.  
 

Definition 1-1 

1.  An entity is epistemically transparent iff it is possible to tell with a high degree of certainty 
what it is. 
2.  An application of a rule (a step) is epistemically transparent iff it starts with an epistemically 
transparent entity, it proceeds by associating with it a second epistemically transparent entity and 
it is possible to tell with a high degree of certainty that the entity associated with it is the correct 
one. 
 
Symbols as marks on a page or even as spoken sounds – whether they be 
symbols logic, mathematics, or ordinary language – are epistemically transparent 
in this sense because we can tell what they are with a high degree of certainty by 
simple sense perception.  We just look at them.  If they are the right size, neatly 
written or printed, the lighting is right, and our vision is normal, we can be as 
certain about what written symbol is in front of us as we are about almost 
anything else.  Likewise the manipulations of symbols-on-a-page typical of logic 
and mathematics are epistemically transparent.  They consist of adding and 
subtracting symbols and of moving symbols about on a page. 
 It is to obtain this epistemic transparency that syntax limits itself to talking 
about just signs and their properties.  The strings and properties in question are 
supposed to be transparent in this sense.  Signs accordingly are limited to a set 
of highly perceptible crude physical objects.  In logic and mathematics these are 
marks on paper.  In linguistics studies of the syntax of natural languages, they 
are limited to certain perceptibly different sounds.  Similarly, the processes 
allowed in syntax are crudely physical manipulations of “signs.”  The adding, 
subtracting, and moving of written symbols in logic and mathematics is a physical 
process the correct application of which is immediately evident.  
 We are now ready to summarize the discussion with an attempt at a 
philosopher’s traditional definition, in terms of necessary and sufficient 
conditions, of  an effective process. 
 
A Traditional Definition (“Analysis”) of Effective Process 
 
A process is effective iff it consists of a finite series of elements such that there is some 
epistemically transparent element e  and some finite list of epistemically transparent rules such 
that the e is the first element of the series each subsequent element is produced by the ordered 
application of the first applicable rule.   
 
 This sort of definition, if successful, would have the virtue that it sees into 
what is common to all elements of the class it defines.  But traditional definitions 
only work if they succeed at illuminating the concept.  They cannot do so if the 
terms that are used in the definition are themselves not well understood:  you 
can’t explain the obscure by the obscure.  The definition above, however, suffers 
from exactly this defect.  It explains the idea of effective process in terms of other 
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ideas, including the philosophically loaded idea of epistemic transparency.  What 
is it to know something with certainty?  To give a deeper explanation, we would 
have to know what knowledge and certainty are, and these are deep still 
unresolved issues in epistemology.  Hence, the direct philosophical analysis of 
effective process is not of much use or interest outside philosophy.  It is for this 
reason that the alternative definition of effective process found in mathematics 
and logic is preferred in mathematics and logic circles.  The inductive definitions 
of Gödel, Turing, Markov and others do not lay bare the “essence” of the notion.   
They do, however, explain how to construct the set.  Moreover, as we saw in set 
theory, the whole idea of a direct definition in terms of necessary and sufficient 
conditions may well be problematical.  Indeed, every abstract science, 
philosophy included, might do well to abandon direct traditional definitions in 
favor of indirect constructions. It might be said that the reason epistemology has 
been unsuccessful for 2,000 years is due to  its fixation on Aristotelian definitions.   

On the other hand, it must be admitted that the omission of any reference 
to certainty or knowledge misses in an important way what effective processes 
are all about. The definitions of recursive function, Turing machine, Markov 
algorithm all fail to mention knowledge and certainty.  But it is in large part  
because effective process as there defined is the abstract version of the intuitive 
epistemically transparent notion that they are theoretically interesting.  We 
employ calculation and computers generally precisely because they are quick 
and dependable.  What kind of “science” is it that would explain such things 
without addressing their most important feature? 
 There is a middle ground.   It is to recognize that the same idea may be 
approached in different ways.  Philosophers may attempt direct definitions of 
effective process, admitting that their best definitions suffer from defining terms 
that remain deeply unclear.  Logicians and mathematicians can likewise offer 
their inductive definitions of effective process recognizing that they are offering 
mere constructions that fail to mention what is perhaps the most significant 
feature of effective processes, their epistemic transparency.  The constructive 
definitions, nevertheless, are mathematically precise and appear to capture the 
right set of operations.  That the two approaches to effective process, the 
philosopher’s and the mathematicians, are in fact explaining the same 
phenomenon is not something that can be proved in mathematics itself.  It 
consists of a determination that the set of effective processes as defined by 
philosophers in epistemic terms is in fact co-extensive with the set of effective 
processes defined inductively in recursion theory.  Whether the two sets do in 
fact coincide is, however, a super-mathematical question involving non-
mathematical ideas.  The thesis that the two coincide falls in the philosophy of 
logic, and it is known as Church’s thesis, after the American logician Alonzo 
Church.  After advancing his own inductive definition of effective process in terms 
of the lambda calculus – provably equivalent to those of Gödel, Turing, Markov, 
et al. – it was Church who first clearly stated the conceptual link between the 
mathematician’s inductive definition and the philosopher’s epistemic concept. 
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Church’s Thesis 
 
The set of effective processes that is defined by induction by Gödel (and others) is in fact the 
same set as the set of effective processes defined by the direct definition in terms of knowledge 
and certainty. 
 
 Among logicians and philosophers there is a consensus that the thesis is 
true.  Everyone admits that the operations captured by the inductive definitions 
are effective in the epistemic sense because all the individual basic operations 
and the rules of construction used in the inductive definition clearly have the 
required epistemic transparency.  It is the converse direction that may be  
questioned.  Might there be some effective process that is not captured by 
Gödel’s inductive definition?  The evidence against this possibility, and it is 
strong evidence indeed, is the amazing convergence of the various attempts to 
give an inductive definition of effective process.  The fact that the definitions of 
Gödel, Turing, Markov,  Church, and others use quite different sets of ideas but 
all provably pick out the same set suggest that they have captured the real 
animal. 
 A decision procedure is an effective process that determines whether an 
entity is a member of a set.  Given any entity the procedure provides an answer 
“yes, it is in the set” or “no, it is not in the set.”  It is what is called the 
characteristic function of the set.  If C is the set in question, then the procedure is 
a function f such that f(x) is 1 if x is in C and is 0 if x is not in C.  Moreover, given 
any x, it produces its unique judgment in a finite number of perfectly prescribed 
and epistemically transparent steps. 
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Definition 3-2 

The characteristic function of a set C is a function f defined for any value of x such that f(x)=1 if 
x∈C and f(x)=0 if x∉C. 

Definition 3-3 

A decision procedure for C is any characteristic function of C that is an effective process. 
 
A set C is said to be decidable iff there is a decision procedure for C. 
 
 Let us finish our discussion of constructive (inductively defined) and 
decidable sets by noting that they are not the same thing.  There are some 
constructive sets that are not decidable, and there are some decidable sets that 
are not constructive.   

An example of the former is the set ThFOL of theorems of first-order 
(predicate) logic.  This set is inductively defined.  It is the closure or the  axioms 
1-6 of the axiom system PM under the rule modus ponens. Let us call the axiom 
system based on these axioms FOL. This set of theorems is non-decidable, and 
the proof of that fact is a major result to which we shall turn shortly. The fact that 
it is undecidable, however, is exceedingly interesting.  It shows that even though 
it may in principle be possible to construct a set, we may not be able to tell for a 
given element whether the construction process puts it into the set.  This is a 
limitation on human knowledge.  Certainty does not extend to the membership of 
all constructive sets.   

Similarly, there are some sets for which we have a decision procedure, but 
which we cannot construct.  The set of prime numbers is a good example.  It is 
easy to test whether a number n is a prime.  Merely start dividing all numbers 
less than n into n.  If any of them (other than n and 1) divide n without a 
remainder then n is not a prime; otherwise it is.  Nobody, however, knows how to 
construct the primes.  If we did then it would always be possible to construct the 
next prime.  Finding higher primes, however, is a hit and miss proposition in 
modern mathematics, and the discovery of a new prime is a major and 
unpredictable event. 
 
Examples 
      Constructible  Decidable 
ThFOL  (Theorems of First-Order Logic)         yes        no  
 
The Prime Numbers            no        yes 
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C. Logic and Artificial Intelligence 
 One way to understand a human being is to cut him open and look, and 
then try to describe and explain what one sees.  Another was is to “model” him, 
to construct something that behaves just like he does.  A perfect robot, in this 
second approach, would shed light on how humans work.  Such at any rate is 
one strategy of the discipline called artificial intelligence.  It tries to 
“understand” human thinking by constructing machines (computers) that 
reproduce the reasoning processes of humans.  Any such approach is open to 
the objection that merely reproducing the same behavior does not guarantee that 
it is being produced by the same mechanism.  Both birds and airplanes fly, but 
there are differences in how they do it.  Despite such obvious problems artificial 
intelligence plows on.  Even if it does not ultimately shed light on how humans 
work, it would be quite remarkable if it  succeeds in making machines that 
replicate human reasoning.  With any luck we could then edit out the errors 
human tends to make, and end up with a machine that thinks better than we do.  
We could put it charge of things, like train systems, the economy, and  
teenagers. 
 In one sense logicians have been trying to achieve this end.  Logicians are 
not psychologists.  They do not look at how people reason.  They do not collect 
questionnaires interviewing thousands of subjects on whether modus ponens is 
right.  That is, logic is not a descriptive science.  Rather logic is interested in what 
really follows from a premise, regardless of whatever erroneous judgments 
humans are apt to make.  In this sense logic is often said to be normative or 
prescriptive.  This terminology is slightly misleading because it might suggest that 
logical rules are a matter of values or precepts laid down by  some authority or 
sage.  On the contrary, the facts of logical validity are facts of nature, just as 
much as those of arithmetic.  We discover and elucidate them by the techniques 
of logic, just as mathematicians discover and explain mathematical facts.  Of 
course, a given logical system, like an axiomatization of geometry, may not 
accurately describe the world we live in.  Like a geometry, a logical system must 
be subjected to empirical verification.  The verification, however, will concern 
what facts follow from what, not what facts human beings think follow.  In a 
similar manner a geometry is verified by taking physical measurements, rather 
than by interviewing humans about their personal views on geometry, errors and 
all. 
 Once the “right” logic has been discovered, moralists may enter the 
picture.  They can urge humans to be logical in the sense of using the rules of 
the right logic when they do their personal reasoning.  In a similar way  
somebody having a bridge built might urge the engineers to use the right 
geometry when they make their calculations.  But whether you or I use modus 
ponens, or the engineer building the bridge uses the  Reimannian  parallel 
postulate, reflects not at all on the validity of the first and the truth of the second. 
 Logicians then have a rather aloof stance towards psychology.  
Psychologists, on the other hand, have a very difficult job.  The psyche does not 
lead itself easily to scientific explanation.  This is especially true of the process of 
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human reasoning.  In their desperation for ideas psychologists have been know 
to turn to logic.  Perhaps they hypothesize, humans do in fact reason logically, or 
at least approximate logical reasoning.  After all if they didn’t, wouldn’t they have 
been eliminated long ago in the struggles of natural selection?  If so, then logic 
may provide models for human psychology.  Such in general is the idea behind 
artificial intelligence. 
 In artificial intelligence investigators have attempted to model in computers 
or other machines all sorts of human mental powers, from walking across the 
irregular terrain’s, to speech recognition, to visual discrimination.  One area that 
draws heavily from traditional logic is that of experts systems.  An expert knows 
her field.  She makes judgments drawing on her experience and theoretical 
background. The challenge is to make a machine that replicates the judgments of 
this expert.   

The proposed way to do so is a straightforward application of traditional 
logic.  First you axiomatize the theory. You produce an axiom system. There are 
two parts to your axiomatization.  First you collect the general laws and principles 
of the subject matter you are thinking about. You translate these into sentences 
in logical notation.  These are called the laws of the system.  Next you collect all 
the relevant details of fact.  These too are represented in logical notation, each 
fact by its own sentence.  These are called the database of the system, and they 
are added to the general rules to make a large axiom system called a logic 
program that spells out all the assumptions “the expert” will be using in the 
reasoning process. The expert’s “knowledge”  is then represented as the set of 
conclusions (theorems) that can be deduced logically from the laws and 
database.   

An expert’s judgment on a particular case is more complicated.  It is 
represent by a determination on the “truth” of a sentence given the axioms.  It is 
judged to be true if it follows and false otherwise.  To capture this additional 
feature of judgment on the truth of given sentence, the system must go beyond a 
usual axiom system.  An axiom system alone, though constructive, does not 
provide a decision procedure allowing one to tell whether a sentence is a 
theorem of the system.  If the set of theorems is in fact decidable, then there is a 
decision procedure that can be used to make such judgments.  Suppose a set 
ThS of theorems of an axiom system S has an effectively decidable characteristic 
function fS .  The we can decide if a sentence Q follows form a finite program  
{P1,...Pn}  if fS(P1,...,Pn→Q)=1.  Accordingly, we restrict programs to finite sets 
and expert systems to sets of theorems that are decidable. To represent the 
expert’s judgment on particular cases, we augment an axiom system with a 
decision procedure for its set of theorems.  In computer jargon the decision 
procedure is called the a query mechanism or handler, i.e. a kind of hidden 
meta-program built into the computer language that “runs” individual programs.  
A sentence that is submitted to the decision procedure for a judgment as to 
whether it is “true in the program” is called a query. 
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Definition 3-4 

An expert system in language LS consists of the following: 
 1. an axiom system S in LS consisting of 
  a.  a set AxS of axioms divided into two parts:49 
         i.   a set of molecular sentences, called the system’s program 
         ii.  a set of atomic sentences, called the system’s database 
  b.  a  set RS of rules of inference, 
  c.  the set ThS of theorems defined as the closure of AxS under  

        the rules in RS 
 2. a decision procedure fS  for ThS , called the system’s query handler.  
 Then,  a query is defined as a sentence from LS.  
 
 We have already met several axioms systems.  Some of these will be 
suitable for expert systems, namely those that are decidable.  Let us first review 
the axiom systems we have encountered.  We axiomatize sentence logic (using 
axioms 1-3 of PM), and for its set of theorems ThSL we actually defined a 
decision procedure earlier in this chapter.  We went on in FOL to axiomatize all 
of first-order logic (axioms 1-6 of PM), but this system is (as we shall prove) 
undecidable – there is no decision procedure for ThFOL.  In addition, we 
axiomatized all of set theory in the full axiom set (axioms 1-10) of PM, but this 
system is also undecidable since it includes as a subset the set of theorems of 
predicate logic, which is undecidable.  Finally, we learned from Gödel that 
arithmetic is not even axiomatizable.  Let us summarize this information. 

                                            
49 A logic program is sometimes called an intensional database (IDB), and the database is then 
distinguished by being called an extensional database (EDB).  This bit of jargon is unfortunate in 
that it has very little in common with more traditional uses of intension and extension in logic or 
philosophy 
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Systems  Definition   Set of Theorems Decidable 
 
Let P  be a set of formula of the language (a program) 
 
SL   P and Axioms 1-3        ThP∪SL      yes 
Sentence Logic  closed under modus ponens 
consequences of P 
           
FOL   P and Axioms 1-6 closed under  ThP∪FOL     no 
Predicate Logic  modus ponens 
consequences of P 
 
PM .  Type Theory  P and Axioms 1-8, 9*,10*           ThP∪PM      no 
consequences of P closed under modus pones 
 
 As this table indicates, the only “logics” we have met that would be 
suitable for genuine expert systems is sentence logic because only it is 
decidable.  Any finite set  {P1,...,Pn} of SL-sentences could serve as a program 
and any individual sentence Q as a query.  The truth-table decision method 
(defined above) could then be used to test the conditional (P1∧...∧Pn)→Q.  
 
Example.  An Expert System ESL Based on Sentence Logic, for sentences in 
language LSL of sentence logic, consists of: 
 1. An axiom system made up  of: 
  a.  finite set of sentences PE-SL of LS which serve the role of   
  premises of the system and are called the program of ESL, such  
  that: 
    i.  the axioms of sentence logic AxSL are all included in PE-L  

    (i.e.  AxSL ⊆ PE-SL), and   
   ii.  PE-SL divided into two parts: 
    a set of molecular sentences, called  laws, 
    a set of atomic sentences, called the database, 
  b.  a  set R E-SL of rules of inference containing just modus pones, 
  c.  the  set ThE-SL of theorems constructed from PE-SL  and R E-SL , 
 2. the decision procedure f E-SL  defined earlier for Th E-SL (i.e. for   
 tautologies in sentence logic).  
 3. a query is any sentence form LSL.  
 
 First-order (predicate) logic is undecidable.  However, many laws and 
arguments that cannot be expressed in sentence logic can be expressed in 
predicate logic.  It would be highly desirable to somehow extend decision 
procedures to embrace major parts of predicate logic even if we could not decide 
on all its theorems.  Are there subsets of predicate logic theorems that are 
decidable?  This is a major question for computer science, and its various partial 
and qualified answers make up a good part of the literature on expert systems. 
 One important sublangauge of first-order logic that is decidable is so-
called monadic quantification theory, the set of all first order formulas constructed 
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from atomic formulas that contain at most one variable.  A decision procedure 
that essentially consists of the truth-table test for validty can be defined for this 
fragment.50 

Another important approximation of a decision procedure for predicate 
logic is incorporated in the computer language Prolog, designed for writing 
expert systems.  By limiting the syntax of its programs and queries a partial 
decision procedure is possible.   Prolog is practical and commercially successful.  
It is also an excellent example of how AI programming languages are really 
branches of symbolic logic in disguise.  In what remains of this lecture I shall 
explore Prolog to illustrate the details of how logic is built into an important  
language for expert systems. 
 
 A program in Prolog is simple to write for somebody familiar with symbolic 
logic.  It is just a set of quantified formulas of the right syntax.  A program is “run” 
by proposing a query.  Then the resolution decision procedure hidden in the 
query handler of the computer language takes over to test whether the sentence 
proposed in the query in fact follows logically from the program. The general 
strategy is to assume the opposite of the query in question and then attempt to 
deduce a contradiction by an inference rule called resolution.  If a contradiction 
follows the proposition queried is true.  If no contradiction is reached the 
proposition is generally, but not always false.  The syntax of Prolog is limited to 
facilitate and increase the likelihood that such a strategy will work.  Laws are 
limited to universally quantified conditionals of a single variable with antecedents 
that are either atomic or negations of atomic sentences, and the data base is 
limited to atomic sentences.  Queries are limited to atomic sentences.  It  is 
generally possible to test propostions by using just the two logical rules universal 
instantiation and modus tollens.  In most cases the deduction procedure either 
terminates in a contradiction, in which case the sentence queried is true (“in the 
world of the program”) or the procedure terminates without a contradiction, in 
which case the queried sentence is false  (“in the world of the program”).  The 
decision method of Prolog is imperfect, however, and not a genuine decision 
procedure, because sometimes it reaches no result, because it runs in circles or 
in infinite chains.  Thus, Prolog is really just a practical approximation of a 
genuine expert system.  It is more useful than a system in sentence logic, 
however, because its syntax is richer and allows for the formulation of some 
complex reasoning patterns that depend on quantifiers. 
 
 

                                            
50 See W.V.O. Quine, Methods of Logic (N.Y.: Holt, Rinehart, and Winston, 1950), p. 192 ff. 
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D. Systems in the Language Prolog 
 The language Prolog works by building into it query handler, which is 
hidden from the view of the user. This is a program that is a quasi--theorem 
tester, an algorithm that, more or less well, tests to see whether a formula follows 
from a set of premises in first-order logic.  In this section we will see how Prolog 
works.  Here Prolog notation and procedures will be explained in the notation and 
terminology associated with the literature on Prolog.  At the same time what is 
really going on in the logic will be explained in the notation and concepts of 
symbolic logic.  To keep the two straight, we shall present in the text the ideas in 
Prolog using its regular terminology. As we go along, we place in large displayed 
shaded boxes the reformulations into logic. 
 By a literal is meant any atomic formula or its negations.  We shall use 
the letters L and M, and later P and R as well,  to range over literals .  If a formula 
does not contain free variables it is said to be grounded.  Grounded literals will 
be very important to Prolog, especially as they occur in conjunctions and 
disjunctions.  Since first-order logic obeys the rules of association and 
commutation for conjunction and disjunction, the order and arrangement of pure 
conjunctions and pure disjunctions is irrelevant to their truth.  Thus to simplify 
matters we shall assume that all pure conjunctions and disjunctions of literals are 
written in one standard form.  (For example,  we may arrange them as follows: 
write first from left to right the non-negated formulas in alphabetic order, followed 
by the negated literals again in alphabetic order, all grouped by increasingly 
larger nestings from left to right. ) 
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i.  Programs as Axioms 
A (generalized) Prolog program statement is any disjunction of literals.51  Any 
non-trivial (non-tautologous) statement L1∨...∨Ln in which there is more than one 
disjunct  is called a law or, more commonly, a rule.  Often the positive and 
negative literals are separated as in M1∨...∨Mm∨∼L1∨...∨∼Ln.  This disjunction in 
turn is logically equivalent to the conditional (L1∧...∧Ln)→(M1∨...∨Mm) which has 
more the form of a traditional “law:’  If one thing happens, then so does another. 
Often in the literature on Prolog laws are written as conditionals but with the 
arrow in the reverse direction (M1∨...∨Mm)←(L1∧...∧Ln).  
 

A first-order logic law or rule is any ∀v1...∀vn(L1∨...∨Ln)[v1,...,vn], where v1,...,vn 
are all the free variables in L1∨...∨Ln.  That is, a law is a universal generalization of 
a disjunction of literals.  A set LFOL of rules is called a first-order law set. 

 
Any statement L consisting of a single literal, i.e. a disjunction of literals 
containing only a single disjunct,  is called a datum or, more commonly, a fact. 

 

 

Definition 3-5 
 A first-order logic  datum or fact is any universal closure of a literal: i.e. any   
∀v1...∀vnL [v1,...,vn], where v1,...,vn are all the free variables in L.  A set DFOL of 
such data is called a first-order database. 

 
In this discussion I shall use law instead of rule and datum instead of fact in order 
to emphasize that a Prolog expert system is a straightforward implementation of 
a covering law model of “explanation” of the sort common in the philosophy of 
science. 
 Note that in Prolog a datum is sometimes written L← (This unorthodox 
notation derives from reading a single literal L as a “conditional with an empty 
antecedent:” i.e. as some P→L (equivalent to ∼P∨L) in which the P is “empty”.  
Thus ←L, or equivalently L→, really means ∼L.) 

 
A Prolog program P is the union of some law set L with some data base D: 
P=L∪D 

 
Definition 3-6 
 A first-order logic program is any PFOL=LFOL∪DFOL for some first-order law set 
LFOL and some first-order data base DFOL. 

 

                                            
51 Though possible in principle,  Prolog languages that have actually been implemented do not  
permit disjuctive statements with negative litterals.  Likewise, in practice  consequents of rules are 
limited to single literals.  The generalized forms here are designed to show the more general 
power that is theoretically possible for languages based on the ideas underlying actual Prolog 
that have been implemented to run on computers. 
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A query is any conjunction (M1∧...∧Mm) of literals.  It is a question in the sense 
that running the program for the query seeks  a “yes” or “no”  answer to the 
query, “Is (M1∧...∧Mm) true, for some values of its variables, given the laws and 
the database of the program?”    Logically a query amounts to the question,  “Is 
(M1∧...∧Mm)  a theorem (for some value of its variables) in the inductive set with 
the program P =R∪D as axioms?”   
 

Viewed from the perspective of first-order logic a query is the question,  “Is 
∃v1...∃vn(M1∧...∧Mm)[v1,...,vn] provable as a theorem in the axiom system that has 
PFOL as its axioms”. 

 

ii. The Resolution Inference Rule 
We shall now use logic to test whether certain formulas called “goals” follow from 
the “program.”  One of the advantages of the regimentation programs and (as we 
shall see) goals of Prolog into a  restricted syntax is that the restriction permits 
the “logic” of the inference procedure to be very simple, employing only one rule, 
called  Resolution.  The rule in sentential logic is easy to verify by truth tables. 
Here and later since we will always be dealing with the same set of premises, viz. 
the program that states rules and facts, and since we shall not be using 
discharge rules that shrink the premise set or thinning that enlarges it, we need 
not mention the premise set in stating logical rules or in describing the nodes on 
a proof tree.  Thus we may abbriviate  P├P to just  P.  We may then state the 
rule in proof tree notation as52: 
 
  Sentential   P∨Q    R∨∼Q 
  Resolution   P∨R 
It is important to pause for a minute to understand what the rule says.  It says 
that if we know two disjunctive facts, which have parts that contradict each other, 
we can ignore their parts.  They do not bear on the truth of what we know.  What 
is important about this rule is that it provides a way to simplify what we know, to 
recast it in its essentials.  We shall see that in some cases by repeated 
applications of the rule we may derive two nodes on a proof tree that jintly 
descend to a contradiction.  We represent the contradiction by the contradiction 
symbol ⊥. It is does not matter what contradiction ⊥ represents so long as it is 
understood that in all interpretations ℑ, ℑ assigns false to ⊥.  Then resolution for 
this case reads as follows.  
 
