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1. I N T R O D U C T I O N  

Our main results deal with exact multiplicity and uniqueness of solutions for problems on 
annular domains in R n. On an annulus ~ = Ix I A < Ixl < BI in R n, n _> 2, we consider 
the problem 

Au +2f(u)  = 0  inf2,  u = 0  onaf~.  (1.1) 

We study positive radially symmetric solutions of (1.1), depending on a positive 
parameter )t. This problem arises in many applications, and there is large literature on the 
subject, including Ni and Nussbaum [1], Lin [2], Nagasaki and Suzuki [3]. Recall that the 
problem (1.1) may also have positive nonradial solutions, in contrast to the case when 
domain is a ball in R ~, when all positive solutions are necessarily radially symmetric, in 
view of the well-known results of Gidas, Ni and Nirenberg [4]. To get exact multiplicity 
results, we shall restrict our attention to the case of " th in"  (or "na r row")  annulus, which 
we define next. Set cn = (n - 1) 1 / (n-2)  for n >_ 3, and c2 = e. We shall assume 

B <_ CnA. (1.2) 

The special role of " t h in "  annulus was recognized first by Ni and Nussbaum [1], who 
introduced the above condition. The same condition appeared later in Lin [2]. 

The crucial role in our study will be played by the linearized problem 

Aw + 2f '(u)w = 0 in f2, w = 0 on 0~.  (1.3) 

In fact, we believe the following theorem to be our main result, even though its 
applications include extensions of  some well-known results. 

THEOREM 1.1. Assume tha t f (u )  ~ C2(/~ +) satisfiesf(u) > 0 for u > 0, and the condition 
(1.2) holds. Then any nontrivial radial solution of (1.3) is of one sign. 

This theorem implies (among other things) that the crucial condition of the Crandall-  
Rabinowitz bifurcation theorem (which is recalled below) is satisfied, and so the solution 
set of (1.1) consists of smooth curves. It is often possible to prove that there is only one 
solution curve. If moreover, one can show that this solution curve admits no turns, one 
concludes uniqueness of solution; if the solution curve has exactly one turn, one gets an 
exact multiplicity result. Notice that in contrast to much of the previous work, our 
approach does not require any "shoot ing"  techniques. 
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When the nonlinearity f (u )  is convex, we show that all solutions of  (1.1) lie on one 
curve, which turns exactly once at some 2 = 20 > 0. It follows that the problem has 
exactly two, one or zero solutions, depending on whether 2 < ,;t o , 2 = 20 or 2 > ,;t o . This 
improves the corresponding result in Lin [2], since we do not requiref(u)  to be increasing. 
(Also, the fact that all solutions lie on a unique solution curve is new. This is important  
for numerical computations,  as one can obtain all solutions by efficient continuation 
algorithms.) For nonlinearities satisfying u f ' ( u )  > f ( u )  we prove uniqueness of  solution, 
providing an alternative proof  of  the corresponding result in Ni and Nussbaum [1]. 
Moreover,  our approach provides some additional information.  Namely, we show that all 
positive solutions must lie on a unique curve, bifurcating from infinity at 2 = 0. It is 
shown in [1] that the above uniqueness result fails without the assumption (1.2). It follows 
that condition (1.2) cannot be removed in our Theorem 1.1. Moreover,  since this 
condition appears in two different approaches, it seems natural to wonder if it is sharp. 

In another direction we use a similar approach to study a class of  symmetric boundary- 
value problems in one dimension, with nonlinearities similar to those studied by Kwong 
and Zhang [5]. We prove a uniqueness result for a class of  "nonpos i tone"  problems. 
Again we show that solutions lie on smooth curves, which admit no turns. We then 
continue the curve of  solutions for decreasing 2, and show that near 2 = 0 there is only 
one solution curve, thus proving uniquess. The main technical difficulty here is to show 
that that solution branch cannot lose its positivity. This section represents continuation 
of our earlier work with Li and Ouyang [6-9] on symmetric problems in one space 
dimension. 

Next we recall the bifurcation theorem of Crandall and Rabinowitz [10]. 

THEOREM 1.2 [10]. Let X and Y be Banach spaces. Let (5, £) e R x X and let F be a 
continuously differentiable mapping of  an open neighborhood of (5,.g) into Y. Let 
the null-space N(F~()., 2")) = spanlx0] be one-dimensional and codim R(F~(~., )?)) = 1. 
Let Fx(J.,J?)¢ R(F~(J., J?)). If  Z is a complement of  spanlx0l in X, then the solutions 
of  F(2, x) = F(~., J?) near ()., J?) form a curve (2(s), x(s)) = (J. + r(s), Y + sx  o + z(s)), 
where s ~ (r(s), z(s)) ~ R x Z is a continuously differentiable function near s = 0 and 
r(0) = r ' (0) = 0, z(0) = z'(0) = 0. 

A word on notation. We shall denote derivatives of  u(r) by either u '(r)  or u,, and mix 
both notations to make our proofs more transparent.  Throughout  the paper we consider 
only the classical solutions. 

