Calculating Global Solution Curves for Boundary Value Problems

Philip Korman and Dieter Schmidt

University of Cincinnati

This program calculates curves of solutions for two-point Dirichlet problems

(1)
$$u''(x)+g(u(x))=\mu \sin x+e(x), 0 < x < \pi, u(0)=u(\pi)=0.$$

Here the functions g(u) and e(x) are given, μ is a parameter. Observe that a given function on the right hand side of (1) has been decomposed into the sum of the first harmonic μ sin x, and the "the rest" i.e., the function e(x) with $\int_0^{\pi} e(x) \sin x \, dx = 0$. Likewise, let us decompose the solution of (1) as u(x)= ξ sin x+U(x), where ξ is a number and $\int_0^{\pi} U(x) \sin x \, dx = 0$. For the eigenvalue problem

$$u''(x) + \lambda u = 0$$
, $0 < x < \pi$, $u(0) = u(\pi) = 0$

we have λ_1 =1 with the corresponding eigenfunction $\sin x$, and λ_2 =4 with the corresponding eigenfunction $\sin 2x$. It was shown in P. Korman, Curves of equiharmonic solutions, and problems at resonance, Discrete Contin. Dyn. Syst. 34, no. 7, 2847-2860 (2014), that the value of ξ is a global parameter, $0 < \xi < \infty$, uniquely identifying the solution pair $(u(x), \mu)$ of (1), provided that g'(u) < 4 for all u > 0. For a direct access to the paper click here:

https://homepages.uc.edu/~kormanp/George2.pdf

Note that other conditions on g(u) are described there. Thus we can have a solution curve $(u(x), \mu)(\xi)$ with different domains. A section of this curve $\mu(\xi)$ governs the multiplicity of solutions of (1). We now describe the program for computing $\mu=\mu(\xi)$, which is presented below.

The program begins by implementing the "linear solver", i.e., the numerical solution of the following problem: given any ξ , and any continuous functions a(x) and f(x), find u(x) and μ solving

(3)
$$u''(x)+a(x)u=\mu \sin x+f(x)$$
, $0< x<\pi$,
 $u(0)=u(\pi)=0$
 $\frac{2}{\pi}\int_0^{\pi}u(x)\sin x\,dt x=\xi$.

The general solution of the differential equation in (3) is $u(x)=Y(x)+c_1 u_1(x)+c_2 u_2(x)$,

where Y(x) is any particular solution, $u_1(x)$ and $u_2(x)$ are two linearly independent solutions of the corresponding homogeneous equation u'' + a(x)u = 0, $u_1(0) = u_2(\pi) = 0$.

The particular solution is calculated in the form $Y(x)=\mu Y_1(x)+Y_2(x)$, where $Y_1(x)$ solves $u''(x)+a(x)u=\sin x$, u(0)=0, u'(0)=1,

and $Y_2(x)$ solves

$$u''(x) +a(x)u=f(x), u(0)=0, u'(0)=1.$$

The solution of the equation in (3) and satisfying the first boundary condition is then

$$Y(x)=\mu Y_1(x)+Y_2(x)+c_2 u_2(x)$$
.

Then we choose μ and c_2 to satisfy the other boundary condition and the third line in (3).

We now compute the solution curve $(u(x), \mu)(\xi_i)$ by using the above algorithm combined with Newton's method at each ξ_i .

The program below computes the solution curve $\mu = \mu(\xi)$ for a problem at resonance. The functions g(u) and e(x) are defined at the beginning of the program.

The program computes st=100 mesh points, then joins them to plot the solution curve. The length of the interval in ξ can be controlled by changing xi0 and delxi. (Please execute the program.) The solution curve illustrates the fact that at μ = 0 there are infinitely many solutions. If you change to p =4 in line 2, the program will confirm that a drastic change occurs.