  Sentential   P    ∼P 
  Resolution   ⊥ 
  
 We shall also use the contradiction symbol in our statement of the 
inference rule indirect proof.  This is a version of reduction to the absurd in 

                                            
52 In full notation the rule would read: if X├P∨Q and X├R∨∼Q then X├P∨R. 
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which we prove Q indirectly by showing its negation is absurd.  We assume ∼Q 
temporally.  If ∼Q together with our original premises P1,...,Pn lead to a 
contradiction, which represent by  ⊥, then ∼Q is false and Q is true.  (It is this last 
step, deriving from Q from the falsity of  ∼Q, that is rejected in intuitionistic logic.)  
In the notation of natural deduction theory, the general form of indirect proof is:  
  
  If  { P1,...,Pn, ∼Q }├ ⊥  then  If  { P1,...,Pn }├ Q 
    
In the discussion below we shall use the following informal format for laying out 
proofs using reduction to the absurd:  

 

 
 
Here ∼P is adopted as a “temporary premise” on line n.  If it entails a 
contradiction on line m, from the premise on line n together with whatever has 
been assumed prior to line n, then P follows on line m+1 by indirect proof from 
the prior premises alone. 
 In Prolog resolution (this sort of reductio) is used together with rules for 
the quantifiers and variables.  Since the only quantifiers Prolog uses in its 
derivations are universal, they may be instantiated for free variables that literally 
represent everything in the universe.  By progressive applications of Universal 
Generalization and Instantiation, these variables may in turn be replaced by any 
other term,  whether constant, variable or composite of a functor with other 
terms.  Often variables from different formulas may be resolved into (instantiates 
to) the same term, in which case they are said to be unified, and resolution is 
said to be uniform. 
 
Example. The resolution of unification Fx∨Gx and Hy∨∼Gy into Ft∨Ht: 

    Fx∨Gx  Hy∨∼Gy 
     Ft∨Ht  

This is accomplished by unifying x and y into t through steps of Resolution, and Universal 
Generalization and  Instantiation as follows: 
  1. Fx∨Gx   Premise 
  2. Hy∨∼Gy  Premise 
  3. (∀x)(Fx∨Gx)  1  Universal Generalization 
  4. (∀y)(Hy∨∼Gy) 2  Universal Generalization 
  5. Ft∨Gt   3  Universal Instantiation 
  6. Ht∨∼Gt  4  Universal Instantiation 
  7. Ft∨Ht   5,6  Resolution, x and y unified as t 
 
Since Prolog only deals with general free variables, it employs a more general 
version of resolution, one that allows for a short cut that deletes intermediate 
steps: 
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Uniform   P[v1,...,vn]∨ L[v1,...,vm]   R[w1,...,wn]∨ ∼L[w1,...,wm] 
Resolution        P[t1,...,tn]∨ R[t1,...,tn] 
 
In the rule the notation P[t1,...,tn] is the result of replacing all occurrences of vi in 
P[v1,...,vn] by free ti.  That is, ti replace vi  only if none of the occurrences of  ti  nor 
of any variables in ti become bound in P[v1,...,vn].53 
 In the “degenerate case” of resolution in which the premises P[v1,...,vn] 
and R[w1,...,wn] are both empty, the two premises above the line are L[v1,...,vn] 
and ∼L[w1,...,wn}, and these are contradictory.  In that case we understand the 
rule to allow us to deduce the contradiction symbol ⊥:”54 
 
   L[v1,...,vn]   ∼L[w1,...,wn] 
     ⊥ 

iii. Running a Prolog Program: Deduction within an Axiom System 
By a Prolog Axiom System let us mean any logistic system constructed from an 
axiom set P=L∪D composed of some set L Prolog laws and some Prolog D by 
the Resolution rule. 
 
Definition 3-7 
 In first-order logic we preserve the full logical form of laws and goals, and accordingly 
require a few more rules of logic. As above P[t1,...,tn] is the result of replacing all free occurrences 
of vi in P[v1,...,vn] by occurrences free for ti and its contained variables (if any).  In addition,  ⊥  
stands for any contradiction such that for all interpretations ℑ, ℑ of ⊥  is F.  We assume in each of 
the rules that disjunctions and conjunctions are written in the preferred order, and in the rule 
quantifier negation that all occurrences of double negations are eliminated.  
 
Universal      ∀v1...∀vnP[v1,...,vn]  Quantifier  ∼∃v1...∃vn(P1∧...∧Pm) [v1,...,vn] 
Instantiation         P[t1,...,tn]  Negation   ∀v1...∀v)(∼P1∨...∨∼Pm) [v1,...,vn] 
 
   Indirect  If  P1,...,Pn,∼Q then  P1,...,Pn   
   Proof               ⊥  Q 
 
Uniform   P[v1,...,vn]∨L[v1,...,vn]   R[w1,...,wn]∨∼L[w1,...,wn] 
Resolution    P[t1,...,tn]∨ R[t1,...,tn] 
 
   L[v1,...,vn]   ∼L[w1,...,wn] 
     ⊥ 

Definition 3-8 

Then a first-order Prolog axiom system is any logistic system with an axiom set 
PFOL=LFOL∪DFOL and the four rules above. 

                                            
53 In the more precise notation of natural deduction from Pat II, the rule would be written:  
If  X├ P[v1,...,vn]∨ L[v1,...,vm] and Y├ R[w1,...,wn]∨ ∼L[w1,...,wm], then X,Y├ P[t1,...,tn]∨ R[t1,...,tn]. 
54 More precisely, the rule reads:  If  X├ L[v1,...,vn] and Y├ ∼L[w1,...,wn] , then X,Y├⊥. 
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A query is any question: Is (M1∧...∧Mm) true, for some values of its variables, 
given the laws and the database of the program?    Logically a query becomes 
the question: Does (M1∧...∧Mm)  follow by resolution from a program P =R∪D?   
 
 
 

Definition 3-9 
 In first-order logic the question may be posed as follows. In first-order logic 
whether M1∧...∧Mm follows from ∧PFOL  is then a question of whether 
∃v1...∃vn(M1∧...∧Mm) is provable in the axiom system that has PFOL as its axioms.  
That is, a first-order query is the question whether ├P

FOL
∃v1...∃vn(M1∧...∧Mm). 

Equivalently, since PFOL is finite, the issue is equivalent to an issue in first-order 
logic, namely whether PFOL├ FOL ∃v1...∃vn(M1∧...∧Mm). 
 
 Moreover, since PFOL  is  finite, we may view it as a long conjunction, which 
we may write ∧PFOL.  The issue then becomes whether  
├FOL ∧PFOL→∃v1...∃vn(M1∧...∧Mm). 

 
 
The strategy in a Prolog theorem test is essentially indirect proof.  The negation 
of the query is assumed and then it is taken as a goal of the procedure to refute 
this negation by indirect proof.  A goal in Prolog is therefore the negation 
∼(M1∧...∧Mm) of a query, i.e. the negation of any conjunction M1∧...∧Mm of 
literals.  
 In the literature on Prolog a goal is often written ←(M1∧...∧Mm). Again this 
notation comes from logic and the conceit that every statement in Prolog is some 
sort of conditional.  Then a negated literal ∼L is viewed as a “conditional with an 
empty consequent: i.e. as some (M1∧...∧Mm)→P (equivalent to (∼M1∨...∨∼Mm)∨P) 
in which the P is “empty”.  That is, ←(M1∧...∧Mm), or equivalently (M1∧...∧Mm)→, 
is really ∼(M1∧...∧Mm) or its equivalent ∼M1∨...∨∼Mm. 
 Using the ← notation, resolution may be reformulated as a kind of modus 
tollens: 
 
Sentential   ←(L1∧...∧Lm∧L)     L←(M1∧...∧Mm′)  ←L  L← 
Resolution        ←(L1∧...∧Lm∧M1∧...∧Mm′)                   ⊥ 
′ 
Uniform ←(L1∧...∧Lm∧L)[v1,...,vn]    L←(M1∧...∧Mm′) [w1,...,wn]         ←L[v1,...,vn]   L←[w1,...,wn] 
Resolution     ←(L1∧...∧Lm∧M1∧...∧Mm′)[t1,...,tn]          ⊥ 
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Definition 3-10 
  A first-order logic goal is any existential quantification of a conjunction 
of literals: i.e. any ∼∃v1...∃vn(M1∧...∧Mm)[v1,...,vn], where v1,...,vn are all the free 
variables in M1∧...∧Mm.  It is for such formulas that the Prolog theorem prover is 
defined to take as starting points of its procedure.  Note that 
    ∼∃v1...∃vn(M1∧...∧Mm)[v1,...,vn]  
is logically equivalent to  
   ∀v1...∀vn(∼M1∨...∨∼Mm)[v1,...,vn]. 

 
To test  ←(M1∧...∧Mm) in program P =R∪D we attempt to deduce a contradiction.  
We follow a simple intuitive procedure.  We construe the goal as a disjunction of 
negated literals and draw inferences from it by means of the rule resolution. We 
do so in a way that attempt to “resolve” it with the various laws and data in the 
program.  We do so in a way that usually reaches a contradiction if there is one 
to be found.  Notice that resolution produces a sentence that is shorter than its 
two inputs but which incorporates all the relevant information of the premises that 
has not been shown to be false.  This fact invites the following recursive 
procedure: 
 
Step 1.  Resolve the goal with some sentence of the program (if possible) and 
replace the goal with this resolution. 
 
Step n+1.  Resolve the goal generated by Step n with the program and replace 
that goal with this resolution.   
 
If the process turns up a resolution that is a contradiction (⊥), then stop.  The 
original goal has been refuted and the answer to the query is “yes.”  If there is no 
resolution, the answer is “no.”  Sometimes the procedure runs on forever and 
there is no answer one way or the other. 
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Definition 3-11 

A Prolog Theorem Prover for a Program P. 
 
 The Prolog decision procedure DP for a program P for formulas of the form M1∧...∧Mm, 
producing (for most of these) an answer Yes or No, is defined as follows.  Given a formula 
M1∧...∧Mm, the procedure answers Yes if it succeeds in refuting the opposite formula 
←(M1∧...∧Mm), and answers No in (some) cases in which no refutation is possible. 
 
Step 1. We arrange the program P  in some  finite order. We identify what we shall call the goal 
value as ←(M1∧...∧Mm) (i.e. ∼M1∨...∨∼Mm). For convenience we shall stipulate that the program 
lists laws (rules) before data (facts).  Let Pi be the i-th formula in P, and let the program length k 
be the cardinality of (i.e. the number of formulas in)  P.  We set up a program counter that keeps 
track of which formula in the program we are considering and fix its initial value as c=1. We now 
begin the construction of an annotated proof (a series of lines down th page, each with its 
“justification”). We use the letter G to represent the line we are constructing.  Now set up a 
counter lineG=n  indicating the number in the series of the “active line” G and set it at 1.  We set 
G equal to ←(M1∧...∧Mm), and start the proof by writing down as its first line the following: 
  1.   G   Temporary Premise  
 
Step 2. If Pc=(M1∧...∧Mm)←, n=lineG, and n=proof length, then write as the next three lines of the 
proof: 
  n+1. Pc   axiom  
  n+2. ⊥    n, n+1   Resolution 
  QED 
 Write: Answer to query is Yes. Set DP(M1∧...∧Mm)=Yes. Stop. 
 
Step 3.  If   n=lineG, Pc = (M1∨...∨Mm)←(P1∧...∧Pm′∧R1∧...∧Rm′′), and  
G = ←(M1∧...∧Mm∧R1∧...∧R′′),  then write as the next two lines of the proof: 
  n+1. Pc    axiom 
  n+2. (P1∧...∧Pm′∧R1∧...∧Rm′′)←  n, n+1   Resolution 
 Set G=(P1∧...∧Pm′∧R1∧...∧Rm′′)←, lineG=n+2, c=1, and go to Step 2. 
 
Step 4.  If there is no Pc identical to ←(M1∧...∧Mm) or to 
(M1∨...∨Mm)←(P1∧...∧Pm′∧R1∧...∧Rm′′), then 
 If c is less than the program length k, then set c=c+1, go to Step 2. 
 If c= k, then write:  No Proof.  Answer to query is No.  
  Set DP(M1∧...∧Mm)=No. Stop. 
 
 If the program and goal were written in first order logic the full procedure 
would require the introduction of several steps at the beginning and end of the 
process.  At the start, formulas would be rewritten into logically equivalent prenex 
normal forms – the negations moved to literals and the quantifiers moved to the 
outside.  At the end the reduction to any contradiction must be converted into a 
proof of the “goal.”  Laws must also be universally instantiated. 
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Definition 3-12 

The Prolog Query Handler Viewed as a Theorem Prover in First-Order Logic 
 
Relative to a program PFOL=LFOL∪DFOL, the calculable function D  is defined mapping a subset of 
formulas of the form ∃v1...∃vn(L1∧...∧Lm)[v1,...,vn] into the values {Yes,No} as follows. 
 
Step 1.  Arrange PFOL  in a finite series starting with its laws. Let Pi be the i-th formula in PFOL, 
and let the following parameter values:  set the program length k at the cardinality of PFOL; set the 
program counter c so that c=1, and write as the first lines of the proof: 
 1. ∼∃v1...∃vn(L1∧...∧Lm) [v1,...,vn]  Temporary Premise for Indirect Proof  
    2. ∀v1...∀vn(∼L1∨...∨∼Lm)[v1,...,vn]  1  Quantifier Negation 
 3. (∼L1∨...∨∼Lm)[v1,...,vn]   2  Universal Instantiation 
 Set G =(∼L1∨...∨∼Lm) [v1,...,vn], set lineG=3. 
Step 2.  If lineG=n, G=∼M[w1,...,wn], and there is some universal instantiation M[v1,...,vn] of Pc= 
∀v1...∀vkM[v1,...,vn], for 0≤k≤n, then  
 If k<0, then we write as the next lines of the proof: 
  n+1. ∀v1...∀vnL[v1,...,vn]   Axiom 
  n+2 L[v1,...,vn]    n+2 Universal Instantiation  
  n+3. ⊥       n, n+2   Uniform Resolution 
  n+4 ∼∃v1...∃vn(L1∧...∧Lm)[v1,...,vn]      1– n+4 Reduction to Absurd 
  QED  
 Write: Answer to query is Yes. Set D(M1∧...∧Mm)=Yes. Stop. 
 If k=0 (i.e. when Pc=M[v1,...,vn]), then we write as the next lines of the proof: 
  n+1 L[v1,...,vn]    Axiom 
  n+2. ⊥       n, n+1   Uniform Resolution 
  n+3 ∼∃v1...∃vn)(L1∧...∧Lm)[v1,...,vn]      1– n+3 Reduction to Absurd 
  QED  
 Write: Answer to query is Yes. Set D(M1∧...∧Mm)=Yes. Stop. 
Step 3.  If lineG=n, G=R[w1,...,wn]∨∼M[w1,...,wn], there is for some universal instantiation 
P[v1,...,vn]∨L[v1,...,vn] of Pc=∀v1...∀vkP[v1,...,vn]∨ M[v1,...,vn], for k≤n and there are some terms 
t1,...,tn free respectively for v1,...,vn and w1,...,wn, then 
 If k<0, then we write as the next two lines of the proof: 
  n+1. ∀v1...∀vn P[v1,...,vn]∨ M[v1,...,vn]  Axiom  
  n+2. P[v1,...,vn]∨M[v1,...,vn]   n+1 Universal Instantiation 
  n+3 P[t1,...,tn]∨R[t1,...,tn]   n, n+2   Resolution 
 If k=0 (i.e. when Pc=P[v1,...,vn]∨ M[v1,...,vn], then we write as the next two lines of the 
 proof: 
  n+1. P[v1,...,vn]∨M[v1,...,vn]   Axiom 
  n+2 P[t1,...,tn]∨R[t1,...,tn]   n, n+1   Uniform Resolution 
 Set G=P[t1,...,tn]∨R[t1,...,tn], lineG=n+2, c=1 and goto Step 2. 
Step 4. If Pc=∀v1...∀vnP[v1,...,vn]∨L[v1,...,vn]  and there is no resolution of P[v1,...,vn]∨L[v1,...,vn] 
and G), then 
 If c is less than the program length k, set c=c+1, goto Step 2. 
 If c = k, write: No Proof, answer to query is No. Set D(M1∧...∧Mm)=No. Stop. 
 

iv. Expert Systems in Prolog.  
We are now in a position to draw together the various elements into a complete 
expert system. 
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An Expert System in Prolog (a subsystem of Predicate Logic), for sentences in 
language LPL of predicate logic (with regularized conjunctions, disjunctions, and 
double negations) consists of  
 1. A axiom system consisting of 
   a. Prolog program P=L∪D 
  b.  a  set R of rules of inference containing indirect proof   
  and  modus ponens, 
  c.  the  set Th of theorems constructed from P and R, 
 2. the resolution decision procedure DP 
 3. a query is any Prolog query of  LPL 
 
 

Definition 3-13 
From the perspective of  First-Order Logic the intended expert system is defined 

relative to a first-order Prolog program PFOL=LFOL∪DFOL; its set of theorems Th 
generated by the rule set comprised of Uniform Resolution, Reduction to the Absurd, 
and Universal Instantiation; and the decision procedure D defined relative to PFOL. 

 
 We will now illustrate Prolog and its logic by working through some 
programs and queries.  We shall see the strengths and weakness of the 
approach.  We shall find successful cases in which the testing procedure 
produces  proofs of theorems and correctly returns the answer Yes; and others  
in which it fails to produce proofs of non-theorems and correctly returns an 
answer No.  But we shall also find cases in which it is unable to prove theorems 
or correctly produce a Yes answer, and others in which it is unable to produce an 
answer No for non-theorems.  That is, we shall see that when the procedure 
works and produces an answer, it is correct.  But we shall also see that as it 
stands, the procedure sometimes produces no answer at all.  All implementations 
of Prolog, and indeed all expert systems that approach the syntactic complexity 
of first-order logic, have similar limitations. 
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Example.  A universal law & one concrete datum.  A single concrete query.  
Refutation successful.  
 
Laws:   Gx←Fx 
Database:    Fa← 
 
Query:   Ga? 
Goal:  ←Ga 
In five steps the query handler write the following proof (the more usual logical 
notation is given in square brackets): 
 
 1. ←Ga  [∼Ga]  Temporary Premise for a reductio 
 2. Ga←Fa [Ga→Fa] Axiom   
 3. ←Fa  [∼Fa]  1,2 Resolution 
 4. Fa←  [Fa]  Axiom 
 5. ⊥  ⊥  3,4  Resolution 
  QED 
  Answer to query is Yes. 
 

The Example within First-Order Logic 
 
Laws:    ∀x[∼Fx∨Gx] 
Database:    Fa 
Query:    Ga? 
Goal:  ∼Ga 
In seven steps the query handler writes the following proof: 
 1. ∼Ga   Temporary Premise for a reductio 
 2. ∀x(∼Fx∨Gx)  Axiom 
 3. ∼Fa∨Ga  2 Universal Instantiation   
 4. ∼Fa   1,3 Uniform Resolution 
 6. Fa   Axiom 
 7. ⊥   4,6  Uniform Resolution 
  QED 
  Answer to query is Yes. 
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Example.  Universal law and datum.  An existential query.  Refutation 
successful. 
 
Laws:   Gx←Fx 
Database:    Fx← 
 
Query:   Gx? 
Goal:  ←Gx 
In five steps the query handler write the following proof (the more usual logical 
notation is given in square brackets): 
 
 1. ←Gx  [∼Gx]  Temporary Premise for a reductio 
 2. Fx←Gx [Gx→Fx] Axiom   
 3. ←Fx  [∼Fx]  1,2 Resolution 
 4. Fx←  [Fx]  Axiom 
 5. ⊥  ⊥  3,4  Resolution 
  QED 
  Answer to query is Yes. 
 

The Example within First-Order Logic 
 
Laws:    ∀x(∼Fx∨Gx) 
Database:    Fx 
Query:    Gx? 
Goal:  ∼Gx 
In seven steps the query handler writes the following proof: 
 1. ∼Gx   Temporary Premise for a reductio 
 2. ∀x(∼Fx∨Gx)  Axiom 
 3. ∼Fx∨Gx   2 Universal Instantiation   
 4. ∼Fx   1,3 Uniform Resolution 
 6. Fx   Axiom 
 7. ⊥   4,6  Uniform Resolution 
  QED 
  Answer to query is Yes. 
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Example.  A complex universal law & multiple concrete data.  A complex 
existential query.  Refutation successful. 
 
Laws:   Hx←(Fx∧Gx) 
Database:    Fa← 
  Ga← 
Query:   Hx∧Gx? 
Goal:  ←(Hx∧Gx) 
 
In seven steps the query handler write the following proof (the more usual logical 
notation is given in square brackets): 
 
 1. ←(Hx∧Gx)  [∼(Hx∧Ga)]  Temporary Premise 
 2. Hx←(Fx∧Gx)  [(Fx∧Gx)→Hx Axiom   
 3. ←(Fx∧Gx)  [Fa→Ga]  1,2 Resolution 
 4. Fa←   [Fa]   Axiom 
 5. ←Ga   [∼Ga]   Resolution 
 6. Ga←   [Ga]   Axiom 
 7. ⊥   ⊥   3,4  Resolution 
  QED 
  Answer to query is Yes. 
 

The Example within First-Order Logic 
 
Laws:    ∀x[(∼Fx∨∼Gx)→Hx] 
Database:    Fa 
   Ga 
Query:    Hx∧Gx? 
Goal:  ∼(Hx∧Gx) 
In eight steps the query handler writes the following proof: 
 1. ∼(Hx∧Gx)   Temporary Premise 
 2. ∀x[∼Fx∨∼Gx∨Hx]  Axiom 
 3. ∼Fx∨∼Gx∨Hx   2 Universal Instantiation 
 4. ∼Fx∨∼Gx   1,3 Uniform Resolution 
  5. Fa    Axiom 
 6. ∼Ga    4,5 Uniform Resolution 
 7. Ga    Axiom 
 8. ⊥    6,7  Uniform Resolution 
  QED  
  Answer to query is Yes. 

 

   3, Page  180. 



An Introduction to Metalogic  Effective Process and Undecidability 

Example.  Complex universal law & single concrete datum.  Single concrete 
query.  Refutation unsuccessful. 
 
Laws:   Hx←(Fx∧Gx) 
Database:    Fb← 
   
Query:   Hb? 
Goal:  ←Hb 
 
In five steps the query handler write the following proof (the more usual logical 
notation is given in square brackets): 
 
 1. ←Hb   [∼Hb]   Temporary Premise 
 2. Hx←(Fx∧Gx)  [(Fx∧Gx)→Hx] Axiom   
 3. ←(Fb∧Gb)  [Fb→Gb]  1,2 Resolution 
 4. Fb←   [Fb]   Axiom 
 5. ←Gb   [∼Gb]   Resolution 
  No proof.  Answer to query is No. 
  

The Example within First-Order Logic 
 
Laws:    ∀x[(∼Fx∨∼Gx)→Hx] 
Database:    Fb 
Query:    Hb? 
Goal:  ∼Hb 
In six steps the query handler writes the following proof: 
 1. ∼Hb    Temporary Premise 
 2. ∀x[∼Fx∨∼Gx∨Hx]  Axiom 
 3. ∼Fb∨∼Gb∨Hb   2 Universal Instantiation 
 4. ∼Fb∨∼Gb   1,3 Uniform Resolution 
  5. Fb    Axiom 
 6. ∼Gb    4,5 Uniform Resolution 
  No proof. Answer to query is No. 
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Example.  Multiple universal laws, universal datum.  Existential query.  A 
refutation is possible but the procedure goes into an infinite loop and fails 
to returns an answer. 
 
Laws:   ∀x(Gx←Fx) 
  ∀x(Fx←Gx) 
Database:    Fx← 
Query:   Gx? 
Goal:  ←Gx 
 
 Note:  Here the program in fact entails a Yes answer because it is easy to prove an 
 affirmative to the query: 
  1. ∀x(Fx→Gx)  Axiom 
  2. ∼Fx   Temporary Premise 
  3. Fx→Gx   1 Universal Instantiation 
  4. ∼Gx   2,3  Modus Tollens, or Resolution 
  5. Fx   2–4  Reductio 
The query handler (as defined) however fails to find a proof.  It attempts 
becomes caught in a loop and produces for eternity the following unending series 
of lines (the more usual logical notation is given in square brackets): 
 
 1. ←Gx  [∼Gx]  Temporary Premise for indirect proof 
 2. Fx←Gx [Gx→Fx] Axiom   
 3. ←Fx  [∼Fx]  1,2 Resolution 
 4. Gx←Fx [Fx→Gx] Axiom   
 5. ←Gx  [∼Gx]  3,4 Resolution 
 M     M      M          M 
 

The Example within First-Order Logic 
 
Laws:    ∀x[∼Fx∨Gx] 
   ∀x[∼Gx∨Fx] 
Database:    Fx 
Query:    Gx? 
Goal:  ∼Gx 
The query handler proceeds to write the following infinite series: 
 1. ∼Gx   Temporary Premise for indirect proof 
 2. ∀x[∼Fx∨Gx]  Axiom 
 3. ∼Fx∨Gx  2 Universal Instantiation   
 4. ∼Fx   1,3 Uniform Resolution 
 5. ∀x[∼Gx∨Fx]  Axiom 
 6. ∼Gx∨Fx  5 Universal Instantiation   
 7. ∼Gx   4,6 Uniform Resolution 
 8. ∀x[∼Fx∨Gx]  Axiom 
 9. ∼Fx∨Gx  8 Universal Instantiation   
 10. ∼Fx   7,9 Uniform Resolution 
  M    M              M 
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Example.  Multiple universal laws, no data.  Existential query.  No refutation 
is possible, but the procedure goes into an infinite loop and fails to return 
an answer. 
 
