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Introduction1

How do you cover a semester long course of “Linear Algebra” in half the2

time? That is what happened in the Fall of 2020 when classroom capacities3

were reduced due to Covid. I was teaching a 80 minute lecture to half of4

the class on Tuesdays, and repeating the same lecture to the other half on5

Thursdays. I had to concentrate on the basics, trying to explain concepts on6

simple examples, and to cover several concepts with each example. Detailed7

notes were produced (with lines numbered), which I projected on a screen,8

and made them available to students. Questions were encouraged, but not9

of a review nature (students were very cooperative). Pictures were drawn10

on a white board, and the most crucial concepts were also discussed there.11

On “free days” students were directed to specific resources on the web,12

particularly to lectures of G. Strang at MIT, and 3blue1brown.com that13

contains nice visualizations. I managed to cover the basics, sections 1.1-5.514

(although many sections were thinner then).15

Chapters 1-5 represent mostly the transcripts of my lectures in a sit-16

uation when every minute counted. Toward the end of the sections, and17

in exercises, non-trivial and useful applications are covered, like Fredholm18

alternative, Hadamard’s inequality, Gram’s determinant, Hilbert’s matrices19

etc. I tried to make use of any theory developed in this book, and thus avoid20

“blind alleys”. For example, the QR factorization was used in the proofs21

of the law of inertia, and of Hadamard’s inequality. Diagonalization had22

many uses, including the Raleigh quotient, which in turn led us to principal23

curvatures. Quadratic forms were developed in some detail, and then ap-24

plied to Calculus and Differential Geometry. Gram-Schmidt process led us25

to Legendre’s polynomials.26

I tried to keep the presentation focused. For example, only the Euclidean27

norm of matrices is covered. It gives a natural generalization of length for28

vectors, and it is sufficient for elementary applications, like convergence of29

Jacoby’s iterations. Other norms, semi-norms, definition of a norm, etc are30

iv
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left out.1

Chapters 6 and 7 contain applications to Differential Equations, Calculus2

and Differential Geometry. They are also based on classroom presentations,3

although in different courses. In Differential Equations after intuitive pre-4

sentation of the basics, we cover the case of repeated eigenvalues of deficiency5

greater than one, which is hard to find in the literature. The presentation6

is based on the matrix exponentials developed in the preceding section, and7

it leads to the theory of the Jordan normal form. Detailed discussion of8

systems with periodic coefficients allowed us to showcase the Fredholm al-9

ternative.10

Applications to Differential Geometry is a unique feature of this book.11

Some readers may be surprised to find discussion of Gaussian curvature in a12

Linear Algebra book. However, the connection is very strong as is explained13

next. Principal curvatures are the eigenvalues of the generalized eigenvalue14

problem Ax = λBx, where A and B are matrices of the second and the first15

fundamental quadratic forms respectively. The corresponding generalized16

eigenvectors give coordinates of the principal directions in the tangent plane17

with respect to the basis consisting of tangent vectors to the coordinate18

curves. This involves several key concepts of Linear Algebra.19

One of the central results of Linear Algebra says that every symmetric20

matrix is diagonalizable. We include a very nice proof, due to I.M. Gelfand21

[9]. In addition to its simplicity and clarity, Gelfand’s proof shows the power22

of abstract reasoning, when it is advantageous to work with the transfor-23

mation that the matrix represents, rather than the matrix itself. Generally24

though we tried to keep the presentation concrete.25

A detailed solution manual, written by the author, is meant to enhance26

the text. In addition to routine problems, it covers more challenging and27

theoretical ones. In particular, it contains discussion of Perron-Frobenius28

theorem, and of Gram determinants.29

A word on notation. It is customary to use boldface letters to denote30

vectors a, b, etc. Instructors use bars ā, b̄, when writing on a board. Roman31

letters are also used, if there is no danger of confusing vectors with scalars.32

We begin by using boldface letters, then gradually shift to the Roman ones,33

but still occasionally use boldface letters, particularly for the zero vector 0.34

When discussing Differential Geometry, we use boldface letters for vectors35

in the tangent plane, Roman letters for their coordinate vectors, while N̄ is36

reserved for the unit normal to the tangent plane.37
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It is a pleasure to thank my colleagues Robbie Buckingham, Ken Meyer1

and Dieter Schmidt for a number of useful comments.2



Chapter 11

Systems of Linear Equations2

In this chapter we develop Gaussian Elimination, a systematic and practical3

way for solving systems of linear equations. This technique turns out to be4

an important theoretical cornerstone of the entire subject.5

1.1 Gaussian Elimination6

The following equation with two variables x and y7

2x− y = 3

is an example of a linear equation. Geometrically, this equation describes8

a straight line of slope 2 (write it as y = 2x − 3). The point (2, 1) with9

x = 2 and y = 1 is a solution of our equation so that it lies on this line,10

while the point (3, 1) does not satisfy the equation, and it lies off our line.11

The equation has infinitely many solutions representing geometrically a line.12

Similarly the equation13

4x+ y = 9

has infinitely many solutions. Now let us put these equations together, and14

solve the following system of two equations with two unknowns15

2x− y = 3

4x+ y = 9 .

We need to find the point (or points) that lie on both lines, or the point16

of intersection. The lines are not parallel, so that there is a unique point17

of intersection. To find its coordinates, we solve this system by adding the18

equations:19

6x = 12 ,

1
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so that x = 2. To find y, use the value of x = 2 in the first equation:1

2 · 2 − y = 3 ,

so that y = 1.2

We used an opportunity to eliminate y when solving this system. A3

more systematic approach will be needed to solve larger systems, say a4

system of four equations with five unknowns. We indicate such an approach5

for the same system next. Observe that multiplying one of the equations6

by a number will not change the solution set. Similarly the solution set is7

preserved when adding or subtracting the equations. For example, if the8

first equation is multiplied by 2 (to get 4x− 2y = 6) the solution set is not9

changed.10

From the second equation we subtract the first one, multiplied by two11

(subtract 4x− 2y from the left side of the second equation, and subtract 612

from the right side of the second equation). The new system13

2x− y = 3

3y = 3

has the same solution set (obtained an equivalent system). The x variable14

is now eliminated in the second equation. From the second equation obtain15

y = 1, and substituting this value of y back into the first equation gives16

2x− 1 = 3, or x = 2. Answer: x = 2 and y = 1. (The lines intersect at the17

point (2, 1).)18

Proceeding similarly, the system19

2x+ y = 3

−8x − 4y = −12

is solved by adding to the second equation the first one multiplied by 4:20

2x+ y = 3

0 = 0 .

The second equation carries no information, and it is discarded, leaving only21

the first equation:22

2x+ y = 3 .

Answer: this system has infinitely many solutions, consisting of all pairs23

(x, y) (points (x, y)) lying on the line 2x + y = 3. One can present the24
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answer in several ways: y = −2x+ 3 with x arbitrary, x = −1
2y + 3

2 with y1

arbitrary, or y = t and x = −1
2 t+ 3

2 , with t arbitrary. Geometrically, both2

equations of this system define the same line. That line intersects itself at3

all of its points.4

For the system5

2x− 3y = −1

2x− 3y = 0

subtracting from the second equation the first one gives6

2x− 3y = −1

0 = 1 .

The second equation will never be true, no matter what x and y are. Answer:7

this system has no solutions. One says that this system is inconsistent.8

Geometrically, the lines 2x−3y = −1 and 2x−3y = 0 are parallel, and have9

no points of intersection.10

The system11

2x− y = 3

4x+ y = 9

x− y = −1
2

has three equations, but only two unknowns. If one considers only the12

first two equations, one recognizes the system of two equations with two13

unknowns that was solved above. The solution was x = 2 and y = 1. The14

point (2, 1) is the only one with a chance to be a solution of the entire15

system. For that it must lie on the third line x − y = −1

2
. It does not.16

Answer: this system has no solutions, it is inconsistent. Geometrically, the17

third line misses the point of intersection of the first two lines.18

The system of two equations19

2x− y + 5z = 1

x+ y + z = −2

affords us a “luxury” of three variables x, y and z to satisfy it. To eliminate20

x in the second equation we need to subtract from it the first equation21
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multiplied by 1
2 . (From the second equation subtract x− 1

2
y+

5

2
z =

1

2
.) To1

avoid working with fractions, let us switch the order of equations2

x+ y + z = −2

2x− y + 5z = 1

which clearly results in an equivalent system. Now to eliminate x in the sec-3

ond equation we subtract from it the first equation multiplied by 2. Obtain:4

x+ y + z = −2

−3y + 3z = 5 .

Set z = t, an arbitrary number. Then from the second equation we shall5

obtain y as a function of t. Finally, from the first equation x is expressed as6

a function of t. Details: from the second equation7

−3y + 3t = 5 ,

giving y = t − 5

3
. Substitute this expression for y, and z = t, into the first8

equation:9

x+ t− 5

3
+ t = −2 ,

so that x = −2t− 1

3
. Answer: this system has infinitely many solutions of10

the form x = −2t− 1

3
, y = t− 5

3
, z = t, and t is an arbitrary number. One11

can present this answer in vector form:12





x
y

z



 =





−2t− 1
3

t− 5
3

t



 = t





−2
1

1



 − 1

3





1
5

0



 .

The next example involves a three by three system13

x− y + z = 4

−2x+ y − z = −5

3x+ 4z = 11

of three equations with three unknowns. Our plan is to eliminate x in the14

second and third equations. These two operations are independent of each15
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other and can be performed simultaneously (in parallel). To the second1

equation we add the first one multiplied by 2, and from the third equation2

subtract the first one multiplied by 3. Obtain:3

x− y + z = 4

−y + z = 3

3y + z = −1

Our next goal is to eliminate y in the third equation. To the third equation4

we add the second one multiplied by 3. (If we used the first equation to do5

this task, then x would reappear in the third equation, negating our work6

to eliminate it.) Obtain:7

x− y + z = 4

−y + z = 3

4z = 8 .

8

We are finished with the elimination process, also called forward elimi-9

nation. Now the system can be quickly solved by back-substitution: from the10

third equation calculate z = 2. Using this value of z in the second equation,11

one finds y. Using these values of y and z in the first equation, one finds x.12

Details: from the second equation −y+2 = 3 giving y = −1. From the first13

equation x + 1 + 2 = 4 so that x = 1. Answer: x = 1, y = −1 and z = 2.14

Geometrically, the three planes defined by the three equations intersect at15

the point (1,−1, 2).16

Our examples suggest the following rule of thumb: if there are more vari-17

ables than equations, the system is likely to have infinitely many solutions.18

If there are more equations than variables, the system is likely to have no19

solutions. And if the numbers of variables and equations are the same, the20

system is likely to have a unique solution. This rule does not always apply.21

For example, the system22

x− y = 2

−2x+ 2y = −4

3x− 3y = 6

has more equations than unknowns, but the number of solutions is infinite,23

because all three equations define the same line. On the other hand, the24
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system1

x− 2y + 3z = 2

2x− 4y + 6z = −4

has more variables than equations, but there are no solutions, because the2

equations of this system define two parallel planes.3

The method for solving linear systems described in this section is known4

as Gaussian elimination, named in honor of C.F. Gauss, a famous German5

mathematician.6

Exercises7

1. Solve the following systems by back-substitution.8

a.9 x+ 3y = −1

−2y = 1 .

10

Answer. x = 1
2 , y = −1

2 .11

b.12 x+ y + 3z = 1

y − z = 2

2z = −2 .

c.13 x + 4z = 2

2y − z = 5

−3z = −3 .

14
Answer. x = −2, y = 3, z = 1.15

d.16 x− y + 2z = 0

y − z = 3 .

17

Answer. x = −t+ 3, y = t+ 3, z = t, where t is arbitrary.18

e.19 x+ y − z − u = 2

3y − 3z + 5u = 3

2u = 0 .

Answer. x = 1, y = t+ 1, z = t, u = 0, where t is arbitrary.20

2. Solve the following systems by Gaussian elimination (or otherwise), and21

if possible interpret your answer geometrically.22

a.23
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x+ 3y = −1

−x− 2y = 3 .

1

Answer. x = −7, y = 2. Two lines intersecting at the point (−7, 2).2

b.3 2x− y = 3

x+ 2y = 4

−x+ 5y = 3 .

4 Answer. x = 2, y = 1. Three lines intersecting at the point (2, 1).5

c.6 x+ 2y = −1

−2x− 4y = 3 .

7

Answer. There is no solution, the system is inconsistent. The lines are8

parallel.9

d.10 x+ 2y = −1

−2x− 4y = 2 .

11

Answer. There are infinitely many solutions, consisting of all points on the12

line x+ 2y = −1.13

e.14 x+ y + z = −2

x+ 2y = −3

x− y − z = 4 .

15

Answer. x = 1, y = −2, z = −1. Three planes intersect at the unique point16

(1,−2,−1).17

f.18 x − y + 2z = 0

x+ z = 3

2x− y + 3z = 3 .

Answer. x = −t+ 3, y = t+ 3, z = t, where t is arbitrary.19

g.20
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x− 2y + z = 1

2x− 4y + 2z = 3

4x− y + 3z = 5 .

1

Answer. There are no solutions (the system is inconsistent). The first two2

planes are parallel.3

3. Three points, not lying on the same line, uniquely determine the plane4

passing through them. Find an equation of the plane passing through the5

points (1, 0, 2), (0, 1, 5), (2, 1, 1).6

Answer. 2x− y+ z = 4. Hint. Starting with ax+ by + cz = d, obtain three7

equations for a, b, c and d. There are infinitely many solutions, depending8

on a parameter t. Select the value of t giving the simplest looking answer.9

4. Find the number a, so that the system10

2x− 3y = −1

ax − 6y = 5 .

11

has no solution. Can one find a number a, so that this system has infinitely12

many solutions?13

5. Find all solutions of the equation14

5x− 3y = 1 ,

where x and y are integers. (Diophantine equation.)15

Hint. Solve for y: y = 5x−1
3 = 2x − x+1

3 . Set x+1
3 = n. Then x = 3n − 1,16

leading to y = 5n− 2, where n is an arbitrary integer.17

1.2 Using Matrices18

We shall deal with linear systems possibly involving a large number of un-19

knowns. Instead of denoting the variables by x, y, z, . . ., we shall write20

x1, x2, x3, . . . , xn, where n is the number of variables. Our next example21

is22

x1 − x2 + x3 = −1

2x1 − x2 + 2x3 = 0

−3x1 + 4x3 = −10 .
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The first step of Gaussian elimination is to subtract from the second equation1

the first one multiplied by 2. This will involve working with the coefficients2

of x1, x2, x3. So let us put these coefficients into a matrix (or a table)3





1 −1 1
2 −1 2

−3 0 4





called the matrix of the system. It has 3 rows and 3 columns. When this4

matrix is augmented with the right hand sides of the equations5





1 −1 1 −1

2 −1 2 0
−3 0 4 −10





one obtains the augmented matrix. Subtracting from the second equation6

the first one multiplied by 2 is the same as subtracting from the second row7

of the augmented matrix the first one multiplied by 2. Then, to the third8

row we add the first one multiplied by 3. Obtain:9





1© −1 1 −1
0 1 0 2

0 −3 7 −13



 .

We circled the element, called pivot, used to produce two zeroes in the first10

column of the augmented matrix. Next, to the third row add 3 times the11

second row:12




1© −1 1 −1

0 1© 0 2
0 0 7© −7



 .

Two more pivots are circled. All elements under the diagonal ones are now13

zero. The Gaussian elimination is complete. Restore the system correspond-14

ing to the last augmented matrix (a step that will be skipped later)15

x1 − x2 + x3 = −1

x2 = 2

7x3 = −7 .

This system is equivalent to the original one. Back-substitution produces16

x3 = −1, x2 = 2, and from the first equation17

x1 − 2 − 1 = −1,
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or x1 = 2.1

The next example is2

3x1 + 2x2 − 4x3 = 1

x1 − x2 + x3 = 2

5x2 − 7x3 = −1 ,

with the augmented matrix3





3 2 −4 1
1 −1 1 2

0 5 −7 −1



 .

(Observe that we could have started this example with the augmented ma-4

trix, as well.) The first step is to subtract from the second row the first5

one multiplied by −1

3
. To avoid working with fractions, we interchange the6

first and the second rows (this changes the order of equations, giving an7

equivalent system):8




1 −1 1 2

3 2 −4 1
0 5 −7 −1



 .

Subtract from the second row the first one multiplied by 3. We shall denote9

this operation by R2 − 3R1, for short. (R2 and R1 refer to row 2 and row 1,10

respectively.) Obtain:11





1© −1 1 2
0 5 −7 −5

0 5 −7 −1



 .

There is a “free” zero at the beginning of third row R3, so we move on to12

the second column and perform R3 −R2:13





1© −1 1 2

0 5© −7 −5
0 0 0 4



 .

The third equation says: 0x1 + 0x2 + 0x3 = 4, or14

0 = 4 .

The system is inconsistent, there is no solution.15
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The next example we begin with the augmented matrix1





3 2 −4 1

1 −1 1 2
0 5 −7 −5



 .

This system is a small modification of the preceding one, with only the2

right hand side of the third equation is different. The same steps of forward3

elimination lead to4




1© −1 1 2
0 5© −7 −5

0 0 0 0



 .

The third equation now says 0 = 0, and it is discarded. There are pivots in5

columns one and two corresponding to the variables x1 and x2 respectively.6

We call x1 and x2 the pivot variables. In column three there is no pivot7

(pivot is a non-zero element, used to produce zeroes). The corresponding8

variable x3 is called free variable. We now restore the system, move the9

terms involving the free variable x3 to the right, let x3 be arbitrary, and10

then solve for the pivot variables x1 and x2 in terms of x3. Details:11

x1 − x2 + x3 = 2

5x2 − 7x3 = −5 ,
12

x1 − x2 = −x3 + 2(2.1)

5x2 = 7x3 − 5 .

From the second equation13

x2 =
7

5
x3 − 1 .

From the first equation of the system (2.1) express x114

x1 = x2 − x3 + 2 =
7

5
x3 − 1 − x3 + 2 =

2

5
x3 + 1 .

Answer: x1 =
2

5
x3 + 1, x2 =

7

5
x3 − 1, and x3 is arbitrary (“free”). We15

can set x3 = t, an arbitrary number, and present the answer in the form16

x1 =
2

5
t+ 1, x2 =

7

5
t− 1, x3 = t.17
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Moving on to larger systems, consider a four by four system1

x2 − x3 + x4 = 2

2x1 + 6x2 − 2x4 = 4

x1 + 2x2 + x3 − 2x4 = 0

x1 + 3x2 − x4 = 2 ,

with the augmented matrix2









0 1 −1 1 2

2 6 0 −2 4
1 2 1 −2 0

1 3 0 −1 2









.

We need a non-zero element (or pivot) at the beginning of row one. For that3

we may switch row one R1 with any other row, but to avoid fractions we do4

not switch with row two. Let us switch row one R1 with row three R3. We5

shall denote this operation by R1 ↔ R3, for short. Obtain:6









1 2 1 −2 0

2 6 0 −2 4
0 1 −1 1 2
1 3 0 −1 2









.

Perform R2 − 2R1 and R4 −R1. Obtain:7









1© 2 1 −2 0
0 2© −2 2 4

0 1 −1 1 2
0 1 −1 1 2









.

To produce zeroes in the second column under the diagonal, perform R3 −8

1

2
R2 and R4 −

1

2
R2. Obtain:9









1© 2 1 −2 0

0 2© −2 2 4
0 0 0 0 0

0 0 0 0 0









.

The next step is optional: multiply the second row by
1

2
. We shall denote10



1.2. USING MATRICES 13

this operation by
1

2
R2. This produces a little simpler matrix:1









1© 2 1 −2 0
0 1© −1 1 2

0 0 0 0 0
0 0 0 0 0









.

The pivot variables are x1 and x2, while x3 and x4 are free. Restore the sys-2

tem (the third and fourth equations are discarded), move the free variables3

to the right, and solve for pivot variables:4

x1 + 2x2 + x3 − 2x4 = 0

x2 − x3 + x4 = 2 ,
5

x1 + 2x2 = −x3 + 2x4

x2 = x3 − x4 + 2 .

The second equation gives us x2. Then from the first equation6

x1 = −2x2 − x3 + 2x4 = −2 (x3 − x4 + 2) − x3 + 2x4 = −3x3 + 4x4 − 4 .

Answer: x1 = −3x3 +4x4 −4, x2 = x3 −x4 +2, x3 and x4 are two arbitrary7

numbers. We can set x3 = t and x4 = s, two arbitrary numbers, and present8

the answer in the form x1 = −3t+ 4s − 4, x2 = t− s+ 2, x3 = t, x4 = s.9

The next system of three equations with four unknowns is given by its10

augmented matrix11




1 −1 0 2 3
−1 1 2 1 −1

2 −2 4 0 10



 .

Performing R2 +R1 and R3−2R1 produces zeroes in the first column under12

the diagonal term (the pivot)13





1© −1 0 2 3

0 0 2 3 2
0 0 4 −4 4



 .

Moving on to the second column, there is zero in the diagonal position.14

We look under this zero for a non-zero element, in order to change rows15

and obtain a pivot. There is no such non-zero element, so we move on to16
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the third column (the second column is left without a pivot), and perform1

R3 − 2R2:2




1© −1 0 2 3
0 0 2© 3 2
0 0 0 -10© 0



 .

The augmented matrix is reduced to its row echelon form. Looking at this3

matrix from the left, one sees in each row zeroes followed by a pivot. Observe4

that no two pivots occupy the same row or the same column (each pivot5

occupies its own row, and its own column). Here the pivot variables are x1,6

x3 and x4, while x2 is free variable. The last equation −10x4 = 0 implies7

that x4 = 0. Restore the system, keeping in mind that x4 = 0, then take8

the free variable x2 to the right:9

x1 = 3 + x2

2x3 = 2 .

Answer: x1 = 3 + x2, x3 = 1, x4 = 0 and x2 is arbitrary.10

We summarize the strategy for solving linear systems. If a diagonal el-11

ement is non-zero, use it as a pivot to produce zeroes underneath it, then12

work on the next column. If a diagonal element is zero, look underneath it13

for a non-zero element to perform a switch of rows. If a diagonal element14

is zero, and all elements underneath it are also zeroes, this column has no15

pivot; move on to the next column. After matrix is reduced to the row eche-16

lon form, move the free variables to the right side, and let them be arbitrary17

numbers. Then solve for the pivot variables.18

1.2.1 Complete Forward Elimination19

Let us re-visit the system20





1 −1 1 −1
2 −1 2 0

−3 0 4 −10



 .

Forward elimination (R2 − 2R1, R3 + 3R1, followed by R3 + 3R2) gave us21





1© −1 1 −1

0 1© 0 2
0 0 7© −7



 .

Then we restored the system, and quickly solved it by back-substitution.22

However, one can continue to simplify the matrix of the system. First, we23
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shall make all pivots equal to 1. To that end, the third row is multiplied by1

1

7
, an elementary operation denoted by

1

7
R3. Obtain:2





1© −1 1 −1

0 1© 0 2
0 0 1© −1



 .

Now we shall use the third pivot to produce zeroes in the third column above3

it, and then use the second pivot to produce a zero above it. (In this order!)4

Performing R1 − R3 gives5





1© −1 0 0
0 1© 0 2

0 0 1© −1



 .

(The other zero in the third column we got for free.) Now perform R1 +R2:6





1© 0 0 2

0 1© 0 2
0 0 1© −1



 .

The point of the extra elimination steps is that restoring the system, imme-7

diately produces the answer x1 = 2, x2 = 2, x3 = −1.8

Complete forward elimination produces a matrix that has ones on the9

diagonal, and all off-diagonal elements are zeros.10

Exercises11

1. The following augmented matrices are in row echelon form. Circle the12

pivots, then restore the corresponding systems and solve them by back-13

substitution.14

a.15

[

2 −1 0

0 3 6

]

.

16

b.17

[

2 −2 4
0 0 0

]

.

18

c.19
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[

4 −1 5
0 0 3

]

.

Answer. No solution.1

d.2





2 −1 0 3
0 3 1 1

0 0 2 −4



 .

Answer. x1 = 2, x2 = 1, x3 = −2.3

e.4

[

1 −1 1 3

0 1 2 −1

]

.

Answer. x1 = −3t+ 2, x2 = −2t− 1, x3 = t, t is arbitrary.5

f.6

[

2 −1 0 2

0 0 1 −4

]

.

Answer. x1 = 1
2 t+ 1, x2 = t, x3 = −4.7

g.8





5 −1 2 3

0 3 1 −1
0 0 0 −4



 .

Answer. The system is inconsistent (no solution).9

h.10





1 −1 1 1 0
0 0 1 2 5
0 0 0 0 0



 .

Answer. x1 = x2 + x4 − 5, x3 = −2x4 + 5, x2 and x4 are arbitrary.11

2. For the following systems write down the augmented matrix, reduce it to12

the row echelon form, then solve the system by back-substitution. Which13

variables are pivot variables, and which ones are free? Circle the pivots.14

a.15 1
3x1 − 1

3x2 = 1

2x1 + 6x2 = −2 .

16

b.17 x2 − x3 = 1

x1 + 2x2 + x3 = 0

3x1 + x2 + 2x3 = 1 .

18

Answer. x = 1, y = 0, z = −1.19

c.20
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3x1 − 2x2 − x3 = 0

x1 + 2x2 + x3 = −1

x1 − 6x2 − 3x3 = 5 .

1

Answer. No solution.2

d.3

3x1 − 2x2 − x3 = 0

x1 + 2x2 + x3 = −1

x1 − 6x2 − 3x3 = 2 .

4

Answer. x1 = −1
4 , x2 = −1

2 t− 3
8 , x3 = t.5

e.6

x1 − x2 + x4 = 1

2x1 − x2 + x3 + x4 = −3

x2 + x3 − x4 = −5 .