This program solves the problem (1) and draws the solution curve $\mu = \mu(\xi)$ (the bifurcation diagram)

```
In[1]:= Clear["`*"]
    p = 1;
    st = 100;
    xi0 = 0;
    delxi = .4;
    T = \pi // N;
    nu = \pi / T;
    e[x_] = Sin[3*nu*x];
    g[u_{-}] = nu^2u + \frac{Sin[u]}{\sqrt{u^p + 4}};
    linear := Module[{den, aa, bb, cc, dd, p, q},
       u1 = NDSolveValue[\{y''[x] + a[x] * y[x] == 0, y[0] == 0, y'[0] == 1\}, y, \{x, 0, T\}];
       Y1 = NDSolveValue [{ y''[x] + a[x] * y[x] = Sin[x], y[0] = 0, y'[0] = 0}, y, {x, 0, T}];
       Y2 = NDSolveValue [\{y''[x] + a[x] * y[x] = f[x], y[0] = 0, y'[0] = 0\}, y, \{x, 0, T\}];
       aa = u1[T];
       bb = Y1[T];
       cc = NIntegrate[u1[x] * Sin[x], {x, 0, T}];
       dd = NIntegrate[Y1[x] * Sin[x], {x, 0, T}];
       den = aa * dd - bb * cc;
       If[Abs[den] < 10^-7, Print["approaching singularity of linear system den=", den]];</pre>
       p = -Y2[T];
       q = \xi * T / 2 - NIntegrate[Y2[x] * Sin[x], \{x, 0, T\}];
       c1 = (dd * p - bb * q) / den;
       \mu = (aa * q - cc * p) / den;
```

```
u[x_{-}] = c1 * u1[x] + \mu * Y1[x] + Y2[x];
 1
dg[u_] = D[g[u], u];
uold[x] = 12 * Sin[nu * x];
For [i = 1, i \le st, i++,
 xi[i] = xi0 + i delxi;
 \xi = xi[i] * 2 / T;
 mu[i] = 0;
 jc = 1;
 While[True,
  a[t_] = dg[uold[t]];
  f[t_] = e[t] - g[uold[t]] + dg[uold[t]] * uold[t];
  linear;
  If [Abs [ (mu[i] - \mu) ] < 10^-7, mu[i] = \mu;
   Print["At xi[", i, "]=", xi[i], " number of iterations=", jc]; Break[]];
  If[jc > 10,
   Print["At xi[", i, "]=", xi[i], " no convergence for \mu=", \mu, " mu[", i, "]=", mu[i]];
   Break[]];
  mu[i] = \mu;
  uold[t_] = u[t];
  jc++;
 ]
At xi[1]=0.4 number of iterations=4
At xi[2]=0.8 number of iterations=3
At xi[3]=1.2 number of iterations=3
At xi[4]=1.6 number of iterations=3
At xi[5]=2. number of iterations=3
At xi[6]=2.4 number of iterations=3
At xi[7]=2.8 number of iterations=3
At xi[8]=3.2 number of iterations=3
At xi[9]=3.6 number of iterations=3
              number of iterations=3
At xi[10]=4.
              number of iterations=3
At xi[11] = 4.4
               number of iterations=3
At xi[12] = 4.8
At xi[13] = 5.2
               number of iterations=3
At xi[14]=5.6 number of iterations=3
At xi[15]=6. number of iterations=5
At xi[16]=6.4 number of iterations=4
```