Laws:   ∀x[Gx←Fx] 
  ∀x[Fx←Gx] 
Database:    empty 
Query:   Gx? 
Goal:  ←Gx 
 
Note:  Here the answer to the query should be No because it is easy to find a 
world in which the program premises are true but the query disconfirmed.  For 
example, in our world the sentences 
 All dinosaurs are dodoes  ∀x[Fx→Gx] 
 All dodoes are dinosaurs  ∀x[Gx→Fx] 
are both true because there are no dinosaurs nor dodoes.  Hence a conditional 
asserting x is such would have a false antecedent and  therefore be true, for all 
values of x in our world. 
 But the Prolog query handler for this program produces exactly the same 
infinite series as in the last example: 
 1. ←Gx  [∼Gx]  Temporary Premise for indirect proof 
 2. Fx←Gx [Gx→Fx] Axiom   
 3. ←Fx  [∼Fx]  1,2 Resolution 
 4. Gx←Fx [Fx→Gx] Axiom   
 5. ←Gx  [∼Gx]  3,4 Resolution 
 M     M      M          M 
 

The Example within First-Order Logic 
 
Laws:    ∀x[∼Fx∨Gx] 
   ∀x[∼Gx∨Fx] 
Database:    empty 
Query:    Gx? 
Goal:  ∼Gx 
The query handler proceeds to write the following infinite series: 
 1. ∼Gx   Temporary Premise for indirect proof 
 2. ∀x[∼Fx∨Gx]  Axiom 
 3. ∼Fx∨Gx  2 Universal Instantiation   
 4. ∼Fx   1,3 Uniform Resolution 
 5. ∀x[∼Gx∨Fx]  Axiom 
 6. ∼Gx∨Fx  5 Universal Instantiation   
 7. ∼Gx   4,6 Uniform Resolution 
 8. ∀x[∼Fx∨Gx]  Axiom 
 9. ∼Fx∨Gx  8 Universal Instantiation   
 10. ∼Fx   7,9 Uniform Resolution 
  M    M              M 
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Example.  A Kinship System with Database. 
 
Data Base: 
   Male?  Children? Brothers? 
 Cain  yes  Henoch Able 
 Able  yes    Cain 
 Henoch yes  Irad 
 
Data in Logical Notation: 
 Mc Pch Bca 
 Ma Phi Bac 
 Mh  
 
Kinship Laws: 
A male parent is a father    ∀x∀y[∼Pxy∨∼Mx∨Fx] 
All brothers are male    ∀x∀y[∼Bxy∨Mx] 
The brother of one’s parent is one’s uncle ∀x∀y∀z[∼Bxy∨∼Pxz∨Uyz] 
 
Query: Uah?   Query: Uih? 
∼Uah    ∼Uih 
∼Bxa∨∼Pxh   ∼Bxi∨∼Pxh  
∼Bca    ∼Bia 
Bca    No Proof 
⊥    No 

QED.  Yes 
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II. DECIDABILITY AND EXPERT SYSTEMS 

 

A. Conceptual Introduction  
This section presents results that show an extremely interesting restriction 

on human knowledge.  In the completeness proof we learned that the set of valid 
arguments of first-order logic is identical to an inductive set defined in purely 
syntactic terms.  This result captures one of the special epistemic features of 
logic: its claims about validity are open to a "syntactic proof" in the sense that any 
valid argument can be shown to be so by constructing a proof tree in natural 
deduction.  These proof trees lend a degree of certainty to claims about validity 
because the correctness of a proof tree is a mater of simple inspection of shapes 
on a page.   
  In this section we show that the validities of first-order logic though 
constructively characterizable in this sense are not decidable;  there is no 
mechanical decision procedure for testing whether an argument is valid.  Another 
way of saying this is that there is no automatic way to construct a proof tree for a 
valid formula.  Hitting proofs must remain forever, as a mater of mathematical 
truth, a mater of creativity rather than rote method.   

The result shows something about ideas that may not have been evident 
to start with, namely that the ideas of a constructible set and a decidable set are 
not the same.  There are examples of the one that are not the other.  This section 
show a constructible set that is not decidable.   

We have already met the idea of an effective process and a decision 
procedure.  A decidable set is one for which the characteristic function is a 
decision procedure.   
 
In some cases, however, even though a set is not decidable, we determine in an 
effective way whether an object is in the set, though there is not effective way to 
determine whether it is not.   
 

Definition 3-14 

A set C is decidable iff it has a characteristic function that is an effective process. 
 
A set C is recursively enumerable iff there is an effective process f such that  

if x∈C, then  f(x)=1, and 
if x∉C, then f(x)=0 or the calculation of f(x) does not terminate if x∉C. 

 
The material in this section shows the very interesting result that the relation ╞FOL 
of valid argument in first-order logic is not decidable but recursively enumerable. 
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B. Normal Forms and Skolimization.  
In this section we do some "house cleaning" in the sense of explaining how to 
convert any formula into a logical equivalent that has a very useful form: all its 
quantifiers are at the outside at it’s beginning, and the formula within it is a truth-
function. 
 
Important Equivalents: 
The following are pairs of logical equivalents with their traditional names: 
 
Association   (P∧Q)∧R ╢╟ P∧(Q∧R) 
    (P∨Q)∨R ╢╟ P∨(Q∨R) 
Commutation   P∧Q  ╢╟ Q∧P 
    P∨Q  ╢╟ Q∨P 
Double Negation  P  ╢╟ ∼∼P 
DeMorgan’s Laws  ∼(P∧Q)  ╢╟ ∼P∨∼Q 
    ∼(P∨Q)  ╢╟ ∼P∧∼Q 
Distribution   P∧(Q∨R) ╢╟ (P∧Q)∨(P∧R) 
    P∨(Q∧R) ╢╟ (P∨Q)∧(P∨R) 
Implication   P→Q  ╢╟ ∼P∨Q 
Equivalence   P↔Q  ╢╟ (P→Q)∧(Q→P) 
Quantifier Rules  ∀vP  ╢╟ ∼∃v∼P  
    ∃vP  ╢╟ ∼∀v∼P  
  If v is not free in Q:  ∀vP∧Q  ╢╟ ∀v(P∧Q) 
  If v is not free in Q:  ∃vP∧Q  ╢╟ ∃v(P∧Q) 
  If v is not free in Q:  ∀vP∨Q  ╢╟ ∀v(P∨Q) 
  If v is not free in Q:  ∀vP∨Q  ╢╟ ∀v(P∨Q) 
 

Metatheorem 3-1.  Normal Forms.  

 
• A formula in which → and ↔ occur is equivalent to a formula that use only the sentential 

connectives ∼,∧, and ∨. 
• A formula in which negations occur on parts other than literals is equivalent to another 

formula in which “negation has been driven inside” in the sense that ∼ occurs only in literals. 
• The quantifiers of a formula may be “driven outside” in the sense that for every formula there 

is some general formula equivalent to it. 
• Any truth-functional formula P is equivalent to one that is a conjunction of disjuncts of literals 

(called the conjunctive normal form of P, briefly CNF(P)). 
• Any truth-functional formula P is equivalent to one that is a disjunction of conjuncts of literals 

(called the disjunctive normal form of P, briefly DNF(P)). 
 

Definition 3-15 

A formula is said to be in prenex conjunctive/disjunctive normal form iff it is some general 
formula E1v1...E1vnQ such that Q is a truth-function and in conjunctive/disjunctive normal form. 
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Metatheorem 3-2.  Skolem’s Theroem. 

The theorem has two parts: 
1. If ∀v1...∀vn∃wP is satisfiable relative to some variable assignment s,  

then there is some n-place functor f such that ∀v1...∀vnP[f(v1,...,vn)/w] is satisfiable relative to 
some variable assignment s′.   

2. (The result in the other direction is stronger.)        
For any model A=<D,ℑ>,  
if  ∀v1...∀vnP[f(v1,...,vn)/w] is satisfied relative to a variable assignment s,  
then so is ∀v1...∀vn∃wP. 

  
The theorem may be state more succinctly in symbols: 
 
1. If As╞∀v1...∀vn∃wP  , then for some f and s′, As′╞∀v1...∀vn∃wP[f(v1,...,vn)/w] 
2. ∀v1...∀vnP[f(v1,...,vn)/w] ╞  ∀v1...∀vn∃wP 
 
 
Sketch of Proof. Part 2 is a simple case of existential generalization.  For part 1, let 
∀v1...∀vn∃wP be a formula of FFOL in which the functor f does not occur, and let   
ℑA

s(∀v1...∀vn∃wP)=T. 
Define the function ϕ as follows: 
   ϕ(d1,...,dn)=e  iff  for some vi,...,vn-variant s′ of s, s′(vi)=di, and 
     for some w-variant s′′ of s′, s′′(w)=e 
We define an interpretation ℑ′ to be like ℑ except that ℑ′(f)=ϕ.  Note that ℑ and ℑ′ have the same 
variable assignments.  By our original assumption, we know that for all vi,...,vn-variant s′ of s,    
ℑA

s′(∃wP)=T.  Hence for all vi,...,vn-variant s′ of s,  and some w-variant s′′ of s′,  ℑA
s′′(P)=T.  

Suppose that s′ is a vi,...,vn-variant of s, and s′′ is a w-variant of s′,   such that  ℑA
s′′(P)=T.  Since f 

does not appear in ∃wP, neither does f(v1,...,vn).  By an earlier theorem then ℑ′s′′(P)=T.  
Moreover, ℑ′s′′(f(v1,...,vn))= ϕ(s′′( v1),..., s′′( vn))= s′′(w).  Since s′′ is a w-variant and w does not 
occur in P[f(v1,...,vn)/w] an earlier theorem assures us that ℑ′s′′(P)=ℑ′s′′(P[f(v1,...,vn)/w]).  Hence 
ℑ′s′′(P[f(v1,...,vn)/w])=T.  QED. 
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Definition 3-16 

Skolemization 
A formula ∀v1...∀vnP[f(v1,...,vn)/w] is called a primary Skolemization of ∀v1...∀vn∃wP if 
∀v1...∀vn∃wP is in prenex normal form and f does not occur in P. To replace other existential 
quantifiers within P we define the set of all  Skolemizations of P.  The definition is inductive: all 
primary Skolemizations of P are Skolemizations; if Q is a Skolemization of P and R is a 
Skolemization of Q, the R is a Skolemization of P; nothing else is a Skolemization of P.  The 
previous results may be generalized: 
 

Metatheorem 3-3 

1. A formula is satisfiable only if its Skolemizations are. 
2. The Skolemizations of a formula entail that formula. 
 

Definition 3-17 

By a complete Skolemization of P will be meant a Skolemization ∀v1...∀vnQ in prenex universal 
normal form in which v1,...,vn are the free variables that occur in Q,  Q contains no quantifiers (i.e. 
is a truth-functional formula) and is in conjunctive normal form.  In this case we refer to 
∀v1...∀vnQ as ∀v1...∀vnQ[v1,...,vn]; and we call Q[v1,...,vn]  a bare Skolemization of P. 
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C. Herbrand Models  
Like the model constructed in Henkin's completeness proof for first-order 

logic, the entities in the domain of Herbrand models (the "objects' that exist in 
that model) are terms of  the syntax itself.  Herbrand models are dissimilar to 
those of the completeness proof, however, in that they omit terms containing 
variables.  As in the Henkin model, in a Herbrand model a term refers to itself, 
and predicates refer to a set or relations of terms that satifie terms that appear (in 
order) in formulas in the set.  It then follows that the terms of an atomic 
predication fall in the interpretation of the predicate iff they, in order, fall within the 
relation that the predicate stands for.  Herbrand models have two special 
properties.   

First, because in Herbrand models the universal quantifier conforms to the 
substitution rule (it is true iff all its substitution instances for terms are true) and 
because first-order logic is compact (a set of formulas is satisfiable iff all its finite 
subsets are), a universal quantification is satisfiable iff all finite subsets of its 
instances are.  But these instances are atomic or negations of atomic sentences 
without variables in them, and they may be made into conjunction, which may be 
tested for satisfiability by truth-tables.  In this way, testing for satisfiability, by 
truth-tables, all conjunctions of instances of a universal quantifiers provide a way 
to test the formula itself.   Since issues about validity may be reformulated in 
terms of satisfiability (because {P1,...Pn}╞Q iff {P1,...Pn,∼Q } is unsatisfiable), tests 
of key validities may be approached through testing these instances by truth-
tables. 

Second, Herbrand models may be made to replicate the truths of non- 
Herbrand models.  Indeed a set of sentences is true a model iff it is true in a 
Herbrand model.  This equivalence also allows for the translation of issues about 
satisfiability (and validity) relative to all models into issues about Herbrand 
models, where they are approachable by the truth-table techniques of the last 
paragraph.  Recall that all that it is sufficient  for  definining a model  to specify its 
domain and define for its interpretation function the values it assigns to 
constants, functors, and predicates.  
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Definition 3-18 

Let LFOL= be a language and X a set of formulas of LFOL= such that every constant, predicate and 
functor of LFOL= is contained in some formula of  X.  Then, a Herbrand model relative to X is that 
<DX, ℑH> such that DX is the set of all the (grounded) terms generated by the constants and 
functors that occur in X . If no constant occurs in any P of X, then the first constant c1 of LFOL= is 
in DX.   That is,  DX is the inductive set such that: 
• if a constant c occurs in some P of X, then c is in DX, or c1 ∈DX;    
• if an n-place functor f occurs in some P in X and t1,...,tn are all in DX, then f(t1,...,tn) is in DX;  
• nothing else is in DX.   
Further,  ℑH on DX is that interpretation defined as follows:  
• ℑH(c)=c (if there is some c that occurs in X) 
• ℑH(fn)= {<t1,…,tn, tn+1> |   f(t1,…,tn)= tn+1 }  (if there is some fn that occurs in X) 
• ℑH(Pn)={ {<t1,…,tn> |   Pnt1,…,tn  ∈X } 
 
Let AH=<DX,ℑH> range over Herbrand models. When X contains just one sentence P, i.e. when X 
= {P}, we write DP instead of D{P}. 
 
Remark.  In an Herbrand model: 
ℑH(c) is the constant c, which occurs in X; 
ℑH(fn(t1,…,tn)) is a grounded term made up of constants that occur in X,  and if each of t1,…,tn is 
grounded, then ℑH(fn(t1,…,tn)) is fn(t1,…,tn) itself; 
ℑH(Pn) is a relation on grounded terms made up of constants that occur in X and iff  <t1,…,tn> is in   
ℑH(Pn) iff the sentence Pnt1,…,tn  is itself in X; 
ℑH(t=t′) will be F, for any two grammatically distinct terms t and t′.  
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Metatheorem 3-4 

Let AH=<DX,ℑH> be a Herbrand model. 
 
• The sentence (without free variables) Pn

mt1...tn is T in ℑH iff <ℑH(t1),...,ℑH(tn)>∈ℑH(Pn
m) iff  

< t1,...,tn>∈ℑH(Pn
m) 

• If f(t1...tn) is groiunded, ℑH(f(t1...tn)) = ℑH(f)(ℑH(t1),...,ℑH(tn)) = f(t1...tn) 
• More generally, if t is grounded, ℑH(t)= t 
• If AH is a model of DX and some P in X contains a functor, then DX is countably infinite.   
• ∀vP[v] is T in ℑH on domain DP [v]

 (identical to D∀vP [v])  iff for all t∈DP [v], P[t] is T in AH. 
• The following are equivalent:  1. A

H╞∀v1...∀vnP[v1,...,vn] 
      2. for all ti∈DP, AH╞P[t1,...,tn] 
      3. A

H╞{P[t1,...,tn]}tI∈DP 

 
Remark.  As unpacked in its Herbrand truth-conditions, universal quantification in 
Herbrand models exhibits several simplifying properties not satisfied in models at 
large. Let AH  be a   Herbrand model for P on DP.  Then: 
• The domain is at most countably infinite. 
• No two constants or grounded terms stand for the same entity.  (Hence 

identity statements with distinct grounded terms are false, and as a result 
programming languages that presuppose a Herbrand model (e.g. logic 
programming languages like Prolog) must eschew the ordinary arithmetic for 
the integers, e.g. it becomes false that 2+2=4.  In practice these languages 
graft on a “calculator” that is not part of the main language and that is 
awkwardly integrated with it.)) 

• All the objects in the domain have a name that either occurs in P or is 
generated from the terms that occur in P. 

• An open sentence is true iff every substitution instance is true for all grounded 
terms. 

 

Metatheorem 3-5.  Herbrand’s Theorem. 

 
P is satisfiable iff P is satisfiable in some Herbrand model on DP.  That is, 
 
 ∃B, B╞P iff, ∃A

H such that AH=< DP,ℑH> and  AH╞P 
 
Proof Sketch.  The theorem is proven by constructing for any model an equivalent Herbrand 
model.  A simple technique is to exploit the Skolem-Löwenheim Theorem.  First by appeal to the 
theorem convert a model into an equivalent model of a countable infinite domain.   This 
conversion either behaves like a Herbrand model in that no two terms refer to the same term, or it 
does not.  If  it does it is isomorphic to some Herbrand model, and hence the two have the same 
truths.  If it contains some terms t and t′ that stand for the same entity e, we inflate the model's  
domain by adding an entity e′ that is indistinguishable for e in the sense that it is in the extension 
of every predicate that e is.  If any functor f is defined for t and t′  such that we make f(…t…)=e 
we introduce an entity e′ =f(…t′…) that is in the extension of all predicates that e is.  Since the 
language does not contain the identity predicate, the introduction of these entities will not affect 
the truth-values of any formula (the proof is by induction).  Now this revised model has a 
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denumerable domain and now has no terms standing for the same entity.  It is therefore 
isomorphic to some Herbrand model, and would have the same truths as it. 
 
 

Definition 3-19  

P is truth-functionally satisfiable iff P is a truth-function and is satisfiable. 
 
By definition, any formula without quantifiers or free-variables is a truth-function.  The special 
interest in truth-functions is that since they lack variables and quantifiers they behave just like 
formulas from sentence logic, and it is easy to test they using truth-tables for satisfiability (some 
line of the table has T under the major connective), for absurdity (every line has F), and for 
tautologousness (every line has T).  Hence, if  P is truth-functionally satisfiable, this means that 
its satisfiability may be tested using truth-tables. 
 

Metatheorem 3-6 

Let X be a finite set of truth-functional formulas and  ∧X  the conjunction of all its elements: 

 X is satisfiable iff ∧X is truth-functionally satisfiable  (by truth-tables) 
 
Remark.  Truth-functional satisfiability has the important property that it is decidable.  The truth-
table test provides a technique for defining a calculable decision procedure �(i.e. an algorithmic 
characteristic function) for the set of all truth-functionally satisfiable formula: �(P)=1 if 1 is listed 
under the major connective in some line of the truth-table of P, and �(P)=0 otherwise. 
 
Corollary. Truth-Functional Satisfiability. 
 ∧X is satisfiable iff for some AH, AH╞∧X      (by Herbrand’s Theorem) 
 
We are now ready to prove the key fact needed  later.  Since it is a fact that, as it stands, lacks 
little intrinsic interest, it is called a "lemma."  Its role in the overall proof however is conceptually 
critical, because it is in the proof of this lemma that all the important assumption necessary to the 
overall proof are used: Skolem's theorem. Herbrand's theorem, and the compactness theorem. 
Below we abbreviate the notation a1∈C & … & an∈C, which asserts that all the elements a1,…,an 
are in C, by the notation a1,…,an∈C.   
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Summary of Relevant Results: 
 
  Herbrand’s Theorem 
   ∃B, B╞P iff, ∃ AH such that AH =< DP,ℑH> and AH╞P 
   Skolem's Theorem 
     A formula is satisfiable iff its Skolemizations are. 
  Truth-Conditions for ∀v1...∀vnP[v1,...,vn] in a Herbrand model 
    A

H╞∀v1...∀vnP[v1,...,vn]  iff  for all t1,...,tn∈DP,   AH╞P[t1,...,tn] 
  Truth-Functional Satisfiability 
   ∧X is satisfiable iff for some AH, AH╞∧X   
  Metatheorem.  Compactness 
   Entailment Formulation: 
    X╞Q iff, there is some finite subset {P1,...Pn} of X such that P1,...Pn╞Q. 
   Satisfiability Formulation: 
      A╞X  iff for all finite subset Y of X,  A╞Y 
  
Lemma. Let ∀v1...∀vnQ[v1,...,vn] be a complete Skolemization of P.  The following equivalence 
then obtains: 
 ∃A, A╞P ⇔ ∀X, X is finite & X⊆╞{Q[t1,...,tn] | t1,...,tn∈DQ}  ⇒  ∧X is truth- 
     functionally satisfiable 
 
Proof:  
∃A, A╞P ⇔ ∃A, A╞∀v1...∀vnQ[v1,...,vn]           (by Skolem's Theorem) 
 ⇔ ∃A

H on DQ, AH╞∀v1...∀vnQ[v1,...,vn]           (Herbrand's Theorem) 
 ⇔ ∃A

H on DQ, AH╞{Q[t1,...,tn] | t1,...,tn∈DQ}        (truth-conditions for ∀ In Herbrand models) 
   ⇔ ∃A, A╞{Q[t1,...,tn] | t1,...,tn∈DQ}         (by Herbrand's Theorem) 
 ⇔ ∀X, X is finite & X⊆{Q[t1,...,tn] | t1,...,tn∈DQ} ⇒  ∃A, A╞X      (Compactness) 

 ⇔ ∀X, X is finite & X⊆{Q[t1,...,tn] | t1,...,tn∈DQ} ⇒  ∃A, A╞∧X         (truth-tables) 

 ⇔ ∀X, X is finite & X⊆{Q[t1,...,tn] | t1,...,tn∈DQ} ⇒  ∃A
H , AH╞∧X       (Herbrand's 

Theorem) 
∃A, A╞P ⇔ ∀X, X is finite & X⊆{Q[t1,...,tn] | t1,...,tn∈DQ} ⇒  ∧X is truth-    
  functionally satisfiable           (X  is a set of grounded literals) 

 
We now introduce an intuitive concept in terms of which we can reformulate the lemma (by 
contraposition) into a metatheorem that is conceptually easier to understand. 
 

Definition 3-20 

Let P is truth-functionally refutable  iff there is a bare Skolemization Q[v1,...,vn] of P and ∃X, [X 
is finite & X⊆{Q[t1,...,tn] | t1,...,tn∈DQ} and ∧X is truth-functionally unsatisfiable. 
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Metatheore 3-7 

P is truth-functionally refutable ⇔  P is unsatisfiable (i.e. not(∃A, A╞P)) 
   
Proof.   not( ∀X, X is finite & X⊆{Q[t1,...,tn] | t1,...,tn∈DQ} ⇒  ∧X is truth-functionally satisfiable) ⇒ 
    (∃A, A╞P) 

  ∃X, [X is finite & X⊆{Q[t1,...,tn] | t1,...,tn∈DQ} &   ∧ X is truth-functionally unsatisfiable ⇒ 
     not(∃A, A╞P) 
  P is truth-functionally refutable ⇔  not(∃A, A╞P) 
 

Metatheorem 3-8 

Truth-functionally refutability is recursively enumerable: there is an effective procedure 
Π*applied all such that: for any formula P, 
 
   A╞P     iff Π(P)=1 
   not(P)  iff   Π(P)=0 or Π(P)  is incalculable and undefined. 
 
 
 
Proof:  We find some bare Skolemization Q of P and define Π(P): 
 
We note that the set of finite subset of {Q[t1,...,tn] | t1,...,tn∈DQ} is itself possibly countably infinite 

(it will be infinite in the case in which there are an infinite number of grounded formulas in DQ). 

Let us first pair each finite subset Cn of {Q[t1,...,tn] | t1,...,tn∈DQ} of cardinality n with some 

conjunction of its elements ∧Cn.  Clearly {Q[t1,...,tn] | t1,...,tn∈DQ} is satisfiable iff  ∧Cn is.   

Moreover each such ∧Cn, for n=1,….,  is a truth-function and is testable for satisfiability by truth-

tables, i.e. the truth-table method provides an effective process (decision procedure) for deciding 

in a finite number of epistemically transparent steps Yes iff ∧Cn is satisfiable and No iff it is not.  

We now list these conjunction , for n=1,….,  according to their numerical index: L = ∧Cn
1 ,…,∧Cn

m 

. We now test each ∧Cn by truth-tables for satisfiability.  If some ∧Cn is truth-functionally 

unsatisfiable then we set Π(P)=1.  If no such ∧Cn is truth-functionally unsatisfiable, then we set 

Π(P)=0.  (Note that these two cases are exhaustive.) 

       Clearly, by Skolem's theorem P is unsatisfiable iff its Skolemization Q is also unsatisfiable, 

which in turn, by Herbrand's Theorem, is unsatisfiable is unsatisfiable iff the null set of Q's the 

grounded instances, i.e. {Q[t1,...,tn] | t1,...,tn∈DQ},  is also unsatisfiable.  But if {Q[t1,...,tn] | 

t1,...,tn∈DQ} is unsatisfiable, then there is, for some finite number n, a conjunction ∧Cn  equivalent 

to the subset A of {Q[t1,...,tn] | t1,...,tn∈DQ} such that  ∧Cn is unsatisfiable. We now define the 
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procedure Π.  We proceed down the list L, testing by truth-tables each element ∧Ci of the list in 

order.  At each position i, we test  ∧Ci for unsatisfiability and if it is unsatisfiable, we set Π(P)=1.  

If ∧Ci is satisfiable we set Π(P)=0.  We then proceed to step i+1.  Clearly if P is unsatisfiable the 

process will eventually reach some  ∧Ci, that test to be unsatisfiable and hence Π(P)=1.  On the 

other hand, if P  is satisfiable, and {Q[t1,...,tn] | t1,...,tn∈DQ} and hence L, is infinite, no such 

unsatisfiable conjunct will ever be encountered and the process Π will never terminate.  QED. 

  

Metatheorem 3-9.  Undecidability of First-Order Logic. 

The entailment relation ╞ of LFOL= is recursively enumerable in the sense that there is an 
effective procedure Π* applied all such that: 
 
  X╞Q     iff  Π*(<X,Q>)=1. 
  not((X╞Q) iff   Π*(<X,Q>)=0 or   Π*(<X,Q>) is incalculable and undefined. 
 