2. R A D I A L  S O L U T I O N S  F O R  A C L A S S  OF D I R I C H L E T  P R O B L E M S  

ON AN A N N U L U S  

On an annulus ~ = Ix lA  < Ixl < Bi in R n, n _> 2, we consider the problem 

A U +  2f(U)  = 0 inf2,  U =  0 o n a f L  (2.1) 

We study positive radially symmetric solutions of  (2.1), depending on a positive 
parameter  2. Writing U = U(r) with r = ]xt, we are then led to consider the problem 

n - 1  
U" + - - U '  + 2 f ( U )  = 0 ,  f o r A  < r < B ,  U(A) = U(B) = 0. (2.2) /- 
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We make  a s tandard change of  variables. In case n _> 3 we let s = r 2-n and u(s) = U(r), 
t ransforming (2.2) into the problem 

u" + 2a ( s ) f (u )  = 0, f o r a < s < b ,  u(a) = u(b) = 0 ,  (2.3) 

where c~(s) = (n - 2)-2s -2k with k = 1 + 1/(n - 2), a = B 2-n and b = A 2-n. In case 
n = 2 we set s = - l o g  r, and u(s) = U(r), obtaining again the problem (2.3), this time 
with a(s) = e -z~ and a = - l o g  B, b = - l o g  A. Finally, in case n _> 3, without  loss o f  
generality we may take b = a + 1, and consider the positive solutions o f  

u" + 2c~(s)f(u) = 0  f o r a < s < a +  1, u(a) = u(a + 1 ) = 0 .  (2.4) 

Indeed,  letting s = (b - a)~, we change (2.3) into the same family o f  equations on the 
interval (a / (b  - a), b / (b  - a)) of  length one. Notice that  considering (2.3) with b - a 
small is equivalent to equat ion (2.4) with a > 0 large. (In case n __. 3 we always have 
a > 0.) In particular,  condit ion a > a for (2.4) is equivalent to requiring that 
b /a  < (c~ + 1)/c~ for (2.3) (a  > 0 is a constant) .  

We shall also need the corresponding linearized equat ion 

w" + 2 a ( s ) f ' ( u ) w =  0, f o r a < s < a +  1, w(a) = w ( a +  1) = 0. (2.5) 

The following theorem provides a key to obtaining various exact multiplicity results. 

THEOREM 2.1. Assume that f ( u )  ~ CZ[0, oo) satisfies f ( u )  > 0 for almost  all u > 0. If  
n = 2 then any nontrivial  solution o f  (2.5) can be chosen to be positive. If  n >_ 3 then any 
nontrivial  solution o f  (2.5) can be chosen to be positive, provided a >_ 1/(n - 2). 

Proof .  Case I. Dimensions n _> 3. 
Since u(s) is a concave function,  it has a unique point  o f  max imum,  say at 

So ~ (a, a + 1). Assume that w(s) vanishes somewhere on (a, a + 1). We consider two 
possibilities. 

Case 1. w(s) has a root  on (a, So). 
Assume that w(7) = 0 for some 7 e (a, So) which is the smallest root  o f  w(s). We may  

assume that  w > 0 on (a, 7)- Differentiate (2.4) 

u]' + 2c~(s)f'(u)u~ + 2od(s) f (u)  = 0. (2.6) 

Similarly to Korman  and Ouyang  [7], with the funct ion g(s) > 0 on (a, a + 1), which will 
be specified later, we now multiply equat ion (2.6) by g(s)w and substract f rom it equat ion 
(2.5) multiplied by g(s)us. Then we integrate over (a, 7) to obtain 

- g u s w ' l ~  - g'wu~ ds + g ' w ' u s d s  + 2 c~'g/'w ds = 0. (2.7) 
, a  a . , a  

The nonintegral  terms on the left in (2.7) are nonnegative.  Integrating by parts in the 
second integral on the left, and using equat ion (2.4), we combine  all the integral terms in 
(2.7) as 

- g"u,  w d s  + 2 (2g'o~ + o~'g)fwds. 
c! • a 
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Hence,  we shall obta in  a contradic t ion in (2.7), provided we can find a funct ion g(s) > 0 

on (a, b), such that  

g"(s)  < 0 (2.8) 

2g'o~ + o~'g > 0, (2.9) 

for  all s e (a, a + 1). We rewrite (2.9) as 

g 's  -zk - k s - Z k - l g  > 0. (2.10) 

We search for  an appropr ia t e  solut ion g(s) of  (2.10) by solving the equat ion 

g ' s  -2k -- k s - Z k - l g  = S - 2 k h ( s ) ,  (2.11) 

with h(s) > 0 to be specified. A solution o f  (2.11) is 

g(s) = s k r -kh ( r )  dr .  (2.12) 
a 

C o m p u t e  

i s  k h ' .  g" = k ( k  - 1)s k-2 r - k h ( r ) d r  + - h  + (2.13) 
a S 

Set z(s) = I~ r - k h ( r ) d r ,  z '  = s - k h ,  h = skz  ' and h '  = k s k - l z '  + skz  ". We then rewrite (2.13) 

g" = sk-Z[SzZ" + 2ksz '  + k ( k  - 1)zl. (2.14) 

To  obta in  g" < O, we choose z satisying 

s2z" + 2ksz '  + k ( k  - 1)z = - 1 ,  z(a) = O, z > O, z '  > 0. (2.15) 

Tha t  we also need to require that  z > 0 and z '  > 0 can be seen f rom the formulas  relating 
z to h. The  equat ion  in (2.15) is the n o n h o m o g e n e o u s  Eule r ' s  equat ion.  Its solution 
satisfying the initial condit ions z(a) = O, and z ' (a)  = ,6 > 0 is 

1 
Z(S) - - -  + c l s  -k  + czs  -k+l ,  (2.16) 

k ( k -  1) 

where,  denot ing c~ = 1 / k ( k  - 1), 

c 1 = aZk[&(--k + l )a  -g -- p a - k + l ] ,  (2.17) 

c z = a2k[fftka -e -1  + p a - k ] .  (2.18) 

Near  s = a the funct ion z(s) is a posit ive and increasing solution o f  (2.15). Everything in 
(2.15) is satisfied until s = L such that  z ' (g)  = 0. C o m p u t e  

g _  c l k  _ Cl (n - 1). (2.19) 
c z ( - k  + 1) cz 

We now let/~ --* co.  F r o m  (2.17) and (2.18) we see tha t  ca/cz ~ - a. From (2.19) it follows 
that  g ~ a(n - 1). Hence,  we obta in  a contradic t ion  in (2.7) provided that  a satisfies 

a ( n -  1 ) _ > a +  1, 

which holds by our  assumpt ions .  
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Case  2. w(s)  has a root  ? on (So,a + l). We may assume that  w > 0 on (y, a + 1). 
We proceed as in the derivation o f  (2.7), only now we integrate over (y, a + 1), 

- g u ~ w ' l ~  +1 - g ' w u "  ds  + g ' w ' u s d s  + ~ ' g f w d s  = 0. (2.20) 
d 3'  t " l  "~' 

The nonintegral  terms in (2.20) are now negative. Setting g ( s ) -  1, we obtain a 
contradict ion in (2.20), complet ing the p roo f  o f  the theorem for  n _> 3. 