At xi[17] =6.8	number of iterations=5
At xi[18] =7.2	number of iterations=4
At xi[19] = 7.6	number of iterations=3
At xi[20] =8.	number of iterations=3
At xi[21] =8.4	number of iterations=3
At xi[22] =8.8	number of iterations=4
At xi[23]=9.2	number of iterations=3
At xi[24] =9.6	number of iterations=3
At xi[25] = 10.	number of iterations=3
At xi[26] = 10.4	number of iterations=3
At xi[27] = 10.8	number of iterations=4
At xi[28]=11.2	number of iterations=6
At xi[29] =11.6	number of iterations=3
At xi[30] =12.	number of iterations=4
At xi[31] = 12.4	number of iterations=3
At xi[32] =12.8	number of iterations=3
At xi[33]=13.2	number of iterations=3
At xi[34] =13.6	number of iterations=4
At xi[35] =14.	number of iterations=3
At xi[36] =14.4	number of iterations=3
At xi[37] =14.8	number of iterations=3
At xi[38] =15.2	number of iterations=5
At xi[39] =15.6	number of iterations=3
At $xi[40] = 16$.	number of iterations=3
At xi[41] = 16.4	number of iterations=5
At xi[42] =16.8	number of iterations=4
At xi[43]=17.2	number of iterations=3
At xi[44] = 17.6	number of iterations=5
At $xi[45] = 18$.	number of iterations=3
At xi[46] = 18.4	number of iterations=4
At xi[47] = 18.8	number of iterations=3
At xi[48] =19.2	number of iterations=4
At xi[49]=19.6	number of iterations=3
At xi[50] = 20.	number of iterations=3
At xi[51] = 20.4	number of iterations=4

At xi[52] = 20.8 number of iterations = 4

- number of iterations=3 At xi[53] = 21.2
- At xi[54] = 21.6number of iterations=3
- At xi[55] = 22. number of iterations=4
- At xi[56] = 22.4number of iterations=4
- number of iterations=3 At xi[57] = 22.8
- At xi[58] = 23.2number of iterations=4
- At xi[59] = 23.6number of iterations=3
- number of iterations=4 At xi[60] = 24.
- At xi[61] = 24.4number of iterations=3
- At xi[62] = 24.8number of iterations=3
- number of iterations=5 At xi[63] = 25.2
- At xi[64] = 25.6number of iterations=3
- At xi[65] = 26. number of iterations=5
- At xi[66] = 26.4number of iterations=5
- At xi[67] = 26.8number of iterations=4
- At xi[68] = 27.2number of iterations=3
- At xi[69] = 27.6number of iterations=5
- At xi[70] = 28. number of iterations=5
- At xi[71] = 28.4number of iterations=7
- At xi[72] = 28.8number of iterations=5
- At xi[73] = 29.2number of iterations=3
- At xi[74] = 29.6number of iterations=4
- At xi[75] = 30. number of iterations=3
- At xi[76] = 30.4number of iterations=5
- At xi[77] = 30.8number of iterations=3
- At xi[78] = 31.2number of iterations=4
- number of iterations=4 At xi[79] = 31.6
- At xi[80] = 32. number of iterations=6
- At xi[81] = 32.4number of iterations=4
- number of iterations=6 At xi[82] = 32.8
- At xi[83] = 33.2number of iterations=4
- At xi[84] = 33.6number of iterations=4
- At xi[85] = 34. number of iterations=4
- At xi[86] = 34.4number of iterations=4
- At xi[87] = 34.8number of iterations=4
- At xi[88] = 35.2number of iterations=5

-0.2

```
At xi[89] = 35.6
                        number of iterations=3
     At xi[90] = 36.
                       number of iterations=6
     At xi[91] = 36.4
                        number of iterations=4
     At xi[92] = 36.8
                        number of iterations=7
     At xi[93] = 37.2
                        number of iterations=3
     At xi[94] = 37.6
                        number of iterations=5
     At xi[95] = 38.
                       number of iterations=3
     At xi[96] = 38.4
                        number of iterations=6
     At xi[97] = 38.8
                        number of iterations=4
     At xi[98] = 39.2
                        number of iterations=3
     At xi[99] = 39.6
                        number of iterations=4
                        number of iterations=3
     At xi[100] = 40.
In[14]:= table = Table[{xi[i], mu[i]}, {i, 1, st}];
ln[15]:= g1 = ListPlot[table, Joined \rightarrow True, AxesOrigin \rightarrow {0, 0},
        AxesLabel \rightarrow {"\!\(\*StyleBox[\"\xi\",FontSize->18]\)",
           "\!\(\*StyleBox[\"\mu\",FontSize->18]\)"}, PlotStyle \rightarrow Thickness[0.01]]
        μ
      0.5
      0.4
      0.3
      0.2
Out[ • ]=
      0.1
      -0.1
```