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Abstract

For a class of semilinear Dirichlet problems we present an exact
multiplicity result. Our proof simplifies the previous one in T. Ouyang
and J. Shi [11]. By an indirect argument we sidestep the necessity of
proving positivity for linearized equation, which was the most difficult
step in [11], as well as in the earlier paper of P. Korman, Y. Li and T.
Ouyang [6].

1 Introduction

We consider a class of semilinear Dirichlet problems
(1.1) Au+Af(u) =0 for|z|<R,u=0 forl|z|=R,

on a ball of radius R in R". Here \ is a positive parameter, and the non-
linearity f(u) is assumed to generalize a model case f(u) = u(u - b)(c —u),
with positive constants b and c, and ¢ > 2b (in case ¢ < 2b the problem (1.1)
has no nontrivial solutions, see e.g., [6]). v

We now list our assumptions on the nonlinearity f(u). We assume that
F(u) € C?(R,), and it has the following properties

(1.2) f(0) = f(b) = f(c) = 0 for some constants 0 < b < c,
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(1.3) flu) <0 for u € (0,b) U(c,0),
f(u) >0 for u € (—o0,0)U (b,c),
(1.4) /ch('u,)du > 0,

(1.5)  There exists an a € (0, c), such that
f"(u) >0 for u € (0,c) and f"(u) <0 for u € (e, c).

We define 6 to be the smallest positive number, such that fg f(s)ds = 0.
Clearly, 8 € (b,c). After T. Ouyang and J. Shi [11], we set p=a— Tf"((% (i.e.
p is the first Newton iterate when solving f(u) = 0 with the initial guess ).

!
We define K(u) = u—';-(-%-)- Our final assumption is the following. If 8 < p
we assume that ™
(1.6) K(u) > K(8) on (b0)

K (u) is nonincreasing on (8, p)

K(u) < K(p) on (p,a).

(If 6 > p this assumption is empty.)
We are now ready to state the main result.

Theorem 1.1 Assume that f(u) satisfies the conditions listed above. For
the problem (1.1) there is a critical Ao > 0 such that the problem (1.1) has
ezactly 0, 1 or 2 nontrivial solutions, depending on whether A < Ao, A = Ag
or A\ > X\g. Moreover, all solutions lie on a single smooth solution curve,
which for A > Ao has two branches denoted by 0 < u~(r,A) < ut(r,}),
with w*(r, A) strictly monotone increasing in A and limyout(r,\) = ¢
for v € [0,1). For the lower branch limy_,ou™(r,A) = 0 for v # 0, while
u~(0,A) > b for all A > Ao.

In present generality this theorem was proved first by T. Ouyang and
J. Shi [11]. In two dimensions (with some extra assumptions on f(u)) this
theorem was proved in P. Korman, Y. Li and T. Ouyang [6], where the
general scheme for proving such results was developed. One of the crucial
things in that approach was proving positivity of any non-trivial solution of
the linearized problem

(1.7 Aw+ Af'(w)w=0 for|z| <R, w=0 forl|z|=R.
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This turned out to be a difficult task, and it was the only reason the paper
[6] was restricted to two dimensions. Later, T. Ouyang and J. Shi [1 1] were
able to prove that w(r) > 0 by using Pohozhaev type identity. Their proof is
rather involved. We also mention that one-dimensional version of this result
was proved in P. Korman, Y. Li and T. Ouyang [7], where more general
nonlinearities of the type f(u) = (u = a)(u — b)(c — u) were considered,
and where references to earlier work in case n = 1 by J. Smoller and A.
Wasserman, and S.-H. Wang can be found.

In this work by using an indirect argument, we are able to avoid having
to prove that w(r) > 0, which considerably simplifies the proof, and makes it
more transparent. We show that it suffices to prove that w(r) cannot vanish
exactly once. We show that our assumptions on f(u) make the function
%‘l behave almost the same way as in the important paper of M.K. Kwong

and L. Zhang [8], and then our proof that w(r) cannot vanish exactly once
is similar to Lemma 8 of [g].