Answer. x1 = −t− 4, x2 = −t+ s− 5, x3 = t, x4 = s.7

3. Solve the following systems given by their augmented matrices.8

a.9





1 −2 0 2
2 3 1 −4

1 5 1 −5



 .

Answer. No solution.10

b.11





1 −2 −3 1
2 −3 −1 4

3 −5 −4 5



 .

Answer. x = −7t+ 5, y = −5t+ 2, z = t.12

c.13





1 −2 −1 3 1
2 −4 1 0 5

1 −2 2 −3 4



 .

Answer. x1 = −t+ 2s+ 2, x2 = s, x3 = 2t+ 1, x4 = t.14

d.15





1 −1 0 1 0

2 −2 1 −1 1
3 −3 2 0 2



 .
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Answer. x1 = t, x2 = t, x3 = 1, x4 = 0.1

e.2





0 0 3 6

0 1 −2 0
1 0 1 1



 .

Answer. x1 = −1, x2 = 4, x3 = 2.3

4. Solve again the systems in 2(a) and 2(b) by performing complete Gaussian4

elimination.5

5. Find the number a for which the following system has infinitely many6

solutions, then find these solutions.7





1 −1 2 3
0 1 −1 −2

1 0 a 1



 .

Answer. a = 1; x1 = −x3 + 1, x2 = x3 − 2, x2 is arbitrary.8

6. What is the maximal possible number of pivots for the matrices of the9

following sizes.10

a. 5× 6. b. 11× 3. c. 7× 1. d. 1 × 8. e. n× n.11

1.3 Vector Interpretation of Linear Systems12

In this section we discuss geometrical interpretation of systems of linear13

equations in terms of vectors.14

Given two three-dimensional vectors C1 =





1

−1
3



 and C2 =





5

−4
2



,15

we may add them by adding the corresponding components C1 + C2 =16




6

−5
5



, or multiplyC1 by a number x1 (componentwise): x1C1 =





x1

−x1

3x1



,17

or calculate their linear combination18

x1C1 + x2C2 =





x1 + 5x2

−x1 − 4x2

3x1 + 2x2



 ,

where x2 is another scalar (number). Recall that the vector C1 joins the19

origin (0, 0, 0) to the point with coordinates (1,−1, 3). The vector x1C120
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points in the same direction as C1 if x1 > 0, and in the opposite direction1

in case x1 < 0. The sum C1 + C2 corresponds to the parallelogram rule of2

addition of vectors.3

Given a vector b =





−3

2
4



, let us try to find the numbers x1 and x2,4

so that5

x1C1 + x2C2 = b .

In components, we need6

x1 + 5x2 = −3

−x1 − 4x2 = 2

3x1 + 2x2 = 4 .

But that is just a three by two system of equations! It has a unique solution7

x1 = 2 and x2 = −1, found by Gaussian elimination. So that8

b = 2C1 − C2 .

The vector b is a linear combination of the vectors C1 and C2. Geometrically,9

the vector b lies in the plane determined by the vectors C1 and C2 (this plane10

passes through the origin). One also says that b belongs to the span of the11

vectors C1 and C2, denoted by Span{C1, C2}, and defined to be the set of12

all possible linear combinations x1C1+x2C2. The columns of the augmented13

matrix of this system14





1 5 −3

−1 −4 2
3 2 4





are precisely the vectors C1, C2, and b. We can write the augmented matrix15

as [C1 C2
... b] by listing its columns.16

In place of b, let us consider another vector B =





−3
2
1



, and again try17

to find the numbers x1 and x2, so that18

x1C1 + x2C2 = B .
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In components, this time we need1

x1 + 5x2 = −3

−x1 − 4x2 = 2

3x1 + 2x2 = 1 .

This three by two system of equations has no solutions, since the third2

equation does not hold at the solution x1 = 2, x2 = −1 of the first two3

equations. The vector B does not lie in the plane determined by the vectors4

C1 and C2 (equivalently, B is not a linear combination of the vectors C15

and C2, so that B does not belong to Span{C1, C2}). The columns of the6

augmented matrix for the last system7





1 5 −3
−1 −4 2

3 2 1



 = [C1 C2
... B]

are the vectors C1, C2, and B.8

The above examples illustrate that a system with the augmented matrix9

[C1 C2
... b] has a solution exactly when (if and only if) the vector of the10

right hand sides b belongs to the span Span{C1, C2}. Observe that C1 and11

C2 are the columns of the matrix of the system.12

Similarly, a system of three equations with three unknowns and the13

augmented matrix [C1 C2 C3
... b] has a solution if and only if the vector14

of the right hand sides b belongs to the span Span{C1, C2, C3}. In other15

words, b is a linear combination of C1, C2 and C3 if and only if the system16

with the augmented matrix [C1 C2 C3
... b] is consistent (has solutions). The17

same is true for systems of arbitrary size, say a system of seven equations18

with eleven unknowns (the columns of its matrix will be seven-dimensional19

vectors). We discuss vectors of arbitrary dimension next.20

In Calculus and Physics one deals with either two-dimensional or three-21

dimensional vectors. The set of all possible two-dimensional vectors is de-22

noted by R2, while R3 denotes all vectors in the three-dimensional space we23

live in. By analogy, Rn is the set of all possible n-dimensional vectors of the24

form











a1

a2
...
an











, which can be added or multiplied by a scalar the same way25



1.3. VECTOR INTERPRETATION OF LINEAR SYSTEMS 21

as in R2 or in R3. For example, one adds two vectors in R4
1









a1

a2

a3

a4









+









b1
b2
b3
b4









=









a1 + b1
a2 + b2
a3 + b3
a4 + b4









.

by adding the corresponding components. If c is a scalar, then2

c









a1

a2

a3

a4









=









c a1

c a2

c a3

c a4









.

It is customary to use boldface (or capital) letters when denoting vectors,3

for example a =









a1

a2

a3

a4









, b =









b1
b2
b3
b4









. (We shall also write a =









a1

a2

a3

a4









,4

when it is clear from context that a ∈ R4 is a vector.) Usual algebra rules5

apply to vectors, for example6

b + a = a + b ,
7

c (a + b) = c a + cb ,

for any scalar c.8

Recall that matrix is a rectangular array (a table) of numbers. We say9

that a matrix A is of size (or of type) m×n if it has m rows and n columns.10

For example, the matrix11

A =

[

1 −1 2
−1 0 4

]

is of size 2 × 3. It has three columns a1 =

[

1

−1

]

, a2 =

[

−1

0

]

, and12

a3 =

[

2

4

]

, which are vectors in R2. One can write the matrix A through13

its columns14

A = [ a1 a2 a3 ] .

A matrix A of size m× n15

A = [ a1 a2 . . . an ]
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has n columns, and each of them is a vector in Rm.1

The augmented matrix for a system of m equations with n unknowns2

has the form [ a1 a2 . . . an

... b ], and each column is a vector in Rm. The3

system is consistent (it has a solution) if and only if the vector of the right4

hand sides b belongs to the span Span{a1, a2, . . . , an}, which is defined as5

the set of all possible linear combinations x1a1 + x2a2 + · · ·+ xnan.6

One defines the product Ax of an m× n matrix A = [ a1 a2 . . . an ] and7

of vector x =











x1

x2
...

xn











in Rn as the following linear combination of columns8

of A9

Ax = [ a1 a2 . . . an ]











x1

x2
...
xn











= x1a1 + x2a2 + · · ·+ xnan .

The vector Ax belongs to Rm. For example,10

[

1 −1 2

−1 0 4

]





3
−2

1



 = 3

[

1

−1

]

+ (−2)

[

−1

0

]

+ 1

[

2

4

]

=

[

7

1

]

.

If y =











y1
y2
...

yn











is another vector in Rn, it is straightforward to verify that11

A (x+ y) = Ax+ Ay .

Indeed,12

A (x+ y) = (x1 + y1)a1 + . . .+ (xn + yn) an

= x1a1 + . . .+ xnan + y1a1 + . . .+ ynan = Ax+ Ay .

One also checks that13

A(cx) = cAx ,

for any scalar c.14
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We now connect the product Ax to linear systems. The matrix of the1

system2

x1 − x2 + 3x3 = 2(3.1)

2x1 + 6x2 − 2x3 = 4

5x1 + 2x2 + x3 = 0

is A =





1 −1 3
2 6 −2

5 2 1



, and the vector of right hand sides is b =





2
4

0



.3

Define x =





x1

x2

x3



, the vector of unknowns. (Here we do not use boldface4

letters to denote the vectors b and x.) Calculate5

Ax =





1 −1 3
2 6 −2
5 2 1









x1

x2

x3



 =





x1 − x2 + 3x3

2x1 + 6x2 − 2x3

5x1 + 2x2 + x3



 .

It follows that the system (3.1) can be written in the matrix form6

(3.2) Ax = b .

Any m × n linear system can be written in the form (3.2), where A is the7

m × n matrix of the system, b ∈ Rm is the vector of right hand sides, and8

x ∈ Rn is the vector of unknowns.9

Analogy is a key concept when dealing with objects in dimensions greater10

than three. Suppose a four-dimensional spaceship of the form of four-11

dimensional ball (x2
1 + x2

2 + x2
3 + x2

4 ≤ R2) passes by us. What will we12

see? By analogy, imagine people living in a plane (or flatland) and a three-13

dimensional ball passes by. At first they see nothing (the ball is out of their14

plane), then they see a point, then an expanding disc, then a contracting15

disc, followed by a point, and then they see nothing again. Can you now16

answer the original question? (One will see: nothing, one point, expanding17

balls, contracting balls, one point, nothing.)18

Exercises19



24 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS

1. Express the vector b =





1

0
4



 as a linear combination of the vectors C1 =1





1
0

1



, C2 =





0
−1

1



, and C3 =





1
2

3



. In other words, find the numbers2

x1, x2, x3 so that b = x1C1+x2C2+x3C3. Write down the augmented matrix3

for the corresponding system of equations.4

Answer. x1 = 1
4 , x2 = 3

2 , x3 = 3
4 .5

2. Is it possible to express the vector b =





5
3

−3



 as a linear combination6

of the vectors C1 =





1

1
−1



, C2 =





2

1
−1



, and C3 =





3

2
−2



?7

Answer. Yes.8

3. Is it possible to express the vector b =









5
4
1

−3









as a linear combination9

of the vectors C1 =









0

1
1

−1









, C2 =









0

−2
1

−1









, and C3 =









0

1
2

−2









?10

Answer. No.11

4. Calculate the following products involving a matrix and a vector.12

a.

[

1 2
−1 1

] [

3
−2

]

. Answer.

[

−1
−5

]

.13

b.





1 2 0
0 −1 1

1 −2 1









x1

x2

x3



. Answer.





x1 + 2x2

−x2 + x3

x1 − 2x2 + x3



.14

c.

[

1 −2 0

3 −1 1

]





1

2
3



.15
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d.









−1 2

0 −1
1 4

3 0









[

−1
2

]

. Answer.









5

−2
7

−3









.1

e.
[

3 −1 1
]





1
0
3



. Answer. 6.2

f.

[

1 −2 0

3 −1 1

]





0

0
0



. Answer.

[

0

0

]

.3

5. Does the vector b lie in the plane determined by the vectors C1 and C2?4

a. b =





0

1
−4



, C1 =





2

1
−2



, C2 =





1

0
1



.5

Answer. Yes.6

b. b =





5

1
−4



, C1 =





2

−1
0



, C2 =





1

−3
0



.7

Answer. No.8

c. b =





2
1

−2



, C1 =





2
−1

3



, C2 =





−4
−2

4



.9

Answer. Yes.10

d. b =





2
−4

5



, C1 =





3
−1

1



, C2 =





−1
−3

2



.11

Answer. No.12

6. Does the vector b belong to Span{C1, C2, C3}?13

a. b =





1

1
1



, C1 =





1

0
0



, C2 =





0

1
0



, C3 =





1

1
0



.14

Answer. No.15
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b. b =





1

1
1



, C1 =





1

0
0



, C2 =





0

1
0



, C3 =





0

0
1



.1

Answer. Yes.2

7. Let A be of size 4 × 5, and x is in R4. Is the product Ax defined?3

8. Let A be of size 7 × 8, and x ∈ R8. Is the product Ax defined?4

9. Let A be of size m× n, 0 is the zero vector in Rn (all components of 05

are zero). Calculate the product A 0, and show that it is the zero vector in6

Rm.7

1.4 Solution Set of a Linear System Ax = b8

When all right hand sides are zero the system is called homogeneous:9

(4.1) Ax = 0 .

On the right side in (4.1) is the zero vector, or a vector with all components10

equal to zero (often denoted by 0). Here the matrix A is of size m × n.11

The vector of unknowns x is in Rn. The system (4.1) always has a solution12

x = 0, or x1 = x2 = · · · = xn = 0, called the trivial solution. We wish to13

find all solutions.14

Our first example is the homogeneous system15

x1 − x2 + x3 = 0

−2x1 + x2 − x3 = 0

3x1 − 2x2 + 4x3 = 0 ,

with the augmented matrix16





1 −1 1 0
−2 1 −1 0

3 −2 4 0



 .

Forward elimination (R2 + 2R1, R3 − 3R1, followed by R3 + R2) leads to17





1© −1 1 0

0 -1© 1 0
0 0 2© 0



 ,
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or1

x1 − x2 + x3 = 0

−x2 + x3 = 0

2x3 = 0 .

Back-substitution gives x1 = x2 = x3 = 0, the trivial solution. There are2

three pivot variables, and no free variables. The trivial solution is the only3

solution of this system. Homogeneous system must have free variables, in4

order to have non-trivial solutions.5

Our next example has the augmented matrix6





1 −1 1 0
−2 1 −1 0

3 −2 2 0



 ,

which is a small modification of the preceding system, with only one entry7

of the third row changed. The same steps of forward elimination (R2 +2R1,8

R3 − 3R1, followed by R3 +R2) lead to9





1© −1 1 0

0 -1© 1 0
0 0 0 0



 ,

or10

x1 − x2 + x3 = 0

−x2 + x3 = 0 ,

after discarding a row of zeroes. Solving for the pivot variables x1, x2 in11

terms of the free variable x3, obtain infinitely many solutions: x1 = 0,12

x2 = x3, and x3 is arbitrary number. Write this solution in vector form13





x1

x2

x3



 =





0

x3

x3



 = x3





0

1
1



 = x3 u ,

where u =





0
1

1



. It is customary to set x3 = t, then the solution set of this14

system is given by t u, all possible multiples of the vector u. Geometrically,15
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the solution set consists of all vectors lying on the line through the origin1

parallel to u, or Span{u}.2

The next example is a homogeneous system of four equations with four3

unknowns given by its augmented matrix4









1 0 −1 1 0
−2 1 3 4 0

−1 1 2 5 0
5 −2 −7 −7 0









.

Forward elimination steps R2 + 2R1, R3 + R1, R4 − 5R1 give5









1 0 −1 1 0
0 1 1 6 0

0 1 1 6 0
0 −2 −2 −12 0









.

Then perform R3 − R2 and R4 + 2R2:6









1© 0 −1 1 0
0 1© 1 6 0
0 0 0 0 0

0 0 0 0 0









.

Restore the system7

x1 − x3 + x4 = 0

x2 + x3 + 6x4 = 0 ,

express the pivot variables x1, x2 in terms of the free ones x3, x4, then set8

x3 = t and x4 = s, two arbitrary numbers. Obtain infinitely many solutions:9

x1 = t− s, x2 = −t− 6s, x3 = t, and x4 = s. Writing this solution in vector10

form11








t− s
−t− 6s

t
s









= t









1
−1

1
0









+ s









−1
−6

0
1









= t u+ s v ,

we see that the solution set is a linear combination of the vectors u =12








1
−1

1
0









and v =









−1
−6

0
1









, or Span{u, v}.13
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In general, if the number of free variables is k, then the solution set of1

an m × n homogeneous system Ax = 0 has the form Span{u1, u2, . . . , uk}2

for some vectors u1, u2, . . . , uk that are solutions of this system.3

An m × n homogeneous system Ax = 0 has at most m pivots, so that4

there is at most m pivot variables. That is because each pivot occupies its5

own row, and the number of rows is m. If n > m, there are more variables6

in total than the number of pivot variables. Hence some variables are free,7

and the system Ax = 0 has infinitely many solutions. For future reference8

this fact is stated as a theorem.9

Theorem 1.4.1 An m× n homogeneous system Ax = 0, with n > m, has10

infinitely many solutions.11

Turning to non-homogeneous systems Ax = b, with vector b 6= 0, let us12

re-visit the system13

2x1 − x2 + 5x3 = 1

x1 + x2 + x3 = −2 ,

for which we calculated in Section 1.1 the solution set to be14





x1

x2

x3



 = t





−2
1

1



− 1

3





1
5

0



 = t u+ p ,

denoting u =





−2
1
1



 and p = −1

3





1
5
0



. Recall that t u represents vectors15

on a line through the origin parallel to the vector u (with t arbitrary). The16

vector p translates this line to a parallel one, off the origin. Let us consider17

the corresponding homogeneous system:18

2x1 − x2 + 5x3 = 0

x1 + x2 + x3 = 0 ,

with the right hand sides changed to zero. One calculates its solution set to19

be t u, with the same u. In general, the solution set of the system Ax = b20
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is a translation by some vector p of the solution set of the corresponding1

homogeneous system Ay = 0. Indeed, if p is any particular solution of the2

non-homogeneous system, so that Ap = b, then A (p+ y) = Ap + Ay =3

Ap = b. It follows that p+ y gives the solution set of the non-homogeneous4

system.5

We conclude this section with a “book-keeping” remark. Suppose one6

needs to solve three systems Ax = b1, Ax = b2 and Ax = b3, all with the7

same matrix A. Calculations can be done in parallel by considering a “long”8

augmented matrix
[

A b1 b2 b3
]

. If the first step in the row reduction9

of A is, say R2 − 2R1, this step is performed on the entire “long” second10

row. Once A is reduced to the row echelon form, restore each of the systems11

separately, and perform back-substitution.12

Exercises13

1. Let A =





1 2 −1

1 2 0
1 2 −1



, b1 =





2

3
2



, b2 =





−1

0
2



. Determine the14

solution set of the following systems. (Calculations for all three cases can15

be done in parallel.)16

a. Ax = 0.17

Answer. x = t





−2
1

0



.18

b. Ax = b1.19

Answer. x = t





−2

1
0



 +





3

0
1



.20

c. Ax = b2.21

Answer. The system is inconsistent (no solutions).22

2. Let A be a 4 × 5 matrix. Does the homogeneous system Ax = 0 have23

non-trivial solutions?24

3. Let A be a n × n matrix, with n pivots. Are there any solutions of the25

system Ax = 0, in addition to the trivial one?26

4. Let x1 = 2, x2 = 1 be a solution of some system Ax = b, with a 2 × 227

matrix A. Assume that the solution set of the corresponding homogeneous28
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system Ax = 0 is t

[

1

−3

]

, with arbitrary t. Describe geometrically the1

solution set of Ax = b.2

Answer. The line of slope −3 passing through the point (2, 1), or x2 =3

−3x1 + 7.4

5. Show that the system Ax = b has at most one solution if the correspond-5

ing homogeneous system Ax = 0 has only the trivial solution.6

Hint. Show that the difference of any two solutions of Ax = b satisfies the7

corresponding homogeneous system.8

6. Let x and y be two solutions of the homogeneous system Ax = 0.9

a. Show that x+ y is also a solution of this system.10

b. Show that c1x+ c2y is a solution of this system, for any scalars c1, c2.11

7. Let x and y be two solutions of a non-homogeneous system Ax = b, with12

non-zero vector b. Show that x+ y is not a solution of this system.13

8. True or false?14

a. If a linear system of equations has a trivial solution, this system is15

homogeneous.16

b. If A of size 5 × 5 has 4 pivots, then the system Ax = 0 has non-trivial17

solutions.18

c. If A is a 4 × 5 matrix with 3 pivots, then the solution set of Ax = 019

involves one arbitrary constant. Answer. False.20

d. If A is a 5 × 6 matrix, then for any b the system Ax = b is consistent21

(has solutions). Answer. False.22

1.5 Linear Dependence and Independence23

Given a set of vectors u1, u2, . . . , un in Rm, we look for the scalars (coeffi-24

cients) x1, x2, . . . , xn which will make their linear combination to be equal25

to the zero vector26

(5.1) x1u1 + x2u2 + · · ·+ xnun = 0 .

The trivial combination x1 = x2 = · · · = xn = 0 clearly works. If the trivial27

combination is the only way to produce zero vector, we say that the vectors28

u1, u2, . . . , un are linearly independent. If any non-trivial combination is29
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equal to the zero vector, we say that the vectors u1, u2, . . . , un are linearly1

dependent.2

Suppose that the vectors u1, u2, . . . , un are linearly dependent. Then3

(5.1) holds, with at least one of the coefficients not zero. Let us say, x1 6= 0.4

Writing x1u1 = −x2u2 − · · · − xnun, express5

u1 = −x2

x1
u2 − · · · − xn

x1
un ,

so that u1 is a linear combination of the other vectors. Conversely, suppose6

that u1 is a linear combination of the other vectors u1 = y2u2 + · · ·+ ynun,7

with some coefficients y2, . . . , yn. Then8

(−1)u1 + y2u2 + · · ·+ ynun = 0 .

We have a non-trivial linear combination, with at least one of the coeffi-9

cients non-zero (namely, (−1) 6= 0), producing the zero vector. The vectors10

u1, u2, . . . , un are linearly dependent. Conclusion: a set of vectors is lin-11

early dependent if and only if (exactly when) one of the vectors is a linear12

combination of the others.13

For two vectors u1,u2 linear dependence means that u1 = y2u2, for some14

scalar y2, so that the vectors are proportional, and they go along the same15

line (in case of R2 or R3). For three vectors u1,u2,u3 linear dependence16

implies that u1 = y2u2 + y3u3 (geometrically, if these vectors are in R3 they17

lie in the same plane).18

For example, a1 =





1

−1
2



, a2 =





1

−3
3



, and a3 =





1

1
1



 are linearly19

dependent, because20

a2 = 2a1 − a3 .

while the vectors b1 =





1

−1
2



, b2 =





−2

2
−4



, and b3 =





1

4
−5



 are linearly21

dependent, because22

b1 =

(

−1

2

)

b2 + 0 b3 .

The vectors u1 =





2
0

0



, u2 =





1
−3

0



, and u3 =





−1
1

3



, are linearly23

independent, because none of these vectors is a linear combination of the24
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other two. Let us see why u2 is not a linear combination of u1 and u3.1

Indeed, if we had u2 = x1 u1 + x2 u3, or2





1
−3

0



 = x1





2
0

0



 + x2





−1
1

3



 ,

then comparing the third components gives x2 = 0, so that3





1

−3
0



 = x1





2

0
0



 ,

which is not possible. One shows similarly that u1 and u3 are not linear4

combinations of the other two vectors. A more systematic approach to5

decide on linear dependence or independence is developed next.6

Vectors u1, u2, . . . , un in Rm are linearly dependent if the vector equation7

(5.1) has a non-trivial solution. In components, the vector equation (5.1) is8

an m× n homogeneous system with the augmented matrix [u1 u2 . . . un
... 0].9

Apply forward elimination. Non-trivial solutions will exist if and only if10

there are free (non-pivot) variables. If there are no free variables (all columns11

have pivots), then the trivial solution is the only one. Since we are only12

interested in pivots, there is no need to carry a column of zeroes in the13

augmented matrix when performing row reduction.14

Algorithm: perform row reduction on the matrix [u1 u2 . . . un]. If the num-15

ber of pivots is less than n, the vectors u1, u2, . . . , un are linearly dependent.16

If the number of pivots is equal to n, the vectors u1, u2, . . . , un are linearly17

independent. (The number of pivots cannot exceed the number of columns18

n, because each pivot occupies its own column.)19

Example 1 Determine whether the vectors u1 =





1
2

3



, u2 =





4
5

6



,20

and u3 =





0

1
1



 are linearly dependent or independent.21

Using these vectors as columns, form the matrix22





1 4 0

2 5 1
3 6 1



 .
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Performing row reduction (R2−2R1, R3−3R1, followed by R3−2R2) gives1





1© 4 0

0 -3© 1
0 0 -1©



 .

All three columns have pivots. The vectors u1, u2, u3 are linearly indepen-2

dent.3

Example 2 Let us re-visit the vectors u1 =





2
0

0



, u2 =





1
−3

0



, and4

u3 =





−1

1
3



 from a previous example. Using these vectors as columns,5

form the matrix6




2© 1 −1
0 -3© 1
0 0 3©



 ,

which is already in row echelon form, with three pivots. The vectors are7

linearly independent.8

Example 3 Determine whether the vectors v1 =









1
0

−1
2









, v2 =









0
−1

1
3









,9

and v3 =









1
−1

0
5









are linearly dependent or independent. Using these vec-10

tors as columns, form the matrix11









1 0 1
0 −1 −1

−1 1 0
2 3 5









.