Proof:  To test whether X╞Q, we define a partial function Π* from arguments of the form <X,Q> 

to the values {1,0}.    

For an argument <X,Q> we proceed as follows.  We first list all the finite subsets of X by 

cardinality groups as in the last proof in a possible infinite list: 

C1
1 ,…,C1

m1
 ;…;Cn

1 ,…,C n
mn

 ;Cn+1
1 ,…,C n+1

mn+1
 ;….  Each Ci

j  is the list is some finite set of sentences  

{P1,...Pn}.  By the sentence associated with Ci
j  we mean P1∧...∧Pn∧∼Q.  We now test 

P1∧...∧Pn∧∼Q for truth-functional refutability by the decision procedure Π.  If Π (P1∧...∧Pn∧∼Q)=1 

(i.e. if P1∧...∧Pn∧∼Q  is refutable) then by the theorem, P1∧...∧Pn∧∼Q is unsatisfiable and hence 

{P1,...Pn}╞Q.  If so X╞Q and we set Π*(<X,Q>)=1 (i.e. it is decided that X╞Q). If not, we test the 

formula associated with the next set in the list.  If the list is finite and all associated formulas test 

to be non-refutable we set   Π*(<X,Q>)=0.  If the list is infinite and no item in the list is reached so 

that its associated formula test to be refutable the testing procedure Π* does not terminate and 

�*(<X,Q>) is undefined.  If <X,Q> is valid, however, we know by the compactness theorem (and 

indirectly by completeness) that there is some finite subset Ci
j   of X such that C i

j ╞Q., and hence 

that for its associated P1∧...∧Pn∧∼Q , Π(P1∧...∧Pn∧∼Q)=1.  Hence in cases in which X╞Q, it 

follows that Π*(<X,Q>)=1.  Moreover in those cases in which   Π*(<X,Q>)=0, we know that 

not(X╞Q) because the only time that the list of subsets of X is finite is that in which X itself is 

finite, and is itself one of the Ci
j .  In that case X∪{∼Q} is satisfiable and hence not((X╞Q).  Hence,  

          X╞Q  iff Π*(<X,Q>)=1,   and     

not((X╞Q) iff   Π*(<X,Q>)=0 or   Π*(<X,Q>)   is undefined.   
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Moreover, when Π* is defined it is effective.  Hence, the validity relation  ╞ FOL is recursively 

enumerable. QED. 
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III. EXERCISES 

A. Skills 
 

1. Find the greatest common divisor of 22 and 56. 
2. Construct a Prolog program using the following data base: 

Small(a) 
Medium(b) 
Large(c) 

a. Add a law that states the necessary conditions for Larger-than(x,y) in 
terms of Small and Medium.  Add a second law that does so in terms 
of Medium and Large.  Add a third law that states the transitivity of 
Larger-than.  

b. Construct an annotated proof writing it once in Prolog notation and 
once in FOL notation in which you process the query: Larger-
than(a,c)?  

c.  Construct an annotated proof writing it once in Prolog notation and 
once in FOL notation in which you process the query: Larger-
than(c,a)?  

 
3. A Prolog goal is defined very generally so that the sentence that is being 

tested is a literal, either positive or negative.  Accordingly, it is permitted 
that a goal be negated, e.g. ←∼Gx.  Depending on the program, when run, 
it may then produce the answer yes or no.  Suppose the goal is ←∼Gx.   
a. If ←∼Gx is the goal, and running the program yields the answer yes, 

what is the formula in FOL notation that will have been proven to be 
logically entailed by the program?  

b. If ←∼Gx is the goal, and running the program yields the answer no, 
what is the formula in FOL notation that will have been proven to be 
logically entailed by the program?  Would the formula proven to be 
entailed in this case be the same as that proven in a second case in 
which the goal is ←Gx and the program produces the answer yes?  
Explain. 

 

B. Ideas 

i. Effective Processes  
a. The intuitive account of effective process above stresses its epistemic 

transparency and for that reason gives examples that consist of 
manipulations of perceptible syntactic entities.  These are literally marks 
on a page, or “tokens” that exemplify is an “evident” manner expression 
“types.”  Some of the formal inductive characterizations of effective 
process do in fact appeal to be defined for syntactic entities of this sort: 
Turing machines apply to numerals, and Markov algorithms apply to 
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linguistic rule sets.  Others, however, namely Gödel’s definition of primitive 
recursive functions, Post’s algebras and Church’s lambda computable 
functions, are defined on numbers.  But “numbers” are odd entities, 
usually thought of as abstract and non-concrete.  Can an epistemically 
transparent operations apply to an abstract object?  Answer by 
considering clear cases of operations that are and that are not 
“epistemically transparent.” 

 
b. The inductively defined functions declared identical to effective processes 

by Church’s thesis may be computed by computational iterations of any 
finite length, even if that length is superhuman.  In recent years, for 
example, numbers have been discovered to be primes by computers 
using calculations of such length that no human could reproduce them.  
Similarly there are now proofs in mathematics that can be checked for 
formal adequacy only by computer.  Such finite but superhuman 
calculations meet the requirements of inductive definitions.  Do they also 
satisfy the epistemic requirement for an effective process? 

 

ii. Herbrand Models and Soklemizations   
Give short answers to the following: 
c. How does a Herbrand model differ from an ordinary model?   
d. Though a formula is satisfiable in a model iff it is satisfiable in a Herbrand 

model (this is Herbrand's Theorem) this no longer remains true if the 
syntax contains the identity predicate.  Why?  (Hint.  think of the sentence 
c=c� when c and c� are distinct constants.) 

e. Why is the complete Skolemization of P not logically equivalent to P? 
f. Why it is true that P  is truth-functionally refutable iff it is not satisfiable.  

C.  Theory  
Undecidability depends on details it will be easy to forget.  Set out in your own 
words that you will be able to understand later how the following key elements: 

1. The  partial decision procedure for determining whether a formula is truth-
functionally satisfiable, and why the process of testing subsets of formulas 
terminates in some cases but not others. 

2. How the test may be extended to a test of whether an argument is valid, and 
why the test would only return yes if it is valid but may never return a no 
answer if it is not. 

3. Why if P is satisfiable the conjunction of any finite subset of substitution 
instance of its Skolemization is satisfiable in a Herbrand model. 



   

Chapter 4 

 Many-Valued and Intensional Logic 

 

I. ABSTRACT STRUCTURES 

 

A. Structure  
We all have a good intuitive idea of a "structure." Examples include 

buildings, governmental institutions, ecologies, and polyhedral.  In the branch of 
mathematics known as abstract or universal algebra the general properties of 
structures are studied, and these ideas help explain the structures we find in 
logic like those of grammars, semantical interpretations, and inferential systems.   
 The raw intuition behind the mathematical definition of a structure is an 
architect's blueprint.  The blue print succeeds in describing a building by first 
listing its various materials and then by a diagram describing the relations that 
must obtain among these "building blocks" in the finished structure.  In algebra a 
structure is defined in a similar way.   First a list of set  A1,...,Ak is given.  These 
may be viewed as list of building blocks divided into various kinds or classes.   
Next are listed the relations  R1,...,Ri  and functions  f1,...,fm that hold among 
these materials.  (Recall that functions are just a sub-variety of relations.)  Lastly 
it is useful to list some specific individual building blocks O1,...,Om that have 
special importance in the structure.  It is customary to list all the elements of the 
structure in order, i.e. as an ordered tuple:  

< A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,Om >.   
 

Definition -1.  Abstract Structure. 

 
1.  An abstract structure is any <A1,...,Ak,R1,...,Rl,f1,...,fm,O1,...,On> such that: 

for each  i=1…k, AI is a set, 
for each  i=1…l, Ri is a relation on C = U{A1,...,An}, 
for each i=1…m, fi is a function on C = U{A1,...,An}, and 
for each i=1…m, Oi ∈C = U{A1,...,An}.    

  
It is also common to investigate a family of structures with similar properties, and 
to assign the family a name, e.g. group, ring, lattice, or Boolean algebra.  The 
properties defining such a family are usually formulated as defining conditions on 
the type of sets, relations, functions and designated elements that fall into the 
family.  Sometimes these restrictions are referred to as the "axioms" of the 
structure-type.  Strictly speaking they are not part of a genuine axiom system.  
Rather they are clauses appearing in the abstract definition of a particular set 
(family) of structures.  Let us review some familiar examples. 
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B. Sentential Syntax 
The usual definition of syntax for sentential logic may be recast so that it is 

clear that the rules of syntax "define" a certain kind of syntactic "structure." Let us 
begin by stating a version of the definition of the sort that usually appears in 
elementary logic texts, and which does not use algebraic ideas explicitly: 
 

Definition 4-2.  Well-Formed Formulas of Sentential Syntax.   

 
The set of FSL of (Well-Formed-) Formulas of SL. 
Let AFSL  be the basis set {A,B,C} (of atomic formulas) and let RSL  be the rule set 

{R∼,R∧,R∨,R→,R↔}  (of grammar rules) defined below:  
  a. (Rule R∼) The result of applying R∼ to  P is ∼P. 
  b. (Rule R∧) The result of applying R∧ to  P and Q  is (P∧Q). 
  c. (Rule R∨) The result of applying R∨ to  P and Q  is (P∨Q.) 
  d. (Rule R→) The result of applying R→ to  P and Q  is (P→Q). 
  e. (Rule R↔) The result of applying R↔ to  P and Q  is (P↔Q). 
Then, FSL is the set inductively defined relative to AFSL  and RSL  as follows: 
 1.  (Basis Clause) All formulas in AFSL  are in FSL. 
 2.  (Inductive Clause)  If P and Q are in FSL, then the results of applying the rules 

R∼,R∧,R∨,R→,R↔ from  in RSL , namely  ∼P, (P∧Q), (P∨Q), (P→Q), (P↔Q), are in FSL. 
 3.  (Closure)  Nothing is in FSL except by Clauses 1 and 2. 
 
Using the idea of an abstract structure, it is possible to reformulate the definition 
in a way that makes the structural aspects of the grammar fully explicit: 
 

Definition 4-3.  Sentential Syntax, Algebraic Formulation.  

 
By a sentential logic syntax is meant any structure SynSL=< FSL,R∼,R∧,R∨,R→,R↔> such that: 
 1. R∼,R∧,R∨,R→,R↔ are functions on symbol strings defined as follows: 
   R~ constructs ∼x from any sting x; 
  R∧ constructs (x∧y) from strings x and y; 
   R∨ constructs (x∨y) from strings x and y; 
  R→ constructs (x→y) from strings x and y; 
  R↔ constructs (x↔y) from strings x and y. 
  2. There is a denumerable set of strings AFSL (called the set of atomic 
     formulas),  such that FSL (the set of Well-Formed-Formulas of SL) is 
    defined inductively as follows:  
  a.  (Basis Clause) All formulas in AFSL  are in FSL. 
    b.  (Inductive Clause)  If P and Q are in FSL, then the results of apply the 
        rules R∼,R∧,R∨,R→,R↔ from  in RSL , namely  ∼P, (P∧Q), (P∨Q), (P→Q), 
  (P↔Q), are in FSL. 
 c.  (Closure)  Nothing is in FSL except by clauses 1 and 2. 
 
 Once a syntax is defined as a structure, then algebraic ideas may be 
applied to "explain" it, as "explanation" is understood in mathematics: specific 
properties of grammar can be seen to hold not as a result of peculiarities of 
grammar but as consequences of the fact that grammars happens to be special 
cases of yet more abstract types of structures.  Many features of grammars do in 
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fact hold because grammars happen to be subspecies of  more abstract  
structure-types.  A particularly interesting and simple case is that of partial 
orderings.   

C. Partial Orderings   
The familiar "less than" relation on numbers, symbolized by ≤,  and the 

subset relation on sets, symbolized by ⊆,  are instances of what is known as 
partial ordering.  In algebra such orderings are viewed as structures.  To define 
such a structure, however, we must first  define some standard properties of 
relations.  We then define several common varieties of ordered-structures. 
 

Definition 4-4.  Properties of Relations and Ordered Structures 

 
A binary relation ≤ is said to be: 
 reflexive iff for any x, x≤x; 
   transitive iff for any x,y, and z, if x≤y and y≤z, then x≤z; 
  symmetric iff for any x and y, if x≤y then y≤x; 
   asymmetric iff for any x and y, if x≤y then not (y≤x); 
   antisymmetric iff for any x and y, if x≤y and y≤x, then x=y; 
  complete  iff for any x and y, either x≤y or y≤x; 
  x is a ≤-least element of B iff x∈B and for any y∈B, x≤y. 
 
Any structure <A,≤> such that A is a non-empty set and ≤ is a binary relation on A is called: 
   1.  a pre- or quasi-ordering  iff   ≤ is reflexive and transitive; 
   2.  a  partially ordering iff ≤ is a pre-ordering and antisymmetric; 
   3.  a total or linear ordering iff ≤ is partial and complete;   
  4.  a well-ordering iff,  ≤  is a partial ordering and  

                                    for any subset B of A, B has a ≤-least element.   
 

Definition 4-5  

The subformula relation ≤ ( read "is a part of") is defined on a sentential structure SynSL = < 
FSL,R∼,R∧,R∨,R→,R↔> defined inductively as  follows: 
     For any atomic formula, A≤A; 
   For any molecular formula Ri(A1,...,An), each Ak, for k=1,…,n, 
       is such that Ak≤ Ri(A1,...,An). 
 

Metatheorem 4-1 

The subformula relation ≤ of  any SynSL is a partial ordering. 
 
Another example of ideas from logic that lend themselves to algebraic 
formulation are truth-tables.  Viewed algebraically, truth-tables form a structure 
on the values {T,F} and each truth-table defines a specific function defining 
structure on this minimal set.  
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Definition 4-6.  The Classical Bivalent Structure of Truth-Values 

 
By the classical algebra of truth-values is meant the structure <{T,F},∧,∨,→,↔,∼> such that  
  ∧={<T,T,T>,<T,F,F>,<F,T,F>,<F,F,F>} 
  ∨={<T,T,T>,<T,F,T>,<F,T,T>,<F,F,F>} 
  →={<T,T,T>,<T,F,F>,<F,T,T>,<F,F,T>} 
  ↔={<T,T,T>,<T,F,F>,<F,T,F>,<F,F,T>} 
  ∼={<T,F>,<F,T>} 
Often T is identified with 1 and 0 with F, and {0,1} with 2.  

 

D. Standard Abstract Structures 
The structure of truth-values is actually a special case of a more general 

(i.e. abstract) set of  structures known as Boolean algebras, which includes the 
standard algebra of sets.  There are a number of equivalent ways to define a 
Boolean algebra, some of which we shall encounter later, but for purposes of 
illustration here let us use a simple definition that employs the idea of partial 
ordering. 
 

Definition 4-7.  Properties of Binary Operations (aka Functions). 

 
Let • be a binary operation on a set B, and let us write •(x,y) as x•y.  Then, 
  B is closed under •  iff for all x,y of B,  x•y∈B, 
  • is associative iff for all x,y of B,  x•y=y•x, 
 • is commutative iff for all x,y of B,  x•(y•z)=(x•y)•z,  

• is idempotent iff for all x,y of B,  x•x=x, 
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Definition 4-8.  Varieties of Structures. 

 
A structure <B,∧>/<B,∨> is a meet/join semi-lattice iff ∧/∨ is a binary operation under which B is 
closed and ∧/∨ is associative, commutative, and idempotent. 
 
If <B,∧> is a meet semi-lattice, then the ordering relation ≤ on B is defined as 
  x≤y iff x∧y=x. 
If <B,∧> is a  join semi-lattice, then the ordering  relation ≤ on B is defined as 
  x≤y iff x∨y=y. 
 
The structure <B,∧,∨> is a lattice iff <B,∧> and <B,∨> are receptively meet and join semi-lattices, 
and the ordering relation ≤  on B is defined as:          x≤y iff x∧y=x iff x∨y=y. 
 
If <B,∧,∨> is a lattice, then 0 is the least element of B iff 
  0∈B 
  for any x in B, 0≤x,  
  0∧x=0 and 
 0∨x=x. 
If <B,∧,∨> is a lattice, then 0 is the greatest element of B iff 
  1∈B 
  for any x in B, x≤1,  
  1∧x=x and 
 1∨x=1. 
 
If <B,≤> is a partially ordered structure and x and y are in B, then  
the greatest lower bound (briefly, glb) of {x,y} (if it exists) is the z∈B such that  
   z≤x and z≤y 
   for any w in B if w≤x and w≤y, then w≤z. 
If <B,≤> is a partially ordered structure and x and y are in B, then  
 the least upper bound (briefly, lub) of {x,y} (if it exists) is the z∈B such that  
   x≤z and y≤z 
   for any w in B if x≤w and y≤w, then z≤w. 
 
A lattice  <B,∧,∨> is distributive iff  
  x∨(y∧z)=(x∨y)∧(x∨z), and  
  x∧(y∨z)=(x∧y)∨(x∧z). 
 
If <B,∧,∨,0,1> is a structure such that <B,∧,∨> is a lattice and 0 and 1 are respectively its least 
and greatest elements, then − is a (unique) complementation operation on the structure iff 
  − is a one-place operation on B  −1=0 
  for any x∈B, −x∈B   −0=1 
  x∧−x=1     −(x∧y)=−x∨−y 
 x∨−x=0     (x∨y)=x∧y 
  −x=x     x≤y iff −x∧y=0 iff −y≤−x iff −x∨y=1 
     
A structure <B,∧,∨,−,0,1> is a Boolean algebra iff 
  <B,∧,∨> is a lattice 
  <B,∧,∨> is distributive 
  0 and 1 are respectively the least and greatest elements of <B,∧,∨> 
  − is a complementation operation on <B,∧,∨,0,1> 

Metatheorem 4-2 
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If <B,∧,∨> is a lattice, then <B, ≤> is a partial ordering. 

Metatheorem 4-3 

If ≤ is a partial ordering on a set B and if for any x and y in B, the      glb{x,y} and the lub{x,y} exist 
and are in B, and if ∧ and ∨ are binary operations on B defined as follows  
    x∧y = glb{x,y},  and  x∨y = lub{x,y}, 
then the structure <B,∧,∨> is a lattice with ordering relation ≤. 

Metatheorem 4-4 

The classical structure of truth-values is a Boolean algebra. 
  

E. Sameness of Structure 
One of the most important ideas in algebra is sameness of structure.  Two 

teacups from the same set and two pennies have the same structure.  So too do 
two twins.   In these cases the structures match very closely.  But family 
members and even members of the same species have some features of 
structure in common.  More abstractly, the reason maps work is that there is a 
similarity of structure between geographical features in the world and the 
symbols on the map that represent them.  Blue-prints work for this reason too.  
Mathematically this sameness is explained by saying that there is a mapping 
from the entities of one structure into the entities of a second in such a way that 
the mapping "preserves structure."  Informally, if we have two structures and 
entity x1  in the first that "corresponds" to an entity  x2  in the second, we may call 
x2  the representative of x1. Often one structure may be more complex than the 
other, yet both exhibit some structural features in common.  One way this 
happens occurs when elements of the more complex are "identified" or viewed 
as a unit in the second.  This happens, for example, in our representative 
democracy in which all the citizens in an election district are represented by a 
single individual in Congress.  Thus for a "similarity of structure" to obtain we 
require as a minimum that each entity of one structure corresponds to one and 
only one entity in the second.  In mathematical terms, there is an into-function 
that assigns a value in the second structure to each argument in the first.   If h is 
the mapping function, then h(x1)=x2.  Here h(x1)  is the representative of x1.  Such 
a mapping is called a homomorphism (from the Greek homos = the same and 
morphos=structure.) 
   

Definition 4-9 

Two structures S=<A1,...,Ak,R1,...,Rl,f1,...,fm,O1,...,On> and S′=<A′1,...,A′k, 
R′1,...,R′l,f′1,...,f′m,O′1,...,O′n> are said to be of the same character  or type iff 
    for each i=1,…,l, there is some n such that Ri and R′i are both n-place 
     relations, and 
 for each i=1,…,n, there is some n such that fi and f′i are both n-place 
     functions. 
 Very often a discussion is clearly limited to structures of the same type.  
When this restriction is clear, it is tedious to keep mentioning it, and it is usually 
assumed without saying so explicitly. 
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Definition 4-10.  Homomorphism.   

 
If S=<A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,On> and S′=<A′1,...,A′k,R′1,...,R′i, 
f′1,...,f′m,O′1,...,O′n> are structures of the same character, h is called a homomorphism from S to 
S′ iff h is a function from U{A1,...,An} into U{A′1,...,A′n} such that 
   1. for each i=1,…,k, if x∈Ai, then  h(xi)∈A′i; 
   2.  for each i=1,…,l,  <x1,...,xn>∈ Ri iff  <h(x1),...,h(xn)>∈ R′i; 
   3.  for each i=1,…,m,  h(fi(x1,...,xn) = f′i(h(x1),...,h(xn); 
   4.  for each i=1,…,m,  h(Oi)=O′i. 
 

F. Sentential Semantics 
 One of the simplest and most elegant applications of algebraic ideas to 
logic is its use in formulating standard truth-functional semantics.  We have 
already seen how to formulate syntactic structure and the structure of truth-
values as algebras.  It is now possible to formulate the idea of a "valuation," i.e. 
the traditional notion of an assignment of truth-values to formulas, as a 
homomorphism between the two structures.  Many of the familiar semantic  
properties of classical valuations then follow directly as properties of morphisms.  
 Let us begin by restating the standard definition of a valuation in non-
algebraic terms.   
 

Definition 4-11.  The Semantics for Sentential Logic 

 
A (classical) valuation for the set FSL of formulas of an SL language generated by AFSL is any 
assignment  V of a truth-values T or F to the formulas in FSL that meets the following conditions: 
  V assigns to every atomic sentence in AFSL  either T or F; 
  V assigns to negations, conjunctions, disjunctions, conditionals and biconditionals the 
    truth-value calculated by the truth-tables from the truth-values that ℑ assigns to its parts. 
The formula P is a tautology (abbreviated ╞SLP) iff for all V, V assigns T to P. 
The argument from P1,...Pn,... to Q is valid (abbreviated, P1,...Pn,...╞ SLQ) iff for any V, if V assigns 
   T to all of P1,...Pn,..., then V assigns T to Q. 
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The algebraic formulation is short and sweet. 
 

Definition 4-12.  Sentential Semantics, Algebraic Formulation. 

 
If SynSL=< FSL,R∼,R∧,R∨,R→,R↔> is a sentential syntax and 2=<{T,F},∧,∨,→,↔,−>   is the classical 
algebra of truth-values, then V is a classical valuation for SynSL iff V is a homomorphism from a   
SynSL to 2. 
 
We still have to define tautology and validity.  The two are given equivalent 
definitions, which are stated by reference to the strucure. Before stating these 
new definitions, however, let us perform an abstraction. 
 The algebraic formulation of classical semantics is so elegant that it invites 
immediate generalization or "abstraction" from the fact that the semantics has 
merely two truth-values.  Indeed it is just such an abstraction that was made by 
Lukasiewicz and other Polish logicians in the 1920's and which has provided the 
standard framework for the development of valuational semantics ever since.  In 
its abstract version valuational semantics is a special sort of algebraic structure 
called a logical matrix.  This is very like the structure for the two-valued classical  
truth-values just employed,  but  in addition it singles out as a designated set  a 
subset of truth-values, called the designated values, that are those used to 
defining tautology and validity. 
 

Definition 4-13.  Sentential Semantics Formulated in Terms of Logical Matrices 

 
A logical matrix is any structure =M=<U,D,∧,∨,→,↔,−> such that 
   U is non-empty (usually a subset of the real numbers) 
  D ( the set of designated values) is a non-empty subset of U 
   ∧,∨,→,↔ are binary relations on U 
   − is a unary operation on U. 
 
The set of valuations ValM  (relative to SynSL) is the set of all homomorphisms V from   SynSL to 
M.  
 
A sentential matrix language SL is any < SynSL,ValM>. 
 
The argument from P1,...Pn,... to Q is valid in SL  (abbreviated, P1,...Pn,...╞ SLQ) iff for any V, if 
V(P1)∈D,..., V(Pn)∈D, then V(Q)∈D.  
 
The formula P is a tautology in SL (abbreviated ╞SLP) iff for all V, V(P)∈D. 
 
Much of our discussion of the intensions will be formulated in terms of logical 
matrices.  
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G. Sameness of Kind  
Sameness is one of the "great ideas."  Aristotle was the first to clearly 

distinguish numerical identity (he coined the term) from other sorts of 
sameness. Algebra has a nice set of concepts that make all the relevant 
distinctions.  It also provides a battery of useful collateral ideas. Let us first 
distinguish numerical identity.  This is the idea treated in "first-order logic with 
identity."  It is given = as its own logical symbol in the syntax, and special ad hoc 
clauses in the definition of a semantic interpretation specifying that the symbol 
stands for the identity relation on the domain. This identity relation is understood 
to be a theoretical primitive (part of the stock of primitives that metatheory 
incorporates from set theory).  It is the idea that is then summarized in the two 
semantic metatheorems whose syntactic versions are used to axiomatize truths 
of numerical identity: 
 

╞FOL= x=x 
{x=y, P} ╞FOL=  P[y//x] 

 
Sameness of kind has to do with classification into sets of individuals of the same 
"sort." One traditional way to discuss the idea is in terms of the sameness 
relation where this relation is understood to fold among more than one thing.  
Algebra specifies the properties that must hold of such a relation: 
 

Definition 4-14.  Equivalence Relation, Equivalence Class. 

A binary relation ≡ on a set A is said to be an equivalence relation on A iff ≡ is reflexive, 
transitive and symmetric.  The equivalence class of x under ≡, briefly [x]≡,  is  defined as {x| x≡x}. 