We outline our arguments next. It is known that for large A our problem
(1.1) has a positive solution. When continued for increasing X this solution,
after possibly some turns, has to tend to ¢ as A — co. When continued for
decreasing A this solution has to turn, since no positive solutions exist for A >
0 small. The lower end of our solution curve, after possibly some turns, has
to tend to 0 as A — oo. If one assumes that w(r) > 0 at any one of the turns,
we show that the result follows. It is important on this step that w(r) cannot
vanish exactly once. It then remains to consider the case when condition
w(r) > 0 is violated at all turning points. Assume for simplicity there is
only one turning point on the solution curve. Since condition w(r) > 0 is
violated, it follows by the Crandall-Rabinowitz bifurcation theorem (which
is recalled below) that the lower and upper solution branches intersect near
the turning point. By uniqueness for initial-value problem these branches
would have to intersect for all A. But the upper branch tends to ¢, while
the lower one tends to zero, and hence they have to separate eventually, a
contradiction. In case of more than one turning point, the argument is more
involved, although the idea is similar.

Next we state a bifurcation theorem of Crandall-Rabinowitz [1].

Theorem 1.2 [1] Let X and Y be Banach spaces. Let (A T) € RxX and let
F' be a continuously differentiable mapping of an open neighborhood of (\, %)
into Y. Let the null-space N(Fy(}X, %)) = span {xg} be one-dimensional and
codim R(Fyz(\,%)) = 1. Let F\(\%) ¢ R(F;(NE). If Z is a complement of
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span {zo} in X, then the solutions of F(A,z) = F(\, %) near (\,T) form a

curve (A(s), z(s)) = (A+7(s), T+sz0+2(s)), where s — (7(s),2(s)) e Rx Z
is a continuously differentiable function near s = 0 and 7(0) = 7/(0) = 0,
2(0) = 2/(0) = 0.

Throughout the paper we consider only the classical solutions of (1.1).
Without loss of generality we set R = 1. Also notice that by the maximum
principle all non-trivial solutions of (1.1) are positive.

2 Preliminary results

We list some consequences of our conditions on f(u). We define 8 > 0 to
be the unique number where f/(8) = f—([f—) Clearly, 8 € («,~), where v is

the larger root of f/(u) = 0. The following lemma was proved in [6].
Lemma 2.1 We have

) >0, for ue(0,8)
(2.1) uf'(u) — f(u) { <0 for ue(Be).

Lemma 2.2 K(0) =1, K(u) <1 on (0,b).

Proof:  The first statement follows by L’Hospital rule. Notice next that
for u < b we have f(u) <0, and also by the previous lemma f'(u)u > f(u).
It follows that K(u) < 1.

Lemma 2.3 K'(u) <0 on (e, 8).

Proof: Compute
. ufllf+fl f_ufl
K'(u) = f2( )
The first term in the numerator is negative for 4 > «, and the second one
is negative by Lemma 2.1 (notice that f'(u) > 0 on (o, 3)).

Lemma 2.4 K(u) <1 on (3,¢).
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.Proof: On (B,c) we have f(u) >0, and f'(u)u < f(u) by Lemma 2.1,
and the proof follows.

Lemma 2.5 If 0 < p then K(p) > 1.
Proof: By the definition of p
fla)(e = p) = f(@) =0.

Using this and our last condition in (1.6),

PR C))
K(p)>K(a)=1+ o) >1,

proving the lemma.

The lemmas above imply the following result.

Theorem 2.1 Assume 6 < p. For any ug € (0,p) we define v = K(ug).
Then vy > 1, and

>0, for ue(0,up)
<0 for wue (ug,c).

(2.2) uf(u) — vf(u) {

Proof: The above lemmas imply that the horizontal line y =+ intersects
the graph of y = K(u) exactly once, and the graph of K (u) lies above the
line y = « in the region where f (u) > 0. This proves the first inequality in
(2.2), and second one follows similarly.

We study multiplicity of positive solutions of the Dirichlet problem, de-
pending on a positive parameter A

(2.3) Au+Af(u)=0 for|zf<1, u=0 on |z| =1,

with nonlinearity f(u) satisfying all of our assumptions. By the classical
theorem of B. Gidas, W.-M. Ni and L. Nirenberg [3] positive solutions of
(2.3) are radially symmetric, which reduces (2.3) to

(2.4) 4"+ P—;—‘l-u’ +Af(u) =0 for 0<r <1, 4/(0)=u(l)=0.

We shall also need the corresponding linearized equation

(2.5) v + P-:—:?:-—l-w' +Af'(ww=0 for 0<r<1, w'(0)=uw(l)=0.