Performing row reduction (R3+R1, R4−2R1, followed by R3+R2, R4+3R2)12

gives13








1© 0 1
0 -1© −1

0 0 0
0 0 0









.
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There is no pivot in the third column. The vectors v1, v2, and v3 are linearly1

dependent. In fact, v3 = v1 + v2.2

If n > m, any vectors u1, u2, . . . , un in Rm are linearly dependent. In-3

deed, row reduction on the matrix [u1 u2 . . . un] will produce no more than4

m pivots (each pivot occupies its own row), and hence there will be columns5

without pivots. For example, any three (or more) vectors in R2 are linearly6

dependent. In R3 any four (or more) vectors are linearly dependent.7

There are other instances when linear dependence can be recognized at8

a glance. For example, if a set of vectors 0, u1, u2, . . . , un contains the zero9

vector 0, then this set is linearly dependent. Indeed,10

1 · 0 + 0 · u1 + 0 · u2 + · · ·+ 0 · un = 0

is a non-trivial combination producing the zero vector. Another example:11

the set u1, 2u1, u3, . . . , un is linearly dependent. Indeed,12

(−2) · u1 + 1 · 2u1 + 0 · u3 + · · ·+ 0 · un = 0

is a non-trivial combination producing the zero vector. More generally, if a13

subset is linearly dependent, the entire set is linearly dependent.14

We shall need the following theorem.15

Theorem 1.5.1 Assume that the vectors u1, u2, . . . , un in Rm are linearly16

independent, and a vector w in Rm is not in their span. Then the vectors17

u1, u2, . . . , un, w are also linearly independent.18

Proof: Assume, on the contrary, that the vectors u1, u2, . . . , un, w are19

linearly dependent. Then one can arrange for20

(5.2) x1u1 + x2u2 + · · ·+ xnun + xn+1w = 0 ,

with at least one of the xi’s not zero. If xn+1 6= 0, we may solve this relation21

for w in terms of u1, u2, . . . , un:22

w = − x1

xn+1
u1 −

x2

xn+1
u2 − · · · − xn

xn+1
un ,

contradicting the assumption that w is not in the span of u1, u2, . . . , un. In23

the other case when xn+1 = 0, it follows from (5.2) that24

x1u1 + x2u2 + · · ·+ xnun = 0 ,
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with at least one of the xi’s not zero, contradicting the linear independence1

of u1, u2, . . . , un.2

So that assuming that the theorem is not true, leads to a contradiction3

(an impossible situation). Hence, the theorem is true. ♦4

The method of proof we just used is known as proof by contradiction.5

Exercises6

1. Determine if the following vectors are linearly dependent or independent.7

8

a.









2
−1

0
3









,









−4
2

0
−6









. Answer. Dependent.9

b.





−1
1

3



,





−2
2

7



. Answer. Independent.10

c.













1

−1
2

−3
4













,













0

0
2

−4
5













,













0

0
0

0
0













. Answer. Dependent.11

d.





−1
2

−3



,





0
2

−4



,





−2
2

−2



. Answer. Dependent.12

e.









1

1
1

1









,









1

1
1

2









,









1

1
2

2









,









1

2
2

2









. Answer. Independent.13

f.

[

2

−3

]

,

[

0

−4

]

,

[

−2

2

]

. Answer. Dependent.14

g.

[

−1

0

]

,

[

2

−3

]

. Answer. Independent.15

h.





−2

0
0



,





1

2
0



,





0

2
1



. Answer. Independent.16
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i.









−2
0
0

0









,









−1
2
0

0









,









3
2

−7

0









,









−3
2
5

4









. Answer. Independent.1

j.









−2

0
0

0









,









−1

3
0

0









,









4

−2
−7

0









,









−3

2
1

0









. Answer. Dependent.2

k.









1
1

1
1









,









−1
−1

−2
3









,









2
2

0
1









. Answer. Independent.3

l.





−2
1

0



,





0
0

0



,

[

−1
2

]

. Answer. The concept of linear de-4

pendence or independence is defined only for vectors of the same dimension.5

6

2. Suppose that u1 and u2 are linearly independent vectors in R3.7

a. Show that the vectors u1 +u2 and u1−u2 are also linearly independent.8

b. Explain geometrically why this is true.9

3. Suppose that the vectors u1 + u2 and u1 − u2 are linearly dependent.10

Show that the vectors u1 and u2 are also linearly dependent.11

4. Assume that the vectors u1, u2, u3, u4 in Rn (n ≥ 4) are linearly inde-12

pendent. Show that the same is true for the vectors u1, u1 + u2, u1 + u2 +13

u3, u1 + u2 + u3 + u4.14

5. Given vectors u1, u2, u3 in R3, suppose that the following three pairs15

(u1, u2), (u1, u3) and (u2, u3) are linearly independent. Does it follow that16

the vectors u1, u2, u3 are linearly independent? Explain.17

6. Show that any vectors u1, u2, u1 + u2, u4 in R8 are linearly dependent.18

7. Suppose that some vectors u1, u2, u3 in Rn are linearly dependent. Show19

that the same is true for u1, u2, u3, u4, no matter what the vector u4 ∈ Rn
20

is.21
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8. Suppose that some vectors u1, u2, u3, u4 in Rn are linearly independent.1

Show that the same is true for u1, u2, u3.2

9. Assume that u1, u2, u3, u4 are vectors in R5 and u2 = 0. Justify that3

these vectors are linearly dependent. (Starting from the definition of linear4

dependence.)5

10∗. The following example serves to illustrate possible pitfalls when doing6

proofs.7

For any positive integer n8

n2 = n + n+ · · ·+ n ,

where the sum on the right has n terms. Differentiate both sides with respect9

to the variable n10

2n = 1 + 1 + · · ·+ 1 ,

which gives11

2n = n .

Dividing by n > 0, obtain12

2 = 1 .

Is there anything wrong with this argument? Explain.13



Chapter 21

Matrix Algebra2

In this chapter we develop the central concept of matrices, and study their3

basic properties, including the notions of inverse matrices, elementary ma-4

trices, null spaces, and column spaces.5

2.1 Matrix Operations6

A general matrix of size 2 × 3 can be written as7

A =

[

a11 a12 a13

a21 a22 a23

]

.

Each element has two indices. The first index identifies the row, and the8

second index refers to the column number. All of the elements of the first9

row have the first index 1, while all elements of the third column have10

the second index 3. For example the matrix

[

1 −2 0

3 1
2 π

]

has a11 = 1,11

a12 = −2, a13 = 0, a21 = 3, a22 = 1
2 , a23 = π. A 1 × 1 matrix is just the12

scalar a11.13

Any matrix can be multiplied by a scalar, and any two matrices of the14

same size can be added. Both operations are performed componentwise,15

similarly to vectors. For example,16





a11 a12

a21 a22

a31 a32



 +





b11 b12

b21 b22

b31 b32



 =





a11 + b11 a12 + b12

a21 + b21 a22 + b22

a31 + b31 a32 + b32



 ,

17

5A = 5

[

a11 a12 a13

a21 a22 a23

]

=

[

5a11 5a12 5a13

5a21 5a22 5a23

]

.

39
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If A is an m × n matrix, given by its columns A = [a1 a2 . . . an], and1

x =











x1

x2
...
xn











is a vector in Rn, recall that their product2

(1.1) Ax = x1a1 + x2a2 + · · ·+ xnan

is a vector in Rm. Let B be a n × p matrix, given by its columns B =3

[ b1 b2 . . . bp ]. Each of these columns is a vector in Rn. Define the product4

of two matrices as the following matrix, given by its columns5

AB = [Ab1 Ab2 . . . Abp ] .

So that the first column of AB is the vector Ab1 in Rm (calculated using6

(1.1)), and so on. Not every two matrices can be multiplied. If the size of7

A is m×n, then the size of B must be n× p, with the same n (m and p are8

arbitrary). The size of AB is m× p (one sees from the definition that AB9

has m rows and p columns).10

For example,11





1 −1 1

0 −3 2
−4 2 0









2 −1 2

1 −1 2
−3 2 −2



 =





−2 2 −2

−9 7 −10
−6 2 −4



 ,

because the first column of the product is12





1 −1 1

0 −3 2
−4 2 0









2

1
−3



 = 2





1

0
−4



+1





−1

−3
2



+(−3)





1

2
0



 =





−2

−9
−6



 ,

and the second and third columns of the product matrix are calculated13

similarly.14

If a matrix A has size 2 × 3 and B is of size 3 × 4, their product AB15

of size 2 × 4 is defined, while the product BA is not defined (because the16

second index of the first matrix B does not match the first index of A). For17

a matrix C of size 3×4 and a matrix D of size 4×3 both products CD and18

DC are defined, but CD has size 3 × 3, while DC is of size 4 × 4. Again,19

the order of the matrices matters.20
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Matrices of size n×n are called square matrices of size n. For two square1

matrices of size n, both products AB and BA are defined, both are square2

matrices of size n, but even then3

BA 6= AB ,

in most cases. In a rare case when BA = AB one says that the matrices A4

and B commute.5

Aside from BA 6= AB, the usual rules of algebra apply, which is straight-6

forward to verify. For example (assuming that all products are defined),7

A (BC) = (AB)C ,
8

((AB)C)D = A (BC)D = (AB) (CD) .

It does not matter in which order you multiply (or pair the matrices), so9

long as the order in which the matrices appear is preserved. Also,10

A (B +C) = AB + AC ,
11

(A +B)C = AC + BC ,
12

2A (−3B) = −6AB .

A square matrix I =





1 0 0
0 1 0

0 0 1



 is called the identity matrix of size13

3 (identity matrices come in all sizes). If A is any square matrix of size 3,14

then one calculates15

IA = AI = A ,

and the same is true for the unit matrix of any size.16

A square matrix D =





2 0 0
0 3 0

0 0 4



 is an example of a diagonal matrix,17

which is a square matrix with all off-diagonal entries equal to zero. Let A18

be any 3 × 3 matrix, given by its columns A = [a1 a2 a3]. One calculates19

AD = [2a1 3a2 4a3] .

So that to produce AD, the columns ofA are multiplied by the corresponding20

diagonal entries of D. Indeed, the first column of AD is21

A





2

0
0



 = [a1 a2 a3]





2

0
0



 = 2a1 + 0a2 + 0a3 = 2a1 ,
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and the other columns of AD are calculated similarly. In particular, if1

A =





p 0 0

0 q 0
0 0 r



 is another diagonal matrix, then2

AD =





p 0 0
0 q 0

0 0 r









2 0 0
0 3 0

0 0 4



 =





2p 0 0
0 3q 0

0 0 4r



 .

In general, the product of two diagonal matrices of the same size is the3

diagonal matrix obtained by multiplying the corresponding diagonal entries.4

5

A row vector R =
[

2 3 4
]

can be viewed as a 1×3 matrix. Similarly,6

the column vector C =





1

−2
5



 is a matrix of size 3× 1. Their product RC7

is defined, it has size 1× 1, which is a scalar:8

RC =
[

2 3 4
]





1

−2
5



 = 2 · 1 + 3 · (−2) + 4 · 5 = 16 .

We now describe an equivalent alternative way to multiply an m × n9

matrix A and an n× p matrix B. The row i of A is10

Ri = [ai1 ai2 . . . ain] ,

while the column j of B is11

Cj =











b1j

b2j
...

bnj











.

To calculate the ij element of the product AB, denoted by (AB)ij, just12

multiply Ri and Cj :13

(AB)ij = RiCj = ai1b1j + ai2b2j + · · ·+ ainbnj .

For example,14
[

1 2
3 1

] [

0 −3
−2 2

]

=

[

−4 1
−2 −7

]

,
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because1

[

1 2
]

[

0

−2

]

= 1 · 0 + 2(−2) = −4 ,

2

[

1 2
]

[

−3
2

]

= 1(−3) + 2 · 2 = 1 ,

3

[

3 1
]

[

0
−2

]

= 3 · 0 + 1(−2) = −2 ,

4

[

3 1
]

[

−3
2

]

= 3(−3) + 1 · 2 = −7 .

If A =

[

a11 a12 a13

a21 a22 a23

]

, the transpose of A is defined to be5

AT =





a11 a21

a12 a22

a13 a23



 .

To calculate AT , one turns the first row of A into the first column of AT , the6

second row of A into the second column of AT , and so on. (Observe that in7

the process the columns of A become the rows of AT .) If A is of size m× n,8

then the size of AT is n×m. It is straightforward to verify that9

(

AT
)T

= A ,

and10

(AB)T = BTAT ,

provided that the matrix product AB is defined.11

A matrix with all entries equal to zero is called the zero matrix, and is12

denoted by O. For example, O =





0 0

0 0
0 0



 is the 3 × 2 zero matrix. If the13

matrices A and O are of the same size, then A+O = A. If the product AO14

is defined, it is equal to the zero matrix.15

Powers of a square matrix A are defined as follows: A2 = AA, A3 = A2A,16

and so on. An is a square matrix of the same size as A.17

Exercises18
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1. Determine the 3× 2 matrix X from the relation1

2X +





1 −1
0 2

3 0



 = −3





0 1
−1 0

0 2



 .

2. Determine the 3× 3 matrix X from the relation2

3X + I = O .

Answer. X =





−1
3 0 0

0 −1
3 0

0 0 −1
3



.3

3. Calculate the products AB and BA, and compare.4

a. A =





1 −1

0 2
3 0



, B =

[

1 −1 2
0 2 1

]

.5

Answer. AB =





1 −3 1
0 4 2

3 −3 6



, BA =

[

7 −3
3 4

]

.6

b. A =
[

1 −1 4
]

, B =





1

−1
2



.7

Answer. AB = 10, BA =





1 −1 4
−1 1 −4

2 −2 8



.8

c. A =

[

1 −1

3 0

]

, B =

[

−1 2

2 1

]

.9

10

d. A =

[

2 −1
3 1

]

, B =

[

1 −1 2
3 2 1

]

.11

Hint. The product BA is not defined.12

e. A =





1 1 1

1 1 1
1 1 1



, B =





2 0 0

0 3 0
0 0 4



.13

f. A =









a 0 0 0
0 b 0 0

0 0 c 0
0 0 0 d









, B =









2 0 0 0
0 3 0 0

0 0 4 0
0 0 0 5









.14
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Answer. AB = BA =









2a 0 0 0

0 3b 0 0
0 0 4c 0

0 0 0 5d









.1

g. A =





1 1 1
1 1 1

1 1 1



, B =





2 0 0
0 −1 0

0 0 0



.2

Hint. B is diagonal matrix.3

Answer. BA =





2 2 2
−1 −1 −1

0 0 0



. Observe the general fact: multiplyng A4

by a diagonal matrix B from the left results in rows of A being multiplied5

by the corresponding diagonal entries of B.6

4. Let A and B be square matrices of the same size. Can one assert the7

following formulas? If the answer is no, write down the correct formula. Do8

these formulas hold in case A and B commute?9

a. (A−B)(A +B) = A2 − B2.10

b. (A+B)2 = A2 + 2AB +B2.11

c. (AB)2 = A2B2.12

5. Suppose that the product ABC is defined. Show that the product13

CTBTAT is also defined, and (ABC)T = CTBTAT .14

6. Let A be a square matrix.15

a. Show that
(

A2
)T

=
(

AT
)2

.16

b. Show that (An)T =
(

AT
)n

, with integer n ≥ 3.17

7. Let A =

[

1 0

1 0

]

6= O and B =

[

0 0

0 2

]

6= O. Verify that AB = O.18

8. Let A =





0 1 0
0 0 1

0 0 0



. Show that A3 = O.19
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9. Let H =





3 1 −2

0 −4 1
1 2 0



.1

a. Calculate HT .2

b. Show that transposition of any square matrix A leaves the diagonal3

entries unchanged, while interchanging the symmetric off diagonal entries4

(aij and aji, with i 6= j).5

c. A square matrix A is called symmetric if AT = A. Show that then6

aij = aji for all off diagonal entries. Is matrix H symmetric?7

d. Let B be any m × n matrix. Show that the matrix BTB is square and8

symmetric, and the same is true for BBT .9

10. Let x ∈ Rn.10

a. Show that xT is a 1 × n matrix, or a row vector.11

b. Calculate the product xTx in terms of the coordinates of x, and show12

that xTx > 0, provided that x 6= 0.13

2.2 The Inverse of a Square Matrix14

An n×n matrix A is said to be invertible if there is an n×n matrix C such15

that16

CA = I , and AC = I ,

where I is an n× n identity matrix. Such matrix C is called the inverse of17

A, and denoted A−1, so that18

(2.1) A−1A = AA−1 = I .

For example, if A =

[

2 1

3 2

]

, then A−1 =

[

2 −1

−3 2

]

, because19

[

2 1

3 2

][

2 −1

−3 2

]

=

[

2 −1

−3 2

] [

2 1

3 2

]

=

[

1 0

0 1

]

= I .

Not every square matrix has an inverse. For example, A =

[

0 1
0 0

]

is not20

invertible (no inverse exists). Indeed, if we try any C =

[

c11 c12

c21 c22

]

, then21

AC =

[

0 1
0 0

] [

c11 c12

c21 c22

]

=

[

c21 c22

0 0

]

6=
[

1 0
0 1

]

,
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for any choice of C. Non-invertible matrices are also called singular.1

If an n× n matrix A is invertible, then the system2

Ax = b

has a unique solution x = A−1b. Indeed, multiply both sides of this equation3

by A−1
4

A−1Ax = A−1b ,

and simplify to Ix = A−1b, or x = A−1b. The corresponding homogeneous5

system (when b = 0)6

(2.2) Ax = 0

has a unique solution x = A−10 = 0, the trivial solution. The trivial solution7

is the only solution of (2.2), and that happens when A has n pivots (a pivot8

in every column). Conclusion: if an n × n matrix A is invertible, it has n9

pivots. It follows that in case A has fewer than n pivots, A is not invertible10

(singular).11

Theorem 2.2.1 An n × n matrix A is invertible if and only if A has n12

pivots.13

Proof: If A is invertible, we just proved that A has n pivots. Conversely14

assume that A has n pivots. It will be shown later on in this section how to15

construct the inverse matrix A−1. ♦16

Given n vectors in Rn, let us use them as columns of an n × n matrix,17

and call this matrix A. These columns are linearly independent if and only if18

A has n pivots, as we learned previously. We can then restate the preceding19

theorem.20

Theorem 2.2.2 A square matrix is invertible if and only if its columns are21

linearly independent.22

Suppose A is a 3× 3 matrix. If A is invertible, then A has 3 pivots, and23

its columns are linearly independent. If A is not invertible, then the number24

of pivots is either 1 or 2, and the columns of A are linearly dependent.25

Elementary Matrices26

The matrix27

E2(−3) =





1 0 0

0 −3 0
0 0 1
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is obtained by multiplying the second row of I by −3 (or performing −3R21

on the identity matrix I). Calculate the product of this matrix and an2

arbitrary one3





1 0 0
0 −3 0

0 0 1









a11 a12 a13

a21 a22 a23

a31 a32 a33



 =





a11 a12 a13

−3a21 −3a22 −3a23

a31 a32 a33



 .

So that multiplying an arbitrary matrix from the left by E2(−3) is the same4

as performing an elementary operation −3R2 on that matrix. In general, one5

defines an elementary matrix Ei(a) by multiplying the row i of the n × n6

identity matrix I by number a. If A is an arbitrary n × n matrix, then7

the result of multiplication Ei(a)A is that the elementary operation aRi is8

performed on A. We call Ei(a) an elementary matrix of the first kind.9

The matrix10

E13 =





0 0 1
0 1 0

1 0 0





is obtained by interchanging the first and the third rows of I (or performing11

R1 ↔ R3 on I). Calculate the product of E13 and an arbitrary matrix12





0 0 1
0 1 0

1 0 0









a11 a12 a13

a21 a22 a23

a31 a32 a33



 =





a31 a32 a33

a21 a22 a23

a11 a12 a13



 .

So that multiplying an arbitrary matrix from the left by E13 is the same as13

performing an elementary operation R1 ↔ R3 on that matrix. In general,14

one defines an elementary matrix Eij by interchanging the row i and the15

row j of the n×n identity matrix I . If A is an arbitrary n×n matrix, then16

the result of multiplication EijA is that an elementary operation Ri ↔ Rj17

is performed on A. Eij is called an elementary matrix of the second kind.18

The matrix19

E13(2) =





1 0 0
0 1 0

2 0 1





is obtained from I by adding to its third row the first row multiplied by20

2 (or performing R3 + 2R1 on I). Calculate the product of E13(2) and an21

arbitrary matrix22





1 0 0

0 1 0
2 0 1









a11 a12 a13

a21 a22 a23

a31 a32 a33



 =





a11 a12 a13

a21 a22 a23

a31 + 2a11 a32 + 2a12 a33 + 2a13



 .
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So that multiplying an arbitrary matrix from the left by E13(2) is the same1

as performing an elementary operation R3 +2R1 on that matrix. In general,2

one defines an elementary matrix Eij(a) by performing Rj + aRi on the3

n × n identity matrix I . If A is an arbitrary n × n matrix, the result of4

multiplicationEij(a)A is that an elementary operationRj+aRi is performed5

on A. Eij is called an elementary matrix of the third kind.6

We summarize. If a matrix A is multiplied from the left by an elemen-7

tary matrix, the result is the same as applying the corresponding elementary8

operation to A.9

Calculating A−1
10

Given an n × n matrix A, we wish to determine if A is invertible, and if it11

is invertible, calculate the inverse A−1.12

Let us row reduce A by applying elementary operations, which is the13

same as multiplyng from the left by elementary matrices. Denote by E1 the14

first elementary matrix used. (In case one has a11 = 1 and a21 = 2, then15

the first elementary operation is R2 − 2R1, so that E1 = E12(−2). If it so16

happens that a11 = 0 and a21 = 1, then the first elementary operation is17

R1 ↔ R2, and then E1 = E12.) The first step of row reduction results in18

the matrix E1A. Denote by E2 the second elementary matrix used. After19

two steps of row reduction we have E2 (E1A) = E2E1A. If A is invertible,20

it has n pivots, and then we can row reduce A to I by complete forward21

elimination, after say p steps. In terms of elementary matrices:22

(2.3) Ep · · ·E2E1A = I .

This implies that the product Ep · · ·E2E1 is the inverse of A, Ep · · ·E2E1 =23

A−1, or24

(2.4) Ep · · ·E2E1 I = A−1 .

Compare (2.3) with (2.4): the same sequence of elementary operations that25

reduces A to I, turns I into A−1.26

The result is a method for computing A−1. Form a long matrix [A
... I ]27

of size n × 2n. Apply row operations on the entire long matrix, with the28

goal of obtaining I is the first position. Once this is achieved, the matrix in29

the second position is A−1. In short,30

[A
... I ] → [ I

... A−1 ] .
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Example 1 Let A =





1 2 −1

2 3 −2
−1 −2 0



. Form the matrix [A
... I ]:1





1 2 −1 1 0 0
2 3 −2 0 1 0

−1 −2 0 0 0 1



 .

Perform R2 − 2R1 and R3 +R1 on the entire matrix:2





1 2 −1 1 0 0
0 −1 0 −2 1 0

0 0 −1 1 0 1



 .

Perform −R2 and −R3 on the entire matrix, to make all pivots equal to 1:3





1 2 −1 1 0 0
0 1 0 2 −1 0
0 0 1 −1 0 −1



 .

Perform R1 +R3:4





1 2 0 0 0 −1
0 1 0 2 −1 0

0 0 1 −1 0 −1



 .

Finally, perform R1 − 2R2:5





1 0 0 −4 2 −1
0 1 0 2 −1 0

0 0 1 −1 0 −1



 .

The process is complete, A−1 =





−4 2 −1

2 −1 0
−1 0 −1



.6

Example 2 Let B =





−1 2 1
2 −4 −3

1 −2 1



. Form the matrix [B
... I ]:7





−1 2 1 1 0 0

2 −4 −3 0 1 0
1 −2 1 0 0 1



 .
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Perform R2 + 2R1 and R3 + R1 on the entire matrix:1





-1© 2 1 1 0 0

0 0 -1© 2 1 0
0 0 2 1 0 1



 .

Game over! The matrix B does not have a pivot in the second column. So2

that B has fewer than 3 pivots and is therefore singular (there is no inverse),3

by Theorem 2.2.1.4

For a 2 × 2 matrix A =

[

a b
c d

]

there is an easier way to calcu-5

late the inverse. One checks by multiplication of matrices that A−1 =6

1

ad− bc

[

d −b
−c a

]

, provided that ad − bc 6= 0. In case ad − bc = 0, the7

matrix A has no inverse, as will be justified later on.8

The inverses of diagonal matrices are also easy to find. For example, if9

A =





a 0 0
0 b 0

0 0 c



, with non-zero a, b, c, then A−1 =





1
a 0 0
0 1

b 0

0 0 1
c



. If one10

of the diagonal entries of A is zero, then the matrix A is singular, since it11

has fewer than three pivots.12

Exercises13

1. Write down the 3×3 elementary matrix which corresponds to the follow-14

ing elementary operation: to row 3 add four times the row 2. What is the15

notation used for this matrix?16

Answer. E23(4) =





1 0 0
0 1 0

0 4 1



.17

2. Write down the 3×3 elementary matrix which corresponds to the follow-18

ing elementary operation: multiply row 3 by −5.19

3. Write down the 4×4 elementary matrix which corresponds to the follow-20

ing elementary operation: interchange the rows 1 and 4.21

Answer. E14 =









0 0 0 1

0 1 0 0
0 0 1 0

1 0 0 0









.22
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4. Explain why the following matrices are singular (not invertible).1

a. A =

[

0 0
4 1

]

.2

b. A =

[

−3 0
5 0

]

.3

c. A =





1 0 0
0 −4 0

0 0 0



.4

d. A =





0 1 1
2 4 5
0 0 0



.5

Hint. Count the number of pivots.6

5. Find the inverses of the following matrices without performing the Gaus-7

sian elimination.8

a. A =





1 0 0
0 1 0

0 4 1



.9

Hint. A = E23(4). Observe that E23(−4)A = I , since performing R3 − 4R210

on A gives I . It follows that A−1 = E23(−4).11

Answer. A−1 =





1 0 0
0 1 0

0 −4 1



.12

b. A =









0 0 0 1

0 1 0 0
0 0 1 0

1 0 0 0









.13

Hint. A = E14. Then E14A = I , since switching the first and the fourth14

rows of A produces I . It follows that A−1 = E14.15

Answer. A−1 = A.16

c. A =

[

3 0

0 −2

]

.17

d. A =





1
4 0 0

0 −1 0
0 0 5



.18
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e. A =





4 0 0

0 0 0
0 0 5



. Answer. The matrix is singular.1

f. A =

[

1 −1

3 −2

]

. Answer.