 

Clearly numerical identity counts as an equivalence relation, but so do many 
other relations.  Sameness of kind is also discussed in terms of sets. One way to 
do so is to put things into sets, as it were,  manually,  by means of set abstracts: 
we find and open sentences  P(x) that is true of all the "same" things.  The " P(x) 
"  describes what they all have in common.   We may go through everything there 
is and find such defining characteristics for "kinds" or "sorts" so that we can 
classify everything into non-overlapping, mutually exclusive sets {x| 
P1(x)},...,{x|Pn(x)}.  Algebra provides a name for such a classification into "kinds:" 

 

Definition 4-15.  Partition. 

 
A family F={B1,...,B n}  of sets is said to be a partition of a set A iff, A=U{B1,...,Bn} and no two Bi 
and Bj overlap (i.e. for each i and j, Bi ∩Bj = ∅). 

There is moreover a way to generate a partition from a sameness relations and 
vice versa.  
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Metatheorem 4-5 

If a family F={B1,...,B n}  of sets is a partition of a set A, then the binary relation ≡ on A is defined 
as follows:  x≡y  iff for some i, x∈Ai and y∈Ai is an equivalence relation. 

Metatheorem 4-6 

The family of all equivalence classes  [x]≡ for all x in a given set A is a partition of A.   
 
The set of all entities from the first structure that have the same representative 
are in a sense "the same:" they form an equivalence class.   For example, the set 
of citizens represented by the same congressman is a equivalence class.  One of 
direct consequences of these ideas is the fact that equivalence classes do not 
overlap and that they exhaust all the entities of the first structure. 
 

Metatheorem 4-7 

Let h be a homomorphism from S=<A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,On> to 
S′=<A′1,...,A′k,R′1,...,R′i,f′1,...,f′m,O′1,...,O′n>, and let the binary relation ≡h on C=U{A1,...,An} be 
defined as follows: 
 
                         x≡hy  iff  h(x)=h(y).  
 
 It follows that: 
 
1.   ≡h is an equivalence relation on C. 
 
Furthermore, if [x]h, called the equivalence class of x under h is defined as {y| y≡hx}, then it 
foolows that: 
 
2.  the family F of all equivalence classes,  i.e. {[x]h | x∈C }, is a partition of C.   
 

H. Identity of Structure 
If a structural representation is so tight that it  exhausts the elements of 

the second structure in the sense that all of its elements are representatives of 
some entity in the first, then the representation function is said to be onto.   
There are, for example, no voting members of Congress that do not represent 
some state.  In Germany, however, where some members of Parliament are 
allotted to parties due to national voting percentages there are members that do 
not represent a specific district.  We have seen, for example, that truth-value 
assignments (valuations) are onto homomorphisms from formulas onto the set 
{T,F} structures by the "truth-functions" specified in the truth-tables for the 
connectives. 

In some instances the representation is so fine grained that no two entities 
of the first structure have the same representative.  Such a mapping would be 
too cumbersome for Congress, but it is essential for social security numbers.  
Such mappings are said to be 1 to 1.  Any mapping that is 1 to 1 and onto  totally 
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replicates the structure and entities of the first structure.  It is called an 
isomorphism (from isos=equal).  
 

Definition 4-16.  Isomorphism. 

If h is a homomorphism from S =<A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,On> to 
S ′ =<A′1,...,A′k,R′1,...,R′i,f′1,...,f′m,O′1,...,O′n>, then h is said to be an isomorphism from S to S ′ if 
h is a 1-1 and onto mapping. 

 
It follows from the definitions that given a homomorphism from a first 

structure to a second we can define a third structure made up of the equivalence 
classes of the first and this new structure can be made to have exactly the same 
structure as (be isomorphic to) the second.  This new structure is called the 
quotient algebra.  

 

Definition 4-17.  Quotient Algebra. 

 
If h is a homomorphism from S=<A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,On> to 
S′=<A′1,...,A′k,R′1,...,R′i,f′1,...,f′m,O′1,...,O′n>, then the quotient algebra for 
<A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,On> under h is 
S′′=<A′′1,...,A′′k,R′′1,...,R′′i,f′′1,...,f′′m,O′′1,...,O′′n> defined as follows: 
  given  x≡hy  iff h(x)=h(y) and [x]h to be {y| y≡hx}, 
  A′′i = {[x]h | x∈ Ai } 
  <[x1]h,…, [xn]h>∈R′′i iff <x1,...,xn>∈ Ri 
  f i([x1]h,…, [xn]h)= [fi(x1,...,xn)] 
  O′′=[Oi]h 
 

Metatheorem 4-8 

If h is a homomorphism from S=<A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,On> to 
  S ′=<A′1,...,A′k,R′1,...,Ri,f′1,...,f′m,O′1,...,O′n>,  
then S is homomorphic to its quotient algebra S′′ under h , and S′  is isomorphic to S′′. 
 

I. Congruence and Substitution  
We are familiar in logic with various sorts of substitutability.  One of the 

most familiar kind is the substitutability of material equivalents salve veritate.  
This phenomenon is a special case of a much more general one that results from 
the homomorphic nature of valuations. 

Definition 4-18 

The formula P is a tautology (abbreviated ╞SLP) iff for all V, V assigns T to P. 
 

Definition 4-19 

If S=<A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,On> is a structure with a binary relation ≡ on C=U{A1,...,An}, ≡ 
is said to have the substitution property and to be a congruence relation iff  
  if x1≡y1,..., xn≡yn, then  <x1,...,xn>∈ Ri   iff  <y1,...,yn>∈ Ri, and  
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  if x1≡ y1,..., xn≡yn, then fi(x1,...,xn) ≡fi(y1,...,yn). 
 

Metatheorem 4-9 

If h is a homomorphism from S=<A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,On> to 
S′=< ′1,...,A′k,R′1,...,R′i,f′1,...,f′m,O′1,...,O′n>, then the equivalence relation ≡h is a congruence A
relation with the substitution property. 
 
Corollary. (Substitutability of Material Equivalents.) If V is a classical valuation (i.e. a 
homomorphism from a sentential syntax SynSL=<FSL,R∼,R∧,R∨,R→,R↔> to the classical truth-value 
structure  2=<{T,F},∼,∧,∨,→,↔>  then the equivalence relation ≡V is a congruence relation and 
has the substitution property. 
 

J. Applications in Logic   
l encounter in these sections are generalization from 

these b

tion 4-20.  Subalgebra 

Much of what we shal
asic results.  The techniques will be to treat syntaxes from sentential logic 

to modal and epistemic logic to first-order logic as algebras defined on "strings" 
of symbols.  Semantics is then conducted by defining structures, and then 
defining what are more familiarly known as valuations and interpretations as 
various sorts of morphisms over these structures.  Various substitutability results 
then follow. 
  

Defini

If S=<A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,On>  and S′=<A′1,...,A′k,R′1,...,R′i,f′1,...,f′m,O′1,...,O′n> are 
structures of like character, then S is a subalgebra of S′ iff C=U{A1,...,Ak}⊆ U{ A′1,...,A′k} and 
each R1,...,Ri,f1,...,fm is the restriction repectively of R′1,...,R′i,f′1,...,f′m to C.  (When he structure is 
short and A′i is empty, it is customary to delete it from the list detailing the structure if it is clear 
from the context to which set it corresponds.) 
 

 

II. MATRIX SEMANTICS 

A. Language and Entailment in the Abstract Structures 

et us begin our abstract study of logic by defining the core notions of 
syntax

i. Syntax 
 sufficient to define a syntax as a structure on "expressions" organized 

by rul

  
L
, semantics, and proof theory in there broadest algebraic senses.  We 

shall assume at a minimum that the language in question contains sentences 
and that these are the syntactic units that make up arguments to be appraised for 
their validity. 

 It is
es of grammatical construction.  In logic, "expressions" are normally 

understood to be finite strings built up by "concatenation" from a finite set of 
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signs by means of the grammar rules understood as 1 to 1 ("uniquely 
decomposable") operations on finite strings. As customary, let Σ stand for the set 
of signs used to construct the syntax. 
 

Definition 4-21.  Syntax. 

By a syntax Syn is meant a structure <A1,...,Ak,f1,...,fm> such that for some finite set Σ of signs, 
each fi  is a 1-1 function defined in terms of concatenation (the operation  ∩  on signs and strings)  
that maps some subset of Σ* 1 to 1 into  Σ*, where  Σ* is the set of all finite strings of signs in  Σ.  

We assume that there is  some Ai intended to represent sentences, and  we use Sen as 
the preferred name of that Ai . 

We let P and  Q range over Sen, and X,Y and Z over subsets of Sen. 
Example.   Sentential Logic. 
By a SL syntax is meant a structure <Sen,f∼,f∧,f∨,f→>   such that there is some set  ASen such 
that 
  1. ASen is an at most denumerable set (of "atomic sentences") constructed from 
so  of signs. me finite base
  2. the operations  are defined as follows: 
   f∼(x)= ∼∩x 
   f∧(x,y)= (∩x∩∧∩y∩) 
  f∨(x,y)= (∩x∩∨∩y∩) 
  f→(x,y)= (∩x∩→∩y∩) 
 3. Sen  is the least set (the set inductively defined) such that ASen ⊆ Sen  and Sen  
is d un f∼,f∧,f∨,f→.  close der 
 

Substitution may also be defined for abstract syntaxes of this sort. 

Definition 4-22.  Substitution. 

 

1. is a (uniform) substitution operation for Syn  iff   is a homomorphism from Syn into itself.  
2. The notion is extended to sets as follows: σ(X)={ σ(P)|P∈X}. 
3. We let SubSyn be the set of all substitution operations for Syn. 
 

Definition 4-23.  Subalgebra. 

If S=<A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,On>  and S′=<A′1,...,A′k,R′1,...,R′i,f′1,...,f′m,O′1,...,O′n> are 
structures of like character, then S is a subalgebra of S′ iff C=U{A1,...,Ak}⊆ U{ A′1,...,A′k} and 
each R1,...,Ri,f1,...,fm is the restriction repectively of R′1,...,R′i,f′1,...,f′m to C. 
 

Definition 4-24.  Sentential Subalgebra.  

The sentential subalgebra Syn|Sen of a syntax Syn is its subalgebra in which all categoeries of 
expressions other than Sen are empty. 
 

Definition 4-25.  Sentential Substitution. 

1. σ is a (uniform) sentential substitution operation for Syn  iff  σ is a homomorphism from 
Syn|Sen into itself.  

2. The notion is extend σ σed to sets as follows: (X)={ (P)|P∈X}. 
3. Let SubSen be the set of all sentential substitution operations for Syn. 
 

   4, Page  211. 



An Introduction to Metalogic  Many-Valued and Intensional Logic 

Later we shall use ├  to represent the "deducibility" relation.  We then use 
ubstitution to define "formal" inference patterns, and do so traditionally by 

means
s

 of  tree diagrams that presuppose the working of substitution in a 
somewhat hidden way.  Since we are stating relevant general concepts defined 
in terms of substitution, we shall explain this form of definition here. 
. 

Definition 4-26.  "Formal" Relations (Inference Patterns) by Tree Diagrams. 

 
 We call <X,P> a "deduction" and usually write it as X├P. Let σ(<X,P>) be <σ(X), σ (P)>. 
 
By the tree  R: X1├P1>,    ....         Xk├Pk 
       Y Q ├
we refer to ( ne ollow  relation R on ductions defi ) the f ing de
 
  R ={<σ(<X1,P1>), ...., σ(<Xk,P k>),σ (<Y,Q>)> |  σ is a sentential substitution for Syn and  

      σ(<X ,P >), ...., σ(<X ,P >), σ (<Y,Q>) are dedu1 1 k  k ctions in  Syn}. 55 
 

ii. Semantics   
Characteristic of algebraic semantics is the interpretation of syntax by means of 

r structures of a character similar to that of syntax.  It is also morphisms ove
standard to interpret validity as some sort of "truth-preserving" relation holding 
between a set of premises and a conclusion.  In general it is not necessary to 
specify the exact meaning of "truth", nor employ a single "truth-value" as the 
unique value preserved under valid inference.  
 

Definition 4-27.  Semantic Ideas. 

By a semantic structure for Syn=<A1,...,Ak,f1,...,fm> for Ai=Sen is meant any  structure Sem 
=<B1,...,Bk+1,f1,...,fm> such that 
  1. U{B1,...,Bk}≠∅ 
  2. Bk+1≠∅.  (Bk+1 is called the set of designated values; it is usually referred to as 
   D.  It is used below to define logical entailment.) 
  3.  <B1,...,Bk,f1, .,fm> is of the same character as <A1,...,Ak,f1,...,fm>.   ..
 
If <A1,.. k,f1,...,fm> is a syntax and Sem=<B1,...,Bk+1,f1,...,fm> is a semantSyn= .,A ic structure for   
Sy n the et I-Sem of all semantic interpretations of Syn relative to  Semn, the  s  is the set of all 
homomorphisms from  <A1,...,Ak,f1,...,fm> into <B1,...,Bk,f1,..., m>. f
 
By a language L  is meant any pair <Syn,F> such that F is family of semantic structures for Syn.  
 

                                            
55 Later in natural deduction theory we shall state more complex rules in which specific form and 
term stubstitution is specified in the tree diagram.  For example, the rules ∀+ defined by the tree 
 
   X├P  refers to {<�(<X,P>), <�(X),∀x �(P)c

x >)| � is a sentential substitution for 
X├∀xPc

x      Syn  and �(<X,P>), <�(X),∀x �(P)c
x > are deductions in  Syn}. 

      
 
 

   4, Page  212. 



An Introduction to Metalogic  Many-Valued and Intensional Logic 

(In the unusual case in which <Syn,F> is a language in which F is a singleton set {S}, we identity 
F with S.) 
 

Definition 4-28.  Logical Ideas. 

 
For  any h in I-Sem, h is said to satisfy P iff h(P)∈D, and to satisfy  X  iff for all P in X, h(P)∈D. 
X  is said to semantically entail P  in I-Sem (briefly, X╞SemP) iff, for any  in h in I-Sem, h satisfies 
X only if it satisfies P.  
X is satisfiable in I-Sem iff, for some h in I-Sem, h satisfies X, 
X is unassailable in I-Sem iff, for any h in I-Sem, there is some P∈X, such that h(P)∈D. 
X  is said to semantically entail P  in L=<Syn,F>  (briefly, X╞LP) iff for any semantic structure 
Sem of Syn in F, X╞SemP. 
If X╞LP, the argument from X to P is said to be valid, and ╞L is called entailment.  
╞L is compact or finitary iff X╞LP iff for some finite subset Y of X, Y╞LP 
We let ╞ stand for either ╞ ∅Sem or ╞L, and abbreviate ╞P as ╞P and refer to P in this case as 
valid.  We abbreviate {P1,...,Pn}╞Q as P1,...,Pn╞Q, and X∪Y╞P as X,Y╞P 
 

iii. Proof Theory  
Intuitively deduction is a matter of determining by reference to precise 

tences that are deducible from other sentences.  The rules 

├ be a relation that holds 

syntactic rules the sen
are not invented r a bitrarily but rather are designed to provide a syntactic 
characterization of the more fundamental semantic relation of logical entailment.   
If we are able to "deduce" a sentence P from a set of premises X, we say that the 
deducibility relation holds between X and P.   We begin by characterizing some 
of the relational properties of this very special relation. 
 

Definition 4-29. An Abstract Characterization of Deducibility.  Let  
between sets of sentences and sentences in.   

 
├ is reflexive iff P├P 
├ is transitive iff X├P and Y∪{P}├Q, then X∪Y├Q 
├ is monotonic iff X├P and X⊆Y, then Y├P 
├ is a consequence relation iff ├ is reflexive, transitive and monotonic. 
├ is finitely axiomatizable iff X├P only if for some Y, Y⊆X and Y├P. 
├ is closed under substitution iff  

(X├P  only if, for any substitution operation σ∈ SubSen, σ(X)├ σ(P) ). 
├ is a deducibility relation iff it is a finitely axiomatizable consequence relation closed under 
substitution. 
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Metatheorem 4 -10 
For any Syn, ╞ is a consequence relation. 
 

Metatheorem 4-11 

If ├ is a deducibility relation, then (X├P  iff, for any substitution operation σ∈ SubSen,  
σ (X)├ σ (P) ). 

Definition 4-30. Mutual Deducibilit 

Definition 4-31.  

 P ┤├ Q iff, P├Q and Q├P. 

Metatheorem 4-12.  

┤├  is an equivalence relation on Sen. 
 

iv. Provability   
A notion narrower than deducibility is provability.  A sentence is provable 
intuitively if its deduction does not depend on the truth of anything unproven.  
That is,  P is provable from X iff if X is provable, so is P.  But this account is not 
quite general enough.  For P to be provable from X it is required that the proof be 
a matter of form. That is, if anything of the same form as X  is provable, then 
anything of the same form as P should also be provable.  We capture the idea of 
"sameness of form" by appeal to substitution. 

Definition 4-32. The Provability Relation. 

P is provable from X relative to a deducibility relation ├ (briefly,  X╟P), iff for all substitution 
operation σ∈ SubSen, (for all Q∈X, ├σ (Q)) only if ├σ (P). 

Metatheorem 4-13  

X╟P only if X├P, but not conversely. 
 
 
Rules of Proof and Provability 
 
The tree ∅├P aka ├P is the normal form used to stipulate a rule of proof. 
  ∅├Q  ├Q 
 
Examples 
 
1.  Necessitation in Modal Logic.   ├P 
       ├�P 
 
2. Theoremhood in Classical Sentential Logic:  ├P 
       ├ThP 
 
3.  Theoremhood in PM:     ├P 
       ├Th(nP) 
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Remark.  Rule 2 (and Rule 1 if �=Th) is classical sound: 
 

∅╞CP iff     ∅╞C(P↔(Q∨∼Q)) 
 
Rule 3 is not classically sound because neither Th nor nP have logically fixed referents.  But if 
ValPM is that subset of ValC that satisfies the axioms of PM and ╞PM is the restriction of  ╞C to 
ValPM, then 
  ∅╞PMP iff     ∅╞PMTh(nP) 
 

Metatheorem 4-14    

             ∅├P iff      P╟Q 
  ∅├Q 
 

v. Inductive Systems 
The deducibility relations we shall be studying in these sections are primarily 
those of classical and intuitionistic logic.  They both exhibit a good deal more 
structure than is captured in the abstract notion of a deducibility relation.  They 
fall into the class of deducibility relations, familiar to students of elementary logic, 
that are characterizable in terms of axiom and natural deduction systems.  In 
order to characterize this kind of deducibility relation, we begin by defining the 
concepts that abstract their special structural features.  The ideas come from the 
theory of inductive sets.  

Definition 4-33.  Inductive System, Derivation and Proof. 

 
An inductive system is any structure <B,C,{R1,...,Rn}> such that: 
  1. B (the set of basic elements of the system) and C (the set constructed by the 
system) are at most denumerable sets; 
  2. each Ri (a construction rule of the system) is a finite relation on B∪C; 
  3. C is the least set X such that B⊆X and,  for any Ri , if Ri is an m+1-place relation,  
<e1,...,em+1>∈R  and <e1,...,em>∈C, then em+1∈C. 
 
Relative to an at most denumerable set B, and a set of finitary relations {R1,...,Rn} defined for 
tuples in B, a  derivation (tree) relative to B and {R1,...,Rn}  is defined as any finite labeled tree Π 
such that: 
 1. every leaf node of Π is labeled by an element in B, 
 2. for any node n of Π with immediate predecessor nodes m1,...,mk, 
  a. each mi (for i≤k) is labeled by some element ei, 
  b. n is labeled by some rule Ri such that 
   <e1,...,ek,e>∈Ri.  
   
If the leaf nodes of a deduction tree Π are labeled respectively e1,...,ek, its root node is labeled by 
e, and if {R1,...,Rn}={R| R is a finitary relation on Sen that labels some node of  Π },  we say Π is a 
derivation (tree) of e from < e1,...,ek> relative to {R1,...,Rn}. If in addition all the leaf nodes of Π 
are in B, then Π is called a proof (tree) of e from <e1,...,ek> relative to B and {R1,...,Rn}.    
 

Metatheorem 4-15    
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e∈C for an inductive system <B,C,{R1,...,Rn}> iff there is some proof tree of e relative to B and 
some subset of {R1,...,Rn}. 
  

vi. Axiom Systems 
 From an abstract perspective an axiom system is identified with an inductive 
system  
 

Definition 4-34.  Axiom System. 

 
An axiom system  for Syn=<A1,...,Ak,f1,...,fm> is any inductive system such that <Ax,├,{R1,...,Rn}> 
such that Ax and ├ are subsets of Syn.   
 
An axiom system <Ax,├,{R1,...,Rn>  is finite and ├ is said to be finitely axiomatizable, iff Ax is 
finite. 
 

One weakness of analyzing  ├ as a set is that in order to capture the more general idea 
of a deducibility, it must then be extended in some manner to a relation.  In languages which have 
a semantic entailment relation that is compact and a conditional → that yields a "deduction 
theorem" (i.e. {P1,...,Pn}├Q iff├(P1∧...∧Pn)→Q ), then the extension is possible.  Conceptually the 
analysis is not very convincing because of its lack of generality:  it depends on specific features of 
the syntax (on the right sort of connectives ∧ and →) and on compactness, a property not 
exhibited by some interesting logical systems. 
 

Definition 4-35.   Deducibilty in an Axiom System 

 
The set ├  is extended to a relation as follows:     {P1,...,Pn}├Q  iff ├(P1∧...∧Pn)→Q,  
 

 X├Q iff, there is some finite subset {P1,...,Pn} of X such that P1,...,Pn├Q. 

 
Whether this ├ relation is a deducibility relation will depend on the properties of ∧ and →. 
 
Example.  The System C for Classical Sentence Logic. 
 
C is defined as the inductive system <AxC,├C,{MP}> such that : 
1.  AxC is any instance of the following three schemata:  

 i.  P→(Q→P) 
  ii.  (P→(Q→R))→((P→Q)→(P→R)) 

iii. (∼P→∼Q)→(Q→P) 
2. MP (modus ponens) is  {<P,Q,R>| Q=P→R} 
 
Metatheorem 4-16 

The relation ├C  is a deducibility relation. 
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vii. Natural Deduction Systems 
  Natural deduction systems too are inductive systems, but in this case the 

elements included in the inductive sets are "deductions," i.e. pairs <X,P> 
consisting of a set of premises and a conclusion that follows from them.  The 
basic elements of the construction, therefore, must be a special selected set of 
deductions and the rules of construction must be rules that take deductions as 
arguments and yield deductions as values. 
 

Definition 4-36.  Natural Deduction Systems. 

 
By a deduction in Syn is meant any pair <X,P> such that P∈Sen and X is a finite subset of Syn.  
Here X is called the premise set of the deduction and P the conclusion.  
 
An inference rule for Syn as any finitary relation on deductions in Syn.   In addition a special set 
BD of deductions is distinguished, called the set of basic deductions.   
 
By a natural deduction system for Syn is meant any inductive system <BD,├,RL> such that  
  1. BD is a distinguished set of deductions for Syn, and  
  2. RL is a set of derivation rules for Syn.   
 
The inductively defined relation ├ is called the set of provable deductions for Syn relative to BD 
and RL.   
 
We write X├P for <X,P>∈├, and adopt the customary abbreviations: 
   X,P├Q  means X∪{P}├Q 
   P1,...,Pn├Q means {P1,...,Pn}├Q 
   ├P  means ∅. <X,P> is a provable deduction in <BD,├,RL> 
iff there is some proof tree of Syn relative to BD and some subset of RL such that its root node is 
labeled by <X,P>. 
  

   4, Page  217. 



An Introduction to Metalogic  Many-Valued and Intensional Logic 

Example.  A Natural Deduction Systems C for the Classical Sentential Logic 
 
C=<BDC,├C,R⊥+,R⊥-,R∼ +,R∼-,R∧+,R∧-,R∨+, R∨-,R→+,R→-,RTh> is the inductive system such that 
 
1.  Let <X,P> be a deduction iff X⊆Sen and P∈Sen.  We adopt these abbreviations: 

  X├CP    for    <X,P> is in ├C; 
  X,Y├CP   for  X∪Y├CP;    
  X,P├CQ  for   X∪{P}├CQ; 
  P1,...,Pn├CQ for  {P1,...,Pn}├CQ;  
  ├CP   for   ∅├CP. 
  ⊥  for  P1∧∼P1   (Here P1 is the 1st atomic sentence.) 
2.  BDC is the set of all deductions <X,P> such that P∈X. 
3. The rules in {R⊥+,R⊥-,R∼ +,R∼ -,R∧+,R∧-,R∨+, R∨-,R→+,R→-, RTh} are defined as follows: 
 
  Introduction (+) Rules   Elimination (-) Rules 
 
 ⊥ X├CP  Y├C∼P        X├C⊥ 
      X,Y├C⊥     X-{∼P}├CP  (for P≠∼Q) 
 
 ∼ X├C⊥         X├∼∼P 
   X−{P}├C∼P         X├CP 
 
 ∧ X├CP  Y├Q     X├CP∧Q X├CP∧Q 
     X├CP∧Q       X├CP    X├CQ 
 
 ∨   X├CP    X├CP    X├CP∨Q   Y├CR   Z├CR 
  X├CP∨Q X├CP∨Q       X,Y−{P},Z−{Q}├CR 
 
 →  X ├CP          X├CP     X├CP→Q 
  X−{Q}├CQ→P              X├CQ 
 
    Thinning   X├CP 
      X,Y├CP  
   

We extend the notion of deduction to possibly infinite sets of premises X by saying X├CQ relative 
to ├C iff, there is some finite subset {P1,...,Pn} of X such that P1,...,Pn├C Q. 
 

Metatheorem 4-17   

The relation ├C  is a deducibility relation. 
 