Case  H.  Dimension n = 2. We proceed as before.  In case y e (a, So) we obtain a 
contradict ion if we find a funct ion g(s) satisfying (2.8) and (2.9), and we require also that 
g(a) = 1. Condi t ion  (2.9) now takes the form 

g ' - g > 0 .  

We search for g(s) as solution o f  

g' (s)  - g(s) = h(s) for  s > a g(a) = 1, (2.21) 

with the funct ion h(s) > 0 to be determined. Solution o f  (2.21) is 

*$ | 

g(s) = e s-°  + e s l e - t h ( t )  dt  > O" 
J a 

We need to select h(s) > 0 so that g" < 0. Compute  

g" = e ~-a + e '  e- th( t )  dt + h + h ' .  (2.22) 
, a  

Set z(s)  -- S~ e - 'h ( t )  dt ,  z '  = e - ' h ( s ) ,  h(s)  = eSz ' and h '  = eSz ' + e 'z" .  We then rewrite (2.22) 

g" = e ~-a + e ' ( z"  + 2z '  + z) .  (2.23) 

We obtain g" < 0, if we choose z satisfying 

z" + 2z '  + z = - 2 e  -a, z(a)  = O, z > O, z '  > 0. (2.24) 

That  we also need to require that z > 0 and z '  > 0, can be seen f rom the formulas  relating 
z to h. The solution o f  the equat ion in (2.24) satisfying the initial condit ions z(a)  = 0, 

z ' (a)  = f l > 0 i s  

z = - 2  e -a + 2 e -a e -(~-a) + (fl + 2 e-a)(s  - a ) e  -(~-a). (2.25) 

Everything in (2.24) is satisfied until L such that z ' (g)  = 0. Compute  

/ ~ + 2 e  -a" 

Hence by choosing fl sufficiently large, we obtain Y - a > y, so that  g" < 0 holds on 
(a, y), and then we proceed to get the same contradict ion as before.  

In the case y E ( s o , a  + l), we again integrate over ( y , a  + 1) and select g - l ,  
obtaining a contradict ion.  
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R e m a r k  1. As ment ioned above, in case n _> 3 our  condit ion a >_ 1 / (n  - 2) implies 
that b / a  _< n - 1 in (2.3). Returning to the original variables, this implies B / A  <_ 
(n - 1) 1/(n-2). In case n = 2, we notice that the shift s ~ s - p changes (2.4) into the 
same family o f  equations for  any constant  p.  It follows that w > 0 on any interval o f  
length one, i.e. for  b _< a + 1. In the original variables this implies B <_ e A .  

R e m a r k  2. Notice that the functions g(s), constructed in the proof ,  satisfy g'(s)  > O. 

Examining the proof ,  one verifies that if % ,  a > 0 are any constants,  any nontrivial 
solution o f  

w" +,,].(/~o~(s) + C t o ) f ' ( u ) w =  0, f o r a < s < a +  1, w(a) = w ( a +  1) = 0 

is o f  one sign. 

Theorem 2.1 can be used to give a number  o f  uniqueness and multiplicity results. For  
the multiplicity results we assume that f ( u )  is positive: 

f ~ C2(/~+) 

and it is superlinear, i.e. 

and f ( u )  > 0 for u > 0, (2.26) 

f ( u )  l i m -  = oo. (2.27) 

The following lemma is known,  see e.g. Lin [2]. For  completeness we present a different 
proof .  

LV.MMA 2.1. Under  the condit ions (2.26) and (2.27) solutions o f  (2.4) are un i formly  
bounded  for  2 > 0, i.e. for  each 2 > 0 there is a constant  c = c(2), such that 

bl[C2[a,a+l <~ C. 

P r o o f .  We follow the argument  o f  [10]. Define for ¢ > 0 

I(c)  = {s ~ (a, a + 1) : u(s) > c] - (a(c),  b(c)).  

Assume that  for  every c > 0 the set I(c)  is nonempty  for 2 close to some 20 > 0 
(otherwise, there is nothing to prove). Rewrite equation (2.4) in the form 
u" + 2pc(s)u = 0, where pc(S) = o f f s ) ( f ( u ) / u ) .  By (2.27) pc(S) > (a(c) on Ic, where 
~(c) ~ oo as c ~ co. Since u(s) has no zeros on /~, it follows by S turm's  compar i son  
theorem that (for 2 close to 2o) 

7g 
b(c) - a(c) < _ _  < 

x/2-q~(c) ~/(20/2)¢(c) " 

Chose c o so large that b(c) - a(c) < 1/4 for  all c _> Co. It follows that  as 2 --, 20 the 
funct ion u(s) is bounded  by Co on a set o f  measure > 3/4.  Since u(s) is a concave function,  
it follows that  it cannot  become unbounded ,  a contradict ion.  It follows that  u(s) is 
bounded  in CZ(a, a + 1) as 2 --, 20. 



Uniqueness and exact multiplicity results 855 

THEOREM 2.2. Assume that f e C2[0, oo) satisfies (2.26) and (2.27), B <_ cnA. Then all 
positive solutions of (2.1) lie on a unique solution curve in ()t, u) "p lane" .  This curve 
starts at ;t -- 0, u = 0, it projects on a bounded interval (0, ;t0) along the ;t axis, with some 
;to > 0. Near each turning point we have two branches, one strictly increasing in 2, and 
another strictly decreasing. Solutions of (2.1) corresponding to any fixed ;t are finite in 
number, and strictly ordered. As /1. + 0 the open end of the solution curve approaches 
infinity (i.e. max s u(s, 2) ~ oo). 