[

−2 1

−3 1

]

.2

6. Find the inverses of the following matrices by using Gaussian elimination.3

4

a. A =





1 2 0
0 −1 1

1 −2 1



. Answer. A−1 = 1
3





1 −2 2
1 1 −1

1 4 −1



.5

b. A =

[

1 3
2 6

]

. Answer. The matrix is singular.6

c. A =





0 0 1
0 −1 1

1 −2 1



. Answer. A−1 =





1 −2 1
1 −1 0

1 0 0



.7

d. A =





1 2 3
2 0 2

3 2 1



. Answer. A−1 = 1
4





−1 1 1
1 −2 1

1 1 −1



.8

e. A =





1 1 2

0 0 1
1 0 1



. Answer. A−1 =





0 −1 1

1 −1 −1
0 1 0



.9

f. A =





1 0 1

1 1 1
2 1 1



. Answer. A−1 =





0 −1 1

−1 1 0
1 1 −1



.10

g. A =





1 1 −1
1 2 1

−1 −1 0



. Answer. A−1 =





−1 −1 −3
1 1 2

−1 0 −1



.11

h. A =

[

1 −1
3 −2

]

. Answer. A−1 =

[

−2 1
−3 1

]

.12

i. B =





1 −1 0
3 −2 0

0 0 5



. Answer. B−1 =





−2 1 0
−3 1 0

0 0 1
5



.13

Compare with the preceding example. The matrix B is an example of a14

block diagonal matrix.15
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h. C =









1 −1 0 0

3 −2 0 0
0 0 5 0

0 0 0 −1









. Answer. C−1 =









−2 1 0 0

−3 1 0 0
0 0 1

5 0

0 0 0 −1









.1

2

The matrix C is another example of a block diagonal matrix.3

7. The third column of a 3 × 3 matrix is equal to the sum of the first two4

columns. Is this matrix invertible? Explain.5

8. Suppose that A and B are non-singular n × n matrices, and (AB)2 =6

A2B2. Show that AB = BA.7

9. Let E13 and E24 be 4 × 4 matrices.8

a. Calculate P = E13E24. Answer. P =









0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0









.9

b. Let A be any 4 × 4 matrix. Show that PA is obtained from A by10

interchanging row 1 with row 3, and row 2 with row 4.11

(If A is given by its rows A =









R1

R2

R3

R4









, then PA =









R3

R4

R1

R2









.)12

c. Show that P 2 = I .13

The matrix P is an example of a permutation matrix.14

10. a. Suppose that a square matrix A is invertible. Show that AT is also15

invertible, and16

(

AT
)−1

=
(

A−1
)T

.

Hint. Take the transpose of AA−1 = I .17

b. Show that a square matrix is invertible if and only if its rows are linearly18

independent.19

Hint. Use Theorem 2.2.2.20

c. Suppose that the third row of a 7 × 7 matrix is equal to the sum of the21

first and the second rows. Is this matrix invertible?22

11. A square matrix A is called nilpotent if Ak = O, the zero matrix, for23

some positive integer k.24
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a. Show that A =









0 1 0 0

0 0 1 0
0 0 0 1

0 0 0 0









is nilpotent. Hint. Calculate A4.1

b. If A is nilpotent show that I −A is invertible, and calculate (I −A)−1.2

Answer. (I − A)−1 = I +A +A2 + · · ·+Ak−1.3

2.3 LU Decomposition4

In this section we study inverses of elementary matrices, and develop A =5

LU decomposition of any square matrix A, a useful tool.6

Examining the definition of the inverse matrix (A−1A = AA−1 = I) one7

sees that A plays the role of inverse matrix for A−1, so that A =
(

A−1
)−1

,8

or9

(

A−1
)−1

= A .

Another property of inverse matrices is10

(cA)−1 =
1

c
A−1 , for any number c 6= 0 ,

which is true because (cA)

(

1

c
A−1

)

= AA−1 = I .11

Given two invertible n× n matrices A and B, we claim that the matrix12

AB is also invertible, and13

(3.1) (AB)−1 = B−1A−1 .

Indeed,14

(

B−1A−1
)

(AB) = B−1
(

A−1A
)

B = B−1IB = B−1B = I ,

and one shows similarly that (AB)
(

B−1A−1
)

= I . Similar rule holds for15

arbitrary number of invertible matrices. For example16

(ABC)−1 = C−1B−1A−1 .

Indeed, apply (3.1) twice:17

(ABC)−1 = [(AB)C]−1 = C−1 (AB)−1 = C−1B−1A−1 .
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We show next that inverses of elementary matrices are also elementary1

matrices, of the same type. We have2

Ei(
1

a
)Ei(a) = I ,

because the elementary matrixEi(
1

a
) performs an elementary operation

1

a
Ri3

on Ei(a), which results in I . So that4

(3.2) Ei(a)
−1 = Ei(

1

a
) .

For example, E2(−5)−1 = E2(−
1

5
), so that in the 3 × 3 case5





1 0 0
0 −5 0

0 0 1





−1

=





1 0 0
0 −1

5 0

0 0 1



 .

Next6

(3.3) E−1
ij = Eij ,

(the matrix Eij is its own inverse) because7

EijEij = I .

Indeed, the matrix Eij on the left switches the rows i and j of the other Eij,8

putting the rows back in order to give I . Finally,9

(3.4) Eij(a)
−1 = Eij(−a) ,

because10

Eij(−a)Eij(a) = I .

Indeed, performing Rj−aRi on Eij(a) produces I . For example, E13(4)−1 =11

E13(−4), so that in the 3 × 3 case12





1 0 0

0 1 0
4 0 1





−1

=





1 0 0

0 1 0
−4 0 1



 .

13
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Some products of elementary matrices can be calculated at a glance, by1

performing the products from right to left. For example,2

L = E12(2)E13(−3)E23(4) = E12(2) [E13(−3)E23(4)](3.5)

=





1 0 0

2 1 0
0 0 1













1 0 0

0 1 0
−3 0 1









1 0 0

0 1 0
0 4 1







 =





1 0 0

2 1 0
−3 4 1



 .

Indeed, the product of the last two matrices in (3.5)3

E13(−3)E23(4) =





1 0 0

0 1 0
−3 0 1









1 0 0

0 1 0
0 4 1



 =





1 0 0

0 1 0
−3 4 1





is obtained by applying R3 − 3R1 to E23(4). Applying R2 + 2R1 to the last4

matrix gives L in (3.5).5

This matrix L is an example of lower triangular matrix, defined as a6

square matrix with all elements above the diagonal ones equal to 0 (other7

elements are arbitrary). The matrix L1 =





2 0 0

3 −3 0
0 −5 0



 gives another8

example of a lower triangular matrix. All elementary matrices of the type9

Eij(a) are lower triangular. The matrix U =





1 −1 0
0 −3 4
0 0 0



 is an example of10

upper triangular matrix, defined as a square matrix with all elements below11

the diagonal ones equal to 0 (the elements on the diagonal and above the12

diagonal are not restricted).13

Let us perform row reduction on the matrix A =





1 −1 1

2 −1 2
−3 7 4



. Per-14

forming R2 − 2R1, R3 + 3R1, followed by R3 − 4R2, produces an upper15

triangular matrix16

(3.6) U =





1 −1 1

0 1 0
0 0 7



 .

Rephrasing these elementary operations in terms of the elementary matrices17

E23(−4)E13(3)E12(−2)A = U .
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To express A, multiply both sides from the left by the inverse of the matrix1

E23(−4)E13(3)E12(−2):2

A = [E23(−4)E13(3)E12(−2)]−1 U = E12(−2)−1E13(3)−1E23(−4)−1U

= E12(2)E13(−3)E23(4)U = LU ,

where L is the lower triangular matrix calculated in (3.5), and the upper3

triangular matrix U is shown in (3.6), so that4

A =





1 −1 1

2 −1 2
−3 7 4



 =





1 0 0

2 1 0
−3 4 1









1 −1 1

0 1 0
0 0 7



 .

Matrix A is decomposed as product of a lower triangular matrix L, and an5

upper triangular matrix U .6

Similar A = LU decomposition can be calculated for any n × n matrix7

A, for which forward elimination can be performed without switching the8

rows. The upper triangular matrix U is the result of row reduction (the9

row echelon form). The lower triangular matrix L has 1’s on the diagonal,10

and (L)ji = a if the operation Rj − aRi was used in row reduction (here11

(L)ji denotes the j, i entry of the matrix L). If the operation Rj − aRi was12

not used in row reduction, then (L)ji = 0. For example, suppose that the13

elementary operations R3−3R1 followed by R3+4R2 reduced a 3×3 matrix14

A to an upper triangular matrix U (so that a21 = 0, and we had a “free15

zero” in that position). Then L =





1 0 0

0 1 0
3 −4 1



.16

We shall use later the following theorem.17

Theorem 2.3.1 Every invertible matrix A can be written as a product of18

elementary matrices.19

Proof: By the formula (2.3), developed for computation of A−1,20

Ep · · ·E2E1A = I ,

for some elementary matricesE1, E2, . . . , Ep. Multiply both sides by (Ep · · ·E2E1)
−1,21

to obtain22

A = (Ep · · ·E2E1)
−1 I = E−1

1 E−1
2 · · ·E−1

p .

The inverses of elementary matrices are themselves elementary matrices. ♦23

24
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If one keeps the A = LU decomposition of a large matrix A on file, then1

to solve2

Ax = LUx = b ,

for some b ∈ Rn, set3

(3.7) Ux = y ,

and then4

(3.8) Ly = b .

One can quickly solve (3.8) by “forward-substitution” for y ∈ Rn, and then5

solve (3.7) by back-substitution to get the solution x. This process is much6

faster than performing Gaussian elimination for Ax = b “from scratch”.7

Exercises8

1. Assuming that A and B are non-singular n × n matrices, simplify:9

a. B (AB)−1A. Answer. I .10

b. (2A)−1 A2. Answer. 1
2A.11

c.
[

4 (AB)−1A
]−1

. Answer. 1
4B.12

2. Without using Gaussian elimination find the inverses of the following13

3 × 3 elementary matrices.14

a. E13(2). Answer. E13(−2) =





1 0 0

0 1 0
−2 0 1



.15

b. E2(5). Answer. E2(
1
5) =





1 0 0

0 1
5 0

0 0 1



.16

c. E13. Answer. E13 =





0 0 1
0 1 0

1 0 0



.17

3. Identify the following 4 × 4 matrices as elementary matrices, and then18

find their inverses.19
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a. A =









1 0 0 0

0 0 0 1
0 0 1 0

0 1 0 0









. Answer. A = E24, A
−1 = E24.1

b. B =









1 0 0 0
0 1 0 0

0 0 1 0
0 0 −5 1









. Answer. B = E34(−5), B−1 = E34(5).2

c. C =









1 0 0 0

0 1 0 0
0 0 1 0

0 0 0 7









. Answer. C = E4(7), C−1 = E4(
1
7).3

4. Calculate the products of the following 3 × 3 elementary matrices, by4

performing the multiplication from right to left.5

a. E12(−3)E13(−1)E23(4). Answer.





1 0 0

−3 1 0
−1 4 1



.6

b. E12E13(−1)E23(4). Answer.





0 1 0
1 0 0

−1 4 1



.7

c. E13E13(−1)E23(4). Answer.





−1 4 1
0 1 0
1 0 0



.8

d. E12(2)E23(−1)E23. Answer.





1 0 0
2 0 1
0 1 −1



.9

e. E3(3)E13(−1)E12. Answer.





0 1 0
1 0 0

0 −3 3



.10

5. Find the LU decomposition of the following matrices.11

a.

[

1 2
3 4

]

. Answer. L =

[

1 0
3 1

]

, U =

[

1 2
0 −2

]

.12

b.





1 1 1

1 2 2
1 2 3



. Answer. L =





1 0 0

1 1 0
1 1 1



, U =





1 1 1

0 1 1
0 0 1



.13
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c.





1 1 −1
1 2 2
2 3 5



.1

d.





1 1 1
−1 1 0

2 2 3



. Answer. L =





1 0 0
−1 1 0

2 0 1



, U =





1 1 1
0 2 1

0 0 1



.2

3

e.









1 2 1 0

0 2 1 −1
2 4 3 1

0 −2 0 2









.4

Answer. L =









1 0 0 0

0 1 0 0
2 0 1 0
0 −1 1 1









, U =









1 2 1 0

0 2 1 −1
0 0 1 1
0 0 0 0









.5

6. a. For the matrix A =





0 1 −1
1 2 2

2 3 4



 the LU decomposition is not6

possible (explain why). Calculate the LU decomposition for the matrix7

E12A.8

b∗. Show that any non-singular n × n matrix A admits a decomposition9

PA = LU , where P is a permutation matrix.10

Hint. Choose P to perform all row exchanges needed in the row reduction11

of A.12

7. Assume that A = E12(3)E3(−2)E23.13

a. Express the inverse matrix A−1 as a product of elementary matrices.14

Answer. A−1 = E23E3(−1
2)E12(−3).15

b. In case A is 3×3, write down A−1. Answer. A−1 =





1 0 0
0 0 −1

2
−3 1 0



.16

17

8. Suppose that S is invertible and A = S−1BS.18

a. Show that B = SAS−1.19
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b. Suppose that A is also invertible. Show that B is invertible, and express1

B−1.2

9. Assume that A, B and A+B are non-singular n×n matrices. Show that3

(

A−1 +B−1
)−1

= A (A+ B)−1 B .

Hint. Show that the inverses of these matrices are equal.4

10. Show that in general5

(A+B)−1 6= A−1 +B−1 .

Hint. A = 3I , B = 5I provides an easy example (or a counterexample).6

2.4 Subspaces, Bases and Dimension7

The space R3 is a vector space, meaning that one can add vectors and8

multiply vectors by scalars. Vectors of the form





1
x2

x3



 form a subset (a9

part) of R3. Let us call this subset H1. For example, the vectors





1

−2
3





10

and





1
3

0



 both belong to H1, but their sum





2
1

3



 does not (vectors in11

H1 have the first component 1). Vectors of the form





0

x2

x3



 form another12

subset of R3, which we call H2. The sum of any two vectors in H213





0
x2

x3



+





0
y2
y3



 =





0
x2 + y2
x3 + y3





belongs to H2, and also a scalar multiple of any vector in H214

c





0

x2

x3



 =





0

c x2

c x3
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belongs to H2, for any scalar c.1

Definition A subset H of vectors in Rn is called a subspace if for any2

vectors u and v in H and any scalar c3

(i) u+ v belongs to H (H is closed under addition)4

(ii) c u belongs to H (H is closed under scalar multiplication).5

So that addition of vectors, and multiplication of vectors by scalars, do not6

take us out ofH . The set H2 above is a subspace, whileH1 is not a subspace,7

because it is not closed under addition, as we discussed above (H1 is also8

not closed under scalar multiplication). In simple terms, a subspace H is9

a part (subset) of Rn, where one can add vectors and multiply vectors by10

scalars without leaving H .11

Using c = 0 in part (ii) of the definition, one sees that any subspace12

contains the zero vector. Hence, if a set does not contains the zero vector,13

it is not a subspace. For example, let H3 be a subset of vectors









x1

x2

x3

x4









of14

R4, such that x1 +x2 + x3 + x4 = 1. H3 is not a subspace, because the zero15

vector









0
0
0

0









does not belong to H3.16

A special subspace, called the zero subspace {0}, consists of only the zero17

vector in Rn. The space Rn itself also satisfies the above definition, and it18

can be regarded as a subspace of itself.19

Given vectors v1, v2, . . . , vp in Rn their span, S = Span{v1, v2, . . . , vp},20

is a subspace of Rn. Indeed, suppose x ∈ S and y ∈ S (∈ is a mathematical21

symbol meaning “belongs”). Then x = x1v1 + x2v2 + · · · + xpvp and y =22

y1v1 + y2v2 + · · · + ypvp for some numbers xi and yi. Calculate x + y =23

(x1 + y1) v1 + (x2 + y2) v2 + · · · + (xp + yp) vp ∈ S, and c x = (cx1)v1 +24

(cx2)v2 + · · ·+ (cxp)vp ∈ S, verifying that S is a subspace.25

Definition Given a subspace H , we say that the vectors {u1, u2, . . . , uq}26

in H form a basis of H if they are linearly independent and span H (so that27

H = Span{u1, u2, . . . , uq}).28

Theorem 2.4.1 Suppose that q vectors U = {u1, u2, . . . , uq} form a basis29

of H , and let r ≥ q + 1. Then any r vectors in H are linearly dependent.30
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Proof: Let v1, v2, . . . , vr be some vectors in H , with r > q. We wish to1

show that the relation2

(4.1) x1v1 + x2v2 + · · ·+ xrvr = 0

has a non-trivial solution (not all xi are zero). Express vi’s through the3

basis U :4

v1 = a11u1 + a21u2 + · · ·+ aq1uq

v2 = a12u1 + a22u2 + · · ·+ aq2uq

· · · · · ·
vr = a1ru1 + a2ru2 + · · ·+ aqruq ,

with some numbers aij, and use them in (4.1). Rearranging, obtain:5

(a11x1 + a12x2 + · · ·+ a1rxr)u1 + (a21x1 + a22x2 + · · ·+ a2rxr) u2 + · · ·
+ (aq1x1 + aq2x2 + · · ·+ aqrxr)uq = 0 .

To satisfy the last equation, it is sufficient to make all of the coefficients6

equal to zero:7

a11x1 + a12x2 + · · ·+ a1rxr = 0

a21x1 + a22x2 + · · ·+ a2rxr = 0

· · · · · ·
aq1x1 + aq2x2 + · · ·+ aqrxr = 0 .

We have a homogeneous system with more unknowns than equations. By8

Theorem 1.4.1 it has non-trivial solutions. ♦9

It follows that any two bases of a subspace have the same number of10

vectors. Indeed, if two bases with different number of vectors existed, then11

vectors in the larger basis would have to be linearly dependent, which is not12

possible by the definition of a basis. The common number of vectors in any13

basis of H is called the dimension of H , denoted by dimH .14

It is intuitively clear that the space R2 is two-dimensional, R3 is three15

dimensional, etc. To justify rigorously that R2 is two-dimensional, let us16

exhibit a basis with two elements in R2, by considering the standard basis,17
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consisting of e1 =

[

1

0

]

and e2 =

[

0

1

]

. These vectors are linearly inde-1

pendent and they span R2, because any vector x =

[

x1

x2

]

∈ R2 can be2

written as x = x1e1 +x2e2. In R3 the standard basis consists of e1 =





1
0
0



,3

e2 =





0

1
0



 and e3 =





0

0
1



, and similarly for other Rn.4

Theorem 2.4.2 If dimension of a subspace H is p, then any p linearly5

independent vectors of H form a basis of H .6

Proof: Let u1, u2, . . . , up be any p linearly independent vectors of H . We7

only need to show that they span H . Suppose, on the contrary, that we8

can find a vector w in H which is not in their span. By Theorem 1.5.1, the9

p+1 vectors u1, u2, . . . , up, w are linearly independent. But that contradicts10

Theorem 2.4.1. ♦11

It follows that in R2 any two non-collinear vectors form a basis. In R3
12

any three vectors that do not lie in the same plane form a basis.13

Suppose that vectors B = {b1, b2, . . . , bp} form a basis in some subspace14

H . Then any vector v ∈ H can be represented through the basis elements:15

v = x1b1 + x2b2 + · · ·+ xpbp

with some numbers x1, x2, . . . , xp. This representation is unique, because if16

there was another representation v = y1b1+y2b2+· · ·+ypbp, then subtraction17

would give18

0 = (x1 − y1) b1 + (x2 − y2) b2 + · · ·+ (xp − yp) bp ,

and then x1 = y1, x2 = y2, . . . , xp = yp, by linear independence of vectors19

in the basis B. The coefficients x1, x2, . . . , xp are called the coordinates of v20

with respect to the basis B, with the notation21

[v]B =











x1

x2
...
xp











.
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Example 1 Two linearly independent vectors b1 =

[

1

−1

]

and b2 =

[

2

0

]

1

form a basis of R2, B = {b1, b2}. The vector v =

[

5
−3

]

can be decomposed2

as v = 3b1 + b2. It follows that the coordinates [v]B =

[

3
1

]

.3

Example 2 The vectors b1 =

[

1

−1

]

, b2 =

[

2

0

]

and b3 =

[

4

−2

]

do not4

form a basis of R2, because any three vectors in R2 are linearly dependent,5

and in fact, b3 = 2b1 + b2. As in the Example 1, b1 and b2 form a basis of6

R2, B = {b1, b2}, and [b3]B =

[

2
1

]

.7

Example 3 Let us verify that the vectors b1 =





1

0
1



, b2 =





0

−1
1



,8

b3 =





1
2

3



 form a basis of R3, and then find the coordinates of the vector9

v =





3

3
4



 with respect to this basis, B = {b1, b2, b3}.10

To justify that the three vectors b1, b2, b3 form a basis of R3, we only need11

to show that they are linearly independent. That involves showing that the12

matrix A = [ b1 b2 b3 ] has three pivots. Let us go straight to finding the13

coordinates of v, representing14

v = x1b1 + x2b2 + x3b3 ,

and in the process it will be clear that the matrix A has three pivots. We15

need to solve a 3 × 3 system with the augmented matrix16

[ b1 b2 b3
... v ] =





1 0 1 3
0 −1 2 3

1 1 3 4



 .

The matrix of this system is precisely A. Perform R3 − R1, followed by17

R3 + R2. Obtain:18




1© 0 1 3

0 -1© 2 3
0 0 4© 4



 .
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The matrix A has three pivots, therefore the vectors b1, b2, b3 are linearly1

independent, and hence they form a basis of R3. Restoring the system,2

obtain x3 = 1, x2 = −1, x1 = 2, by back-substitution. Answer: [v]B =3




2
−1

1



.4

Exercises5

1. Do the following subsets form subspaces of the corresponding spaces?6

a. Vectors in R3 with x1 + x2 ≥ 1.7

Answer. No, the zero vector is not included in this subset.8

b. Vectors in R3 with x2
1 + x2

2 + x2
3 ≤ 1.9

Answer. No, the subset is not closed under both addition and scalar multi-10

plication.11

c. Vectors in R5 with x1 + x4 = 0.12

Answer. Yes.13

d. Vectors in R4 with x2 = 0.14

Answer. Yes.15

e. Vectors in R2 with x1x2 = 1.16

Answer. No, not closed under addition (also not closed under scalar multi-17

plication).18

f. Vectors in R2 with x1x2 = 0.19

Answer. No, not closed under addition (it is closed under scalar multiplica-20

tion).21

g. Vectors in R3 with x1 = 2x2 = −3x3.22

Answer. Yes, these vectors lie on a line through the origin.23

h. Vectors in R3 of the form





0

x2

x2
2



.24

Does this subset contain the zero vector?25

Answer. Not a subspace, even though this subset contains the zero vector.26
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2. Show that all vectors lying on any line through the origin in R2 form a1

subspace.2

3. a. Show that all vectors lying on any line through the origin in R3 form3

a subspace.4

b. Show that all vectors lying on any plane through the origin in R3 form a5

subspace.6

4. a. Explain why the vectors b1 =

[

1
2

]

and b2 =

[

−1
1

]

form a basis of7

R2, and then find the coordinates of the vector e1 from the standard basis8

with respect to this basis, B = {b1, b2}.9

Answer. [e1]B =

[

1/3

−2/3

]

.10

b. What is the vector v ∈ R2 if [v]B =

[

1
3

]

?11

Answer. v =

[

−2

5

]

.12

c. For each of the following vectors v1 =

[

2
1

]

, v2 =

[

0
2

]

, and v3 =

[

−2
2

]

13

find their coordinates with respect to this basis, B = {b1, b2}.14

Hint. Calculations can be performed simultaneously (in parallel) by consid-15

ering the augmented matrix

[

1 −1 2 0 −2

2 1 1 2 2

]

. Perform R2 − 2R1 on16

the entire matrix, then restore each system.17

Answer. [v1]B =

[

1

−1

]

, [v2]B =

[

2/3

2/3

]

, [v3]B =

[

0

2

]

.18

5. Verify that the vectors b1 =





1
0

1



, b2 =





0
−1

1



, b3 =





1
2

3



 form a19

basis of R3, and then find the coordinates of the vectors v1 =





1

0
4



 and20

v2 =





2
1

5



 with respect to this basis, B = {b1, b2, b3}.21
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6. a. Show that the vectors b1 =









1

2
0

3









, b2 =









1

1
1

1









, b3 =









0

−1
1

−2









are1

linearly dependent, and express b3 as a linear combination of b1 and b2.2

Answer. b3 = −b1 + b2.3

b. Let V = Span{b1, b2, b3}. Find a basis of V , and dimension of V .4

Answer. B = {b1, b2} is a basis of V . Dimension of V is 2.5

c. Find the coordinates of b1, b2, b3 with respect to the basis in part (b).6

Answer. [b1]B =

[

1
0

]

, [b2]B =

[

0
1

]

, [b3]B =

[

−1
1

]

.7

7. Let E = {e1, e2, e3} be the standard basis in R3, and x =





x1

x2

x3



. Find8

the coordinates [x]E.9

Answer. [x]E =





x1

x2

x3



.10

2.5 Null Spaces and Column Spaces11

We now study two important subspaces associated with any m × n matrix12

A.13

Definition The null space of A is the set of all vectors x ∈ Rn satisfying14

Ax = 0. It is denoted by N (A).15

Let us justify that the null space is a subspace of Rn. (Recall that the16

terms “subspace” and “space” are used interchangeably.) Assume that two17

vectors x1 and x2 belong to N (A), meaning that Ax1 = 0 and Ax2 = 0.18

Then19

A (x1 + x2) = Ax1 + Ax2 = 0 ,

so that x1 +x2 ∈ N (A). Similarly, A (cx1) = cAx1 = 0, so that cx1 ∈ N (A),20

for any number c, justifying that N (A) is a subspace.21

Finding the null space of A requires solving the homogeneous system22

Ax = 0, which was studied previously. We can now interpret the answer in23

terms of dimension and basis of N (A).24
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Example 1 A =





−1 2 0 1

2 −4 1 −1
3 −6 1 −2



. The augmented matrix of the1

system Ax = 0 is2




−1 2 0 1 0
2 −4 1 −1 0

3 −6 1 −2 0



 .