The following lemma was proved in [4].
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Lemma 2.6 Assume that the function f(u) € C?(Ry), and the problem
(2.5) has a nontrivial solution w at some A. Then

(2.6) '/01 flu)wr™ tdr = El}-‘-u'(l)'w’(l).

We recall that solution of (2.4) is called singular provided the corre-
sponding linearized problem (2.5) has a nontrivial solution. The following
lemma follows immediately from the equations (2.4) and (2.5).

Lemma 2.7 Let (\u) be a singular solution of (24 ). Then
1
(2.7) / (f(u) = f'(w)u) wr™ tdr =0.
J0

The following lemma is a consequence of the previous two.

Lemma 2.8 Let (\,u) be a singular solution of (2.4). Then for any real

(2.8) '/01 (vf(u) = [ (u)u) wr"™ Lar = T“ '(1)w'(1).

Proof. Multiplying (2.6) by 7 — 1, and adding (2.7), we obtain (2.8).

The following lemma is known, see e.g. E.N. Dancer [2]. We present its
proof for completeness.

Lemma 2.9 Positive solutions of the problem (2.4) are globally parameter-
ized by their mazimum values u(0, A). Le., for every p > 0 there is at most
one A > 0, for which u(0,\) =

Proof. If u(r,)) is a solution of (2.4) with u(0,)) = p, then v = u,(:/l;r)
solves

(2.9) oo 1'0 + f(v) =0, v(0)=p, v'(0)=0.

If w(0, u) = p for some p # A, then u( V,-r) is another solution of the same
problem. This is a contradiction, in view of the uniqueness of solutions for
initial value problems of the type (2.21), see [12].

The following lemma restricts the region where w(r), solution of the
linearized problem (2.5), may vanish. Its first part is due to T. Ouyang and
J. Shi [11], see also J. Wei [13], and its second part is due to M.K. Kwong
and L. Zhang (8].




Global Solution Set for a Class of Semilinear Problems 183

Lemma 2.10 Any nontrivial solution of (2.5) cannot vanish in either in-
terval where 0 < u < @, and where p < u < 1.

In case 6 > p it follows that any nontrivial solution of (2.5) is positive, and
the main result of the present paper then follows similarly to [6].

The following lemma follows the idea of Lemma 8 of M.K. Kwong and
L. Zhang [8].

Lemma 2.11 Under our conditions on f(u) any non-trivial solution of
(2.5) w(r) cannot have exactly one zero on 0,1).

Proof. Since w(0) # 0, see [12] for the appropriate uniqueness result (if
w(0) = w/(0) = 0 then w = 0), we may assume that w(0) > 0. Assume that
on the contrary w(r) has exactly one root at some r = 70, 1.€.

(2.10) w(r) >0 on.(0,7g), w(r) <0 on (ry,1).

By Lemma 2.10 u(rg) € (6, p). Setting v = K (u(rg)), we see by Theorem
2.1 that
(2.11) () = uf(u) {

<0 forall u< u(rg)
>0 forall u>u(r).

Since v > 1, we obtain by Lemma 2.8 (notice that w'(1) > 0 by (2.10))

. .
(2.12) / [v£ (1) = uf'(w)] w(r)r™dr < 0.

0
In view of (2.10) and (2.11) the quantity on the left is positive, and we have
a contradiction in (2.12).

Lemma 2.12 Let u(r,\) and v(r, \) be two solution curves of (2.4), which
are continuous in A, when the parameter A varies in some interval I. Assume
that for some Ao € I solutions u(r, o) and v(r, Ng) intersect. Then u(r, A)
and v(r, A) intersect for all A € I.

Proof: In order for the solution curves to separate, there must ex-
ist A1 (the last A at which they intersect) and a point r; € [0,1] at which
u(ry, A1) = v(ry, A1) and up(ry, Ap) = vr(r1, A1). But this contradicts unique-
ness for initial value problems.
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Next we study the linearized eigenvalue problem corresponding to any
solution of (2.4):

n—1
(213)¢" + ——¢/ +Af'(w)p +pp =0 on (0,1), ¢(0) = (1) =0.

Comparing this to (2.5), we see that at any singular solution of (2.4) u =0
is an eigenvalue, corresponding to an eigenfunction ¢ = w.
We shall need the following generalization of Lemma 2.6.

Lemma 2.13 Let ¢ > 0 be a solution of (2.13) with p < 0. (Le. ¢ isa
principal eigenfunction of (2.13).) Then

(2.14) /01 fu)er™ tdr > 2—1/{11,'(1)(,0'(1).