Proof .  When 2 = 0 there is a trivial solution u = 0. It follows by the implicit function 
theorem that for ;t > 0 small there is a smooth curve of solutions passing through (0, 0). 
By the maximum principle all solutions of (2.1) are positive. This curve cannot be 
continued indefinitely for increasing ;t, since it is well known that under conditions (2.26) 
and (2.27), the problem (2.1) has no solutions for ;t sufficiently large, see, e.g. Amann 
[11]. Let ;to denote the supremum of 2's for which the solution curve can be continued to 
the right. By Lemma 2.1 it follows that as ;t ~ ;to, the solution u(s, 2) of (2.4) remains 
uniformly bounded (recall that the problems (2.1) and (2.4) are equivalent). Passing to the 
limit in the integral version of (2.4), we see that at ;t = ;to problem (2.4) has a solution 
u(s, ;to) ~ C~(a, a + 1). 

As mentioned above problem (2.1) is equivalent to (2.4). Rewrite (2.4) as 

F(;t, u)=- u" + 2c~(s)f(u) = O, 

where F: R + x cg(a,  a + 1) --, C(a, a + 1). Notice that F u (2, u)w is given by the left-hand 
side of (2.5). By the definition of ;to, F,, (;to, u0) has to be singular, i.e. (2.5) has a nontrivial 
solution w(s), which is positive by Theorem 2.1. Clearly the null-space N(F,,(20, Uo)) = 
spanlw(s)l is one-dimensional (it can be parameterized by w'(a)). It follows that 
codim R(F,  (;to, Uo)) = 1, since F~, (;to, Uo) is a Fredhoim operator of index zero. To apply 
the Crandall-Rabinowitz Theorem 1.1 it remains to check that Fx (20, Uo) ~ R(F, (20, Uo)). 
Assuming otherwise would imply existence of v(s) ~ O, such that 

v" + ;to~(S)f'(uo)V =~(s)f(Uo), 

v(a) = v(a + 1) = 0. 

a < S < C t +  1, 
(2.28) 

Multiplying (2.28) by w, (2.5) by v, subtracting and integrating over (a, a + 1), we obtain 

l 'a+ 1 C~(s)f(Uo)W ds = O, 

which is impossible, since both f(Uo) and w are positive. 
Applying the Crandall-Rabinowitz Theorem 1.1, we conclude that (;to, Uo) is a turning 

point, near which the solutions of (2.1) form a curve (;to + r(~), Uo + ~w + z(~)) with 
near ~ = 0, and r(0) = r'(0) = 0, z(0) = z'(0) = 0. It follows that for ;t close to ;t o and 
2 < ;to there are two solutions with 

0 < u-(s ,  2) < u+(s, 2) for all s e (a, a + 1), 

and that u-(s ,  ~) is strictly increasing in 2, while u+(s, 2) is strictly decreasing. By the 
strong maximum principle the above inequality is true for all 2. 
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We now continue the solution curve for decreasing )t until a possible next turn, and so 
on. By Lemma 2.1 solutions cannot become unbounded unless )t --, 0. I f  there were 
infinitely many turns at some 2, then we would have infinitely many  singular solutions at 
2, converging to a limit solution, which is singular, but the solution set near it is not a 
simple curve, contradicting the Crandall-Rabinowitz Theorem, see [8] for more details. 
Finally, as )t ~ 0 the solution must become unbounded,  as can be seen f rom equation (2.4). 

Finally, we rule out the possibility of  another curve of  solutions. Since by the implicit 
function theorem we have uniqueness near 2 = 0, u = 0, we cannot have another curve, 
similar to the one just described. By the Crandall-Rabinowitz Theorem, near each turning 
point there are two branches, one which is increasing in )t, and one decreasing in 2 (close 
to the turning point). We show next that the increasing branch, call it u(s, )t) continues to 
increase for all 2 (until the next turning point). Indeed, assuming otherwise, let )tl be such 
that u×(s, 21)_>O for all s ~ ( a , a +  1), but u×(sl ,) t l)=O for some s l ~ ( a , a +  1). 
Differentiating (2.4) in/ l ,  

u~ + 2a(s)f'(u)u× = -a(s) f (u)  < 0, Ux(a) = ux(a + 1) = 0. 

By the strong maximum principle we conclude that u×(s, )t~) > 0 for all s e (a, a + 1), a 
contradiction. This argument implies that if a curve " turns  to the r ight" then the upper 
branch is increasing in 2 until the next turning point (or for all 2 if there are no more 
turning points). Similarly, at each " turn  to the left"  the lower branch will be increasing. 

Next we rule out a singleton, i.e. a closed bounded curve of solutions. Assuming 
existence of  such a curve, denote by )to the smallest 2 on the curve, and by Uo any solution 
at 20. Clearly (20, Uo) is a singular point (since the solution curve cannot be continued to 
the left), and in fact it is a turning point, as was explained previously. At (20, Uo) we have 
an increasing upper branch, call it u(s, 2). Since the solution curve is bounded, u(s, )t) will 
reach another turning point, call it (21, ul), at which a turn to the left will occur. At 
()tl, u~) u(s,/l) must be the lower branch, since otherwise we will have two increasing 
branches there, which is impossible by Theorem 1.2. Denote by v(s, 2) the upper branch 
at (21, Ul). By Theorems 1.2 and 2.1 we see that for 2 near )t~ 

u(s, 2) < v(s, 2) for all s e (a, a + 1), 

and by the strong maximum principle the same inequality is true for all 2 until the next 
turning point (22, u2). Hence u2 > Uo. Also v(s, )t) is the lower branch at (22, u2), since 
otherwise we would again get two increasing branches at ()tl, u0.  We can now repeat the 
argument,  obtaining u4 > u2, and so on. This leads to a contradiction, since the solution 
curve can never come back to (20, Uo). 