 In cases in which the notion of a uniform substitution σ is defined for Syn,  
it is customary to define a derivation rule R for Syn by a tree diagram.   
 
Recall that by the tree R: X1├P1>,    ....         Xk├Pk 
       Y├Q 
we refer to the relation  
 
R  = {<σ(<X1,P1>), ...., σ(<Xk,P k>),σ(<Y,Q>)> |  σ is a sentential  
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substitution for Syn and σ(<X1,P1>), ...., σ (<Xk,P k>), 
σ(<Y,Q>) are all deductions in  Syn}.  

  
Since elegance and brevity are theoretical ideals of proof theory, finding the 
minimal set of rules necessary is often a goal.  Some basic notions in terms of 
which systems are simplified and compared can now be defined. 
 

Definition 4-37 

 A relation R is said to be definable relative to rules R1,...,Rn  and is called a  derived rule 
in <BD,├,RL>, where {R1,...,Rn}⊆RL, iff  there is a derivation tree Π of dn+1 from  d1,...,dn relative to 
BD and {R1,...,Rn} , and R={<σ(d1),..., σ(dn+1)>|  σ is a substitution for Sen }.  
 
A natural deduction system <BD,├,RL> is said to be reducible to a natural deduction system  
<BD′,├′,RL′> iff, BD⊆BD′ and every R∈RL is a derivable rule in <BD′,├′,RL′>.   
 
Two systems are strictly equivalent iff they are mutually reducible.  Let two systems <BD,├,RL> 
and <BD′,├′,RL′> be called  constructively equivalent  iff ├ =├′.  
 

B. Logical Matrices for Sentential Logic.  
 

One of the oldest and most productive branches of logic is the 
investigation of the semantic properties of sentential logic by means of structures 
known as logical matrices.  Logical matrices are algebras of "truth-values" and 
the interpretations they spawn are homomorphisms between syntax and these 
structures. 

 

Definition 4-38.  Logical Matrices 

A logical matrix for any SL syntax Syn=<Sen,f∼,f∧,f∨,f→> is any semantic structure M=<U,D, 
g∼,g∧,g∨,g→> for Syn such that U and D are non-empty, and D⊆U. 
 
Frequently U is some set of ordered numbers starting with 0, e.g. {0,1}, {0,1/2,1}, {0,1,…,n} 
starting with 0, in which case M is said to be m-valued where m is the cardinality of U. 
 
A semantic interpretation relative to a logical matrix M is called a valuation of M, and the set of 
all semantic interpretations I-M of Syn relative to M is traditionally called the set of valuations of 
M, which we abbreviate ValM.  We let V range over ValM.  Clearly, X╞MP is well defined. 
 
A matrix language is any language <Syn,F> such that F is a family of logical matrices. 
 
It is customary to refer to both the series of syntactic operations f∼,f∧,f∨,f→ and the 
series of semantic operations g∼,g∧,g∨,g→ by ∼,∧,∨,→.  In some contexts where it 
would be unclear which is meant, we shall distinguish one series from the other 
by the use of prime marks.  

One of the most useful investigations in matrix semantics is the 
"representation" of one matrix in another.  Such representations are used to 
simplify the semantics by replacing a broad set of valuations (and its 
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characterization of entailment) with a narrower one, generated by a simpler 
matrix which is also characteristic of the entailment relation in question.  We shall 
see several important examples of such representations in the course of these 
sections.  

The relevant concept of representation is captured by the idea of 
homomorphism.  Designated values play no role in the definition of valuations.  
As a result there is one sense of representation in which they are ignored, and a 
stricter sense in which they are not. 
 

Definition 4-39.  Matrix Morphisms 

h is a (matrix) homomorphism (in the weak sense) from a logical matrix M=<U,D, ∼,∧,∨,→> to 
another matrix M′=<U′,D′, ∼′,∧′,∨′,→′> (of the same character) iff h is a homomorphism from to 
M=<U,∼,∧,∨,→>   into <U′, ∼′,∧′,∨′,→′> . 
 
h is a strict (matrix) homomorphism from M=<U,D, ∼,∧,∨,→> to M′=<U′,D′, ∼′,∧′,∨′,→′> (of the 
same character) iff h is a homomorphism and h preserves designation and non-designation in 
the sense that for any x in U,  
    x∈D, then h(x)∈D′, and  
    if x∉D, then h(x)∉D′, 
 
 
We shall call these morphisms onto and 1 to 1 if  h is an onto or 1 to 1 function respectively. 
 
Note two additonal formulations that are equivalent to the condition that h 
preserves designation and non-designation: 

1. for any x in U, x∈D iff h(x)∈D′. 
2. h  maps D into D′, and U−D  into U′−D′. 

 
Notice also that if we interpret a syntax by a matrix M and there is a 

second matrix M′ to which M is homomorphic under h, then we can interpret the 
syntax by M'.  For any sentence P, we assign it a value v(P) in M, and then using 
h we assign it to h(v(P)).  We call composition the process of defining  a third 
function by taking an argument's value under one function, turning it into the 
argument of a second function, and then calculating its value. 
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Definition 4 -40   

If f and g are (one-place) functions, their composition  f°g  is defined: f°g(x) = g(f(x)). 
 

Metatheorem 4-18   

If M=<U,D,∼,∧,∨,→> is a logical matrix for Syn=<Sen,∼,∧,∨,→> and h is a matrix homomorphism 
from M to M′, then  {v°h |  v∈ValM} ⊆ ValM ′. 
 
Proof. Consider an arbitrary v°h such that  v∈ ValM We show it meets the conditions for 
membership in ValM ′.  If P is atomic, then h is defined for v(P) and the range of h is a subset of 
U′.  Thus, h(v(P))∈ U′.  For the molecular case consider an arbitrary complex sentence 
Oi(P1,...,Pn) such that Oi is the grammatical operation generating the sentence, and the 
operations in M and M′ corresponding to Oi are respectively gi  and g′i.  Then by the relevant 
definitions, v°h(Oi(P1,...,Pn)) =  h(v(Oi(P1,...,Pn))) =hgi(v(P1),..., v(Pn))) = g′i(h(v(P1),…, h(v(Pn)) = 
g′i(v°h(P1),…, v°h(Pn)).  Hence, v°h∈ ValM ′.      QED 
 

Metatheorem 4-19    

If h is a strict matrix homomorphism from M=<U,D, ∼,∧,∨,→> to M′=<U′,D′, ∼′,∧′,∨′,→′>,  
then X╞M′ P only if X╞MP.  
 
(Analysis.  Assume:  
  1.  h is a strict matrix homomorphism from M=<U,D, ∼,∧,∨,→> to  
  M′=<U′,D′, ∼′,∧′,∨′,→′> 
  2. X╞M ′P i.e. for  any v′∈ValM ′, if for all Q in X, v′(Q)∈D′ then v′(P)∈D′ 
  3.  that v is arbitrary, that v∈ValM and that for any Q in X, v(Q)∈D 
Show: v(P)∈D. 
The trick is to apply 1 to 3 and derive that v°h(Q)∈D′ that is,h(v(Q))∈D′,  for all Q∈X.  Then apply 
Theorem 10, and deduce that v°h∈ValM ′, and hence by 2, v°h satisfies P in the relevant sense.  
Show then that v satisfies (in the relevant sense) P. 
   

 Metatheorem 4-20   

If h is a strict matrix homomorphism from M=<U,D, ∼,∧,∨,→> onto M′=<U′,D′, ∼′,∧′,∨′,→′>, then  
{v°h |  v∈ValM} = ValM ′. 
 
Proof. By theorem 10 all we need show is ValM�⊆ {v°h |  v∈ValM}.  Assume v′∈ValM ′. We show 
that that v′∈ {v°h |  v∈ValM}. We construct a  some v, such that  v′=v°h and v∈ValM. Let P be an 
atomic sentence.  Since h is onto we know that whatever v′(P) is, let's call it x, there is some y∈U 
such that  h(y)=x. We define v(P) to be that y. We do so for each atomic sentence, and then 
project these values to molecular sentences by the operations in M.  That is, we define v to be 
that v∈ValM  such that for any atomic sentence P, h(v(P)) = v′(P).  We now show that  v′=v°h, i.e. 
that for any sentence Q, v′(Q) =H=h(v(Q)).  Proof is by induction.  The atomic case is ture by the 
definition of v.  For the molecular cases we assume the identity holds for the immediate parts of 
the sentence and show it is true for the whole.  Consider the case of conjunction R∧S.  Assume 
(as the induction hypo.) that v′(R)=h(v(R)) and v′(S)=h(v(S)).  Now, v′(R∧S) = [by membership of 
v′ in ValM ′]) h(v(R))∧h(v(S)) = [since h  is a homomorphism from M to M′])Ih(v(R)∧v(S)) = [since v 
is a homomorphism from Syn to M] h(v(R∧S)).  The cases of the other connectives are similar.   
           QED 
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Metatheorem 4-21   

If h is a strict matrix homomorphism from M=<U,D, ∼,∧,∨,→> onto M′=<U′,D′, ∼′,∧′,∨′,→′>, then 
X╞M ′P iff X╞MP. 
 
 

i. Examples of Traditional Matrix Logics 
Lukasiewicz and his colleagues were largely motivated by philosophical 

issues in developing matrix semantics, particularly their doubts about classical 
bivalence.  Logical issues too are central.  Both the matrix and the resulting 
entailment relation must be acceptable.  Acceptability here is rather complex 
matter.   

Acceptability is partly conceptual.  The definitions offered by the theory 
must be "conceptually adequate."  Roughly this is a requirement that the 
definitions conform with prior usage, both in ordinary language and in the earlier 
literature of logic and philosophy.  For example, if matrix elements are intended 
to be "truth-values," then metatheorems concerning them should translate into 
plausible claims about truth.  While the law of bivalence (every sentence is either 
true or false) may be doubted, the law of non-contradiction (no sentence and its 
negation can both be true) is less so.  It is issues of this sort that are of concern 
to philosophers of language when they evaluate many-valued semantics. 

Logical issues, however, are equally important.  By their nature they tend 
to be the focus of logicians rather than philosophers.  Logicians hone their 
intuitions about which inferences are valid.  Doing so is a matter partly of 
common sense, partly of thinking about the meanings of the "logical terms" at 
play, and partly of tradition, logical tradition itself being one of the major 
determinants of the meaning of logical terms.   Because classical two-valued 
logic has been the standard theory throughout this tradition, logical issue largely 
centers on how much, if at all, a matrix entailment relation departs from classical 
logic, and whether these departures are desirable.  It has been proven to be very 
difficult to give a simple matrix semantics that is both conceptually plausible and 
yields an intuitively acceptable entailment relation.   

A third criterion that is of less concern to the non-mathematical is 
elegance.  Matrix semantics are very elegant indeed, and the goal of revising 
classical semantics using matrices has been a serious research enterprise, 
involving some of the best logicians, for almost eighty years.  One of the large 
chapters of this story concerns the matrix characterization of intuitionistic logic, 
one of the century's major revisions of classical logic.  We will take up 
intuitionistic semantics in detail later.   At this point it will be instructive to illustrate 
the methods by citing some of the simpler and more famous many-valued 
theories. 
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Definition 4-41.  Truth-Tables for Standard Matrices 

 
The Classical    ║~║ │T F ║ │T F ║ │T F ∧ ∨ →
Bivalent    ─╫─╫─┼────╫─┼────╫─┼──── 

CMatrix     T║F║ │T F ║ │T T ║ │T F  
     F║T║ │F F ║ │T F ║ │T T   

 
 

∧ ∨ →Klenne's Weak    ║~║ │T F N ║ │T F N ║ │T F N 
 (Bochvar's Internal) ─╫─╫─┼──────╫─┼──────╫─┼──────

KWMatrix     T║F║ │T F N ║ │T T N ║ │T F N 
      F║T║ │F F N ║ │T F N ║ │T T N 
     N║N║ │N N N ║ │N N N ║ │N N N  

 
 

∧ ∨ →Klenne's Strong   ║~║ │T F N ║ │T F N ║ │T F N 
Matri KS  x     ─╫─╫─┼──────╫─┼──────╫─┼──────

    T║F║ │T F N ║ │T T T ║ │T F N 
      F║T║ │F F F ║ │T F N ║ │T T T 
     N║N║ │T F N ║ │T T N ║ │T N N  

 
 

∧ ∨ →Lukasiewicz'    ║~║ │T F N ║ │T F N ║ │T F N 
 3-valued    ─╫─╫─┼──────╫─┼──────╫─┼──────

L3Matrix     T║F║ │T F N ║ │T T T ║ │T F N 
      F║T║ │F F F ║ │T F N ║ │T T T 
     N║N║ │T F N ║ │T T N ║ │T N T  

 
 

∧ ∨ →Jaskowski's  ║~ ║ │11 10 01 00 ║ │11 10 01 00 ║ │11 10 01 00 
C2-valued   ─╫──╫─┼────────────╫─┼────────────╫─┼────────── 
Matrix   11║00║ │11 10 01 00 ║ │11 11 11 11 ║ │11 10 01 00 

  10║00║ │10 10 00 00 ║ │11 10 11 10 ║ │11 11 01 01 
  01║00║ │01 00 01 00 ║ │11 11 01 01 ║ │11 10 11 10 

 00║00║ │10 10 00 00 ║ │11 10 11 10 ║ │11 11 11 11  
 

None of these matrices with the exception of C2 is classical.  Whether the classical 
inferences they reject are in fact invalid is a further issue which we do not have 
time to go into here.  Suffice it to say that none of these has proven very 
convincing. 
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Definition 4-42   

We shall use MD to refer to a matrix M  with desiganted values D. It is also traditional to identify T 
with 1, 0 with F, N with 1/2, 2 with the set {0,1}, and in general n with {m| 0≤m<n}.  As the universe 
for the matrix in question we take the set of all values appearing in the truth-table.  
 
By Ln=<U,D, ∼,∧,∨,→> we mean the generalization of L3 in which D={1} and the operations 
conform to these rules: 
 
  ∼x = 1-x 
  x∧y = min{x,y} 
  x∨y = max{x,y} 

 x→y = min{1, (1-x)+y} 

For finite matrices Ln  its domain U={ xn |  x is a natural number and 0≤x≤n }.  Lω  is a limiting case 

in which U = ω = { x |  x is a rational number and 0≤x≤1 }. (In this limiting case what is important is 
the fact that U is countably infinite, i.e. that it have the cardinality of the set ω, the set of natural 
numbers.  Hence U it may be identified with the rationals, which is equipollent to ω.) One can also 
set U equal to the continuum, i.e. the closed interval [0,1]. 
 
By Mn=<Un,Dn, ∼n,∧n ∨n,→n>, we mean the generalization of M=<U,D, ∼,∧,∨,→>  in which the 
operations fni corresponding to conform to the following rules: 
  Un and Dn are respectively the n-th Cartesian products of U and D, and  
   fni(<x1,1,...,x1,n>,…,<xm,1,...,xm,n>)=<fi(x1,1,...,x1,n),…, fi(xm,1,...,xm,n)> 
 
Definition 4-43   

Let C be the classical matrix <{T,F}{T},∼,∧,∨,→>.  Then, a matrix M=<U,D,∼′,∧′,∨′,→′>  is normal 
iff,  {T,F}⊆U, {T}⊆D, and for any x and y in {T,F}, ∼x=∼′x , ∧(x,y)=∧′(x,y), ∨(x,y)=∨′(x,y), 
→(x,y)=→′(x,y) . 
 

Metatheorem 4-22 

 
 KW{T}, KW{T,N}, KS{T}, KS{T,N} are normal. 
 
  ╞KW{T}, ╞KW{T,N}, ╞KS{T}, ╞KS{T,N}, are proper subsets of ╟C{T}  . 
 
  {P|╞KW{T}P}  and {P|╞KW{T}P} are empty. 
 
  ╞MnD n   = ╞MD, and hence ╞Cn{T} n  = ╞C{T}, 
 

 

ii. Lindenbaum Algebras 
 

  The first abstract results which we shall actually prove in which we use 
matrix semantics to characterize a proof theoretic idea will consist of ways to 
characterize the relatively weak provability relation ╟.  They consist of 
constructing the relevant matrix from the syntax itself. Since these matrices are 
relate purely sytaxtic entities (sentences) they fall short of what the philosphers 
have traditionally thought of as a "world" or a "semantic interpretation." They are 
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nevertheless excellent illustrations of algebraic ideas we have been introducing, 
so sucessful in fact that they may give philosphers pause. 
We shall begin with an utterly trivial matrix, interpreting the syntax literally by the 
syntax itself.  That is, we shall assign sentences to other sentences in a way that 
preserves syntactic structure.  The sentence assigned to a whole will be that of 
like construction generated from those assigned to its parts.  A representative, 
therefore will be a negation, conjunction, disjunction, etc. if the sentence it 
represents is, but the representative may have more structure because the 
atomic sentences of the original may be assigned to molecular sentences with 
internal structure.  As designated elements let us use the set of provable 
sentences, i.e. the theorems of  ├. 
 

Definition 4-44  

  Th├={P | ╟P} 
 
    [P]├ ={Q | Q ┤├  P}   (Recall that ┤├  is an equivalence relation.) 
     
    M-Syn be =<Sen,Th├,∼,∧,∨,→>  
 

Metatheorem 4-23   

For any ╟ for Syn=<Sen,∼,∧,∨,→>, there exists a denumerable matrix M such that M 
 
  X╟P iff X╞MP  
 
Proof.  For the matrix in question let us take Syn itself with all the theorems of ├ as designated 
elements.  Let M-Syn be =<Sen,Th├,∼,∧,∨,→> where Th├={P | ╟P}.  Observe that valuations over 
this matrix are just substitution relations:   ValM-Syn  = SubSen 
 
Now,  X╞M-SynP  iff ∀σ∈ValM-Syn, [∀Q∈X, σ(Q)∈Th├] ⇒ σ(P)∈Th├ 
 
    iff ∀σ∈ValM-Syn, [∀Q∈X, ├σ(Q))] ⇒ ├σ(P) 
 
     iff ∀σ∈ SubSen, [∀Q∈X, ├σ(Q))] ⇒ ├σ(P) 

    iff X╟P.      QED 
 
 A more elegant syntactic matrix, called a Lindenbaum algebra, is that 
formed by  the equivalence classes generated by  ├.   In such a structure the set 
of its logical equivalents "represent" a sentence.  Such a class does indeed 
"stand proxy" for something like a "meaning" or "propositions," at least if we grant  
that  "sameness of meaning" is at some level of abstraction the same as logical 
equivalence. If such a matrix is well-defined, it is in fact characteristic of the 
provability relation.  In general, however, not all ├ relations generate such a 
structure.  Though ┤├  is trivial an equivalence relation, to generate the structure in 
question it must also be a congruence relation (have the substitution property.  
 

Definition 4-45 

   4, Page  225. 



An Introduction to Metalogic  Many-Valued and Intensional Logic 

If ┤├  is a congruence relation on M-Syn=<Sen,Th├,∼,∧,∨,→>, then the quotient algebra 
determined by ┤├, namely 
 

 M├=<{ [P ]├  |  P∈Sen},{Th├},∼,∧,∨,→>,    
 

is called the Lindenbaum algebra for M-Syn. 
 
Notice that corresponding to the set  Th├  of designated values in M-Syn is the 
set of 's designated values 
    {Th├}  =  { [P ]├ |  P∈Th├ }, 
that this set contains one entity only that can serve as a designated value in M├ 
value, and that this single entity, namely Th├, is itself a set, the set of  ├ 
theorems. 
of in Furthermore, the operation [ ]├ preserves designation and non-designation: 
P∈Th├ iff [P]├∈ {Th├}.  The following theorems follow directly from (and illustrate 
how to apply) the general results we have already proven about congruence 
relations and strict homomorphisms between matrices. 
 

Metatheorem 4-24   

If ┤├  is a congruence relation on M-Syn, then the mapping [  ]├ is a strict homomorphism from M-
Syn to M├..  
 

Metatheorem 4-25   

If M├ exists, then ValM├ =  { σ °[  ]├ | σ∈ SubSen} 
 

Metatheorem 4-26.  (Lindenbaum)56   

If M├ exists, then   X╟P  iff X╞M├P 
 

Metatheorem 4-27   

If ≤ is the syntactic part-whole relation, then in general [ ]├ is not  an ≤-order preserving 
homomorphism: for some ├, P, and Q,  it is not the case that ([P]├ ≤[Q ]├   iff  P≤Q). 
 
  

                                            
56 This theorem is not the more famous Lindenbaum Lemma which says that every consistent set 
may be extended to a maximally consistent set. 
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 (Thought Question.)  Let us call a puported  inference relation ├ conceptually 
plausible if its definition consists of some principle (X├P iff …X…P… )) that is 
true of the inference relation ├C of classical logic. (Here “…X…P…” would state 
the definiting conditions the would have to hold for X  and P in order for the 
relation ├ to hold.)  Such a definition would be an "abstraction" from that of 
classical logic.  Think up a definition for a conceptually plausible inference 
relation that is not transitive.  Think up one that is not montonic.  Think up one 
that fails for substitutions.  What implication does failure of subsitutivity have for 
finite axiomatizability?  What would these failures do to the ordinary notion of 
proof 
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III. BOOLEAN ALGEBRAS AND CLASSICAL LOGIC 

A. Boolean Algebras 
In this section we shall be concerned with what is probably the most 

important structures used in used in semantics.  These are the Boolean algebras 
used in the interpretation of classical logic.  As operations on sets they were 
studied by Boole, and as truth-functions by Pierce and Wittgenstein.  They are 
basic to standard set theory and elementary logic, and as a class of algebras 
have many interesting properties that have inspired fruitful generalizations. 

Definition 4-46.  Boolean Algebra. 

 
A structure <B,∧,∨,−,0,1> is a Boolean algebra iff it is a structure satisfying the following 
conditions.  Let x, y and z be arbitrary members of B. 
1. <B,∧,∨> is a lattice, i.e. 
  L1.  x∧y=y∧x; x∨y=y∨x 
  L2.  (x∧y)∧z=x∧(y∧z); (x∨y)∨z=x∨(y∨z); 
  L3.  x∧x=x=x∨x; 
  L4.  x∨(x∧y)=x=x∧(x∨y). 
2. <B,≤> is a partially ordered structure, i.e. by definition x≤y ⇔ x∧y=x ⇔x∨y=y and 
  P1. x≤x; 
  P2  x≤y & y≤z .⇒ x≤z; 
  P3.  x≤y & y≤x .⇒ x=y. 
3. <B,∧,∨> is distributive, i.e. 
  D1.  x∨(y∧z)=(x∨y)∧(x∨z); 
  D2.  x∧(y∨z)=(x∧y)∨(x∧z). 
4. 0 and 1 are respectively the least and greatest element of B in <B,∧,∨,0,1>, i.e. 
  G1.  0≤x≤1; 
  G2.  1∧x=x; 
  G3.  1∨x=1; 
  G4.  0∧x=0; 
  G5.  0∨x=x. 
5. − is a unique complementation operation on one-place operation on <B,∧,∨,−,0,1>, i.e. 
  B is closed under  − and 
  C1. x∧−x=0  
  C2. x∨−x=1  

C3. −x=x, −1=0, −0=1; 
C4. x≤y ⇔ x∧−y=0 ⇔ −y≤−x ⇔ −x∨y=1 
C5. −(x∧y)=−x∨−y, −(x∨y)=−x∧−y. 

Metatheorem 4-28   

<B,∧,∨,−,0,1> is a Boolean algebra iff ∧ and ∨ are binary and − a unary operation on B under 
which B is closed, 1,0∈B and  
  L1.   x∧y=y∧x; x∨y=y∨x;    C2. x∨−x=0  
  D1.  x∨(y∧z)=(x∨y)∧(x∨z);   G2.  1∧x=x; 
  D2.  x∧(y∨z)=(x∧y)∨(x∧z);   G5.  0∨x=x; 
  C1.  x∧−x=1  
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Example.  A three element Boolean Algebra 
 

 
A Boolean Algebra of the Power set of {a,b,c} 

 
We shall let B=<B,∧,∨,−,0,1>  range over Boolean algebras, distinguish one 
algebra from another by prime marks on its various components. 
 

Metatheorem 4-29 

Although any congruence relation for a Boolean Algebra <B,∧,∨,−,0,1> has (by definition) the 
substitution property for ∧,∨,− it does not in general have the substitution property  for ≤.  That is, 
there are some Boolean Algebras with congruence relation ≡such that for some a,b,c in B, a≡b, 
c≡d, and a≤c, yet not(b≤c). 
 
 Consider the function h diagrammed below mapping one Boolean algebra to another and hence 
determining a congruence relation ≡h. That is h  is defined:  Here h(1)=1 h(a)=1, h(b)=0, h(0)=0.)  
Here h(x∧y)=h(x)∧ h(y) and x≡hy & z≡hw .⇒ x∧z≡hy∧w, and likewise for ∨.  But, 0≡hb & 1≡ha & 
0≤1, yet not(b≤0).   QED 
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Example.  A four element Boolean Algebra 
 

 
A Boolean Algebra of the Power set of {a,b,c,d} 

 

B. Filters, Ideals and the Binary Representation Theorem 

A important subset of the universe of a Boolean algebra is the set of 
elemen

 

 

ts above x, or dually the elements below x.  The former is called a filter, 
the latter an ideal.  A maximal filter of x and dual maximal ideal of x have the very 
nice property that they partition the algebra into just two equivalence classes that 
also determine a congruence relation.  In other words, they proved a two element 
Boolean algebra with the "same structure" as the original.  This binary structure 
"represents" the original and allows all Boolean algebras to be simplified into the 
structure on {0,1}.  In the next section we shall apply this representation to the 
matrix interpretations of classical logic, where we shall find that the family of 
Boolean algebras is characteristic of classical deducibility, but by means of the 
representation theorem these may all be simplified to the familiar classical matrix 
on {T,F}.  
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Definition 4-47.  Filters and Ideals.57 

 
Let  B=<B,∧,∨,−,0,1> be a Boolean algebra and A⊆B. 
 