Proof. The function v = ru, — ur(1) satisfies

(2.15) Av + Af!(u)v + pv = pv = 22 f(u) — Af'(w)u/(1) for |z] <1,

v=0 on |z|=1
Comparing (2.15) with (2.13) we conclude by the Fredholm alternative

(2.16) p Jg ver™tdr — 2X fg f(u)er™ldr —
/(1) f01 f!(u)er™ldr = 0.

Integrating (2.13)
1 1
-—)\/ fw)er™ldr = ¢'(1) + ,u/ @r™dr,
J0 0
Using this in (2.16), we have

1 1 1
2’\/ F)pr"~tdr = “/ runEr™tdr + u/(1)¢'(1) + pu'(1) / orLdr,
0 0 0

and the proof follows.

We now define Morse index of any solution of (2.4) to be the number of
negative eigenvalues of (2.13). The following lemma is based on K. Nagasaki
and T. Suzuki [10}.
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Lemma 2.14 Assume that (\,u) is o singular solution of (2.4) such that
w'(1) < 0 and

1
(2.17) / f(wwdrldr < 0.
0
Then at (A\,u) a turn to “the right” in (), u) “plane” occurs, and as we i

Jfollow the solution curve in the direction of decreasing u(0, \), the Morse {
index is increased by one. ‘

Proof. To see that the turn is to the right, we observe that the function
7(s), defined in Crandall-Rabinowitz theorem, satisfies 7(0) = 7/(0) = 0 and

A ST (w)ulrn=14p

(218) | 0= /ol f)wrn=tdr ’ |

see [6] for more details. By our assumption the numerator in (2.18) is
negative, while by Lemma 2.2 the denominator is positive. It follows that
7(0) > 0, and hence 7(s) is positive for s close to 0, which means that the
turn is to the right.

At a turning point one of the eigenvalues of (2.13) is zero. Assume it is
the £-th one, and denote y = pe. Here p = u(s), and p(0) = 0. We now
write (2.13) in the corresponding PDE form and differentiate this equation
in s
(219)  Aps+ Af'(w)ps + N () + Af" (w)usp + 1o + pps = 0

» for [z] <1, ws=0 on |z|=1.

At (A, u) the Crandall-Rabinowitz theorem applies, and hence we have: X
#(0) = 0, (0) = w, X(0) = 0, and us(0) = —w (considering the chosen
parameterization). Here w is a solution of the linearized equation (2.5).
The equation (2.19) becomes

(2.20) Aps = Af"(ww? + Af'(u)ps + 1/ (0)w = 0.
Multiplying (2.5) by s, (2.20) by w, subtracting and integrating, we have

_ Afol " (u)wdrm—1dr
B jol w2rn=1dr

©'(0) <0.

It follows that across the turning point one of the positive eigenvalues crosses
into the negative region, increasing the Morse index by one.
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Lemma 2.15 Assume that (Ao, uo) s a singular solution of (2.4), i.e. the
problem (2.5) has a nonirivial solution w(r). Then

(221) w(r) >0 forallr€l0,1)

if and only if for X\ close to Ag any two solutions on the solution curve passing
through (Ao, uo) do mot intersect.

Proof: In view of Lemma 2.6 the Crandall-Rabinowitz theorem applies at
(Mo, uo) (see [6] for more details). According to that theorem near the point
(Ao, uo) solutions differ asymptotically by a factor of w(r), which implies the
lemma.

The following lemma was proved in [6], see also [11] and [13].

Lemma 2.16 Assume that (Ao, ug) s a singular solution of (2.4), such that
(2.21) holds. Then the inequality (2.17) holds, and the conclusions of the
Lemma 2.14 apply.

Next we study eigenvalues and eigenfunctions of radial solutions of Laplace
equation on a ball. Since singularity at r = 0 is introduced by the polar
coordinates, and is not present in the original equation, it is natural to ex-
pect spectral properties similar to that of regular Sturm-Liouville problems.
Surprisingly, we were not able to find any references.