Perform R2 + 2R1, R3 + 3R1:3





-1© 2 0 1 0
0 0 1© 1 0

0 0 1 1 0



 .

The second column does not have a pivot, but the third column does. For-4

ward elimination is completed by performing R3 −R2:5





-1© 2 0 1 0

0 0 1© 1 0
0 0 0 0 0



 .

Restore the system, take the free variables x2 and x4 to the right, and solve6

for the basis variables x1 and x3. Obtain x1 = 2x2 + x4, x3 = −x4, where7

x2 and x4 are arbitrary numbers. Putting the answer in the vector form,8

obtain:9








2x2 + x4

x2

−x4

x4









= x2









2
1
0

0









+ x4









1
0

−1

1









.

So that N (A) is span of the vectors u =









2

1
0

0









and v =









1

0
−1

1









, N (A) =10

Span{u, v}. Conclusions: the null space N (A) is a subspace of R4 of di-11

mension two, dimN (A) = 2, the vectors u and v form a basis of N (A).12

13

For an arbitrary matrix A the dimension of the null space N (A) is equal14

to the number of free variables in the row echelon form of A.15

If the system Ax = 0 has only the trivial solution x = 0, then the null16

space of A is the zero subspace, or N (A) = {0}, consisting only of the zero17

vector.18
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Definition The column space of a matrix A is the span (the set of all possible1

linear combinations) of its column vectors. It is denoted by C(A).2

If A = [a1 a2 . . .an] is an m × n matrix given by its columns, the column3

space C(A) = Span {a1, a2, . . . , an} consists of all vectors of the form4

(5.1) x1a1 + x2a2 + · · ·+ xnan = Ax ,

with arbitrary numbers x1, x2, . . . , xn. Columns of A are vectors in Rm, so5

that C(A) is a subset of Rm. In fact, the column space is a subspace of Rm,6

because any span is a subspace. The formula (5.1) shows that the column7

space C(A) can be viewed as the range of the function Ax.8

The rank of a matrix A, denoted by rankA, is the dimension of the9

column space of A, rankA = dimC(A).10

Example 2 Determine the basis of the column space of the following two11

matrices. Express the columns that are not in the basis through the ones in12

the basis.13

(i) A =









2© 1 3 0 3

0 -1© 1 1 0
0 0 0 1© 1
0 0 0 0 0









= [ a1 a2 a3 a4 a5 ],14

where ai’s denote the columns of A. The matrix A is already in row echelon15

form, with the pivots circled. The pivot columns a1, a2, a4 are linearly16

independent. Indeed, the matrix [ a1 a2 a4 ] has three pivots. We show17

next that the other columns, a3 and a5, are linear combinations of the pivot18

columns a1, a2, a4. Indeed, to express a5 through the pivot columns we need19

to find numbers x1, x2, x3 so that20

x1a1 + x2a2 + x3a4 = a5 .

The augmented matrix of this system is21

[ a1 a2 a4
... a5 ] =









2© 1 0 3

0 -1© 1 0
0 0 1© 1

0 0 0 0









.

Back-substitution gives x1 = x2 = x3 = 1, so that22

(5.2) a5 = a1 + a2 + a4 .
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To express a3 through the pivot columns we need to find new numbers x1,1

x2, x3 so that2

x1a1 + x2a2 + x3a4 = a3 .

The augmented matrix of this system is3

[ a1 a2 a4
... a3 ] =









2© 1 0 3
0 -1© 1 1

0 0 1© 0
0 0 0 0









.

Back-substitution gives x3 = 0, x2 = −1, x1 = 2, so that4

(5.3) a3 = 2a1 − a2 .

We claim that the pivot columns a1, a2, a4 form a basis of C(A), so that5

dimC(A) = rankA = 3. We already know that these vectors are linearly6

independent, so that it remains to show that they span C(A). The column7

space C(A) consists of vectors in the form v = c1a1+c2a2+c3a3+c4a4+c5a58

for some numbers c1, c2, c3, c4, c5. Using (5.2) and (5.3), any vector v ∈ C(A)9

can be expressed as10

v = c1a1 + c2a2 + c3 (2a1 − a2) + c4a4 + c5 (a1 + a2 + a4)

= (c1 + 2c3 + c5) a1 + (c2 − c3 + c5) a2 + c5a4 ,

which is a linear combination of a1, a2, a4.11

(ii) B =









2 1 3 0 3

0 −1 1 1 0
2 0 4 2 4

−2 −2 −2 1 −3









= [ b1 b2 b3 b4 b5 ],12

where bi’s denote the columns of B.13

Calculation shows that the row echelon form of B is the matrix A from14

the part (i) just discussed. It turns out that the same conclusions as for15

A hold for B: b1, b2, b4 form a basis of C(B), while b5 = b1 + b2 + b4 and16

b3 = 2b1 − b2, similarly to (5.2) and (5.3). Indeed, to see that b1, b2, b4 are17

linearly independent, one forms the matrix [b1 b2 b4] and row reduces it to18

the matrix [a1 a2 a4] with three pivots. To express b5 through b1, b2, b4, one19

forms the augmented matrix [b1 b2 b4
... b5 ] and row reduces it to the matrix20

[a1 a2 a4
... a5], which leads to b5 = b1 + b2 + b4. Similar reasoning shows that21

in any matrix, columns with pivots form a basis of the column space.22
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Caution: C(B) is not the same as C(A). Indeed, vectors in C(A) have the1

last component equal to zero, while vectors in C(B) do not.2

We summarize. To obtain a basis for the column space C(B), reduce B3

to its row echelon form. Then the columns with pivots (from the original4

matrix B) form a basis for C(B). Other columns are expressed through the5

pivot ones by forming the corresponding augmented matrices, and perform-6

ing Gaussian elimination. The dimension of C(B), or rankB, is equal to7

the number of pivot columns.8

Recall that the dimension of the null space N (B) is equal to the number9

of columns without pivots (or the number of free variables). The sum of the10

dimensions of the column space and of the null space is equal to the total11

number of columns, which for an m× n matrix B reads:12

rankB + dimN (B) = n ,

and is known as the rank theorem.13

Exercises14

1. Find the null space of the given matrix. Identify its basis and dimension.15

16

a.

[

1 2
3 4

]

. Answer. The zero subspace of R2, of dimension 0.17

b. A =

[

1 −2

3 −6

]

. Answer. N (A) is the span of

[

2

1

]

, dimension = 1.18

19

c. O =

[

0 0
0 0

]

. Answer. N (O) = R2, dimension = 2.20

d.





0 1 −2

4 3 −6
−4 −2 4



.21

e. E =





1 −1 −2
2 −2 −4

3 −3 −6



. Answer. N (E) = Span











2
0

1



 ,





1
1

0











,22

dimension = 2.23

f. F =





1 0 0
2 −2 0

3 −3 −6



. Answer. N (F ) = {0}, the zero subspace, of24

dimension zero.25
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g.





2 1 3 0

2 0 4 1
−2 −1 −3 1



.1

Answer. The null space N (A) is spanned by









−2
1

1
0









, dimN (A) = 1.2

h.





2 1 3 0
2 0 4 1

−2 −2 −2 1



.3

i. H =
[

−1 1 3 0
]

. Hint. The null space is a subspace of R4.4

Answer. N (H) = Span























1

1
0

0









,









3

0
1

0









,









0

0
0

1























, dimension = 3.5

2. A 4× 5 matrix has two pivots. What is the dimension of its null space?6

3. The rank of a 9× 7 matrix is 3. What is the dimension of its null space?7

What is the number of pivots?8

4. The rank of a 4× 4 matrix is 4.9

a. Describe the null space.10

b. Describe the column space.11

5. The rank of a 3 × 3 matrix is 2. Explain why its null space is a line12

through the origin, while its column space is a plane through the origin.13

6. Assume that matrix A is of size 3 × 5. Explain why dimN (A) ≥ 2.14

7. For a 4 × 4 matrix A the dimension of N (A) is 4. Describe A.15

Answer. A = O.16

8. Find the basis of the column space for the following matrices, and deter-17

mine their rank. Express the columns that are not in the basis through the18

ones in the basis.19

a.

[

−1 1 −1
0 2 4

]

.20

b.

[

−1 1 −1
1 2 10

]

. Answer. C3 = 4C1 + 3C2, rank = 2.21
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c.

[

1 1 2

−3 −3 −6

]

. Answer. rank = 1.1

d. A =





−1 2 5
−1 2 5

2 0 −2



.2

Answer. C(A) = Span











−1
−1

2



 ,





2
2

0











, rank = 2, C3 = −C1 + 2C2.3

e. A =





0 0 1
0 2 5

−1 0 −3



.4

Answer. C(A) = R3.5

f.





2 1 3 0
2 0 4 1

−2 −1 −3 1



.6

Column space is spanned by C1, C2 and C4. Rank is 3. C3 = 2C1 −C2.7

g. B =





1 −1 0 1 1
2 −1 1 1 −3

0 1 1 −1 −5



.8

Answer. C(B) = Span











1
2

0



 ,





−1
−1

1











, rank = 2, C3 = C1 + C2, C4 =9

−C2, C5 = −4C1 − 5C2.10

9. Consider the following subspace ofR3: V = Span











2
0

1



 ,





1
1

0



 ,





−2
−4

−6











.11

Find a basis of V and dimV .12

Hint. Use these vectors as columns of a matrix.13

10. Let A =

[

−1 −1
1 1

]

.14

a. Show that the vector

[

1

−1

]

belongs to both the null space N (A) and15

the column space C(A).16
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b. Show that N (A) = C(A).1

c. Show that N
(

A2
)

= R2.2

11. Let A be an arbitrary n× n matrix.3

a. Show that any vector in N (A) belongs to N (A2).4

b. Show that the converse statement is false.5

Hint. Try A =

[

−1 −1
1 1

]

.6

12. Let A be an m× n matrix with linearly independent columns.7

a. Show that the system Ax = b has at most one solution for any vector b.8

Hint. If C1, C2, . . . , Cn are the columns of A, and x1, x2, . . . , xn are the9

components of x, then x1C1 + x2C2 + . . .+ xnCn = b.10

b. Suppose that b ∈ C(A). Show that the system Ax = b has exactly one11

solution.12



Chapter 31

Determinants2

A 4 × 4 matrix involves 16 numbers. Its determinant is just one number,3

but it carries significant information about the matrix.4

3.1 Cofactor Expansion5

To each square matrix A, one associates a number called the determinant of6

A, and denoted by either detA or |A|. For 2 × 2 matrices7

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

= ad− bc .

For 3 × 3 matrices the formula is8

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

= a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32(1.1)

−a12a21a33 − a13a22a31 .

It seems impossible to memorize this formula, but we shall learn how to9

produce it.10

For an n × n matrix A define the minor Mij as the (n − 1) × (n − 1)11

determinant obtained by removing the row i and the column j in A. For12

example, for the matrix13

A =





1 0 −3

−1 6 2
3 2 1



 ,

77
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the minors are M11 =

∣

∣

∣

∣

6 2

2 1

∣

∣

∣

∣

= 2, M12 =

∣

∣

∣

∣

−1 2

3 1

∣

∣

∣

∣

= −7, M13 =1

∣

∣

∣

∣

−1 6
3 2

∣

∣

∣

∣

= −20, and so on. Define also the cofactor2

Cij = (−1)i+jMij .

For the above matrix, C11 = (−1)1+1M11 = 2, C12 = (−1)1+2M12 = 7,3

C13 = (−1)1+3M13 = −20, and so on.4

Cofactor expansion will allow us to define 3 × 3 determinants through5

2 × 2 ones, then 4 × 4 determinants through 3 × 3 ones, and so on. For an6

n× n matrix the cofactor expansion in row i is7

|A| = ai1Ci1 + ai2Ci2 + · · ·+ ainCin .

The cofactor expansion in column j is8

|A| = a1jC1j + a2jC2j + · · ·+ anjCnj .

For 3 × 3 determinants there are 6 cofactor expansions (in 3 rows, and in9

3 columns), but all of them lead to the same formula (1.1). Similarly, for10

n × n determinants all cofactor expansions lead to the same number, |A|.11

For the above matrix, cofactor expansion in the first row gives12

|A| = 1 · C11 + 0 · C12 + (−3) ·C13 = 62 .

In practice one does not calculate (−1)i+j, but uses the checker-board pattern13





+ − +

− + −
+ − +





to get the right signs of the cofactors (and similarly for larger matrices). Let14

us expand the same determinant in the second row:15

∣

∣

∣

∣

∣

∣

1 0 −3

−1 6 2
3 2 1

∣

∣

∣

∣

∣

∣

= −(−1)

∣

∣

∣

∣

0 −3

2 1

∣

∣

∣

∣

+ 6

∣

∣

∣

∣

1 −3

3 1

∣

∣

∣

∣

− 2

∣

∣

∣

∣

1 0

3 2

∣

∣

∣

∣

= 62 .

One tries to pick a row (or column) with many zeroes to perform a16

cofactor expansion. Indeed, if aij = 0 there is no need to calculate Cij ,17

because aijCij = 0 anyway. If all entries of some row are zero, then |A| = 0.18

19
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Example Expanding in the first column1

∣

∣

∣

∣

∣

∣

∣

∣

2 0 3 −4
0 3 8 1

0 0 4 −2
0 0 0 5

∣

∣

∣

∣

∣

∣

∣

∣

= 2 ·

∣

∣

∣

∣

∣

∣

3 8 1

0 4 −2
0 0 5

∣

∣

∣

∣

∣

∣

= 2 · 3 ·
∣

∣

∣

∣

4 −2

0 5

∣

∣

∣

∣

= 2 · 3 · 4 · 5 = 120 .

(The 3 × 3 determinant on the second step was also expanded in the first2

column.)3

The matrix in the last example was upper triangular. Similar reasoning4

shows that the determinant of any upper triangular matrix equals to the5

product of its diagonal entries. For a lower triangular matrix, like6

∣

∣

∣

∣

∣

∣

∣

∣

2 0 0 0
12 −3 0 0

2 1
3 4 0

−1 2 7 0

∣

∣

∣

∣

∣

∣

∣

∣

= 2 · (−3) · 4 · 0 = 0 ,

the expansion was performed in the first row on each step. In general, the7

determinant of any lower triangular matrix equals to the product of its diag-8

onal entries. Diagonal matrices can be viewed as either upper triangular or9

lower triangular. Therefore, the determinant of any diagonal matrix equals10

to the product of its diagonal entries. For example, if I is the n× n identity11

matrix, then12

| − 2I | = (−2) · (−2) · · · · · (−2) = (−2)n .

Cofactor expansions are not practical for computing n×n determinants13

for n ≥ 5. Let us count the number of multiplications it takes. For a14

2 × 2 matrix it takes 2 multiplications. For a 3 × 3 matrix one needs to15

calculate three 2 × 2 determinants which takes 3 · 2 = 3! multiplications,16

plus 3 more multiplications in the cofactor expansion, for a total of 3! + 3.17

For an n × n matrix it takes n! + n multiplications. If n = 20, this number18

is 2432902008176640020, and computations would take many thousands of19

years on the fastest computers. An efficient way for computing determinants,20

based on Gaussian elimination, is developed in the next section.21

Exercises22
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1. Find x so that

∣

∣

∣

∣

x 3

−1 2

∣

∣

∣

∣

=

∣

∣

∣

∣

0 x

1 5

∣

∣

∣

∣

. Answer. x = −1.1

2. Let A =





1 1 −1

−1 1 2
0 2 3



. Calculate the detA2

a. By expanding in the second row.3

b. By expanding in the second column.4

c. By expanding in the third row.5

Answer. |A| = 4.6

3. Calculate the determinants of the following matrices.7

a.





1 0 0
0 2 0

0 0 3



. Answer. 3!8

b.









1 0 0 0

0 −2 0 0
0 0 −3 0

0 0 0 −4









. Answer. −4!9

c. Any diagonal matrix.10

d.

[

1 0

−5 2

]

.11

e.





1 0 0

−5 2 0
6 12 3



. Answer. 6.12

f. Any lower triangular matrix.13

g. Any upper triangular matrix.14

h.





0 0 a
0 b 5

c −2 3



. Answer. −abc.15

i.









1 −1 0 3

0 2 −2 1
−1 −2 0 2

1 1 1 2









. Answer. −27.16
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j.









2 0 0 0

0 a b 0
0 c d 0

0 0 0 3









. (A block diagonal matrix.)1

Answer. 2 ·
∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

· 3 = 6 (ad− bc).2

k.

∣

∣

∣

∣

∣

∣

∣

∣

a b 0 0

c d 0 0
0 0 e f

0 0 g h

∣

∣

∣

∣

∣

∣

∣

∣

. (A block diagonal matrix.)3

Answer.

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

·
∣

∣

∣

∣

e f

g h

∣

∣

∣

∣

= (ad− bc) (eh − fg).4

l.

∣

∣

∣

∣

∣

∣

∣

∣

2 −1 0 5
4 −2 0 −3

1 3 0 1
0 −7 0 8

∣

∣

∣

∣

∣

∣

∣

∣

. Answer. 0.5

m. A matrix with a row of zeroes. Answer. The determinant is 0.6

4. Calculate |A2| and relate it to |A| for the following matrices.7

a. A =

[

2 −4

0 3

]

.8

b. A =

[

1 −1
1 1

]

.9

5. Let A =















0 0 . . . 0 1
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

1 0 . . . 0 0















, an n×n matrix. Show that |A| = −1.10

Hint. Expand in the first row, then expand in the last row.11

6. Calculate the n × n determinant Dn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 1 0 . . . 0 0
1 2 1 . . . 0 0
0 1 2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 2 1
0 0 0 . . . 1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.12
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Hint. Expanding in the first row, obtain the recurrence relation Dn =1

2Dn−1 − Dn−2. Beginning with D2 = 3 and D3 = 4, use this recurrence2

relation to calculate D4 = 5 and D5 = 6, and so on. Answer. Dn = n+1.3

4

7. Let A be a 5 × 5 matrix, with aij = (i− 3)j. Show that |A| = 0.5

Hint. What is the third row of A?6

8. Suppose that a square matrix has integer entries. Show that its deter-7

minant is an integer. Prove that the converse statement is not true, by8

considering for example

∣

∣

∣

∣

3
2

1
2

5
2 −1

2

∣

∣

∣

∣

.9

3.2 Properties of Determinants10

An n × n matrix A can be listed by its rows A =











R1

R2
...

Rn











, which are n-11

dimensional row vectors. Let us highlight Ri (the row i) in A:12

A =

















a11 a12 . . . a1n
...

...
...

ai1 ai2 . . . ain
...

...
...

an1 an2 . . . ann

















.

Using the summation notation, the cofactor expansion in row i takes the13

form14

|A| = ai1Ci1 + ai2Ci2 + · · ·+ ainCin =

n
∑

s=1

aisCis .

The first three properties deal with the elementary row operations.15

Property 1. If some row of A is multiplied by a number k to produce B,16

then detB = k detA.17
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Indeed, assume that row i of A is multiplied by k. We need to show that1

(2.1) |B| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R1
...

kRi
...

Rn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R1
...

Ri
...

Rn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= k|A| .

Expand |B| in row i, and use the summation notation:2

|B| =
n
∑

s=1

(kais)Cis = k
n
∑

s=1

aisCis = k|A| ,

justifying Property 1. (In row i cofactors are the same for B and A, since3

row i is removed in both matrices when calculating cofactors.) In (2.1), the4

number k is “factored out” of row i.5

If B = kA, then all n rows of A are multiplied by k to produce B. It6

follows that detB = kn detA (by factoring k out of each row), or7

|kA| = kn|A| .

Property 2. If any two rows of A are interchanged to produce B, then8

detB = − detA.9

Indeed, for 2 × 2 matrices this property is immediately verified. Suppose10

that A is a 3 × 3 matrix, A =





R1

R2

R3



 and B =





R3

R2

R1



 is obtained from11

A by switching rows 1 and 3. Expand both |B| and |A| in the second row.12

In the expansion of |B| one will encounter 2× 2 determinants with the rows13

switched, compared with the expansion of |A|, giving |B| = −|A|. Then one14

justifies this property for 4 × 4 matrices, and so on.15

It follows that if a matrix has two identical rows, its determinant is zero.16

Indeed, interchange the identical rows, to get a matrix B. By Property 2,17

|B| = −|A|. On the other hand B = A, so that |B| = |A|. It follows that18

|A| = −|A|, giving |A| = 0. If two rows are proportional the determinant is19

again zero. For example, using Property 1,20

∣

∣

∣

∣

∣

∣

R1

kR1

R3

∣

∣

∣

∣

∣

∣

= k

∣

∣

∣

∣

∣

∣

R1

R1

R3

∣

∣

∣

∣

∣

∣

= 0 .
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Assume that row j in A is replaced by Ri, so that Rj = Ri. The resulting1

matrix has zero determinant:2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R1
...

Ri
...

Ri
...
Rn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 .

Indeed, let us expand this determinant in j-th row:3

ai1Cj1 + ai2Cj2 + · · ·+ ainCjn = 0 .

(Once row j is removed, the cofactors are the same as in the matrix A.)4

Comparing that with the cofactor expansion of |A| in row i:5

ai1Ci1 + ai2Ci2 + · · ·+ ainCin = |A| ,

we conclude the following theorem.6

Theorem 3.2.1 If all elements of row i are multiplied by the cofactors of7

another row j and added, the result is zero. If all elements of row i are8

multiplied by their own cofactors and added, the result is |A|. In short,9

n
∑

s=1

aisCjs =

{

0 if j 6= i

|A| if j = i .

Property 3. If a multiple of one row of A is added to another row to10

produce a matrix B, then detB = detA. (In other words, elementary11

operations of type Rj + kRi leave the value of the determinant unchanged.)12

13

Indeed, assume that B was obtained from A by using Rj +kRi. Expand |B|14

in row j, use the summation convention and the preceeding Theorem 3.2.1:15

|B| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R1
...

Rj + kRi
...
Rn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

n
∑

s=1

(ajs + kais)Cjs =

n
∑

s=1

ajsCjs + k

n
∑

s=1

aisCjs = |A| .
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Using the Properties 1,2,3, one row reduces any determinant to that of1

upper triangular matrix (which is the product if its diagonal entries). This2

method (based on Gaussian elimination) is very efficient, allowing computa-3

tion of 20×20 determinants on basic laptops. (Entering a 20×20 determinant4

is likely to take longer than its computation.)5

Example To evaluate the following 4× 4 determinant, perform R1 ↔ R2,6

and then factor 2 out of the (new) first row:7

∣

∣

∣

∣

∣

∣

∣

∣

0 1 2 3
2 −2 0 −6

1 1 0 1
2 −2 4 4

∣

∣

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

∣

∣

2 −2 0 −6
0 1 2 3

1 1 0 1
2 −2 4 4

∣

∣

∣

∣

∣

∣

∣

∣

= −2

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 −3
0 1 2 3

1 1 0 1
2 −2 4 4

∣

∣

∣

∣

∣

∣

∣

∣

.

Performing R3 −R1, R4 − 2R1 for the resulting determinant (dropping the8

factor of −2, for now), followed by R3 − 2R2, and finally R4 + R3, gives:9

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 −3
0 1 2 3

1 1 0 1
2 −2 4 4

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 −3
0 1 2 3

0 2 0 4
0 0 4 10

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 −3
0 1 2 3

0 0 −4 −2
0 0 4 10

∣

∣

∣

∣

∣

∣

∣

∣

10

=

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 −3
0 1 2 3

0 0 −4 −2
0 0 0 8

∣

∣

∣

∣

∣

∣

∣

∣

= 1 · 1 · (−4) · 8 = −32 .

The original determinant is then (−2) · (−32) = 64.11

In practice one combines row reduction with cofactor expansion. For12

example, after performing R2 + R1 and R3 −R1,13

∣

∣

∣

∣

∣

∣

1 0 2

−1 1 −1
1 1 5

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 0 2

0 1 1
0 1 3

∣

∣

∣

∣

∣

∣

= 1 ·
∣

∣

∣

∣

1 1
1 3

∣

∣

∣

∣

= 2 ,

the determinant is evaluated by expanding in the first column.14

If Gaussian elimination for A does not involve row exchanges, |A| is15

equal to the product of the diagonal entries in the resulting upper triangular16

matrix, otherwise |A| is ± the product of the diagonal entries in the row17

echelon form. It follows that |A| 6= 0 is equivalent to all of these diagonal18

entries being non-zero, so that A has n pivots, which in turn is equivalent to19

A being invertible. We conclude that A is invertible if and only if |A| 6= 0.20
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Determinants of elementary matrices are easy to calculate. Indeed,1

|Ei(k)| = k (a diagonal matrix), |Eij| = −1 (by Property 2), and |Eij(k)| = 12

(a lower triangular matrix). We can then restate Property 1 as3

|Ei(k)A| = k|A| = |Ei(k)||A| ,

Property 2 as4

|EijA| = −|A| = |Eij||A| ,
and Property 3 as5

|Eij(k)A| = |A| = |Eij(k)||A| .
Summarize:6

(2.2) |EA| = |E||A| ,

where E is an elementary matrix of any kind.7

Property 4. For any two n× n matrices8

(2.3) |AB| = |A||B| .

Proof: Case (i) |A| = 0. Then A is not invertible. We claim that AB9

is also not invertible. Indeed, if the inverse (AB)−1 existed, we would have10

AB(AB)−1 = I , which means that B(AB)−1 is the inverse of A, but A has11

no inverse. Since AB is not invertible, |AB| = 0, and (2.3) holds.12

Case (ii) |A| 6= 0. By Theorem 2.3.1 a non-singular matrix A can be written13

as a product of elementary matrices (of various kinds)14

A = E1E2 · · ·Ep .