Since any unbounded curve must approach infinity as 2 J. 0, only one other possibility 
remains: a curve whose both ends approach infinity at )t --- 0. Denote by )to the largest 2 
on this curve. I f  there is more than one solution at 20 let Uo be the largest one (arguing as 
in the previous paragraph,  we see that all solutions at )t 0 are strictly ordered). There are 
two branches at (/10, Uo). We refer to the upper one as u(s, 2) as we follow it for decreasing 
/l through all the possible turns, and similarly we refer to the lower branch as v(s, )t). 
Choose any )tl < )tO" Let t7 be the largest of  all solutions on the branch v(s, 2) at )tl. 
Clearly this is the last time this branch visits )t = )t~ as we trace it f rom (20, Uo). Also 
notice that O < u(s, 2 0, where u(s, )t~) is any solution at the upper branch at 21. Next we 
consider a family of  functions corresponding to all solutions on the branch v(s, )t) after 6. 
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All these functions are subsolutions at 2 = 21. Hence, u(s, 20  must be greater than all of 
these, which is impossible since v(s, 2) ~ oo.  (This consequence of  strong maximum 
principle is sometimes referred to as "Serrin's sweeping principle".) 

THEOREM 2.3. In addition to the conditions of  Theorem 2.2, assume that 

f"(u) > 0 for almost all u > 0. (2.29) 

Then there is a critical 20 > 0, such that problem (2.1) has exactly two positive solutions 
for 0 < 2 < 2o, it has exactly one positive solution at 2 = 2o, and no solutions for 
2 > 2o. Moreover, all positive solutions lie on a single smooth solution curve, which for 
2 e (0,2 o) has two branches u-(r ,  2) and u+(r, 2), with u-(r ,  2 ) <  u-(r ,  2) for all 
r = ]xl ~ (A, B). The lower branch u-(r, 2) is strictly monotone increasing in 2, and 
limx~o+ u(r, 2) = 0 for all r e (A, B). For the upper branch lim×~o+ maxru(r, 2) = oo .  

Proof. The proof  is similar to that of  the previous theorem, only this time we can 
compute the direction of  the bifurcation. We recall that the solution curve started at 
2 = 0, u = 0, and we continued it for increasing 2 until (2o, Uo), the first turning point, 
near which the solutions of  (2.1) form a curve (2o + r((),  Uo + (w + z(~)) with ( near 

= 0, and r(0) = z'(0) = 0, z(0) = z'(0) = 0. We claim that 

z"(0) > 0, (2.30) 

which implies that only "turns to the lef t"  in the (2, u) "p lane"  are possible. We use the 
formula 

j~+l e~f,,(Uo)W 3 ds 
r"(0) = -20  j~+ ~ a~-~o)~-d- ~ • (2.31) 

To derive (2.31), we differentiate (2.4) twice in ~, 

u~'~ + 2e~f'(u)u~ + 22'af'(u)u~ + 2c~f"(u)u~ + 2"e~f(u) = 0. (2.32) 

Setting here ~ = 0, and using that r'(0) = 0 and u~l~=o = w(x), we obtain 

l~ tt ~ + ~.oo~f'(Uo)U~ + J.oo~f"(//o)W 2 + J."(0)otf(Uo) = 0. (2.33) 

Multiplying (2.33) by w, and equation (2.5) by u~, subtracting and integrating, we obtain 
(2.31), and hence (2.30). Formula (2.30) implies that the solution curve has exactly one 
turn, giving us two branches of  solutions. Similar to the previous theorem, we prove that 
the upper branch tends to infinity as 2 $ 0. Monotinicity of the lower branch is easily 
proved as in [7] or [8], completing the proof.  • 

We now turn to proving uniqueness of  solutions under the additional condition: 

uf'(u) > f(u) for almost all u ~ O. (2.34) 

We begin with the following lemma, which appears to be of independent interest. 
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LEMMA 2.2. In addition to the conditions of  Theorem 2.1 assume that (2.34) holds. Then 
any positive solution of  problem (2.1) is nondegenerate, i.e. the corresponding linearized 
problem admits only the trivial solution. 

Proo f .  As above we work with the equivalent equations (2.4) and (2.5). By Theorem 2.1 
if a nontrivial solution w of (2.5) exists, it is positive. Rewriting equation (2.4) in the form 

u" + 2a(s) f ( u )  u = O, 
U 

and comparing it with (2.5), we obtain a contradiction, in view of  Sturm comparison 
theorem. • 

LEMMA 2.3. Assume that the function f E CJ(/~+) satisfies (2.34). Then the problem 

u" + f ( u )  = O, f o r a < s < a +  1, u(a) = u(a + 1 ) = 0  (2.35) 

has at most one positive solution. 

Proo f .  It is well-known that any positive solution of  (2.35) is symmetric about its point 
of  maximum x = a + ½, and any two positive solutions are strictly ordered. Writing 
f ( u )  = ug(u), we see using (2.34) that the function g(u) satisfies g' (u)  >_ 0 for u _> 0. 
If  v _> u is another positive solution of (2.35), then multiplying (2.35) by v, and the 
corresponding equation for v by u, integrating and subtracting, we obtain 

j ,a+l uv(g(u) - g(v)) ds = O, 
o 

which implies a contradiction, unless u = v. III 

THEOREM 2.4° Assume that B <_ c , A  and conditions (2.26), (2.27) and (2.34) are satisfied. 
Then problem (2.1) has at most one positive solution. Moreover,  all positive solutions lie on 
a unique solution curve, bifurcating from infinity at 2 = 0. 