Lemma 2.17 Consider an eigenvalue problem
(2.22) ¥+ %y’ +b(r)y+ Ay =0, for0<r<1, ¥(0)=y(1) =0,

with a constant a > 1, and b(r) € C?[0,1]. Assume that A\ = 0 is an
eigenvalue of (2.22), and let yo(r) be the corresponding eigenfunction. Then
the problem (2.22) has an infinite sequence of eigenvalues A1 < Ag < ...,
with A, — 00 as n — oo, and the n-th eigenfunction has precisely n — 1
roots on (0,1) for allm > 1. (One of \’s is equal to zero.)

Proof:  We convert the problem (2.22) into an integral equation, using
the modified Green’s function. We claim that any solution of the equation

(2:23) ¥+ 2y +b(ry =0,
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that is bounded at r = 0 must be a multiple of the first eigenfunction yo(r).
Indeed, writing the first two terms of the Taylor’s series of the solution
with a remainder term, we easily conclude that ¢/ (0) = 0 for any bounded
solution. If we now fix a constant a so that y(0) = ayo(0), then we shall have
y(r) = ayo(r) for all r > 0, in view of uniqueness for initial value problems
of the type (2.23), see [12]. Let y3(r) be a solution of (2.23) with yo(1) = 1.
Since y3 is not a multiple of yg, it follows that y2(r) = oo as r — +0. A
formal use of Frobenius method at r = 0 shows that ya~ Br=tl as r -,
with some constant 8. Setting y(r) = 7=%*12(r), we see that the resulting
equation for z(r) has all solutions bounded near r = 0, which justifies the
asymptotic formula for ya(r) near r = 0.

Notice that the problem (2.23) can be put into an equivalent self-adjoint
form

(2.24) (r*y'Y + r%(r)y = 0.

The modified Green’s function for (2.24) subject to the boundary conditions
y'(0) = y(1) = 0 has the form

(2.25) G(r,¢) = { yo(€)ya(r

where K is a constant. By the above remarks we have, with some constant
c >0,

(2.26) |G(r, &)| < €2 forr< ¢
|G(r,&)] < erl™ forr>¢.

We now multiply the equation (2.22) by r¢, and convert it into an integral
equation for the function z(r) = r2y(r)

1 _
(2.27) 2(r) = A /0 G(r,€)2(¢) de,

with the kernel G(r,¢) = G (7, 5)7'%5 3. Using (2.26) it is a standard exercise
1.1
to show that / / G? drdg < oo, see pages 178 and 421 in [14]. This means

that (2.27) is an integral equation with a compact and symmetric kernel.
It follows that its spectrum is discrete, and eigenvalues tend to infinity.
Moreover, we conclude that the minimum characterization of eigenvalues
applies, from which it follows that the k-th eigenfunction cannot have more
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than k — 1 interior roots, see p. 173 in [14]. On the other hand, the same
minimum characterization implies that y; is of one sign, and y2 must vanish
at least once. Also, by Sturm’s comparison theorem k.1 must have at least
one more interior root than y,. We then conclude that y9, then y3, and so
on have the desired number of interior roots.

3 Proof of the main result

We are now ready to prove the Theorem 1.1. We begin by noticing that
existence of positive solutions under our conditions follows by the Theorem
1.5 in P.L. Lions [9], see also [11]. Indeed the result in [9] implies existence of
a critical X, so that for A > X there exists a maximal positive solution of (2.3),
while for A > X there exists at least two positive solutions. Since positive
solutions of our problem (2.3) are radial, we consider its ODE version (2.4).
We now continue the curve of maximal solutions for decreasing A. It was
shown in [6] that this curve cannot be continued for all A > 0, and hence a
critical point (Ao, ug) must be reached, at which the curve will turn. By the
definition of a critical point, the linearized equation (2.5) has a nontrivial
solution w(r). We claim that the theorem follows provided that

(3.1) w(r) >0 forallr€l0,1).

By the Crandall-Rabinowitz Theorem near the turning point (Ao, up) the
solution set has two branches u~(r, A) < u*(r, A), for r € [0,1), A > Ag. By
the Crandall-Rabinowitz Theorem we also conclude

(3.2) u¥(r,A) >0 for A close to Ag (for all r € [0,1)).