Applying (2.2) to products of two matrices at a time15

(2.4) |A| = |E1| |E2 · · ·Ep| = |E1| |E2| · · · |Ep| .

Similarly16

|AB| = |E1E2 · · ·EpB| = |E1| |E2 · · ·EpB| = |E1| |E2| · · · |Ep| |B| = |A| |B| ,

using (2.4) on the last step. ♦17

Recall that powers of a square matrixA are defined as follows: A2 = AA,18

A3 = A2A, etc. Then |A2| = |A| |A| = |A|2, and in general19

|Ak| = |A|k , for any positive integer k .
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Property 5. If A is invertible, then |A| 6= 0, and1

|A−1| =
1

|A| .

Indeed,2

|AA−1| = |I | = 1 ,
3

(2.5) |A||A−1| = 1 ,

by Property 4. Then |A| 6= 0, and |A−1| =
1

|A| .4

We conclude again that in case |A| = 0, the matrix A is not invertible5

(existence of A−1 would produce a contradiction in (2.5)).6

Property 6. |AT | = |A|.7

Indeed, the transpose AT has the rows and columns of A interchanged,8

while cofactor expansion works equally well for rows and columns.9

The last property implies that all of the facts stated above for rows are10

also true for columns. For example, if two columns of A are proportional,11

then |A| = 0. If a multiple of column i is subtracted from column j, the12

determinant remains unchanged. If a column of A is the zero vector, then13

|A| = 0.14

Exercises15

1. Calculate the following determinants by combining row reduction and16

cofactor expansion.17

a.

∣

∣

∣

∣

∣

∣

1 2 0

3 −1 1
1 −2 1

∣

∣

∣

∣

∣

∣

.18

b.

∣

∣

∣

∣

∣

∣

0 −2 3

3 −1 1
1 −1 1

∣

∣

∣

∣

∣

∣

. Hint. Perform R1 ↔ R3.19

c.

∣

∣

∣

∣

∣

∣

∣

∣

0 −2 3 1
−1 −1 1 0

2 −1 −1 2
1 −4 3 3

∣

∣

∣

∣

∣

∣

∣

∣

. Answer. 0.20
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d.

∣

∣

∣

∣

∣

∣

∣

∣

1 0 −1 1

1 1 2 −1
0 1 2 3
2 1 −2 3

∣

∣

∣

∣

∣

∣

∣

∣

. Answer. 12.1

e.

∣

∣

∣

∣

∣

∣

∣

∣

1 1 −1 1
1 1 2 −1

−1 −1 2 3
2 1 −2 3

∣

∣

∣

∣

∣

∣

∣

∣

. Answer. −14.2

f.

∣

∣

∣

∣

∣

∣

∣

∣

1 1 −1 1

1 2 2 −1
−1 −2 2 3

2 1 −2 3

∣

∣

∣

∣

∣

∣

∣

∣

. Answer. −10.3

g.

∣

∣

∣

∣

∣

∣

1 1 1
a b c

a2 b2 c2

∣

∣

∣

∣

∣

∣

. (Vandermonde determinant.)4

Hint. Perform R2 − aR1, R3 − a2R1, then expand in the first column.5

Answer. (b− a)(c− a)(c− b).6

2. Assuming that

∣

∣

∣

∣

∣

∣

a b c

d e f
g h k

∣

∣

∣

∣

∣

∣

= 5, find the following determinants.7

a.

∣

∣

∣

∣

∣

∣

a b c

d+ 3a e+ 3b f + 3c
g h k

∣

∣

∣

∣

∣

∣

. Answer. 5.8

b.

∣

∣

∣

∣

∣

∣

a b c
2d 2e 2f

g h k

∣

∣

∣

∣

∣

∣

. Answer. 10.9

c.

∣

∣

∣

∣

∣

∣

3a 3b 3c
2d 2e 2f

g h k

∣

∣

∣

∣

∣

∣

. Answer. 30.10

d.

∣

∣

∣

∣

∣

∣

a b c
2d+ 3a 2e+ 3b 2f + 3c

g h k

∣

∣

∣

∣

∣

∣

.11
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e.

∣

∣

∣

∣

∣

∣

d e f

a b c
g h k

∣

∣

∣

∣

∣

∣

. Answer. −5.1

f.

∣

∣

∣

∣

∣

∣

d e f
g h k
a b c

∣

∣

∣

∣

∣

∣

. Answer. 5.2

g.

∣

∣

∣

∣

∣

∣

a b −c
d e −f
g h −k

∣

∣

∣

∣

∣

∣

. Answer. −5.3

h.

∣

∣

∣

∣

∣

∣

a b 0
d e 0

g h 0

∣

∣

∣

∣

∣

∣

.4

3. a. If every column of A adds to zero, show that |A| = 0.5

b. If every row of A adds to zero, what is |A|?6

4. Let A and B be 4× 4 matrices, such that |A| = 3, and |B| = 1
2 . Find the7

following determinants.8

a. |AT |.9

b. |2A|. Answer. 48.10

c. |B2|.11

d. |BA|.12

e. |A−1B|. Answer. 1
6 .13

f. |2AB−1| Answer. 96.14

g. |A2(−B)T |. Answer. 9
2 .15

5. Let A be a 7 × 7 matrix such that | − A| = |A|. Show that |A| = 0.16

6. True or false?17

a. |BA| = |AB|.18

b. | − A| = |A|. Answer. False.19

c. If A3 is invertible, then |A| 6= 0. Answer. True.20

d. |A+ B| = |A|+ |B|. Answer. False.21

e. |(A2)−1| = |(A−1)2| = 1
|A|2 , provided that |A| 6= 0. Answer. True.22
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7. Show that1
∣

∣

∣

∣

∣

∣

1 1 1
x a c

y b d

∣

∣

∣

∣

∣

∣

= 0

is an equation of the straight line through the points (a, b) and (c, d) in the2

xy-plane.3

Hint. The graph of a linear equation is a straight line.4

8. Show that5
∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
x a1 b1 c1
y a2 b2 c2
z a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

∣

= 0

is an equation of the plane passing through the points (a1, a2, a3), (b1, b2, b3)6

and (c1, c2, c3).7

Hint. Expanding in the first column, obtain a linear equation in x, y, z.8

9. Let A =





1 2 0
0 −1 1
1 −2 1



 and B =





1 −2 1
2 −4 2
1 −3 1



. Calculate det
(

A3B
)

.9

Hint. What is detB?10

10. Calculate the n× n determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 . . . 1 1
2 3 2 . . . 2 2

2 2 4 . . . 2 2
...

...
...

. . .
...

...
2 2 2 . . . n 2

2 2 2 . . . 2 n + 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.11

Hint. Apply R2 − 2R1, R3 − 2R1, and so on. Answer. (n− 1)!.12

11. Let A be an n× n matrix, and the matrix B is obtained by writing the13

rows of A in the reverse order. Show that |B| = (−1)
n(n−1)

2 |A|.14

Hint. 1 + 2 + 3 + · · ·+ n− 1 = n(n−1)
2 .15

12. Let A be an n × n skew-symmetric matrix, defined by the relation16

AT = −A.17

a. Show that aij = −aji.18

b. Show that all diagonal entries are zero (aii = 0 for all i).19
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c. Let n be odd. Show that |A| = 0.1

13. Let A be an n × n matrix, with aij = min(i, j).2

a. If n = 4, show that A =









1 1 1 1

1 2 2 2
1 2 3 3
1 2 3 4









, and find its determinant.3

b. Show that |A| = 1 for any n.4

Hint. From the column n subtract the column n− 1, then from the column5

n − 1 subtract the column n − 2, and so on.6

14. Let n be odd. Show that there is no n × n matrix A with real entries,7

such that A2 = −I .8

15. If the rows of A (or the columns of A) are linearly dependent, show that9

|A| = 0.10

Hint. One of the rows is a linear combination of the others. Use elementary11

operations to produce a row of zeros.12

3.3 Cramer’s Rule13

Determinants provide an alternative way for calculation of inverse matrices,14

and for solving linear systems with a square matrix.15

Let16

(3.1) A =











a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann











be an n × n matrix, with |A| 6= 0. Form the adjugate matrix17

AdjA =











C11 C21 . . . Cn1

C12 C22 . . . Cn2
...

...
...

C1n C2n . . . Cnn
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consisting of cofactors of A, in transposed order. Theorem 3.2.1 implies that1

the product of A and AdjA2

AAdjA =











|A| 0 . . . 0

0 |A| . . . 0
...

...
...

0 0 . . . |A|











= |A|I ,

where I is the n × n identity matrix. Indeed the diagonal elements of the3

product matrix are computed by multiplying elements of rows of A by their4

own cofactors and adding (which gives |A|), while the off-diagonal elements5

of the product matrix are computed by multiplying rows of A by cofactors of6

other rows and adding (which gives 0). It follows that A

(

1

|A| AdjA

)

= I ,7

producing a formula for the inverse matrix8

(3.2) A−1 =
1

|A| AdjA =
1

|A|











C11 C21 . . . Cn1

C12 C22 . . . Cn2
...

...
...

C1n C2n . . . Cnn











.

Example 1 A =

[

a b
c d

]

. Then |A| = ad − bc, C11 = d, C12 = −c,9

C21 = −b, C22 = a, giving10

A−1 =
1

ad− bc

[

d −b
−c a

]

,

provided that ad − bc 6= 0. What happens if |A| = ad − bc = 0 ? Then11

A has no inverse, as a consequence of the following theorem, proved in the12

preceding section.13

Theorem 3.3.1 An n× n matrix A is invertible if and only if |A| 6= 0.14

Example 2 Find the inverse of A =





1 1 0

0 0 −1
1 2 0



.15

Calculate |A| = 1, C11 =

∣

∣

∣

∣

0 −1
2 0

∣

∣

∣

∣

= 2, C12 = −
∣

∣

∣

∣

0 −1
1 0

∣

∣

∣

∣

= −1, C13 =16

∣

∣

∣

∣

0 0
1 2

∣

∣

∣

∣

= 0, C21 = −
∣

∣

∣

∣

1 0
2 0

∣

∣

∣

∣

= 0, C22 =

∣

∣

∣

∣

1 0
1 0

∣

∣

∣

∣

= 0, C23 = −
∣

∣

∣

∣

1 1
1 2

∣

∣

∣

∣

=17
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−1, C31 =

∣

∣

∣

∣

1 0

0 −1

∣

∣

∣

∣

= −1, C32 = −
∣

∣

∣

∣

1 0

0 −1

∣

∣

∣

∣

= 1, C33 =

∣

∣

∣

∣

1 1

0 0

∣

∣

∣

∣

= 0.1

Obtain:2

A−1 =





C11 C21 C31

C12 C22 C32

C13 C23 C33



 =





2 0 −1

−1 0 1
0 −1 0



 .

3

We now turn to an n× n system of equations Ax = b, with the matrix4

A =











a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann











, the vector of right hand sides b =











b1
b2
...
bn











,

the vector of unknowns x =











x1

x2
...
xn











, or in components5

a11x1 + a12x2 + · · ·+ a1nxn = b1(3.3)

a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · ·
an1x1 + an2x2 + · · ·+ annxn = bn .

Define the matrix6

A1 =











b1 a12 . . . a1n

b2 a22 . . . a2n
...

...
...

bn an2 . . . ann











,

obtained by replacing the first column of A by the vector of the right hand7

sides. Similarly, define8

A2 =











a11 b1 . . . a1n

a21 b2 . . . a2n
...

...
...

an1 bn . . . ann











, . . . , An =











a11 a12 . . . b1
a21 a22 . . . b2
...

...
...

an1 an2 . . . bn











.

By expanding in the first column, calculate9

(3.4) |A1| = b1C11 + b2C21 + · · ·+ bnCn1 ,
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where Cij are cofactors of the original matrix A. One shows similarly that1

|Ai| = b1C1i + b2C2i + · · ·+ bnCni ,

for all i.2

Theorem 3.3.2 (Cramer’s rule) Assume that |A| 6= 0. Then the unique3

solution of the system (3.3) is given by4

x1 =
|A1|
|A| , x2 =

|A2|
|A| , . . . , xn =

|An|
|A| .

Proof: By the preceding theorem 3.3.1, A−1 exists. Then the unique5

solution of the system (3.3) is x = A−1b. Using the expression of A−1 from6

(3.2)7

x =











x1

x2
...

xn











=
1

|A|











C11 C21 . . . Cn1

C12 C22 . . . Cn2
...

...
...

C1n C2n . . . Cnn





















b1
b2
...

bn











.

Now compare the first components on the left, and on the right. Using (3.4)8

x1 =
1

|A| (b1C11 + b2C21 + · · ·+ bnCn1) =
|A1|
|A| .

One shows similarly that xi =
|Ai|
|A| for all i. ♦9

Cramer’s rule calculates each component of solution separately, without10

having to calculate the other components.11

Example 3 Solve the system12

2x− y = 3

−x+ 5y = 4 .

Solution: x =

∣

∣

∣

∣

3 −1
4 5

∣

∣

∣

∣

∣

∣

∣

∣

2 −1

−1 5

∣

∣

∣

∣

=
19

9
, y =

∣

∣

∣

∣

2 3
−1 4

∣

∣

∣

∣

∣

∣

∣

∣

2 −1

−1 5

∣

∣

∣

∣

=
11

9
.13

Cramer’s rule is very convenient for 2 × 2 systems. For 3 × 3 systems it14

requires a tedious evaluation of four 3×3 determinants (Gaussian elimination15

is preferable).16
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For an n× n homogeneous system1

(3.5) Ax = 0

we shall use the following theorem, which is just a logical consequence of2

Theorem 3.3.1.3

Theorem 3.3.3 The system (3.5) has non-trivial solutions if and only if4

|A| = 0.5

Proof: Assume that non-trivial solutions exist. We claim that |A| = 0.6

Indeed, if |A| 6= 0, then by Theorem 3.3.1 A−1 exists, so that (3.5) has only7

the trivial solution (x = A−10 = 0), a contradiction. Conversely, assume8

that |A| = 0. Then by Theorem 3.3.1, the matrix A is not invertible, hence9

the system (3.5) has free variables, resulting in non-trivial solutions. ♦10

3.3.1 Vector Product11

In Calculus a common notation for the coordinate vectors in R3 is i = e1, j =12

e2 and k = e3. Given two vectors a = a1i+a2j+a3k and b = b1i+b2j+b3k13

the vector product of a and b is defined to be the vector14

(3.1) a× b = (a2b3 − a3b2) i + (a3b1 − a1b3) j + (a1b2 − a2b1)k .

Perhaps it is not easy to memorize this formula, but determinants come to15

the rescue:16

a × b =

∣

∣

∣

∣

∣

∣

i j k

a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

.

Indeed, expanding this determinant in the first row gives the formula (3.1).17

By the properties of determinants it follows that for any vector a18

a× a =

∣

∣

∣

∣

∣

∣

i j k

a1 a2 a3

a1 a2 a3

∣

∣

∣

∣

∣

∣

= 0 ,

where 0 is the zero vector, and similarly19

a × b = −b × a ,

for any vectors a and b. Recall also the notion of the scalar product20

a · b = a1b1 + a2b2 + a3b3 .
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If c = c1i + c2j + c3k, then the triple product is defined as a · (b× c).1

Obtain (using expansion in the first row)2

a·(b× c) = a1 (b2c3 − b3c2)+a2 (b3c1 − b1c3)+a3 (b1c2 − b2c1) =

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3
c1 c2 c3

∣

∣

∣

∣

∣

∣

.

If V denotes the volume of the parallelepiped determined by vectors a,b, c,3

it is known from Calculus that4

V = |a · (b× c) | = |

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3
c1 c2 c3

∣

∣

∣

∣

∣

∣

| .

If vectors a,b, c are linearly dependent, then this determinant is zero. Ge-5

ometrically, linearly dependent vectors lie in the same plane, and hence the6

volume V = 0.7

Since |AT | = |A|, it follows that the absolute value of the determinant8

∣

∣

∣

∣

∣

∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣

∣

∣

∣

∣

∣

also gives the volume of the parallelepiped determined by vectors a,b, c.9

There are a number of useful vector identities involving vector and scalar10

products. For example,11

a× (b × c) = b (a · c) − c (a · b) ,

which is memorized as a “bac minus cab” identity. The proof involves a12

straightforward calculation of both sides in components.13

3.3.2 Block Matrices14

Assume that a 4 × 4 matrix A is partitioned into four submatrices15

A =









a11 a12

a21 a22

a13 a14

a23 a24

a31 a32

a41 a42

a33 a34

a43 a44









=

[

A1 A2

A3 A4

]

,
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with 2×2 matricesA1 =

[

a11 a12

a21 a22

]

, A2 =

[

a13 a14

a23 a24

]

, A3 =

[

a31 a32

a41 a42

]

,1

A4 =

[

a33 a34

a43 a44

]

. Suppose that a 4 × 4 matrix B is partitioned similarly2

B =









b11 b12

b21 b22

b13 b14

b23 b24

b31 b32

b41 b42

b33 b34

b43 b44









=

[

B1 B2

B3 B4

]

,

with 2 × 2 matrices B1, B2, B3, B4. It follows from the definition of matrix3

multiplication that the product AB can be evaluated by regarding A and B4

as 2 × 2 (block) matrices5

(3.2)

AB =

[

A1 A2

A3 A4

][

B1 B2

B3 B4

]

=

[

A1B1 + A2B3 A1B2 + A2B4

A3B1 + A4B3 A3B2 + A4B4

]

,

where A1B1 and the other terms are themselves products of 2× 2 matrices.6

In other words, we treat the 2× 2 blocks as numbers, until the last step.7

Using the expansion of determinants |A| =
∑±a1i1a2i2a3i3a4i4, it is8

possible to show that for the 4 × 4 matrix A, partitioned as above,9

|A| = |A1| |A4| − |A2| |A3| ,

where again we treat blocks as numbers, and |Ai| are 2 × 2 determinants.10

In particular, for 4 × 4 block diagonal matrices A =

[

A1 O

O A4

]

, where11

O is the 2 × 2 zero matrix, one has12

|A| = |A1| |A4| .

The last formula can be also justified by Gaussian elimination. Indeed, the13

row echelon form of A is an upper triangular matrix, and the product of its14

diagonal entries gives |A|. That product splits into |A1| and |A4|.15

If, similarly, B =

[

B1 O

O B4

]

, where B1, B4 and O are 2 × 2 matrices,16

then by (3.2)17

[

A1 O

O A4

] [

B1 O

O B4

]

=

[

A1B1 O

O A4B4

]

.
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It follows that1
[

A1 O

O A4

]−1

=

[

A−1
1 O

O A−1
4

]

,

provided that A−1
1 and A−1

4 exist.2

Similar formulas apply to other types of block matrices, where the blocks3

are not necessarily square matrices. For example, let us partition a 3 × 34

matrix A into four submatrices as follows5

A =





a11 a12

a21 a22

a13

a23

a31 a32 a33



 =

[

A1 A2

A3 A4

]

,

where A1 =

[

a11 a12

a21 a22

]

, A2 =

[

a13

a23

]

of size 2 × 1, A3 =
[

a31 a32

]

6

of size 1 × 2, and a scalar A4 = a33 if size 1 × 1. If a 3 × 3 matrix B is7

partioned similarly B =

[

B1 B2

B3 B4

]

, then it is straightforward to check8

that the product AB can be calculated by treating blocks as numbers:9

AB =





a11 a12

a21 a22

a13

a23

a31 a32 a33









b11 b12

b21 b22

b13

b23

b31 b32 b33





10

=

[

A1 A2

A3 A4

] [

B1 B2

B3 B4

]

=

[

C1 C2

C3 C4

]

,

where C1 = A1B1 + A2B3 is of size 2 × 2, C2 = A1B2 + A2B4 is of size11

2 × 1, C3 = A3B1 + A4B3 is of size 1 × 2, and a scalar C4 = A3B2 +A4B412

(all matrix products are defined). So that the block structure of AB is13

the same as that for A and B. In case A2 = O and A3 = O, the matrix14

A =





a11 a12

a21 a22

0

0

0 0 a33



 =

[

A1 O

O a33

]

is block-diagonal, with the inverse15

A−1 =





a11 a12

a21 a22

0

0

0 0 a33





−1

=

[

A
−1

1 O

O 1
a33

]

,

provided that A
−1

1 exists, and a33 6= 0. For the determinant one has16

|A| =

∣

∣

∣

∣

∣

∣

a11 a12

a21 a22

0
0

0 0 a33

∣

∣

∣

∣

∣

∣

= |A1| a33 = (a11a22 − a12a21) a33 .

17
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Exercises1

1. Use the adjugate matrix to calculate the inverse for the following matrices.2

3

a.

[

1 2
1 1

]

.4

b.

[

1 −2
−2 4

]

. Answer. The matrix is singular.5

c. C =





1 2 0
0 −1 1

1 −2 1



. Answer. C−1 = 1
3





1 −2 2
1 1 −1

1 4 −1



.6

d. D =





0 −1 0

1 0 0
0 0 5



. Answer. D−1 =





0 1 0

−1 0 0
0 0 1

5



.7

e.





1 2 3
4 5 6

7 8 9



. Answer. The matrix is singular.8

f.





1 0 0
0 −5 0
0 0 9



.9

g. G =









1 1 1 0

1 0 0 −1
−1 0 0 0

0 0 1 0









. Answer. G−1 =









0 0 −1 0

1 0 1 −1
0 0 0 1
0 −1 −1 0









.10

h. H =









1 1 1 0

1 1 0 1
1 0 1 1

0 1 1 1









. Answer. H−1 = 1
3









1 1 1 −2

1 1 −2 1
1 −2 1 1

−2 1 1 1









.11

i. R =

[

cos θ − sin θ

sin θ cos θ

]

. Answer. R−1 =

[

cos θ sin θ

− sin θ cos θ

]

.12

2. Use Cramer’s rule to solve the following systems. In case Cramer’s rule13

does not work, apply Gaussian elimination.14

a.15 x1 − x2 = 2

2x1 + x2 = −3 .
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1

b.2 5x1 − x2 = 0

2x1 + x2 = 0 .

3

c.4 4x1 − 2x2 = 5

−2x1 + x2 = −1 .

Answer. The system is inconsistent.5

d.6 2x1 − x2 = 1

−2x1 + x2 = −1 .

Answer. x1 = 1
2 t+

1
2 , x2 = t, t is arbitrary.7

e.8 x1 − x3 = 1

x1 + 3x2 + x3 = 0

x1 + x2 + x3 = 1 .

Answer. x1 = 5
4 , x2 = −1

2 , x3 = 1
4 .9

f.10 x2 − x3 = 1

x1 + 3x2 + x3 = 0

x1 + x2 + x3 = 1 .

Answer. x1 = 3, x2 = −1
2 , x3 = −3

2 .11

g.12 x1 + x2 − x3 = 1

x1 + 3x2 + 2x3 = 2

x1 + x2 − 3x3 = 1 .

Answer. x1 = 1
2 , x2 = 1

2 , x3 = 0.13

h.14 x1 + 3x2 + 2x3 = 2

x1 + x2 − 3x3 = 1

2x2 + 5x3 = −1 .

Answer. The system has no solution.15

3. Let A be an n × n matrix.16
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a. Show that1

|AdjA| = |A|n−1 .

Hint. Recall that AAdjA = |A|I , so that |AAdjA| = |A| |AdjA| =2

det (|A|I) = |A|n.3

b. Show that AdjA is singular if and only if A is singular.4

4. a. Show that a lower triangular matrix is invertible if an only if all of its5

diagonal entries are non-zero.6

b. Show that the inverse of a non-singular lower triangular matrix is also7

lower triangular.8

5. Let A be a nonsingular matrix with integer entries. Show that the inverse9

matrix A−1 contains only integer entries if and only if |A| = ±1.10

Hint. If |A| = ±1, then by (3.2): A−1 = ±AdjA has integer entries. Con-11

versely, suppose that every entry of the inverse matrix A−1 is an integer. It12

follows that |A| and |A−1| are both integers. Since we have13

|A| |A−1| = |AA−1| = |I | = 1 ,

it follows that |A| = ±1.14

6. For an n×n system Ax = b assume that the determinant of A is zero (so15

that Cramer’s rule does not work). Show that either there is no solution, or16

else there are infinitely many solutions.17

7. Justify the following identities, for any vectors in R3.18

a. a · (b× c) = (a× b) · c.19

b. a × (b× c) = b (a · c) − c (a · b).20

c. ||a× b|| = ||a|| ||b|| sinθ, where θ is the angle between a and b.21

d. (a × b) · (c × d) = (a · c) (b · d) − (a · d) (b · c).22

Hint. Write each vector in components. Part d is tedious.23

8. a. Find the inverse and the determinant of the following 5 × 5 block24

diagonal matrix25

A =













1 −3 0 0 0

−1 4 0 0 0
0 0 cos θ − sin θ 0

0 0 sin θ cos θ 0
0 0 0 0 4













.
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Answer A−1 =













4 3 0 0 0

1 1 0 0 0
0 0 cos θ sin θ 0

0 0 − sin θ cos θ 0
0 0 0 0 1

4













, |A| = 4.1

b. Let x =













x1

x2

x3

x4

x5













, y =













x1

x2

0
0

0













, z =













0
0

x3

x4

0













, w =













0
0

0
0

x5













.2

Evaluate Ay, Az, Aw, and compare with Ax.3



Chapter 41

Eigenvectors and Eigenvalues2

4.1 Characteristic Equation3

The vector z =

[

1
−1

]

is very special for the matrix A =

[

3 1
1 3

]

. Calcu-4

late5

Az =

[

3 1

1 3

] [

1

−1

]

=

[

2

−2

]

= 2

[

1

−1

]

= 2z ,

so that Az = 2z, and the vectors z and Az go along the same line. We say6

that z is an eigenvector of A corresponding to an eigenvalue 2.7

In general, we say that a vector x ∈ Rn is an eigenvector of an n × n8

matrix A, corresponding to an eigenvalue λ if9

(1.1) Ax = λx , x 6= 0 .