Proo f .  Letting So > 0 be any constant, we imbed (2.4) into a family of  problems 
(0 _< Ft _< 1) 

u" + 2[a(c~(s) - c~0) + C~o]f(u) = 0, for a < s < a + 1, 
(2.36) 

u(a) = u(a + 1) = 0. 

When a = 0 problem (2.36) has at most one positive solution, as follows by Lemma 2.3. 
The linearized problem for (2.36) is given by 

[ , oo] w" +,1.ju ~(s) + -  f ' ( u ) w  = 0, f o r a < s <  a + 1, 
¢t (2.37) 

w(a) = w(a + 1) = 0. 
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By Remark 2 any solution of (2.37) is of  one sign, and then as in Lemma 2.2 it follows 
that all solution of (2.36) are nondegenerate, and hence they can be continued using the 
implicit function theorem. When p = 1 we have the original problem (which is equivalent 
to (2.1)). If  problem (2.36) had two positive solutions for some fixed 2, we could continue 
both of them for decreasing p on smooth solution curves, without any turns, obtaining 
two positive solutions at p = 0, giving a contradiction. Two things need to be checked: 
that solutions on these curves stay bounded and nontrivial. By Lemma 2.1 solution curves 
cannot escape to infinity. 

If  at somef i  e [0, 1] the solution becomes zero, then since by (2.34)f(0) = 0, we would 
have at p = fi bifurcation of the positive solution from the trivial one, which can only 
happen if problem (2.37) at u = 0 and p = fi has a positive solution. Define Pl to be the 
principal eigenvalue of the problem 

w" + 2a(s) f ' (u)w = Plw,  for a < s < a + 1, 

w(a) = w(a + 1) = 0. 
(2.38) 

Assume first Pl < 0. Then we choose a constant o~ o in (2.36), such that s o < min o~(s). 
[a,a+ 11 

Then ~ ( a ( s ) -  c~0) +c~0<c~(s)  for all s ~ [ a , a +  1], and p ~ [ 0 , 1 ) .  It follows that 
problem (2.37) at u = 0 and p = fi cannot have a positive solution, since the principal 
eigenvalue for the operator  on the left would have to be negative, rather than zero. In case 
Pl -> 0 we select C~o such that c~ 0 > max c~(s), and obtain a similar contradiction. 

[a,a+ 1] 
The last assertion of the theorem is easily proved, using arguments similar to those of  

Theorem 2.2. 

3. U N I Q U E N E S S  F O R  A C L A S S  OF B O U N D A R Y  V A L U E  P R O B L E M  

In this section we consider a class of  symmetric boundary value problems of the type 

u" + 2 f ( x ,u )  = 0  f o r - 1  < x <  1, u ( -1 )  = u ( 1 ) = 0 .  (3.1) 

We assume that the nonlinearity f (x ,  u) ~ C 2 ( [ - 1 ,  1] × /~+) is even in x (i.e. f ( - x ,  u) = 
f ( x ,  u) for all x ~ ( - 1 ,  1) and u > 0) and it satisfies 

xfx(x ,u)<-O for a l l x ~ 0 a n d u > 0 ;  (3.2) 

uf,(x,  u) > pf(x ,  u) (3.3) 
for some/~ _> 1, and almost a l l x ~  ( - 1 ,  1), u > 0; 

f (x ,O)<_O for all x ~ ( - 1 ,  1); f (_+l ,0)  < 0. (3.4) 

Finally we assume existence of a constant p > 1 and a continuous and strictly positive on 
[ -1 ,  1] function h(x), such that 

f(x,  u) 
lira " - -  - h(x) uniformly in x ~ [ -1 ,  1]. (3.5) 
u ~ o  U p 

Similarly to Kwong and Zhang [5], we notice that our conditions include nonlinearities of  
the type f (x ,  u) = a(x)u p - ~ff=obi(x)u i, with 0 _< q < p,  and even functions a(x) > 0 
and bi(x) > 0 satisfying xa'(x) <_ 0, xb ' (x)  >_ 0 for all x ;~ 0, and b0(_+l) > 0. 
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In view of  the well-known results of  Gidas et al. [4], it follows that any positive solution 
of (3.1) is an even function with u'(x) < 0 for all x ~ (0, 1). Moreover, it follows from 
Korman and Ouyang [7] that any two positive solutions of  (3.1) do not intersect. 

We shall need the linearization of  (3.1) 

w" + 2fu(x,u)w-- 0 o n ( - 1 , 1 ) ,  w(-1)  = w(1) = 0. (3.6) 

In Korman and Ouyang [8] the following lemma was proved. 

LEMMA 3.1. Let u(x) be a positive solution of (3.1), and assume that condition (3.2) is 
satisfied. If problem (3.6) admits a nontrivial solution, this solution does not change sign, 
i.e. we can assume that w(x) > 0 on ( - l ,  1). Moreover, w(x) is an even function. 

The following lemma will be central for our uniqueness result. The test function v(x), 
which appears in the proof,  was used previously in [5]. 

LEMMA 3.2. Let u(x) be a positive solution of  (3.1), and assume that conditions (3.2) and 
(3.3) are satisfied. Then problem (3.6) admits no nontrivial solutions. 