A is a filter on B iff 
   1.  ∀x,y∈B, x∈A⇒x∨y∈A, and 
   2.  ∀x,y∈B, x,y∈A⇒x∧y∈A 
(equivalently, iff ∀x,y∈B, x,y∈A⇔x∧y∈A). 
 
A is an ideal on B iff 
  1.  ∀x,y∈B, x∈A⇒x∧y∈A, and 
    2.  ∀x,y∈B, x,y∈A⇒x∨y∈A 
(equivalently, iff ∀x,y∈B, x,y∈A⇔x∨y∈A). 
 
For any x∈B, by [x]↑ we mean {y|x≤y} and by [x]↓ we mean {y|y≤x} 

Metatheorem 4-30   

For any Boolean algebra  B=<B,∧,∨,−,0,1>a and any x∈B, 
 [x]↑ is a filter on B, and 

[x]↓ is an ideal on B. 
 

Definition 4-48 

For any Boolean algebra  B=<B,∧,∨,−,0,1>a and any x∈B, 
[x]↑ is the prime (or principle) filter on B relative to x and 
[x]↓ is the prime (or principle) ideal on B relative to x. 

 
Example.  The prime filter of a and the prime ideal of its complement a={b,c}. 

  

                                            
57 A note on symbolism.  We abbreviate the conjunction x∈A & y∈A as x,y∈A. 
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Definition 4-49. For any Boolean algebra B=<B,∧,∨,−,0,1>, every filter/ideal of B is prime iff B is 
finite. 

Definition 4-50  

A filter/ideal of a Boolean algebra B is maximal iff  
   1.  for some filter/ideal H, B⊂H, and  
  2.  for any filter/ideal G, if there is a filter/ideal H such that G⊂H, then,  
        if B⊆G, B=G  (i.e. if G is a proper filter/ideal then B is not properly contained in it.) 

Metatheorem 4-31  

For any Boolean algebra B=<B,∧,∨,−,0,1>, 
1. F is a maximal filter/ideal of B iff, ∀x∈F, not(x∈F ⇔ −x∈F). 
2. F is a maximal filter/ideal of B iff, BF is a maximal ideal/filter of B 
3. F is a maximal ideal of B iff, the function h from B into its power set P(B) defined as 

follows: ∀x∈B, 
   h(x)=F if x∈F, and 
   h(x)=B−F if x∉F 
 is a homomorphism from B onto the Boolean  
    <{F,B−F},∩,∪,−,F,B−F> 

Definition 4-51   

Let <X,≤> be a partially ordered structure. 
A chain in <X,≤> is any non-empty subset Y if X such that  if x,y∈Y then  
x≤y or y≤x. 

  An upper bound of a chain Y is <X≤> is a member x of X such that for all y∈Y, y≤x. 
An element x of is a maximal element of <X,≤> iff, for x,y∈X,  x≤y ⇒ x=y  

 
Axiom.  (Zorn's Lemma, equivalent to the Axiom of Choice) 
If every chain of  a partially ordered structure <X,≤> has an upper bound, then <X,≤> has a 
maximal element. 

Metatheorem 4-32   

For any Boolean algebra B=<B,∧,∨,−,0,1>, any x∈B and any ideal H of B that does not contain x, 
there exists a maximal ideal M of B such that H⊆M and x∉M. 

Metatheorem 4-33    

For any Boolean algebra B=<B,∧,∨,−,0,1>,  and any x and y of B, if not(y≤x), then there exists a 
maximal ideal M of B such that x∈M and y∉M. 

Metatheorem 4-34    

Every Boolean algebra is homomorphic to some two element Boolean algebra. 
 

C. Boolean Interpretations of Classical Logic 
 

Like any structure, a Boolean algebra if it has the same caharacter as a 
syntax may be used to fashion a logical matrix for the interpretation of the syntax.  
To do so we must specify in additiona a set of desiganted elements.   Boolean 
algebras have the very nice property that the ordering relation within maximal 
filters replicate classical entailment.  That is, if we sepcify a mximal filter as the 
set set of designated values, it will happen that when ever the premises of a 
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classical valid argument are assigned values in the filter, the value assigned to 
the conclusion will also be in ther filter. 

This replication, which is stated precisely in Theorem 9, is the semantic 
foundation that underlies the fact that Boolean algebras (with maximal filters as 
designated) are characteristic of classical deducibility.  This "characterization" is 
spelled out in a soundness and completeness theorem.  One appraoch is to 
adapt the Henkin compleness proof for sentential logic, which is familiar from 
elementary logic. The proof divides into one for soundness and one for 
completeness.  The  completeness proof remains unchanged, because MC is 
itself a Boolean algebra, and hence the proof that any maximally consistent set is 
satifiable in an MC-valuation automatically establishes that it is satisfiable in a 
Boolean valuation (with {1} as the maximal filter of designated elements.) 

The proof of the soundness theorem needs to be adapted to Boolean 
algebras but the structure of the proof remains the same and the steps are just 
as straightforward as they are it is in the case of MC.  Soundness, recall, is 
estabilished by an induction that shows every provable deduction is valid.  First 
every basic deduction is shown to be valid,   Then, assuming (the induction 
hypothesis) that the arguments for a derivation rule are valid, it is shown that the 
value for the rule is valid.  By the Boolean replication of ╞  by ≤, these  facts 
about validity translate into facts about ≤ in the Boolean structure, and going from 
≤-facts about the inputs of a derivation rule to the relevant ≤-facts about the 
output becomes an exercise in applying the properties of the Boolean operations. 
 We are now ready for the definitions and theorems. 

Definition 4-52.  Boolean Matrices and Sentential Languages. 

 
In this section we shall let Syn=<Sen,f∼,f∧,f∨,f→> range over SL syntaxes . 
 
By a Boolean matrix we mean any  M=<B,F,∧,∨,−,0,1> such that 
   1.   <B,∧,∨,−,0,1> is a Boolean albegra, and 
  2.    F is a maximal filter on <B,∧,∨,−,0,1>. 
The set of all Boolean matrices is BM. 
 
By a Boolean (sentential) language is meant <Syn,BM> for any sentential syntax Syn. 
 
By the classical matrix MC we mean the Boolean matrix <{0,1},{1},∧,∨,−,0,1> in which the 
operations are defined as follows: 
        ║~║∧│T F ║∨│T F ║→│T F 
       ─╫─╫─┼────╫─┼────╫─┼──── 
       T║F║ │T F ║ │T T ║ │T F  
        F║T║ │F F ║ │T F ║ │T T 
 
We shall continue to use ├C to refer to the natrual deduction deducibility relation relation for 
classical logic defined in Section 2. 
 

If Y  is some finite subset {y1,...,yn} of B, then we shall use ∧{f(x)}x∈Y to mean f(y1)∧...∧f(yn)  
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Metatheorem 4-35    

In  any Boolean matrix M,   X╞MP  iff  ∧{v(Q)}Q∈X ≤ v(P) 
 

Metatheorem 4-36     

If  L  be a Boolean sentential langauge, then     X├CP iff X╞LP. 
 
(Proof is as sketched above)   
 
The ordinary completeness proof which states that classical deducibility is 
characterized by entailment over the two-valued matrix MC is then a corollary of 
the this Boolean characterization theorem plus the bivalent representation 
theorem. 
 

Metatheorem 4-37    

If  L  be a Boolean sentential langauge, then     X├CP iff X╞MCP. 
 
 Of course, there is a clear sense in which Theorem 11 is stronger than 
Theorem 10, and the stremlined Henkin completeness proof that estabilishes 
completeness for interpretations over just MC is a more direct route to it.  The 
weaker interpretaion, however,  is interesting for two reasons.  The first is 
conceptual, to which we now turn. 
 

IV. FREGE'S INTENSIONAL SEMANTICS 

 
  There has long been a tradition in logic and philosophy that logic and the 
"propositions" it expresses are not entities that exist in the common and garden 
material world but rather have a special status as intensional entities.  Aristotle 
spoke about genera and species which are not the same as sets, and are indeed 
antitonic to them.  Conceptually the genus G and differential D are "contained" in 
the species because they are used to define it:  if we use the symbol + to indicate 
the process of "conceptual addition" operation, then we might symbolize the 
relationship as S=D+G, and hence G≤S.  But the extensions of genera and 
species fall in a reverse ordering: Ext(S)=Ext(D)∩Ext(G), and hence S⊆G.58 
 This Aristotelian tradition lasted through the Middle Ages.  The rationalists 
too spoke of logical truths as describing conceptual inclusion.  But it is Frege's 
use in the nineteenth century of intensional entities as part of an informal 
semantics of  indirect statements (S believes that P) that is the inspiration for the 
study of intensions in modern logic.   

                                            
58 A patially ordered structure <X,≤> is antitonic relative to � to a partially ordered structure 
<Y,≤′> (and h is an antitone mapping from the first to the second) iff for any x,y∈X,  x≤y iff h(y) 
≤h(x). 
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 Belief statements have the distinctive logical property that substitution of 
material equivalents and identities within the belief clause is invalid. 
It is invalid to infer (3) from (1) and (2).  (The example is Russell's) 
 
(1)   George III believes Scott is Scott. 
(2)   Scott is the author of Waverley. 
(3)   George III believes Scott is the author of Waverley. 
 
 
Likewise {S believes P, P↔Q}  does not entail S believes P.  What is the 
explanation of this failure?  The answer can be put in algebraic terms. 

We know that substitutivity of material equivalents is a manifestation of 
homomorphic structure.  In more traditional semantic terms this property is called 
the compositionality of extension or reference.   
 
Principle 1.  The Compositionality of Reference. The referent of a whole expression is 
determined in a rule-like way from the referents of its parts.   
 
Algebraically, the principle asserts that there is a function g on "referents" that 
corresponds to a grammatical operation f, and that the reference relation Ext is a 
homomorphism mapping expressions to referents: Ext(f(e1,...,en)) = 
g(Ext(x1),…,Ext(xn)).59  Fore example, if f is a grammatical operation that 
generates sentences then  the referent of the sentences would be a truth value, 
i.e.  Ext(f(e1,...,en))∈{T,F}.  The compositionality of reference then would require 
that g would be a function mapping the semantic values of Ext(e1),...,Ext(en) to 
that very truth-value.  

Belief statements, however, appear to be a counter-example to the 
principle.  Let f(a,P)=BelaP. (We read BelaP as "a believes that P".)  Let Ext(a) be 
an object in the domain and Ext(P) be a truth-value.  Let g be the semantic "rule" 
corresponding to f.  Then it is easy to show, it seems, that g is not a function. 
      
     On the one hand:   
 

T   =  Ext(BelGeorege IIIScott is Scott)  
=  g(Ext(George III),Ext(Scott is Scot)) 
=  g(Ext(George III),T) 
 

     But on the other hand: 
 

F  =  Ext(BelGeorege IIIScott is the author of Waverley)  
=  g(Ext(George III),Ext(Scott is the author of Waverley)) 
=  g(Ext(George III),T) 
 

The semantic "rule" g  for belief sentences is a relation not a function. 

                                            
59 The notation Ext for the reference function, and Int (below) for assigments of intensions is due 
to Richard Montague.  Rudolf Carnap is responsiblle for fixing the terms of art extension and 
intension to these entities. 
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Frege's actually tries to avoid this conclusion and proposes an ingenious 
analysis that preserves functional compositionality of reference.  He suggests 
that words, simple and complex, have intensions (he calls them senses but we 
might also call them "meanings") as well as extensions (which he calls referents). 
Senses too obey a rule of compositionality. 
 
Principle 2.  The Compositionality of Intensions.  The intension of the whole expression is 
determined in a rule like manner from that of its parts. 
 
Algebraically, Frege is postulating a structure of intensions homomorphic to 
grammatical structure.  The ordinarily language terms we employ to name this 
homomorphism is the verb "express."  We say a term or sentence "expresses" an 
idea or thought.  Frege suggests that such locutions are informal ways of 
indicating the important semantic that holds between expressions and their 
intensions.    

The algebras of intensions and extension, moreover, are related.  Senses, 
Frege says, determine referents.  
 
Principle 3.  Sense Determines Reference.  The extension of an expression is determined in a 
rule-like way from its intension. 
 
Algebraically, the principle says that  there is a homomorphism from intensional 
structure to extensional structure.  There is no traditional name for this mapping, 
though some philosophers of language have called it the "reality function."   Here 
we shall merely call it  R.   
  Frege now applies these principles to explain the logical workings of 
belief.  His idea briefly is that words which occur within the scope of the belief-
predicate (or verb or operator or whatever it should be called) do not in those 
occurrences have there usual referents.  Rather they refer to the intension that 
they usually "express."  Terms in Frege's view, then, are systematically 
ambiguous.  Most of the time, outside the scope of verbs like believes, they stand 
for their normal referent.  Once they are understood this way, they do not violate 
the three basic principles of compositional semantics. 

The details of Frege's theory, however, we shall postpone to the next 
section -- they are actually rather controversial. In the remaining part of this 
section, we shall focus on developing these ideas for the more ordinary example 
of sentential logic. 

One of the lovely properties of Boolean interpretations of sentential logic is 
that they may be used to provide a detailed mathematical theory of the 
operations of extensions and intensions.  Extensions are organized in the usual 
structure of truth-values, i.e. the classical matrix MC.  Intensional structure, 
however, is one that organizes the intensions of sentences.  In modern logic 
these are usually called propositions.  (Frege called them thoughts as well.  In 
traditional logic a proposition is a sentence.)  But what are propositions? 
 One interpretation is in terms of "possible worlds."  A sentence's truth 
limits what is possible to those situations in which it is true.  A more detailed, 
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informative, meaningful sentence -- these terms are roughly synonymous -- 
restricts possibilities more than an less detailed, less informative, or less 
meaningful sentence.  The "set of worlds in which a sentence P is true" is roughly 
the "information content" of P, and one such set is characteristic of each 
"proposition."  Indeed, modern semantics employs just such world-sets as 
proxies for informal "senses."  The world-sets may be put into structures and 
these structures made to exhibit all the structural features intuitively attributed to 
propositions.  Moreover, to an algebrist if two sorts of entities exhibit exactly the 
same structure they are essentially identical.  Naïve "sense" are reduced to or 
replaced by mathematically constructed proxies. 
 The intensional structures of world-sets appropriate for sentential logic is 
the Boolean algebra that has a universe consisting of a family of sets of worlds 
called propositions) and which relates these sets by the Boolean operations on 
sets.  
 Let us now state the formal version of Frege's sentential semantics.  We 
will postulate a set of possible worlds, traditionally called K.  These propositions 
will be world-sets, and are intuitively the "information content" of some sentence.  
Since propositions are world-sets, they are subsets of K.  The universe of the 
intensional structure, therefore, is inhabited by subsets of K, and "the universe of 
intensional structure"  is identical to the set of all of K's subsets.  This set is 
called the power set of K.  Since propositions are sets, the operations in the 
structure organaizing them may be seen as set theoretic intersections, union, 
and complimentation.  In addition there is a special operation ⇒ used to interpret 
the conditional, and defined in terms of complementation and union.  An 
intensional interpretations that assign a proposition to each sentence  is then 
simply a valuation (homorphism) from syntax to  intensional structure.  With the 
proposition that P, symbolized Int(P), in hand, it is possible to find P's extension 
(truth-value) in a world:  P is true in k iff k∈Int(P).  The reality function, called Rk, 
that assigns to each P in k a truth-value is then easily defined: (Int(P))=T if  
k∈Int(P) and Rk(Int(P))=F if  k∉Int(P). 
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Frege's Semantics of Intensional and Extensional Structures for Classical Sentential 
Logic. 

Definition 4-53   

An intensional structure for sentential logic relative to a set K (called the set of possible 
worlds) is <P(K),∩,∪,⇒,−,∅,K> such that P(K) (the power set of K) is the set of all subsets of K, 
and  ∩,∪,− are the standard set theoretic operations on P(K)  (here x⇒y =def−x∨y)  and ∅ is the 
empty set. 
 

Definition 4-54   

If M is an intensional structure, then  ValM relative to a sentential syntax Syn is called the set of 
intensional interpretations of Syn.  We let Int range over this set. 

Metatheorem 4-38.  (Principle 2. Intensions are Compositional).  

Any intentional interpretation Int of a sentential syntax Syn relative to an intensional structure I is 
a homomorphism from the syntax to the intensional structure.  

Definition 4-55   

We shall call the reality function relative to an intentional interpretation Int (over an intensional 
structure  I) and a possible world k of I that function Rk from KxSen to {T,F} such that  
 R(k,Int(P))=T if  k∈Int(P)   
 R(k,Int(P))=F if  k∉Int(P)   
Instead of R(k,Int(P) we shall write Rk(Int(P)), which is somewhat easier on the eyes.  If we use 
[Int(P)]∇ to indicate the characteristic function of Int(P), i.e. the function that maps k to T if k∈Int(P) 
and k to F if k∉Int(P), then Rk may be alternatively defined as: 
 Rk(Int(P))=T if (Int(P))(k)=T 
 Rk(Int(P))=F if (Int(P))(k)=F 
(As we shall see, for some purposes it is even more convenient to think of this characteristic 
function as the proposition Int(P) intself.) 
 

Metatheorem 4-39.  (Principle 3. Intension Determines Extension.)   

ValMC = {Int°Rk | Int is an intentional interpretation on an intensional structure  I of Syn, k is a 
possible world in K of  I,  and Rk is the reality function relative to Int.} 
 
Proof Analysis.  The proof requires establishing  that any function v on  Sen  defined as 
   v(P)) =  Rk(Int(P))  
qualifies for membership in the set of classical valuations ValMC over MC.  This is done by 
showing that it assigns the right truth-values to atomic sentences and then assigns truth-values to 
molecular sentences in a manner that conforms to the classical truth-tables. 
 Second, it must be shown conversely that if v ∈ValMC then there is some Int and k of K such 
that v= Int°Rk  i.e. for any P, v(P)) =  Rk(Int(P)).  Select that Int that assigns to each atomic P a set 
containing the world some world k iff v(P))=T.  It will then follow (by induction) that for all Q 
(atomic and complex), that  

 Metatheorem 4 -40.   (Principle 1.  Extensions are Compositional.)  

Any v in ValMC = {Int°Rk | Int is an intentional interpretation on an intensional interpretation  I of 
Syn, k is a possible world in K of  I,  and Rk is the reality function relative to Int.} is a homoprphism 
from the syntactic structure Syn to MC. 
 We shall finish by noting in addition that in this semantics one could 
interpret logical inference intensionally.  Classical logic is the entailment relation 
determined by the class of Boolean matrices determined by intensional 
structures in which a maximal filter is selected as distinguished elements. 

   4, Page  238. 



An Introduction to Metalogic  Many-Valued and Intensional Logic 

Likewise, according to Theorem 9 above, the ordering relation ⊆ on propositions 
replicates entailment.  That is, entailment is a kind of conceptual inclusion. 
 
 

Definition 4-56   

An intensional matrix for sentential logic ( in the class IMSL) is any Boolean matrix 
<P(K),F,∩.∪.⇒, −,∅,K> relative to the Boolean structure <P(K),∩,∪,⇒,−,∅,K>. 
 
Metatheorem 4-41  

If  L=< Syn, IMSL> is a Boolean sentential language, then     X├CP iff X╞IMSLP. 
 

Metatheorem 4-42   

For any intensional  matrix M and any Int in ValM,   X╞MP  iff  ∧{Int(Q)}Q∈X ⊆ Int(P). 
 
Corollary. For any intensional  matrix M and any Int in ValM,  

     ∧{Int(Q)}Q∈X ⊆ Int(P)  iff   X╞CP   iff  X├CP 

 
The set of possible world structures can be narrowed to a special one 

equally characteristic of classical entailment.  This is the structure in which the 
worlds are themselves classical valuations over the bivalent matrix MC.  Indeed, 
classical valuations are "worlds" in the sense that they record a story: the set of 
sentences true in that world.  For sentential logic, in other words, classical 
valuations themselves may serve adequately as the only notion needed for a 
Fregean intensional semantics . 
 

Definition 4-57  

The classical valuational structue for a sentential syntax Syn  is   
   IC=<P(ValC), ∩,∪,⇒,−,∅, ValC> 
  Let B M IC  be the set of all Boolean matricies relative to IC. 
 

Metatheorem 4-43   

For any M∈B M IC, any Int∈ValM, and any v∈Int(P),   v(P)=Rv(P) 
 

Metatheorem 4-44   

Let L=<Syn, B M IC> for a sentential syntax Syn. For all M∈ B M IC and any Int∈ValM, 
     ∧{Int(Q)}Q∈X ⊆ Int(P) iff   X╞CP 
 

There exists in addition a special family of IC interpretaions.  This family 
alone is charcteristic of classical entailment and is so independently of the choice 
of designated values. That is, these interpretations differ only in their choice of 
designated values, but each alone is equally characteristic of classical entailment 
and is so in a manner that does not depend on its choice of desigated values.  
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The extra step then of introducing the matricies with its designated values in 
addition to IC is for these interpretations is unnecessay.  That is, we might simply 
identitfy them or more precisely defined a notion of intensional interpretaion 
directly from IC that omits mention of designated values all together.  Classsical 
entailment then proves to be simple set inclusion over valuations.  This special 
interpretation, which we shall call IntC,  is that in which IntC(P) is the truth-set of P 
in classical bivalent semantics, i.e. ValMC(P). 

Metatheorem 4-45 

Let Int be an intentional interpretaion of IC relative to some M in B M IC such that  
    Int(P) = { v∈ValMC(P) | v(P)=T } 
  Then,   
     ∧{Int(Q)}Q∈X ⊆ Int(P) iff   X╞CP 
 

Definition 4-58   

Let the preferred classical interpretation of a sentential syntax Syn be that homomorphism 
from Syn to IC, which we shall call IntC, such that IntC(P) = {v∈ValMC(P) | v(P)=T }. 
 

Metatheorem 4-46    

∧{IntC(Q)}Q∈X ⊆ IntC (P)   iff   X╞CP 
 
 

V. INTENSIONAL LOGIC 

 

A. The Idea of Intension in the History of Philosophy and Logic 
 
 In the last section we met briefly for the first time the main subject of this 
course, the concept of meaning as studied in modern logic.  We saw that it was 
an idea introduced by Frege to explain the logic of sentences constructed from 
propositional attitude verbs like believe.  Understanding what sort of problem 
Frege identified and what sort of theory he offers as a solution goes a long way 
towards explaining the dominant way in which logicians have conceived of the 
concept of meaning. 
 Meanings for Frege and the tradition that follows him are explanatory 
entities introduced as part of a "science" designed to explain some "data."    The 
date in question are facts about particular logical inferences.  The explanation is 
a general theory of inference.  The theory incorporates various "laws" describing 
the behavior of meanings and these laws together with other parts of the theory 
entail the observed data.   
 The general shape of the over-all theory of inference is the familiar one of 
modern formal semantics.  Though this sort of theory was only vaguely 
suggested in Frege's own writings it has since become standard.  Validity is 
conceived of as some sort of truth-preserving relation among sentences in a 
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formal syntax.  The goal of the theory is to define this relation.  The standard 
approach is to first define the notion of truth and to define truth as the 
correspondence of sentences with "the world."  In the process the theory must 
met certain standards of adequacy.   

Prominent among these standards is that the theory be mathematically 
rigorous.  In practice this means that all its ideas must be well defined, and its 
assertions proved.  The background theory usually assumed to get the process 
off the ground is set theory.  In principle this should be some version of axiomatic 
set theory from which the paradoxes have be expunged, but in practice theorists 
use the naïve version (with an unrestricted axiom of comprehension) on the 
understanding that its results are "modulo axiomatization."  That is, its results 
should properly be read as they would be written in an axiomatic version.  
(Proposition referring to paradoxical sets should be read as referring to "classes" 
or reformulated in favor of the open sentences that would naively define the set.)  

A second criterion, which is responsible for much of the interest 
philosophers have in the theory, is that the definitions it offers of key concepts be 
conceptually plausible.  Central among these are the concepts of "world," 
correspondence," and "truth."  Frege's theory in addition employs "meanings" 
above and beyond standard entities in the world.  The philosopher's ears 
immediate prick up.  These are ideas they have been puzzling about for 
millennia.  Any global "scientific" theory in which they play a role  they find 
interesting indeed.  A central concern in the theory is then that these key 
definitions conform, in the rough and ready way scientific terms always do, to 
previous usage, both in ordinary language and in earlier intellectual traditions.   

Meanings are particularly intriguing. Philosophers have "postulated" queer 
entities above and beyond the common sense denizens of "the world" in order to 
explain the unknown. Since (at least) Plato they have done so to explain 
linguistic truth.  Often the same entity has served multiple purposes.  Plato's 
Forms are used in explanations in ontology, epistemology, ethics and semantics.  
So are Aristotle's genera and species and the universals of the Middle Ages.  
The ideas of the rationalists and empiricists are likewise put to various uses 
including semantics. 

To see more clearly the link of Frege's idea of meaning to these earlier 
theories is necessary to be clear about the exact problems both Frege and the 
earlier theories were trying to solve, about the properties of the entities used to 
solve them.   