(Eigenvalue is a number denoted by a Greek letter lambda.) Notice that10

the zero vector is not eligible to be an eigenvector. If A is 2 × 2, then an11

eigenvector must satisfy x =

[

x1

x2

]

6=
[

0
0

]

.12

If c 6= 0 is any scalar, and (1.1) holds, then13

A (c x) = cAx = cλx = λ (c x) ,

which implies that c x is also an eigenvector of the matrix A, corresponding14

to the same eigenvalue λ. In particular, c

[

1
−1

]

gives us infinitely many15

eigenvectors of the 2 × 2 matrix A above, corresponding to the eigenvalue16

λ = 2.17

103
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Let us rewrite (1.1) as Ax = λIx, or Ax−λIx = 0, and then in the form1

(1.2) (A− λI)x = 0 ,

where I is the identity matrix. To find x one needs to solve a homoge-2

neous system of linear equations, with the matrix A−λI . To have non-zero3

solutions x 6= 0, this matrix must be singular, with determinant zero:4

(1.3) |A− λI | = 0 .

Expanding this determinant gives a polynomial equation for λ, called the5

characteristic equation, and its roots are the eigenvalues. (The polynomial6

itself is called the characteristic polynomial.) If the matrix A is 2×2, obtain7

a quadratic equation, which has two roots λ1 and λ2 (possibly equal). In8

case A is 3× 3, one needs to solve a cubic equation, with three roots λ1, λ29

and λ3 (possibly repeated). An n×n matrix has n eigenvalues λ1, λ2, . . . , λn,10

some possibly repeated. To calculate the eigenvectors corresponding to λ1,11

we solve the system12

(A− λ1I)x = 0 ,

and proceed similarly for other eigenvalues.13

Example 1 Consider A =

[

3 1

1 3

]

. Calculate14

A−λI =

[

3 1
1 3

]

−λ
[

1 0
0 1

]

=

[

3 1
1 3

]

−
[

λ 0
0 λ

]

=

[

3 − λ 1
1 3 − λ

]

.

(To calculate A− λI , subtract λ from each of the diagonal entries of A.)15

The characteristic equation16

|A− λI | =

∣

∣

∣

∣

3 − λ 1
1 3 − λ

∣

∣

∣

∣

= (3 − λ)2 − 1 = 0

has the roots λ1 = 2 and λ2 = 4, the eigenvalues of A (writing 3 − λ = ±117

gives the eigenvalues quickly).18

(i) To find the eigenvectors corresponding to λ1 = 2, we need to solve the19

system (A− 2I)x = 0 for x =

[

x1

x2

]

, which is20

x1 + x2 = 0

x1 + x2 = 0 .
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(The matrix A − 2I =

[

1 1

1 1

]

is obtained from A − λI by setting λ = 2.)1

Discard the second equation, set the free variable x2 = c, an arbitrary2

number, and solve for x1 = −c. Obtain: x =

[

−c
c

]

= c

[

−1

1

]

are the3

eigenvectors corresponding to λ1 = 2.4

(ii) To find the eigenvectors corresponding to λ2 = 4, one solves the system5

(A− 4I)x = 0, or6

−x1 + x2 = 0

x1 − x2 = 0 ,

because A−4I =

[

−1 1

1 −1

]

. Discard the second equation, set x2 = c, and7

solve for x1 = c. Conclusion: x = c

[

1

1

]

are the eigenvectors corresponding8

to λ2 = 4.9

Example 2 Let A =





2 1 1
0 2 0

1 5 2



.10

The characteristic equation is11

|A− λI | =

∣

∣

∣

∣

∣

∣

2 − λ 1 1

0 2 − λ 0
1 5 2− λ

∣

∣

∣

∣

∣

∣

= 0 .

(Subtract λ from the diagonal entries of A to obtain A− λI .) Expand the12

determinant in the second row, then simplify13

(2 − λ)
[

((2− λ)2 − 1
]

= 0 ,

14

(2 − λ)
(

λ2 − 4λ+ 3
)

= 0 .

Setting the first factor to zero gives the first eigenvalue λ1 = 2. Setting the15

second factor to zero, λ2 − 4λ+ 3 = 0, gives λ2 = 1 and λ3 = 3.16

Next, for each eigenvalue we calculate the corresponding eigenvectors.17

(i) λ1 = 2. The corresponding eigenvectors are solutions of (A− 2I)x = 0.18

Calculate A − 2I =





0 1 1

0 0 0
1 5 0



. (In future calculations this step will be19
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performed mentally.) Restore the system (A − 2I)x = 0, and discard the1

second equation consisting of all zeroes:2

x2 + x3 = 0

x1 + 5x2 = 0 .

We expect to get infinitely many eigenvectors. So let us calculate one of3

them, and multiply the resulting vector by c. To this end, set x3 = 1.4

Then x2 = −1, and x1 = 5. Obtain: c





5

−1
1



. (Alternatively, set the free5

variable x3 = c, an arbitrary number. Then x2 = −c and x1 = 5c, giving6

again c





5

−1
1



.)7

(ii) λ2 = 1. The corresponding eigenvectors are non-trivial solutions of8

(A− I)x = 0. Restore this system:9

x1 + x2 + x3 = 0

x2 = 0

x1 + 5x2 + x3 = 0 .

From the second equation x2 = 0, and then both the first and the third10

equations simplify to x1 + x3 = 0. Set x3 = 1, then x1 = −1. Obtain:11

c





−1

0
1



. (Alternatively, set the free variable x3 = c, an arbitrary number.12

Then x2 = 0 and x1 = −c, giving again c





−1
0

1



.)13

(iii) λ3 = 3. The corresponding eigenvectors are non-trivial solutions of14

(A− 3I)x = 0. Restore this system:15

−x1 + x2 + x3 = 0

−x2 = 0

x1 + 5x2 − x3 = 0 .
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From the second equation x2 = 0, and then both the first equation and the1

third equations simplify to x1 − x3 = 0. Set x3 = c, then x1 = c. Obtain:2

c





1
0
1



. One can present an eigenvector corresponding to λ3 = 3 as





1
0
1



,3

with implied arbitrary multiple of c.4

4.1.1 Properties of Eigenvectors and Eigenvalues5

A square matrix is called triangular if it is either upper triangular, lower6

triangular, or diagonal.7

Property 1 The diagonal entries of a triangular matrix are its eigenvalues.8

9

For example, for A =





2 0 0

−1 3 0
3 0 4



 the characteristic equation is10

|A− λI | =

∣

∣

∣

∣

∣

∣

2 − λ 0 0

−1 3 − λ 0
3 0 4− λ

∣

∣

∣

∣

∣

∣

= 0 ,

giving11

(2 − λ) (3 − λ) (4 − λ) = 0 .

The eigenvalues are λ1 = 2, λ2 = 3 and λ3 = 4. In general, the determinant12

of any triangular matrix equals to the product of its diagonal entries, and13

the same reasoning applies.14

For an n × n matrix A define its trace to be the sum of all diagonal15

elements16

trA = a11 + a22 + · · ·+ ann .

Property 2 Let λ1, λ2, . . . , λn be the eigenvalues of any n× n matrix A,17

possibly repeated. Then18

λ1 + λ2 + · · ·+ λn = trA

λ1 · λ2 · · ·λn = |A| .

These formulas are clearly true for triangular matrices. For example, if19

A =





2 0 0

−1 3 0
5 −4 3



 ,
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then λ1 = 2, λ2 = 3, λ3 = 3, so that λ1 + λ2 + λ3 = trA = 8, and1

λ1 · λ2 · λ3 = |A| = 18.2

Let us justify Property 2 for any 2 × 2 matrix A =

[

a11 a12

a21 a22

]

. The3

characteristic equation4

∣

∣

∣

∣

a11 − λ a12

a21 a22 − λ

∣

∣

∣

∣

= (a11 − λ) (a22 − λ) − a12a21 = 0

can be expanded to5

λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0 ,

or6

(1.4) λ2 − (trA) λ+ |A| = 0 .

The eigenvalues λ1 and λ2 are the roots of this equation, so that we can7

factor (1.4) as8

(λ− λ1) (λ− λ2) = 0 .

Expanding9

(1.5) λ2 − (λ1 + λ2) λ+ λ1λ2 = 0 .

Comparing (1.4) with (1.5), which are two versions of the same equation,10

we conclude that λ1 + λ2 = trA, and λ1λ2 = |A|, as claimed.11

For example, if12

A =

[

−4 6
−1 3

]

,

then λ1 +λ2 = −1, λ1λ2 = −6. We can now obtain the eigenvalues λ1 = −313

and λ2 = 2 without evaluating the characteristic polynomial.14

Property 3 A square matrix A is invertible if and only if all of its eigen-15

values are different from zero.16

Proof: Matrix A is invertible if and only if |A| 6= 0. But, |A| = λ1 ·17

λ2 · · ·λn 6= 0 requires all eigenvalues to be different from zero. ♦18

It follows that a matrix with the zero eigenvalue λ = 0 is singular.19

Property 4 Let λ be an eigenvalue of an invertible matrix A. Then
1

λ
is20

an eigenvalue of A−1, corresponding to the same eigenvector.21
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Proof: By Property 3, λ 6= 0. Multiplying Ax = λx by A−1 from the left1

gives x = λA−1x, or A−1x =
1

λ
x. ♦2

For example, if A has eigenvalues −2, 1, 4, then A−1 has eigenvalues3

−1
2 , 1,

1
4 .4

We say that two matrices A and B are similar if there is an invertible5

matrix P , such that B = P−1AP (one can then express A = PBP−1).6

Property 5 Two similar matrices A and B share the same characteristic7

polynomial, and therefore they have the same set of eigenvalues.8

Proof: The characteristic polynomial of B9

|B − λI | = |P−1AP − λI | = |P−1AP − λP−1IP |
= |P−1 (A − λI)P | = |P−1||A− λI ||P | = |A− λI |

is the same as the characteristic polynomial of A, by using properties of10

determinants (on the last step we used that |P−1| = 1
|P |). ♦11

Property 6 Let λ be an eigenvalue of A. Then λ2 is an eigenvalue of A2,12

corresponding to the same eigenvector.13

Indeed, multiplying the relation Ax = λx by matrix A from the left gives14

A2x = A (Ax) = A (λx) = λAx = λ λx = λ2x .

One shows similarly that λk is an eigenvalue of Ak, for any positive integer k.15

For example, if A has eigenvalues −2, 1, 4, then A3 has eigenvalues −8, 1, 64.16

17

Exercises18

1. Verify that the vector





1

0
1



 is an eigenvector of the matrix





2 −4 1

0 2 0
1 −3 2





19

corresponding to the eigenvalue λ = 3.20

2. Determine the eigenvalues of the following matrices. Verify that the sum21

of the eigenvalues is equal to the trace, while the product of the eigenvalues22

is equal to the determinant.23

a. A =

[

1 2
0 −1

]

.24
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Answer. λ1 = 1, λ2 = −1, trA = λ1 + λ2 = 0, |A| = λ1λ2 = −1.1

b.

[

3 0
0 −4

]

.2

c.

[

3 0
−4 5

]

.3

d.





3 1 −2
0 0 4

0 0 −7



.4

Answer. λ1 = 3, λ2 = 0, λ3 = −7, trA = λ1 + λ2 + λ3 = −4, |A| = 0.5

e. A =

[

3 2

4 1

]

. Answer. λ1 = −1, λ2 = 5.6

f. A =





−2 0 0

4 2 1
3 1 2



. Answer. λ1 = −2, λ2 = 1, λ3 = 3.7

g. A =





−2 −1 4
3 2 −5

0 0 1



. Answer. λ1 = −1, λ2 = 1, λ3 = 1.8

h. A =





−1 1 0

1 −2 1
0 1 −1



. Answer. λ1 = −3, λ2 = −1, λ3 = 0.9

i. A =

[

0 −1
1 0

]

.10

Answer. λ1 = −i, λ2 = i, trA = λ1 + λ2 = 0, detA = λ1λ2 = 1.11

3. Calculate the eigenvalues and the corresponding eigenvectors for the12

following matrices.13

a.

[

2 1

5 −2

]

. Answer. λ1 = −3 with

[

−1

5

]

, λ2 = 3 with

[

1

1

]

.14

b.

[

3 0
0 −5

]

. Answer. λ1 = 3 with

[

1
0

]

, λ2 = −5 with

[

0
1

]

.15

c.

[

4 6
−1 −1

]

. Answer. λ1 = 1 with

[

−2
1

]

, λ2 = 2 with

[

−3
1

]

.16

d.

[

0 4
1 0

]

. Answer. λ1 = −2 with

[

−2
1

]

, λ2 = 2 with

[

2
1

]

.17
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e.









2 0 0 0
0 −3 0 0

0 0 0 0
0 0 0 5









.1

f. Any n× n diagonal matrix.2

g.





2 1 1
−1 −2 1

3 3 0



. Hint. Factor the characteristic equation.3

Answer. λ1 = −3 with





0
−1

1



, λ2 = 0 with





−1
1

1



, λ3 = 3 with





1
0

1



.4

h.





2 −4 1
0 2 0
1 −3 2



. Hint. Expand in the second row.5

Answer. λ1 = 1 with





−1

0
1



, λ2 = 2 with





3

1
4



, λ3 = 3 with





1

0
1



.6

i.





1 2 1

2 −2 1
0 0 5



.7

Answer. λ1 = −3 with





−1
2

0



, λ2 = 2 with





2
1

0



, λ3 = 5 with





3
2

8



.8

4. Let A be a 2 × 2 matrix, with trace 6, and one of the eigenvalues equal9

to −1. What is the determinant |A|? Answer. |A| = −7.10

5. a. Write down two different 2 × 2 matrices with trace equal to 5 and11

determinant equal to 4.12

b. What are the eigenvalues of any such matrix? Answer. 1 and 4.13

6. Let A be a 3 × 3 matrix with the eigenvalues −2, 1, 1
4 .14

a. Find |A3|. Answer. −1
8 .15

b. Find |A−1|. Answer. −2.16
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7. Let A be an invertible matrix. Show that zero cannot be an eigenvalue1

of A−1.2

8. Assume that the matrix A has an eigenvalue zero. Show that the matrix3

AB is not invertible, for any matrix B.4

9. Let λ be an eigenvalue of A, corresponding to an eigenvector x, and k5

is any number. Show that kλ is an eigenvalue of kA, corresponding to the6

same eigenvector x.7

10. a. Show that the matrix AT has the same eigenvalues as A.8

Hint. |AT − λI | = | (A− λI)T | = |A− λI |.9

b. Show that the eigenvectors of A and AT are in general different.10

Hint. Consider say A =

[

1 1

0 2

]

.11

11. Let λ be an eigenvalue of A, corresponding to an eigenvector x.12

a. Show that λ2 + 5 is an eigenvalue of A2 + 5I , corresponding to the same13

eigenvector x.14

b. Show that 3λ2 + 5 is an eigenvalue of 3A2 + 5I , corresponding to the15

same eigenvector x.16

c. Consider a quadratic polynomial p(x) = 3x2−7x+5. Define a polynomial17

of matrix A as p(A) = 3A2 − 7A + 5I . Show that p(λ) is an eigenvalue of18

p(A), corresponding to the same eigenvector x.19

12. Let A and B be any two n×n matrices, and c1, c2 two arbitrary numbers.20

21

a. Show that tr (A+ B) = trA+ trB, and more generally tr (c1A+ c2B) =22

c1 trA+ c2 trB.23

b. Show that tr (AB) = tr (BA).24

Hint. tr (AB) =

n
∑

i,j=1

aijbji =

n
∑

i,j=1

bjiaij = tr (BA).25

c. Show that it is impossible to find two n× n matrices A and B, so that26

AB − BA = I .

d.∗ Show that it is impossible to find two n × n matrices A and B, with A27

invertible, so that28

AB − BA = A .
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Hint. Multiply both sides by A−1, to obtain A
(

A−1B
)

−
(

A−1B
)

A = I .1

13. Show that similar matrices have the same trace.2

14. Suppose that two n× n matrices A and B have a common eigenvector3

x. Show that det (AB −BA) = 0.4

Hint. Show that x is an eigenvector of AB − BA, and determine the corre-5

sponding eigenvalue.6

15. Assume that all columns of a square matrix A add up to the same7

number b. Show that λ = b is an eigenvalue of A.8

Hint. All columns of A− bI add up to zero, and then |A− bI | = 0.9

4.2 A Complete Set of Eigenvectors10

Throughout this section A will denote an arbitrary n × n matrix. Eigen-11

vectors of A are vectors in Rn. Recall that the maximal number of linearly12

independent vectors in Rn is n, and any n linearly independent vectors in13

Rn form a basis of Rn. We say that an n × n matrix A has a complete set14

of eigenvectors if A has n linearly independent eigenvectors. For a 2 × 215

matrix one needs two linearly independent eigenvectors for a complete set,16

for a 3 × 3 matrix it takes three, and so on. A complete set of eigenvectors17

forms a basis of Rn. Such eigenvector bases will play a prominent role in18

the next section. The following theorem provides a condition for A to have19

a complete set of eigenvectors.20

Theorem 4.2.1 Eigenvectors of A corresponding to distinct eigenvalues21

form a linearly independent set.22

Proof: We begin with the case of two eigenvectors u1 and u2 of A,23

corresponding to the eigenvalues λ1 and λ2 respectively, so that Au1 = λ1u1,24

Au2 = λ2u2, and λ2 6= λ1. We need to show that u1 and u2 are linearly25

independent. Assume that the opposite is true. Then u2 = αu1 for some26

number α 6= 0 (if α = 0, then u2 = 0, while eigenvectors are non-zero27

vectors). Evaluate28

Au2 = A (αu1) = αλ1u1 = λ1u2 6= λ2u2 ,

contradicting the definition of u2. Therefore u1 and u2 are linearly indepen-29

dent.30
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Next, consider the case of three eigenvectors u1, u2, u3 of A, correspond-1

ing to the eigenvalues λ1, λ2, λ3 respectively, so that Au1 = λ1u1, Au2 =2

λ2u2, Au3 = λ3u3 and λ1, λ2, λ3 are three different (distinct) numbers. We3

just proved that u1 and u2 are linearly independent. To prove that u1, u2, u34

are linearly independent, assume that the opposite is true. Then one of these5

vectors, say u3, is a linear combination of the other two, so that6

(2.1) u3 = αu1 + βu2 ,

with some numbers α and β. Observe that α and β cannot be both zero,7

because otherwise u3 = 0, contradicting the fact that u3 is an eigenvector.8

Multiply both sides of (2.1) by A to get:9

Au3 = αAu1 + βAu2 ,
10

(2.2) λ3u3 = αλ1u1 + βλ2u2 .

From the equation (2.2) subtract the equation (2.1) multiplied by λ3. Obtain11

α (λ1 − λ3) u1 + β (λ2 − λ3) u2 = 0 .

The coefficients α (λ1 − λ3) and β (λ2 − λ3) cannot be both zero, which im-12

plies that u1 and u2 are linearly dependent, a contradiction, proving linear13

independence of u1, u2, u3. By a similar argument we show that any set of14

four eigenvectors corresponding to distinct eigenvalues is linearly indepen-15

dent, and so on. ♦16

17

If an n × n matrix A has n distinct eigenvalues λ1, λ2, . . . , λn, then the18

corresponding eigenvectors u1, u2, . . . , un are linearly independent accord-19

ing to this theorem, and form a complete set. If some of the eigenvalues20

λ1, λ2, . . . , λn are repeated, then A has fewer than n distinct eigenvalues.21

The next example shows that some matrices with repeated eigenvalues still22

have a complete set of eigenvectors.23

Example 2 A =





2 1 1
1 2 1
1 1 2



. Expanding the characteristic equation24

|A− λI | =

∣

∣

∣

∣

∣

∣

2− λ 1 1

1 2 − λ 1
1 1 2 − λ

∣

∣

∣

∣

∣

∣

= 0 ,
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in say the first row, produces a cubic equation1

λ3 − 6λ2 + 9λ− 4 = 0 .

To solve it we need to guess a root. λ1 = 1 is a root, which implies that the2

cubic polynomial has a factor λ− 1. The second factor is found by division3

of the polynomials, giving4

(λ− 1)
(

λ2 − 5λ+ 4
)

= 0 .

Setting the second factor to zero, λ2 − 5λ+ 4 = 0, gives the other two roots5

λ2 = 1 and λ3 = 4. The eigenvalues are 1, 1, 4. The eigenvalue λ1 = 1 is6

repeated, while the eigenvalue λ3 = 4 is simple.7

To find the eigenvectors of the double eigenvalue λ1 = 1, one needs to8

solve the system (A − I)x = 0, which is9

x1 + x2 + x3 = 0
10

x1 + x2 + x3 = 0
11

x1 + x2 + x3 = 0 .

Discarding both the second and the third equations leaves12

x1 + x2 + x3 = 0 .

Here x2 and x3 are free variables. Letting x3 = t and x2 = s, two arbitrary13

numbers, calculate x1 = −t− s. The solution set is then14





−t− s
s

t



 = t





−1
0

1



+ s





−1
1

0



 = tu1 + su2 ,

where u1 =





−1
0

1



, and u2 =





−1
1

0



. Conclusion: the linear combina-15

tions with arbitrary coefficients, or the span, of two linearly independent16

eigenvectors u1 and u2 gives the space of all eigenvectors corresponding to17

λ1 = 1, also known as the eigenspace of λ1 = 1.18

The eigenvectors corresponding to the eigenvalue λ3 = 4 are solutions of19

the system (A− 4I)x = 0, which is20

−2x1 + x2 + x3 = 0
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1

x1 − 2x2 + x3 = 0
2

x1 + x2 − 2x3 = 0 .

Discard the third equation as superfluous, because adding the first two equa-3

tions gives negative of the third. In the remaining equations4

−2x1 + x2 + x3 = 0

5

x1 − 2x2 + x3 = 0

set x3 = 1, then solve the resulting system6

−2x1 + x2 = −1

x1 − 2x2 = −1 ,

obtaining x1 = 1 and x2 = 1. Conclusion: c





1
1

1



 are the eigenvectors7

corresponding to λ3 = 4, with c arbitrary. The answer can also be written8

as cu3, where u3 =





1
1

1



 is an eigenvector corresponding to λ3 = 4.9

Observe that u3 is not in the span of u1 and u2 (because vectors in10

that span are eigenvectors corresponding to λ1). By Theorem 1.5.1 the11

vectors u1, u2, u3 are linearly independent, so that they form a complete set12

of eigenvectors.13

Example 3 Let A =

[

3 −2

0 3

]

. Here λ1 = λ2 = 3 is a repeated eigen-14

value. The system (A− 3I)x = 0 reduces to15

−2x2 = 0 .

So that x2 = 0, while x1 is arbitrary. There is only one linearly independent16

eigenvector

[

x1

0

]

= x1

[

1

0

]

. This matrix does not have a complete set of17

eigenvectors.18
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4.2.1 Complex Eigenvalues1

For the matrix A =

[

0 −1

1 0

]

the characteristic equation is2

|A− λI | =

∣

∣

∣

∣

−λ −1
1 −λ

∣

∣

∣

∣

= λ2 + 1 = 0 .

Its roots are λ1 = i, and λ2 = −i. The corresponding eigenvectors will also3

have complex valued entries, although the procedure for finding eigenvectors4

remains the same.5

(i) λ1 = i. The corresponding eigenvectors satisfy the system (A− iI)x = 0,6

or in components7

−ix1 − x2 = 0

x1 − ix2 = 0 .

Discard the second equation, because it can be obtained multiplying the8

first equation by i. In the first equation9

−ix1 − x2 = 0

set x2 = c, then x1 = −c
i

= c i. Obtain the eigenvectors c

[

i
1

]

, where c is10

any complex number.11

(ii) λ2 = −i. The corresponding eigenvectors satisfy the system (A+ iI)x =12

0, or in components13

ix1 − x2 = 0

x1 + ix2 = 0 .

Discard the second equation, because it can be obtained multiplying the14

first equation by −i. In the first equation15

ix1 − x2 = 0

set x2 = c, then x1 =
c

i
= −c i. Obtain the eigenvectors c

[

−i
1

]

, where c16

is any complex number.17
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Recall that given a complex number z = x+ iy, with real x and y, one1

defines the complex conjugate as z̄ = x − iy. If z = x, a real number, then2

z̄ = x = z. One has zz̄ = x2 + y2 = |z|2, where |z| =
√

x2 + y2 is called the3

modulus of z. Given complex numbers z1, z2, . . . , zn, one has4

z1 + z2 + · · ·+ zn = z1 + z2 + · · ·+ zn ,
5

z1 · z2 · · ·zn = z1 · z2 · · ·zn .

Given a vector z =











z1
z2
...

zn











, with complex entries, one defines its complex6

conjugate as z̄ =











z̄1
z̄2
...
z̄n











. The eigenvalues of the matrix A above were7

complex conjugates of one another, as well as the corresponding eigenvectors.8

The same is true in general, as the following theorem shows.9

Theorem 4.2.2 Let A be a square matrix with real entries. Let λ be a10

complex (not real) eigenvalue, and z a corresponding complex eigenvector.11

Then λ̄ is also an eigenvalue, and z̄ a corresponding eigenvector.12

Proof: We are given that13

Az = λz .

Take complex conjugates of both sides (elements of A are real numbers)14

Az̄ = λ̄z̄ ,

which implies that λ̄ is an eigenvalue, and z̄ a corresponding eigenvector.15

(The i-th component of Az is
∑n

k=1 aikzk, and
∑n

k=1 aikzk =
∑n

k=1 aikzk.)16

Exercises17

1. Find the eigenvectors of the following matrices, and determine if they18

form a complete set.19

a.