Proof. The function v(x) = xu'(x) + flu(x), with a constant fl satisfies 

v" + 2fuv= ).fl(fuu fl +fl 2 f )  - )tXfx. (3.7) 

If we now choose fl so that 1 + (2//?) = ~, then by our conditions v will satisfy 

v" + 2f,,v > 0, on ( -1 ,  1). (3.8) 

Recall that by Lemma 3.1 we may assume that 

w(x) < 0 on ( -1 ,  1). (3.9) 

We consider first the case when 

u'(1) < 0. (3.10) 

Since v(0) > 0, while by (3.10) v(1) < 0, it follows that v(x) changes sign on ( -1 ,  1). 
Let ~ e (0, 1) be the smallest root of  v(x). We now multiply equation (3.7) by w(x), and 
subtract from this equation (3.6) multiplied by v(x). Integrating over (0, ~), we obtain 

w(~)v'(() < 0. (3.11) 

Since the left-hand side of  (3.11) is nonnegative by (3.9), we obtain a contradiction. 
We now consider the second possibility that 

u'(1) = 0. (3.12) 

If one can still find a ( e (0, 1) where v(() = 0, then we obtain a contradiction as above. 
Otherwise, v(x) > 0 on (0, 1) and, in view of  (3.12), v(1) = 0. We now multiply equation 
(3.7) by w(x), and subtract from it equation (3.6) multiplied by v(x). Integrating over 
(0, 1), we obtain a contradiction, similar to the above. • 
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Examining the proof  of  this iemma, we verify the following lemma. 

LEMMA 3.3. Let u(x) be a positive solution of (3.1), and assume that conditions (3.2) and 
(3.3) are satisfied. Then the problem 

w" + 2fu(X, u)w >_ 0 on ( - 1 ,  1), w( -1)  = w(1) = 0 

admits no negative solution (i.e. w(x) < 0 on ( - 1 ,  1)). 

When f (x ,  0) < 0 it is possible for a solution branch of  (3.1) to lose its positivity. The 
next lemma shows that this can occur only for increasing 2. 

LEMMA 3.4. Let u(x, 2) > 0 be a positive solution of (3.1), and assume that conditions 
(3,2)-(3.4) are satisfied. Then u(x, 2) can lose its positivity only for increasing 2 (i.e. the 
solution stays positive, when continued for decreasing 4). 

Proof. Assume on the contrary that u(x, 2) loses its positivity for decreasing 2. Since 
any positive solution u(x, A) of  (3.1) is a decreasing function of x, the only way it may lose 
its positivity is that there is a 21, such that u ' ( l ,  21) = 0, and then for 2 < 2~ the solution 
u(x, 2) becomes negative near x = 1. 

We claim that u×(x, 2 0 is positive near x = 1. By the definition of 21 it is clear that 
ux(x, 2~) cannot be negative on an interval containing x = 1. If  u×(x, 2 0 failed to be 
positive in some interval containing x = l, we could find a sequence xn -~ l, such that 
u×(xn, 2 0 = 0. Let ~t~ ~ 1 be points of  nonnegative local maximums of u×(x, 21), i.e. 
u×(/~ n, 2 0 _> 0 and u~(/~, 21) = 0. Differentiate (3.1) in 2, denoting u× = u×(x, 2 0, 

u~ + 2fuu× = - f ( x , u )  f o r - 1  < x <  1, u×(-1) = u×(1) = 0. (3.13) 

We now evalute (3.13) at x = ~n. The first term on the left is negative, the second one is 
tending to zero, and the right-hand side tends to - f ( 1 , 0 )  > 0, a contradiction. 

We claim next that 

~/~k(X, 21) > 0 for all x e [0, 1). (3.14) 

Assuming otherwise, let ( e [0, 1) be the largest root of  ux(x, 20.  Multiplying equation 
(3.1) by u '  and integrating over ((, 1), we conclude that at 2 = 2~ 

f (x,  u)u 'dx  = u'2(~) > 0. (3.15) 

Differentiate equation (3.1) in x, 

u" + 2f~,ux + 2fx(x, u) = 0 for - 1  < x < 1. (3.16) 

We now multiply equation (3.13) by u '  and subtract from it equation (3.16) multiplied by 
u x. Then integrate over (0, 1). In view of  (3.15), we obtain 

i'l !1 (u'u.~ - uxu")] ~ - 2 fxuxdx + f u ' d x  = 0. (3.17) 

The integral terms in (3.17) are positive. The other terms are equal to -u ' (~ )u ; (~ )  > 0, 
a contradiction. 
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The function w(x) =- xu,:(x, 21) - 221u×(x, 20  satisfies 

w" + 21 f ,  w = -21xfx(x ,  u) > 0 for - 1  < x < 1, 

w ( - 1 )  = w ( l )  = o.  ( 3 . 1 8 )  

We know by the above that w(x) is negative n e a r x  = 1, and w(0) < 0. By Lemma 3.3 w(x) 
cannot be negative everywhere on ( -1 ,1) .  Since w(x) is an even function, it has to vanish 
on (0, I). Hence we can find 0 < ( < r / <  1, such that w(() = w(r/) = 0 and w > 0 on 
((, r/). (The possibility of  w < 0 around one of  its roots is ruled out f rom (3.18).) We now 
multiply equation (3.18) by u '  < 0, and subtract f rom this equation (3.16) multiplied by 
w, and then integrate over ((, q), obtaining 

u ' ( ~ ) w ' ( ~ )  - u ' ( O w ' ( ( )  < o. 

Since both terms on the left are positive, we obtain a contradiction. 
We now state our uniqueness result. 

THEOREM 3.1. Assume that for problem (3.1) conditions (3.2)-(3.5) are satisfied. Then for 
any 2 > 0 problem (3.1) has at most one positive solution. 

Proof.  Let u(x, 2) be a solution of  (3.1) at a certain 2. We now continue this solution 
for decreasing 2. Since by Lemma 3.1 (3.6) has only the trivial solution, this can be done 
using the implicit function theorem. By the well known estimates of  Gidas and Spruck 
[12] the solution branch remains bounded for any 2 > 0. (I.e. u(0, 2) remains bounded.) 
We show next that as 2 - ,  0, the solution u(x, 2) cannot approach zero. In view of  con- 
dition (3.4) we can find a constant c I _> 0, such that f (x ,  u) <_ clu for small u > 0 and all 
x e ( - 1 ,  1). Multiplying (3.1) by u, integrating by parts and using the Poincare 's  
inequality, we obtain 

i1 ix l 1  2t, 2Cl u 2 dx >_ 2 f ( x ,  u)u dx = u ,2 dx > u 2 dx, 
-1  ~,-1 -1  - -  T -1  

which implies a contradiction for 2 small. It follows that as 2 -o 0, solution u(x, 2) ~ co. 
Since any other solution branch can have no turns, and has the same behavior near 2 -- 0, 
we conclude uniqueness of  solutions, if we show that there is only one solution branch 
going to infinity as 2 -o 0. I.e. we show next that the curve "bifurcat ing from infinity" 
is unique. (This is more or less known, but we give details for completeness.) 