Frege's problems and entities take a new direction. One tradition departs 
in a major way from Frege in that is conceives of logic as something mental and 
non-linguistic. The rationalists and Kant think of inference as conceptual inclusion 
or instances of mental laws.  Even this tradition however is related to Frege.  
Frege is investigating the semantics of belief-sentences.  These are sentences 
that describe "mental states."  The so-called intentionalist tradition in logic is 
interested in part in these same mental states.  Aristotle and the medievals 
described the mind (animus) as containing thoughts (ratio) that contained a 
mental content (intentio).  The content determines the qualities ascribed to the 
thought's object but in such a way that the though itself does not have these 
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qualities.   The ideas of the rationalists and empiricists are similar.  Brentano 
refers to the special features of such entities as the intentional and calls it the 
mark of the mental.  Frege's meanings are the content of beliefs but in a linguistic 
fashion.  They are the entities needed to be hypothesized (as referents of indirect 
statements in Frege's original theory) in order to explain the truth-conditions of 
belief-statements.  Indeed he sometimes calls the senses of sentences thoughts.   
In is not a mistake then to see Frege's account as a recasting in linguistic terms 
of the intentionalist tradition.  It is largely for this reason that Carnap coins the 
term intension (with an s) to refer to Frege's sentence meanings.  The change in 
spelling indicates that the idea is recast into a new context, that of semantic 
theory.   

It must be stressed that in taking this "linguistic turn" Frege imports a host 
of considerations not present in the intentionalist tradition.   

One such concern is an explanation of the public inter-personal nature of 
linguistic communication.  Frege's meanings, he says, are public in the sense 
that everybody understands the same meaning for the same sentence.  Hence 
they are not part of an individual's mind.   Not every intentionalist thinks 
intentions are private.  In the Platonic tradition, for example, our mutual 
understanding consist of us both having a metal apprehension of one and the 
same "public" Idea, which is held to exist outside our minds in some public place 
like Platonic Heaven or God's soul.  But many intentionalists are not concerted 
with language and conceive of intentions as parts of an individuals mind. 

A second characteristic of Frege's linguistic approach is its deep link to 
explaining logical inference conceived of as a relation among sentences.  He falls 
into an older tradition that includes Plato and Aristotle, the stoics, and (most) 
medieval logicians. The general approach has several key features: 

1. views the syntactic form as determining a arguments validity,  
2. its validity is conceived of as a truth-preserving relation among 

sentences, and 
3.  truth is defined as correspondence with the world. 

Within the tradition individual theories differ depending on what semantic 
phenomenon they are tying to explain.  The general strategy is to see if the 
problem may be solved by postulating some semantic entities with special 
properties tied to reference.  Some of these entities are quite like Frege's and 
some not.  Universals, for example (as in the semantics of Plato's that appeals to 
forms or of Aristotle's that employs secondary substances and qualities), are 
used to explain what predicates refer to, not as in Frege to explain inferences 
about belief-statements.  (However, as mentioned above, Plato's ideas and 
Aristotle's impressions of forms on the soul are used as the objects of knowledge 
and belief states.)   

Closer to Frege are the lecta (literately the-what-is-read or the-what-is- 
meant) which the stoics postulated as the "meanings"  of sentences. These lecta 
have parts, and the lecton of the whole sentence appears to be a function of that 
of its parts.  These complexes with a structure that mirrors that of syntax are also 
the objects of knowledge and belief.  A similar view was arrived at independently 
in the Middle Ages by Ockham who posited a level of "mental language" between 
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spoken language and the objects words stand for.  Much like Frege, 
conceptualists like Ockham and Buridan explain the reference of words (the 
mediaeval cocept was called supposition and it was viewed as relative to a 
contexts of speech) as working through intermediate steps:  words are paired by 
convention with "concepts" (terms of mental language) and concepts in turn 
naturally determine a referent in the world,  Such mental language is also the 
object of knowledge. 

Though neither the stoics nor Ockham develop a complete theory of 
inference, their accounts do share an important feature that is lacking in the 
intentions of the rationalists and empiricists: they posit the three levels of parallel 
homomorphic structure.  

From this introduction it is possible understand the motivation for the 
algebraic approach taken in these sections.  The algebra at once exhibits the 
mathematical rigor required of a formal theory and does so in a conceptually 
perspicuous way: it displays with clarity why validity is a truth-preserving relation 
and how truth as correspondence to the world falls out of a more general theory 
of language functioning as part of a three level combination of homomorphic 
structures.  

 

B. Modal Operators and Cross-World Structure. 
 

Frege observed that we cannot know from the extension of a sentence what 
the extensions of a belief sentence will be in which the sentence functions as an 
indirect statement.   This general failure of "extensionality" (marked by the 
invalidity of the substitutivity of co-extensional parts) is a feature of other verbs 
that take indirect statements as complements want, desire, hope, intend) and of 
various sentential adverbs (necessarily, possibly, )  

In this section a number of examples of intensional languages will be 
developed using the ideas of Carnap and Richard Montague.  Montague succeed 
in capturing the algebraic properties of intensions by set theoretic proxies that 
are essential functions from possible worlds to the extensions of expressions in 
those worlds.  The resulting theory is extremely elegant and quite abstract.  Its 
abstractness moreover allows it to characterize the structural properties of 
"meanings" without making any claim about what sort of entities they might be 
proxies for in linguistic reality.  Montague semantics, for example, has been 
embraced by those who think intensions are literally mental entities (parts of the 
brain), those who think they are abstract like mathematical entities, and those 
who think they are essential social phenomena. 
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Abstract Characterization of Fregean Intensional Semantics 
 
Le us adopt the following set theoretic notation.  If A and B are sets, then by AB is meant the set 
of all functions from B into A.  By 2 we mean the set of classical truth-values {T,F}={0,1}. 
Let adopt the following syntactic conventions.  Let Syn = <A1,...,Am,f1,...,fn> be a syntax such that 
for some Ai =Sen. Let us use ESyn, called the set of (well-formed) expressions of Syn, to stand 
for U{A1,...,Am}, and let e range over ESyn. We shall let Syn range over syntaxes 
<A1,...,Am,f1,...,fn>. 

Definition 4-59  

By a Fregean intensional structure is meant a matrix structure I of Syn.  That is  I=<B1,...,B 
m,h1,...,hn> such that <B1,...,B m,h1,...,hn> off like character to Syn such that each hi is a function.   
 
Here B m+1 is the intended set of designated values used to define validity and each Bi is the set 
of possible "intensions" for expressions of category  Ai.  We let I=<B1,...,B m,h1,...,hn>  range over 
such structures.   
 
 

Definition 4-60   

If I is an intensional structure relative syntax Syn, then its set of matrix valuations ValI is called the 
set of Fregean intensional interpretations of Syn.  We let Int range over this set. 

Metatheorem 4-47.   (Compositionality of Intension: Intensions of Parts Determine Intension of 
the Whole).  

Any Int of a syntax Syn relative to I is a matrix homomorphism from the syntax to the intensional 
structure, and ≡Int is an equivalence relation with the substitution property. 
 
(In bivalent languages an interpretation is a homomorphism in the unqualified sense from Syn to 
I.) 

Definition 4-61   

Let K be a non-empty set, called a set  of possible worlds, and let k range over K.  Then, by a 
reality function relative to I, Int, and K we mean any function  on domain ESynxK.  We let R 
range over the reality functions relative to I and Int, and abbreviate R(e,k) by Rk(e). 

Definition 4-62   

By the extensional interpretation relative to I, Int, K and R is meant that function Ext on 
domain ESynxK defined as follows: 
    Extk(e)= Rk(Int(e)). 
We let Ext stand for the extensional interpretation relative to I, Int, K, and R, and let Rk and Extk 
stand respectively for R and Ext relativized to k, i.e.  
 Rk is that function f on ESyn such that f(e)= Rk(e). 
  Extk is that function g on ESyn such that g(e)=Extk(e). 

Definition 4-63   

By a Fregean (intensional) language is meant any matrix language  <Syn,F> such that for each 
Fregean intensional structure (matrix) I of F, there is some non-empty set K (called the set of 
possible worlds of I) and some reality function  R (called the reality function of I) such that any 
intensional interpretation (i.e. matrix valuation) Int in ValI is defined relative to I and K, and R is 
defined relative to I, Int, and K. 
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In the remained of this section we shall let <Syn,F>  range over Fregean intensional languages. 
We shall also use the set theoretic notation AB as a name for  the set of all functions from B into 
A. 

Metatheorem 4-48.  (Sense Determines Reference).   

For any <Syn,F>, any I∈F with possible world set K and reality function  R,   Extk  = Int ° Rk. 

Definition 4-64.   

By the Fregean extensional structure relative to <Syn,F> such that and to I∈F with possible 
world set K and reality function  R* is meant E=<C1,...,C m+1,R1,...,Rn>, such that Ci={ Extk(e)| 
k∈K and e∈Ai}, and for j=1,…,n, Rj={<Extk(e1),…, Extk(en), Extk(en+1)> | fj(e1,…,en)=en+1}.  Let 
E=<C1,...,C m+1,R1,...,Rn>  range over the extensional structures relative to <Syn,F>, I, K, and R*. 

Definition 4-65   

1.  If e=fi(e1,…,en) and there is some extensional structure of <Syn,F> such that  is not a function 
then any occurrence of an expression within e is said to occur in an intensional context and e  is 
said to be non-extensional and opaque. 
2.  E=<C1,...,C m+1,R1,...,Rn> (relative to <Syn,F>, I, K, and R*  is said to be extensional iff each 
Rj is a function for j=1,…,n.   
3.  I (relative to <Syn,F> K, and R is extensional iff each E relative to <Syn,F>, I, K, and R* is 
extensional.  
4.  The language <Syn,F> is  extensional iff for any K and R*, and for any I∈F  defined relative to 
K and R*, I  is extensional. 

Metatheorem 4-49  

 The following are equivalent: 
1.  E=<C1,...,C m+1,R1,...,Rn> relative to <Syn,F>, I, K, and R* is extensional. 
2.  E=<C1,...,C m+1,R1,...,Rn>  is a logical matrix and ValE for Syn is { Extk | k∈K }. 
3.  For all k∈K,  Extk is a matrix homomorphism from Syn to E. 

Metatheorem 4-50.   (Compositionality of Extension: Extension of Parts Determines Extension of 
the Whole).  

In an extensional Fregean language, every extensional interpretation Extk, for any k∈K, is a 
matrix homomorphism from Syn to E, and ≡Extk is an equivalence relation with the substitution 

property.  (When ≡Extk is restricted to Sen it is called material equivalence.) 

 
Montague's Set Theoretic Characterization of Fregean Intensions 

Definition 4-66  

By a Montague structure relative K  is meant a Fregean intensional structure interpretation I of 
Syn relative to a world structure such that  I=<BK

1,...,BK
m+1,h1,...,hn>. 

 
Here Bm+1

K is the intended set of designated values used to define validity, and each Bi
K is the set 

of possible "intensions" for expressions of category  Ai.  We let IM range over such structures.   
Intuitively,  K is a set of possible worlds, and we shall call its power set P(K), the set of 
propositions, and let π,ρ,θ  range over P(K). We shall call the set {0,1}K of characteristic 
functions of propositions the set of sentential intensions. If f∈{0,1}K is a characteristic function, 
let us use πf to name the proposition of which it is the characteristic function.  Conversely, if π is a 
proposition let πc be its characteristic function.We let πc

,
 ρc, θc  range over {0,1}K. 
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Classical Logic and Classical Sentential Operators 
Syntax: functions f∼,f∧,f∨,f→ on signs previously defined. 
Intensional Semantics.  Let π and ρ range over P(K). Relative to a non-empty set K (of possible 
worlds) g∼ is the 1-place function on {0,1}K, and g∧,g∨,g→ are the 2-place functions on 
{0,1}Kx{0,1}K such that 
     g∼(πc)=(−π c) 
     g∧(πc, ρc) = (π ∩ ρ)c 
     g∨(πc, ρc) = (π ∪ ρ)c 

     g→(πc, ρc) = (π ⇒ ρ)c 

Definition 4-67   

L=<SL,F> is said to be classical for sentential Montague logic iff SL=<Sen,f∼,f∧,f∨,f→> is a 
sentential syntax and F is the set of all logical matrices M such that for some non-empty set K, 
M=<2K,{ 2K },g∼,g∧,g∨,g→>.  
 

Metatheorem 4-51.     SL is extensional, and   X╞SLP   iff   X╞CP   

 
(Alethic) Modal Operators 
Syntax. f� and f◊ are defined as the 1-place operations on signs such that f (P)=�P and  f◊(P)=◊P. 

�
Intensional Sematics. W=<K,≤> such that K is non-empty and ≤ is a binary relation on K(the 
alternativeness relation) is said to be 
  an M world structure iff ≤ on K is reflexive; 
  a B world structure iff ≤ on K is reflexive and symmetric; 
  a S4 world structure iff ≤ on K is reflexive and transitive;  
  a S5 world structure iff ≤ on K is reflexive, symmetric, and transitive. 
Relative to  a worlds structure W=<K,≤>, g

�
 and g◊ are defined as 1-place operations on  {0,1}K  

into {0,1}K such that  
  g

�
(πc)(k)=T if for all k′ such that k≤k′, πc(k′)=T, and  

  g
�
(πc)(k)=F if for some k′ such that k≤k′, πc(k′)≠T.  

  g◊(πc)(k)=T if for some k′ such that k≤k′, πc(k′)=T, and  
  g◊(πc)(k)=F if for all k′ such that k≤k′, πc(k′)≠T.  
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Definition 4 -68 
L=<Syn,F> is said to be a M, B, S4, or S5 sentential modal (Montague) language respectively 
iff Syn=<Sen,f∼, f�, f◊,f∧,f∨,f→> and F is the set of all logical matrices M such that for some M, B, 
S4, or S5 world structure W=<K,≤> respectively, M=<2K,{Kc},g∼,g�, g◊,g∧,g∨,g→>.  (We shall use 
the letters M, B, S4, and S5 to range over such languages. 
 

Metatheorem 4-52     

If L∈{M,B,S4,S5}, then L is non-extensional.   
 

Metatheorem 4-53   

�P ╡╞    L ∼◊∼P, and ◊P ╡╞               L  ∼�∼P. 

Definition 4-69  

If � and ◊ produce valid arguments as stipulated in the consequences of the last theorem, they 
are called duals.  More generally, of E and E′ are sentential operators, then  when (EP ╡╞    L ∼E′∼P, 
and E′P ╡╞               L  ∼E∼P),  E and E′ are called duals.  

Metatheorem 4-54     

 1.  If L∈{M,B,S4,S5}, then P╟L�P and �P╞LP. 
 2.  If L∈{M,B,S4}, then �(P→Q)╞L�P→�Q.  
 3.  If L∈{B,S5}, then �P╞L�◊P.  
 4.  If L∈{S4,S5}, then �P╞L��P. 

Definition 4-70  

If � and ◊ produce valid arguments as stipulated in the consequences of the previous theorem in 
the pattern appropriate to the languages M, B, S4,or S5, then � and ◊ are called M, B, S4,or S5 
operators respectively.  Likewise if a sentential operator E is replace by � and E′ by ◊ with the 
result that the replacements are M, B, S4,or S5 operators respectively then E is called an 
respectively an M, B, S4,or S5 necessity operator and E′ a possibility operator for  
respectively M, B, S4,or S5.  
 
Epistemic Descriptive Operators 
Syntax. fK and fB, are defined as the 1-place operations on signs such that fK(P)=KP, and 
fB(P)=BP. 
Intensional Sematics.  W=<K,≤K,≤B> is called an epistemic world structure iff  K is a non-empty 
( of epistemically possible worlds) and ≤K and ≤B are transitive binary relations on K  (the 
empistemic and doxastic alternativeness relations respectively) such that ≤K ⊆ ≤B.  In addition 
≤K is reflexive, and symmetric.  Relative to  an epistemic world structure W=<K,≤>, gK and gB are 
defined as 1-place operations on  {0,1}K  into {0,1}K such that  
  gK(πc)(k)=T if for all k′, k≤Kk′, πc(k′)=T; gK(πc)(k)=F if for some k′, k≤Kk′, πc(k′)≠T.  
  gB(πc)(k)=T if for all k′, k≤Bk′, πc(k′)=T; gB(πc)(k)=F if for some k′, k≤Bk′, πc(k′)≠T.  

Definition 4-71.  

L=<Syn,F> is said to be a sentential epistemic (Montague) language iff Syn=<Sen,f∼, fK, 
fB,f∧,f∨,f→> and F is the set of all logical matrices M such that for some epistemic world structure 
W=<K,≤K,≤B>, M=<2K,{ 2K },g∼,gK, gB,g∧,g∨,g→>. 
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Metatheorem 4-55    
If L is a sentential epistemic language, then  
   1. L is non-extensional, 
   2. K is an S5 modal operator (hence KP╞LP, and KP╞LKKP), 
   3. KP╞LBP 
   4. BP╞LBBP 
 
Tense Operators 
Idea.  We let time branch towards the future and introduce two operators H and F for future 
tenses (HP is read "it has to be that P" and FP is "it will be that P") and two operators P and W for 
past tenses (PP is read "it has to have been that P" and FP is "it was the case that P"). 
Syntax. fH, fF, fP, and fW are defined as the 1-place operations on signs such that , fH(P)=HP, 
fF(FP)=P, fP(P)=PP, and fW(P)=WP. 
Intensional Sematics.  W=<K,≤> is a temporal world structure iff K is a non-empty set (of 
times) and ≤ is reflexive and transitive binary relation (of temporal order) on K.  Then, relative to 
a temporal world structure W=<K,≤>, gH, gF, gP, and gW are defined as 1-place operations on  
{0,1}K  into {0,1}K such that  
  gH(πc)(k)=T if for all k′, k≤k′, πc(k′)=T; gH(πc)(k)=F if for some k′, k≤k′, πc(k′)≠T.  
  gF(πc)(k)=T if for some k′, k≤k′, πc(k′)=T, and gF(πc)(k)=F if for all k′, k≤k′, πc(k′)≠T.  
  gP(πc)(k)=T if for all k′, k′≤k, πc(k′)=T; gP(πc)(k)=F if for some k′, k′≤k, πc(k′)≠T.  
  gW(πc)(k)=T if for some k′, k′≤k, πc(k′)=T, and gW(πc)(k)=F if for all k′, k′≤k, πc(k′)≠T. 

Definition 4-72  

L=<Syn,F> is said to be a sentential tense (Montague) language iff Syn=<Sen,f∼,fH,fF, 
fP,fW,f∧,f∨,f→> and F is the set of all logical matrices M such that for some epistemic world structure 
W=<K,≤K,≤B>, M=<2K,{ 2K },g∼,gH,gF,gP,gW,g∧,g∨,g→>. 
 

Metatheorem 4-56    

If L is a sentential tense language, then  
    1. L is non-extensional, 
   2. H and F are duals and respectively S4 necessity and possibility operators, 
   3. P and W are duals and respectively S4 necessity and possibility operators, 
   4. WP╞LHWP (the "necessity" of the past), but not(FP╞LHFP) 
 
 
Deontic Operators 
Idea.  Utilitarian moral choice is a consequentialist comparison among immediate temporal 
alternatives "situations."  Let situations be places in a temporal tree structure opening towards the 
future and associate with each a utility value.  A utilitarian says we ought to bring about that P (in 
symbols, OP) f no matter what immediate situation ∼P is true in there is a better one in which P is 
true.  Similarly, it is morally permissible to bring about that P if it is not the case that for any 
situation in which P is true there is a better one in which ∼P is true.   
Syntax. fO and fP, are defined as the 1-place operations on signs such that fO(P)=OP, and 
fPr(P)=PrP. 
Intensional Sematics.   W=<K,≤,U > is called a deontic choice structure iff K is a non-empty set 
(of choices) and ≤ is binary relation (or temporal order) on K such that ≤ determines an 
ascending tree structure with immediate successor relation << (hence ≤ is reflexive, transitive, 
and symmetric) such that each node has an immedicate successor, and  U is a real valued 
function on K (called a utility function).  Relative to a deontic choice structure   W=<K,≤,U >,    
gO and gPr are defined as 1-place operations on  {0,1}K  into {0,1}K such that  
      gO(πc)(k)=T, if for all k′, k<<k′ if  g∼(πc)(k′)=T, there is some  k′′ such that k<<k′′,   πc(k′′)= T,  
   and U(k′) ≤ U(k′′) , and  gO(πc)(k)=F otherwise. 
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  gPr(πc)(k)=T, if for some k′, k<<′, πc(k′)=T, there is no k′′ such that k<<k′′,  g∼(πc)(k′′)=T,  
   and U(k′) ≤ U(k′′) , and gP(πc)(k)=F otherwise. 

Definition 4-73  

L=<Syn,F> is said to be a deontic sentential (Montague) language iff Syn=<Sen,f∼, fO, 
fPr,f∧,f∨,f→> and F is the set of all logical matrices M such that for some deontic world structure 
W=<K,≤,U >, M=<2K,{ 2K },g∼,gO, gPr,g∧,g∨,g→>. 
 

Metatheorem 4-57    

If L is a deontic sentential language, then  
    1. L is non-extensional, 
   2. O and Pr are duals. 
 
The Languages Combined 
 

Definition 4-74   

<K,≤,≤T,≤K,≤B,U > is a global sentential world structure iff K is a non-empty, <K,≤> is an S5 
world structure; <K,≤K,≤B> is an epistemic worlds structure such that  ≤K ⊆ ≤;  <K,≤T> is a 
temporal world structure such that ≤T ⊆ ≤; <K,≤T,U > is a deontic world structure.  Let g�, g◊ be 
defined relative to <K,≤>; let gK, gB be defined relative to <K,≤K,≤B>; let gH,gF,gP,gW  be defined 
relative to <K,≤T>; and let gO, gPr be defined relative to <K,≤T,U >. 

Definition 4-75  

L=<Syn,F> is said to be a global sentential (Montague) language iff Syn=<Sen,f∼,f�, f◊,fO,fK 
fB,fH,fF,fP,fW,fPr,f∧,f∨,f→> and F is the set of all logical matrices M such that for some global 
sentential world structure <K,≤,≤T,≤K,≤B,U >,  
and M=<2K,{ 2K },g∼,g�,g◊,gO,gK,gB,gH,gF,gP,gW,gO,gPr,g∧,g∨,g→>. 

Metatheorem 4-58    

If L is a global sentential language, then  
    1. L is non-extensional, 
   2. �P╞L KP╞L P╞L ◊P, but not ╞LBP, 
   3. �P╞LOP╞L◊FP╞L◊P ("ought" implies "can") 
   4. not(LPrP╞L◊FP) 
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VI. EXERCISES 

A. Skills and Ideas 
The material in this chapter has graduated to a more mathematical presentation.   
Here the relevant “skills” consist of being able to prove as metatheorems the 
claims made.  Understanding the “ideas” consists likewise of grasping the 
definitions sufficiently to construct the proofs.   
  
1.  Morphisms.  Exercise 1. 
 

a. Prove Metatheorem 4-7. 
b. Prove Metatheorem 4-8. 
c. Prove Metatheorem 4-9 (optional) 

 
2.  Logical Matrices and Many-Valued Logic.  Exercise 2. 
 

a. Prove Metatheorem 4-19   . 

b. Prove ╞KW{T} is a proper subsets of ╞C{T}.  Show first that it is a subset by 
defining the right sort of homomorphism between the structures and then 
appealing to a previous theorem. Then show that it is a proper subset by 
finding some inference valid in the second that is not valid in the first. 
(This is part of Metatheorem 4-22.) 

c. Show {P|╞KW{T}P} = ∅. (This is part of Metatheorem 4-22) 

d. Explain why theorem Metatheorem 4-24  , Metatheorem 4-25  , and 
Metatheorem 4-26.  all follow directly from earlier results about matrices 
and valuations. 

Fregean Intensional Semantics.  Exercise 3. 

a. Prove Metatheorem 4-30  . 
b. Prove Metatheorem 4-35   . 

c. Prove Metatheorem 4 -40.   . 
d. Prove Metatheorem 4-42  . 

Intensional logic.  Exercise 4. 
a. Prove Metatheorem 4-47, Metatheorem 4-48, and Metatheorem 4-49  

using the definitions and facts previously proven about homomorphism 
and matrices interpretations. 

b. Prove  Metatheorem 4-54, part 4. 
c. Prove Metatheorem 4-58  , part 3. 
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B. Theory 

i. Evaluating Many-Valued and Modal Theories 
Exercise 5.  A major methodological problem in logic is articulating standards 
for critically comparing alternative logical theories.  A major category of such 
theories is alternative many-valued logics.  These have essentially the same 
syntax, treating the same “logical terms”, but offer alternative semantics.  
These semantics involve new “truth-values” and new truth-tables, and these 
in turn affect logical entailment.  Modal logics likewise form a family with 
slightly different semantics and resulting sets of valid arguments.  It is not 
always obvious how alternatives like these should be evaluated because it is 
not obvious what properties it is possible to show hold of a formal language.  
The metatheorems in the text attempt to aid in this process.  In some cases 
they prove that a logic has a specific feature.  In others they make 
generalizations relating logics with specific properties.  But they share the 
goal of enabling the critical comparison of alternatives.   Explain in your own 
words some examples of how they do so.  Do the metatheorems proven allow 
you to address any of the criteria C for evaluating alternative logics that you 
proposed in your exercises for Chapter 2?  Do they ignore any? 

 

ii. Extensionality and Intensionality. 
The difference between extensional and intensional languages is often 
defined in the traditional philosophical literature in terms of the failure of the 
substitutivity of identities or of material equivalents to preserve truth.  
Algebraically, this fact may be expressed as the failure of the substitutivity 
property for “sameness of extension” relation among expressions.  That is, 
“sameness of extension” fails to be a congruence relation relative to 
mappings (valuations or interpretations) from syntactic structures to 
semantics structures.  This insight motivates much of the algebraic 
formulation found in Montague’s intensional logic.  In a short essay that you 
will be able to refer back to and understand later, try using the algebraic 
framework in your own words to explain why the failures of substitutivity salve 
veritate noted by Frege and others (for propositonal attitude constructions and 
modal operators) follow from the fact that the extensions of the parts of 
relevant expressions fail to determine in a “rule-like” way (i.e. by means of a 
genuine function) the extension of the whole. 
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