Arguing like in P. Korman, Y. Li and T. Ouyang [6], we show that the same
inequality holds for all A > Ag (until a possible turn), see also T. Ouyang
and J. Shi [11] and J. Wei [13]. We claim next that solutions ut(r,\) are
stable, i.e. all eigenvalues of (2.13) are positive. Indeed, let on the contrary
1 < 0 be the principal eigenvalue of (2.13), and ¢ > 0 the corresponding
eigenvector. The equation for uy is

(3.3) uf 4+ 2=l + Af/(u)ux + f(u) =0 for r € (0,1],
wh(0) = ux(1) =0.
From the equations (2.13) and (3.3) we obtain

1 1
(3.4) L (p'uy —uho)ld = —u/o puar™ tdr + /0 F(u)er™tdr.
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The right hand side in (3.4) is positive by our assumptions, inequality (3.2),
and Lemma 2.13, while the quantity on the left is zero, a contradiction.
We show next that for A > Ag both branches u*(r, A) and = (7, A) have
no critical points. Indeed, if we had a critical point on the upper branch
u¥(r,A) at some X > Xg, then by the Crandall-Rabinowitz Theorem solution
of the linearized equation would be positive at A\ = X (since uy > 0 as we
enter the critical point). But then by Lemma 2.14 we know precisely the
structure of solution set near (X, u*(r, X)), namely it is a parabola-like curve
with a turn to the right. This is impossible, since the solution curve has
arrived at this point from the left. Turning to the lower branch u— (r, A), we
know by Lemma 2.14 that each solution on this branch has Morse index of
one, until a possible critical point. At the next possible turning point one
of the eigenvalues becomes zero, which means that the Morse index of the
turning point is either zero or one. If Morse index is zero, it means that zero
is a principal eigenvalue, and so solutions of the corresponding linearized
equation are of one sign, and then we obtain a contradiction the same way
as on the upper branch. If Morse index = 1, it means that zero is a second
eigenvalue, i.e. by Lemma 2.17 w(r) changes sign exactly once, but that
is impossible by Lemma 2.11. It follows that if condition (3.1) is satisfied
at the first turning point, then our Theorem 1.1. follows. But exactly the

same arguments show that having w(r) > 0 at any turning point will imply
Theorem 1.1.

It remains to rule out the possibility that condition (3.1) fails at all
turning points. By Lemma 2.15 this means that the branches u™(r, \) and
u™(r, A) intersect near any turning point (Ag,up). When we continue the
upper branch ¥ (r, A) for increasing ), then, after possibly some more turns,
uF(r,A) = cas A — oo for all 7 € [0,1), see [6] for more details. Similarly,
for the lower branch we have u~(r,A) — 0 as A\ — oo for all » € (0,1),
after possibly some additional turns, see [6]. (Notice that u”(0,A) > 6.) It
follows that for A sufficiently large

(3.5) u™(r,A) <ut(r,\) forallrel0,1)

We now pick the leftmost turning point on our curve (i.e. the turning
point with smallest A; if there is more than one such point, take any one of
them). In Figure 1 this is the point A. By above, condition (3.1) is violated
at this point, and hence solution branches contain intersecting solutions near
A. As we increase A solutions on both branches continue to intersect by
Lemma 2.12, until a possible turning point. If both branches have no more
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u(0)

Figure. 1. Solution curve with several turning points.
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turning points, solutions will intersect for all A, contradicting (3.5). Assume
that as we continue both branches u~ (r,A) and u=(r, \) for increasing A the
first turning point hdppens, say, at the upper branch at a point B, By B’
we denote the point on the lower branch, which has the same A coordinate
as B. By Lemma 2.12 solutions at B and B’ intersect. We now continue the
upper branch for decreasing A until the next turning point, which we call
C. By C’ we denote the point on the lower branch, which has the same A
coordinate as C. Moving leftwards on both branches, we conclude by Lemma
2.12 that solutions at C and C’ intersect. We denote by E the next turning
point on the upper branch (if it exists), and by E’ the corresponding point
under it on the lower branch. By moving to the right on both branches and
using Lemma 2.12 , we conclude that solutions at E and E' intersect. We
continue the process until the upper branch passes over B for the last time
at a point B. We conclude that solutions at B’ and B intersect. We now
resume moving forward in A on both lower and upper branches. If another
turning point is encountered, we repeat the above procedure. We conclude
that solutions on upper and lower branches corresponding to the same \
intersect for all A. This contradicts (3.5). We conclude that w(r) > 0 at any
turning point, and the theorem follows. ‘

Remark. After completing the proof, we conclude that the solution curve
has exactly one turn, and w(r) > 0 there. This is simpler than the previous
strategy (of [6], [11] and [13]) of directly proving that w(r) > 0.
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