We rescale equation (3.1), setting u = (I/P-{/2)z. Setting f ( x ,  u) = h(x)u p + g(x, u), 
we obtain 

Z " + h ( x ) z P + G ( x , z ,  2 ) = O  on ( - 1 ,  1), z ( - 1 ) = z ( 1 ) = O ,  (3.19) 

where G(x, z, 2) = 2P/(P-I)g(x, ( I / P - ~ ) Z )  for 2 > 0, and in view of  (3.5) we may define 
by continuity G(x, z, O) = O. 

Equation (3.19), when 2 is small, is a perturbation of  

z" + h(x)z p = 0 on ( - 1 ,  1), z ( -1 )  = z(1) = 0. (3.20) 
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The problem (3.20) has two solutions: z - 0, and a unique positive solution. To see 
existence and uniqueness of the positive solution, we imbed (3.20) into a family of 
problems 

Z" + (vh(x) + (1 - v)ho)Z p = 0 o n  ( - 1 ,  1), Z(-1) = Z(1) = 0, (3.21) 

where 0 _< v _< 1 is a parameter, and h0 is any positive constant. If the linearized equation 
for (3.21) 

w" + p(vh(x) + (1 - v)ho)w p-I = 0 

w(-1)  = w(1) = O, 

on ( -1 ,  1), 
(3.22) 

has a nontrivial solution, it has to be of one sign by Lemma 3.1. Using the Sturm 
comparison theorem, we easily see from (3.21) and (3.22) that this is impossible, i.e. (3.21) 
admits only the trivial solution. By the implicit function theorem equation (3.21) has a 
unique positive solution, for any 0 <__ v <_ 1, since for v = 0 this follows by phase plane 
analysis. 

The trivial solution of  equation (3.20) does not continue for 2 > 0. Indeed, assuming 
that for small 2 > 0 equation (3.19) has a small and positive solution z, we multiply (3.19) 
by z and integrate over ( - 1 ,  1), easily obtaining a contradiction. (The first term after 
integration by parts, I - - I l l  z '2 0 x ,  dominates all other terms as (z, 2) --, (0, 0), except 
the zero order term in G, which is negative, and so it "pul ls"  the same way as I.) The 
positive solution of  (3.20) continues by the implicit function theorem to a unique positive 
solution for small 2 > 0. It follows that the curve ot' solutions of (3.1), which bifurcates 
from infinity at 2 = 0 is unique, concluding the proof of  the theorem. • 

Remark.  Our conditions allow for a positive solution of (3.1) to exist. For example 
the problem 

u" + ~.(h(x)u p -  1) = 0  f o r - 1  < x <  1, u ( - 1 ) =  u(1) = 0 ,  (3.23) 

with positive h(x) satisfying (3.2), and p > 1, will have a (unique) positive solution for 
2 > 0 small. Indeed, rescaling u = 2- l /w- l )z ,  we obtain a small perturbation of equation 
(3.20), and so existence follows by the implicit function theorem. For increasing 2 the 
solution of (3.23) loses its positivity. 

Note that one of  the crucial things in the proof  of the above result was to show that 
positivity of a solution branch can be lost only for increasing 2. To prove this fact in 
Lemma 3.4 we used our conditions (3.1) and (3.2). It is interesting that i f f  = f (u ) ,  the 
corresponding result holds in much greater generality. 

PROPOSITION. Consider the problem 

u" + 2f(u) = 0 f o r - 1  < x <  1, u ( -1)  = u(1) = 0. (3.24) 

Assume that f (u )  ~ C2(R+) and f (0)  < 0. A positive branch u(x, 2) > 0 of solutions of 
(3.24) can lose it positivity only for increasing 2. 
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Proo f .  Assuming the contrary, we can as before find ~-1 > 0, such that ux(l, 21) = 0 
and Ux(X, 21) > 0 near x = 1. We notice that 

uxx(0, 21) < 0. (3.25) 

Indeed, assuming uxx(0, 20  = 0, we differentiate (3.1) in x, and discover that v = Ux 
solves a linear homogeneous equation with zero initial conditions, a contradiction. We 
claim next that 

u×(0, 21) = 0. (3.26) 

Indeed, f rom equations (3.13) and (3.16) we obtain as before 

(u 'u ;  - UxU")' + f ( u ) u '  = O. 

Integrating over (0, 1), and using (3.15), we conclude 

ux(O)u"(O) = O. 

In view of (3.25), the claim (3.26) follows. 
The function w(x) ~ 22~ ux - xu~ is positive near x = 1, and it is a nontrivial solution of  

w" + 2 1 f ' ( u ) w  = 0 on (0, 1), w(0) = w'(0) = 0, 

which is a contradiction, completing the proof.  • 

Finally, to complete the discussion we consider the remaining case when 

f ( x ,  0) = 0 for all x ¢ [ -1 ,  1]. (3.27) 

Notice that the possibility of  f ( x ,  0) > 0 for some x, is inconsistent with the condition 
(3.3). 

TnEonEta 3.2. Assume that for problem (3.1) conditions (3.2), (3.3), (3.5) and (3.27) are 
satisfied. Then for any 2 > 0 problem (3.1) has at most one positive solution. 

Proo f .  Similar to the previous theorem, and actually easier, since now we know by 
Hopf ' s  lemma that positive solution branches can never lose positivity. • 
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