[

1 2
0 −1

]

.20



4.2. A COMPLETE SET OF EIGENVECTORS 119

Answer.

[

−1

1

]

with λ1 = −1 and

[

1

0

]

with λ1 = 1, a complete set.1

b.

[

1 2

0 1

]

.2

Answer.

[

1

0

]

corresponding to λ1 = λ2 = 1, not a complete set.3

c.

[

1 0

0 1

]

.4

Answer.

[

1
0

]

and

[

0
1

]

corresponding to λ1 = λ2 = 1, a complete set.5

d.





1 3 6
−3 −5 −6

3 3 4



.6

Hint. Observe that λ1 = −2 is a root of the characteristic equation7

λ3 − 12λ− 16 = 0 ,

then obtain the other two roots λ2 = −2 and λ1 = 4 by factoring.8

Answer.





−2

0
1



 and





−1

1
0



 corresponding to λ1 = λ2 = −2, and





1

−1
1





9

corresponding to λ3 = 4, a complete set.10

e.





0 1 1

0 0 1
0 0 1



.11

Answer.





1
0
0



 corresponding to λ1 = λ2 = 0, and





2
1
1



 corresponding to12

λ3 = 1, not a complete set.13

f.





−1 1 1

1 −1 1
1 0 0



.14

Answer.





−2
1

1



 corresponding to λ1 = −2,





−1
−1

1



 corresponding to15

λ2 = −1,





1

1
1



 corresponding to λ3 = 1, a complete set.16



120 CHAPTER 4. EIGENVECTORS AND EIGENVALUES

g.





0 1 2
−5 −3 −7

1 0 0



.1

Answer.





−1
−1

1



 corresponding to λ1 = λ2 = λ3 = −1, not a complete set.2

3

2. Find the eigenvalues and the corresponding eigenvectors.4

a.

[

1 1

−1 1

]

.5

Answer. λ1 = 1− i with

[

i
1

]

, and λ2 = 1 + i with

[

−i
1

]

.6

b.





3 3 2
1 1 −2

−3 −1 0



.7

Answer. λ1 = −2i with





i
−i
1



, λ2 = 2i with





−i
i

1



, λ3 = 4 with





−1
−1

1



.8

9

c.





1 2 −1
−2 −1 1

−1 1 0



.10

Answer. λ1 = −i with





1 + i

1− i
2



, λ2 = i with





1 − i

1 + i
2



, λ3 = 0 with11





1
1

3



.12

d.

[

cos θ − sin θ
sin θ cos θ

]

, θ is a real number.13

Hint. λ1 = cos θ − i sinθ, λ2 = cos θ + i sin θ.14

3. Let A be an n × n matrix, and n is odd. Show that A has at least one15

real eigenvalue.16

Hint. The characteristic equation is a polynomial equation of odd degree.17
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4. Find the complex conjugate z̄ and the modulus |z| for the following1

numbers.2

a. 3 − 4i. b. 5i. c. −7. d. cos π
5 + i sin π

5 . e. ei θ, θ is real.3

5. Let A be a 2 × 2 matrix with trA = 2 and det(A) = 2. What are the4

eigenvalues of A?5

6. A matrix A2 has eigenvalues −1 and −4. What is the smallest possible6

size of the matrix A? Answer. 4 × 4.7

4.3 Diagonalization8

An n× n matrix A9

A =











a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann











= [C1 C2 . . .Cn]

can be written through its column vectors, where10

C1 =











a11

a21
...
an1











, C2 =











a12

a22
...
an2











, . . . , Cn =











a1n

a2n
...
ann











.

Recall that given a vector x =











x1

x2
...
xn











, the product Ax was defined as the11

vector12

(3.1) Ax = x1C1 + x2C2 + · · ·+ xnCn .

If B = [K1K2 . . .Kn] is another n × n matrix, with the column vectors13

K1, K2, . . . , Kn, then the product AB was defined as follows14

AB = A[K1K2 . . .Kn] = [AK1AK2 . . .AKn] ,

where the products AK1, AK2, . . . , AKn are calculated using (3.1).15
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Let D be a diagonal matrix1

(3.2) D =











λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

0 0 . . . λn











.

Calculate the product2

AD =











A











λ1

0
...
0











A











0
λ2
...
0











. . . A











0
0
...
λn





















= [λ1C1 λ2C2 . . . λnCn] .

Conclusion: multiplying a matrix A from the right by a diagonal matrix D,3

results in the columns of A being multiplied by the corresponding entries4

of D. In particular, to multiply two diagonal matrices (in either order)5

one multiplies the corresponding diagonal entries. For example, let D1 =6




a 0 0
0 b 0

0 0 c



 and D2 =





2 0 0
0 3 0

0 0 4



, then7

D1D2 = D2D1 =





2a 0 0

0 3b 0
0 0 4c



 .

Another example:8





a11 a12 a13

a21 a22 a23

a31 a32 a33









2 0 0

0 3 0
0 0 4



 =





2a11 3a12 4a13

2a21 3a22 4a23

2a31 3a32 4a33



 .

Suppose now that the n × n matrix A has a complete set of n lin-9

early independent eigenvectors u1, u2, . . . , un, so that Au1 = λ1u1, Au2 =10

λ2u2, . . . , Aun = λnun (the eigenvalues λ1, λ2, . . . , λn are not necessarily11

different). Form a matrix P = [u1 u2 . . . un], using the eigenvectors as12

columns. Observe that P has an inverse matrix P−1, because the columns13

of P are linearly independent. Calculate14

(3.3) AP = [Au1Au2 . . . Aun] = [λ1u1 λ2 u2 . . . λnun] = P D ,
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where D is a diagonal matrix, shown in (3.2), with the eigenvalues of A on1

the diagonal. Multiplying both sides of (3.3) from the left by P−1, obtain2

(3.4) P−1 AP = D .

Similarly, multiplying (3.3) by P−1 from the right:3

(3.5) A = P DP−1 .

One refers to the formulas (3.4) and (3.5) as giving the diagonalization of4

matrix A, and matrix A is called diagonalizable. Diagonalizable matrices are5

similar to diagonal ones. The matrix P is called the diagonalizing matrix.6

There are infinitely many choices of the diagonalizing matrix P , because7

eigenvectors (the columns of P ) may be multiplied by arbitrary numbers. If8

A has some complex (not real) eigenvalues, the formulas (3.4) and (3.5) still9

hold, although some of the entries of P and D are complex.10

Example 1 The matrix A =

[

1 4
1 −2

]

has eigenvalues λ1 = −3 with11

a corresponding eigenvector u1 =

[

−1

1

]

, and λ2 = 2 with a correspond-12

ing eigenvector u2 =

[

4

1

]

. Here P =

[

−1 4

1 1

]

, and D =

[

−3 0

0 2

]

.13

Calculate P−1 =
1

5

[

−1 4

1 1

]

. The formula (3.4) becomes14

1

5

[

−1 4
1 1

] [

1 4
1 −2

][

−1 4
1 1

]

=

[

−3 0
0 2

]

.

Not every matrix can be diagonalized. It follows from (3.3) that the15

columns of diagonalizing matrix P are eigenvectors of A (since Aui = λiui),16

and these eigenvectors must be linearly independent in order for P−1 to17

exist. We conclude that a matrix A is diagonalizible if and only if it has a18

complete set of eigenvectors.19

Example 2 The matrix B =

[

2 1
−1 0

]

has a repeated eigenvalue λ1 =20

λ2 = 1, but only one linearly independent eigenvector u =

[

−1
1

]

. The21

matrix B is not diagonalizable.22

Example 3 Recall the matrix23

A =





2 1 1

1 2 1
1 1 2
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from the preceding section. It has a repeated eigenvalue λ1 = λ2 = 1,1

together with λ3 = 4, and a complete set of eigenvectors u1 =





−1

0
1



, and2

u2 =





−1
1

0



 corresponding to λ1 = λ2 = 1, and u3 =





1
1

1



 corresponding3

to λ3 = 4. This matrix is diagonalizable, with4

P =





−1 −1 1
0 1 1

1 0 1



 , P−1 =
1

3





−1 −1 2
−1 2 −1

1 1 1



 , D =





1 0 0
0 1 0

0 0 4



 .

5

Recall that any n linearly independent vectors form a basis of Rn. If6

a matrix A has a complete set of eigenvectors, we can use the eigenvector7

basis B = {u1, u2, . . . , un}. Any vector x ∈ Rn can be decomposed as8

x = x1u1 + x2u2 + · · ·+ xnun, by using its coordinates [x]B =











x1

x2
...
xn











with9

respect to this basis B. Calculate10

Ax = x1Au1 + x2Au2 + · · ·+ xnAun = x1λ1u1 + x2λ2u2 + · · ·+ xnλnun .

It follows that [Ax]B =











λ1x1

λ2x2
...

λnxn











, and then11

[Ax]B = D[x]B .

Conclusion: if one uses the eigenvector basis B in Rn, then the function Ax12

(or the transformation Ax) is represented by a diagonal matrix D, consisting13

of eigenvalues of A.14

We discuss some applications of diagonalization next. For any two diag-15

onal matrices of the same size16

D1D2 = D2D1 ,
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since both products are calculated by multiplying the diagonal entries. For1

general n× n matrices A and B, the relation2

(3.6) AB = BA

is rare. The following theorem explains why. If AB = BA, one says that3

the matrices A and B commute. Any two diagonal matrices commute.4

Theorem 4.3.1 Two diagonalizable matrices commute if and only if they5

share the same set of eigenvectors.6

Proof: If two diagonalizable matrices A and B share the same set of7

eigenvectors, they share the same diagonalizing matrix P , so that A =8

PD1P
−1 and B = PD2P

−1, with two diagonal matrices D1 and D2. It9

follows that10

AB = PD1P
−1PD2P

−1 = PD1

(

P−1P
)

D2P
−1 = PD1D2P

−1

= PD2D1P
−1 = PD2P

−1PD1P
−1 = BA .

The proof of the converse statement is not included. ♦11

If A is diagonalizable, then12

A = PDP−1 ,

where D is a diagonal matrix with the eigenvalues of A on the diagonal.13

Calculate14

A2 = AA = PDP−1 PDP−1 = PDDP−1 = PD2P−1 ,

and similarly for other powers15

Ak = PDkP−1 = P











λk
1 0 . . . 0

0 λk
2 . . . 0

...
...

...
0 0 . . . λk

n











P−1 .

Define the limit limk→∞Ak by taking the limits of each component of Ak.16

If the eigenvalues of A have modulus |λi| < 1 for all i, then limk→∞Ak = O,17

the zero matrix. Indeed, Dk tends to the zero matrix, while P and P−1 are18

fixed.19

Example 4 Let A =

[

1 8
0 −1

]

. Calculate A57.20
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The eigenvalues of this upper triangular matrix A are λ1 = 1 and λ2 = −1.1

Since λ1 6= λ2, the corresponding eigenvectors are linearly independent, and2

A is diagonalizable, so that3

A = P

[

1 0

0 −1

]

P−1 ,

with the appropriate diagonalizing matrix P , and the corresponding P−1.4

Then5

A57 = P

[

157 0

0 (−1)57

]

P−1 = P

[

1 0

0 −1

]

P−1 = A =

[

1 8

0 −1

]

.

Similarly, Ak = A if k is an odd integer, while Ak = I if k is an even integer.6

7

Exercises8

1. If the matrix A is diagonalizable, determine the diagonalizing matrix P9

and the diagonal matrix D, and verify that AP = PD.10

a. A =

[

4 −2
1 1

]

. Answer. P =

[

2 1
1 1

]

, D =

[

3 0
0 2

]

.11

b. A =

[

2 −1

0 2

]

. Answer. Not diagonalizable.12

c. A =

[

2 0
0 −7

]

. Answer. The matrix is already diagonal, P = I .13

d. A =





2 −1 1

0 2 1
0 0 2



. Answer. Not diagonalizable.14

e. A =





1 3 6

−3 −5 −6
3 3 4



. Hint. The eigenvalues and the eigenvectors15

of this matrix were calculated in the preceding set of exercises.16

Answer. P =





−2 −1 1
0 1 −1

1 0 1



, D =





−2 0 0
0 −2 0

0 0 4



.17
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f. A =





1 1 1

1 1 1
1 0 2



.1

Answer. P =





−2 −1 1

1 −1 1
1 1 1



, D =





0 0 0

0 1 0
0 0 3



.2

g. A =





1 1 1

1 1 1
1 1 1



.3

Answer. P =





−1 −1 1
0 1 1

1 0 1



, D =





0 0 0
0 0 0

0 0 3



.4

h. A =









1 2 3 4
0 1 2 3

0 0 1 2
0 0 0 1









. Answer. Not diagonalizable.5

i. A =

[

a b− a
0 b

]

, b 6= a. Answer. P =

[

1 1
0 1

]

, D =

[

a 0
0 b

]

.6

2. Show that

[

a b− a

0 b

]k

=

[

ak bk − ak

0 bk

]

.7

3. Let A be a 2 × 2 matrix with positive eigenvalues λ1 6= λ2.8

a. Explain why A is diagonalizable, and how one constructs a non-singular9

matrix P such that A = P

[

λ1 0
0 λ2

]

P−1.10

b. Define the square root of matrix A as
√
A = P

[ √
λ1 0

0
√
λ2

]

P−1. Show11

that
(√

A
)2

= A.12

c. Let B =

[

14 −10
5 −1

]

. Find
√
B. Answer.

√
B =

[

4 −2
1 1

]

.13

d. Are there any other matrices C with the property A = C2?14

Hint. Try C = P

[

±
√
λ1 0

0 ±
√
λ2

]

P−1.15
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4. Let A =

[

2 1

−2 −1

]

. Show that Ak = A, where k is any positive integer.1

2

5. Let A =

[

1 1
−3/4 −1

]

. Show that limk→∞Ak = O, where the limit of3

a sequence of matrices is calculated by taking the limit of each component.4

6. Let A be a 3×3 matrix with the eigenvalues 0,−1, 1. Show that A7 = A.5

6

7. Let A be a 4 × 4 matrix with the eigenvalues −i, i,−1, 1.7

a. Show that A4 = I .8

b. Show that A4n = I , and A4n+1 = A for any positive integer n.9

8. Let A be a diagonalizable 2 × 2 matrix, so that A = P

[

λ1 0

0 λ2

]

P−1.10

Consider a polynomial q(x) = 2x2−3x+5. Calculate q(A) = 2A2−3A+5I .11

12

Answer.13

q(A) = P

[

2λ2
1 − 3λ1 + 5 0

0 2λ2
2 − 3λ2 + 5

]

P−1 = P

[

q(λ1) 0
0 q(λ2)

]

P−1 .

14

9. Let A be an n × n matrix, and let q(λ) = |A − λI | be its characteristic15

polynomial. Write q(λ) = a0λ
n + a1λ

n−1 + · · · + an−1λ + an, with some16

coefficients a0 , a1 , . . . , an. The Cayley-Hamilton theorem asserts that any17

matrix A is a root of its own characteristic polynomial, so that18

q(A) = a0A
n + a1A

n−1 + · · ·+ an−1A+ anI = O ,

where O is the zero matrix. Justify this theorem in case A is diagonalizable.19



Chapter 51

Orthogonality and Symmetry2

5.1 Inner Products3

Given two vectors in Rn, a =











a1

a2
...

an











and b =











b1
b2
...

bn











, define their inner4

product (also known as scalar product or dot product) as5

a · b = a1b1 + a2b2 + · · ·+ anbn .

In three dimensions (n = 3) this notion was used in Calculus to calculate the6

length of a vector ||a|| =
√
a · a =

√

a2
1 + a2

2 + a2
3, and the angle θ between7

a and b, given by cos θ =
a · b

||a|| ||b||. In particular, a and b are perpendicular8

if and only if a · b = 0. Similarly, the projection of b on a was calculated as9

follows10

Proj a b = ||b|| cosθ
a

||a|| =
||a|| ||b|| cosθ

||a||2 a =
a · b
||a||2 a .

(Recall that ||b|| cosθ is the length of the projection vector, while
a

||a|| gives11

the unit vector in the direction of a.)12

In dimensions n > 3 these formulas are taken as the definitions of the13

corresponding notions. Namely, the length (or the norm, or the magnitude)14

of a vector a is defined as15

||a|| =
√
a · a =

√

a2
1 + a2

2 + · · ·+ a2
n .

129
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The angle θ between two vectors in Rn is defined by cos θ =
a · b

||a|| ||b||.1

Vectors a and b in Rn are called orthogonal if2

a · b = 0 .

Define the projection of b ∈ Rn on a ∈ Rn as3

Proj a b =
a · b
||a||2 a =

a · b
a · a a .

Let us verify that subtracting from b its projection on a gives a vector4

orthogonal to a. In other words, that b−Proj a b is orthogonal to a. Indeed,5

a · (b− Proj a b) = a · b− a · b
||a||2 a · a = a · b− a · b = 0 ,

using the distributive property of inner product (verified in Exercises).6

For example if a =









1

−2
0
2









and b =









2

1
−4

3









are two vectors in R4, then7

a · b = 6, ||a|| = 3, and8

Proj a b =
a · b
||a||2 a =

6

32
a =

2

3
a =

2

3









1
−2

0

2









=









2/3
−4/3

0

4/3









.

Given vectors x, y, z in Rn, and a number c, the following properties9

follow immediately from the definition of inner product:10

x · y = y · x
x · (y + z) = x · y + x · z
(x+ y) · z = x · z + y · z

(cx) · y = c (x · y) = x · (cy)
||cx|| = |c| ||x|| .

These rules are similar to multiplication of numbers.11
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If vectors x and y in Rn are orthogonal, the Pythagorean Theorem holds:1

||x+ y||2 = ||x||2 + ||y||2 .

Indeed, we are given that x · y = 0, and then2

||x+ y||2 = (x+ y) · (x+ y) = x · x+ 2x · y + y · y = ||x||2 + ||y||2 .

If a vector u has length one, ||u|| = 1, u is called unit vector. Of all3

the multiples k v of a vector v ∈ Rn one often wishes to the select the unit4

vector. Choosing k = 1
||v|| produces such a vector, 1

||v||v = v
||v|| . Indeed,5

|| 1

||v||v|| =
1

||v|| ||v|| = 1 .

The vector u = v
||v|| is called the normalization of v. When projecting on a6

unit vector u, the formula simplifies:7

Proju b =
u · b
||u||2 u = (b · u) u .

Vector x ∈ Rn is a column vector (or an n × 1 matrix), while xT is a8

row vector (or an 1 × n matrix). One can express the inner product of two9

vectors in Rn in terms of the matrix product10

(1.1) x · y = xT y .

If A is an n× n matrix, then11

Ax · y = x · ATy ,

for any x, y ∈ Rn. Indeed, using (1.1) twice12

Ax · y = (Ax)T y = xTAT y = x · AT y .

Given two vectors x, y ∈ Rn the angle θ between them was defined as13

cos θ =
x · y

||x|| ||y|| .

To see that −1 ≤ x · y
||x|| ||y|| ≤ 1 (so that θ can be determined), we need the14

following Cauchy-Schwarz inequality15

(1.2) |x · y| ≤ ||x|| ||y|| .
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To justify this inequality, for any scalar λ expand1

0 ≤ ||λx+ y||2 = (λx+ y) · (λx+ y) = λ2||x||2 + 2λx · y + ||y||2 .

On the right we have a quadratic polynomial in λ, which is non-negative for2

all λ. It follows that this polynomial cannot have two real roots, so that its3

coefficients satisfy4

(2 x · y)2 − 4||x||2 ||y||2 ≤ 0 ,

which implies (1.2).5

Exercises6

1. Let x1 =





1
2

2



, x2 =





2
3

−4



, x3 =





1
0

−5



, y1 =









0

2
2

−1









, y2 =7









1

1
−2

−2









, y3 =









1

1
−1

1









.8

a. Verify that x1 is orthogonal to x2, and y1 is orthogonal to y2.9

b. Calculate (2x1 − x2) · 3x3.10

c. Calculate ||x1||, ||y1||, ||y2||, ||y3||.11

d. Normalize x1, y1, y2, y3.12

e. Find the acute angle between y1 and y3. Answer. π − arccos(−1
6).13

f. Calculate the projection Projx3
x1.14

g. Calculate Projx1
x3. Answer. −x1.15

h. Calculate Projy1
y3.16

i. Calculate Projy1
y2. Answer. The zero vector.17

2. Show that (x+ y) · (x− y) = ||x||2 − ||y||2, for any x, y ∈ Rn.18

3. Show that the diagonals of a parallelogram are orthogonal if and only if19

the parallelogram is a rhombus (all sides equal).20

Hint. Vectors x+ y and x− y give the diagonals in the parallelogram with21

sides x and y.22
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4. If ||x|| = 4, ||y|| = 3, and x · y = −1, find ||x+ y|| and ||x− y||.1

Hint. Begin with ||x+ y||2.2

5. Let x ∈ Rn, and e1, e2, . . . , en is the standard basis of Rn. Let θi denote3

the angle between the vectors x and ei, for all i (θi is called the direction4

angle, while cos θi is the the direction cosine).5

a. Show that6

cos2 θ1 + cos2 θ2 + · · ·+ cos2 θn = 1 .

Hint. cos θi = xi

||x|| (xi is i-th the component of x).7

b. What familiar formula one gets in case n = 2?8

6. Show that for x, y ∈ Rn the following triangle inequality holds9

||x+ y|| ≤ ||x||+ ||y|| ,

and interpret it geometrically.10

Hint. Using the Cauchy-Schwarz inequality, ||x+y||2 = ||x||2+2x·y+||y||2 ≤11

||x||2 + 2||x|| ||y||+ ||y||2.12

7. Let x =











x1

x2
...
xn











, y =











y1
y2
...
yn











and z =











z1
z2
...
zn











be arbitrary vectors.13

Verify that14

x · (y + z) = x · y + x · z .

8. If A is an n× n matrix, ei and ej any two coordinate vectors, show that15

Aej · ei = aij.16

9. True or False?17

a. ||Proj ab|| ≤ ||b||. Answer. True.18

b. ||Proj ab|| ≤ ||a||. Answer. False.19

c. Proj 2ab = Proj ab. Answer. True.20

10. Suppose that x ∈ Rn, y ∈ Rm, and matrix A is of size m × n. Show21

that Ax · y = x · AT y.22
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5.2 Orthogonal Bases1

Vectors v1, v2, . . . , vp in Rn are said to form an orthogonal set if each of2

these vectors is orthogonal to every other vector, so that vi · vj = 0 for all3

i 6= j. (One also says that these vectors are mutually orthogonal.) If vectors4

u1, u2, . . . , up in Rn form an orthogonal set, and in addition they are unit5

vectors (||ui|| = 1 for all i), we say that u1, u2, . . . , up form an orthonormal6

set. An orthogonal set v1, v2, . . . , vp can be turned into an orthonormal set7

by normalization, or taking ui =
vi

||vi||
for all i. For example, the vectors8

v1 =









0

2
2

−1









, v2 =









4

0
1

2









, and v3 =









−1

1
0

2









form an orthogonal set.9

Indeed, v1 · v2 = v1 · v3 = v2 · v3 = 0. Calculate ||v1|| = 3, ||v2|| =
√

21,10

and ||v3|| =
√

6. Then the vectors u1 =
1

3
v1 =

1

3









0
2

2
−1









, u2 =
1√
21
v2 =11

1√
21









4
0

1
2









, and u3 =
1√
6
v3 =

1√
6









−1
1

0
2









form an orthonormal set.12

Theorem 5.2.1 Suppose that vectors v1, v2, . . . , vp in Rn are all non-zero,13

and they form an orthogonal set. Then they are linearly independent.14

Proof: We need to show that the relation15

(2.1) x1v1 + x2v2 + · · ·+ xpvp = 0

is possible only if all of the coefficients are zero, x1 = x2 = · · · = xp = 0.16

Take the inner product of both sides of (2.1) with v1:17

x1 v1 · v1 + x2 v2 · v1 + · · ·+ xp vp · v1 = 0 .

By orthogonality, all of the terms starting with the second one are zero.18

Obtain19

x1 ||v1||2 = 0 .

Since v1 is non-zero, ||v1|| > 0, and then x1 = 0. Taking the inner product20

of both sides of (2.1) with v2, one shows similarly that x2 = 0, and so on,21

showing that all xi = 0. ♦22
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It follows that non-zero vectors forming an orthogonal set provide a1

basis for the subspace that they span, called orthogonal basis. Orthonormal2

vectors give rise to an orthonormal basis. Such bases are very convenient,3

as is explained next.4

Suppose that vectors v1, v2, . . . , vp form an orthogonal basis of some sub-5

space W in Rn. Then any vector w in W can be expressed as6

w = x1v1 + x2v2 + · · ·+ xpvp ,

and the coordinates x1, x2, . . . , xp are easy to express. Indeed, take the inner7

product of both sides with v1 and use the orthogonality:8

w · v1 = x1v1 · v1 ,

giving9

x1 =
w · v1
||v1||2

.

Taking the inner product of both sides with v2, gives a formula for x2, and10

so on. Obtain:11

(2.2) x1 =
w · v1
||v1||2

, x2 =
w · v2
||v2||2

, . . . , xp =
w · vp

||vp||2
.

The resulting decomposition with respect to an orthogonal basis is12

(2.3) w =
w · v1
||v1||2

v1 +
w · v2
||v2||2

v2 + · · ·+ w · vp

||vp||2
vp .

So that any vector w in W is equal to the sum of its projections on the13

elements of an orthogonal basis.14

In case vectors u1, u2, . . . , up form an orthonormal basis of W , and w ∈15

W , then16

w = x1u1 + x2u2 + · · ·+ xpup ,

and in view of (2.2) the coefficients are17

x1 = w · u1 , x2 = w · u2 , . . . , xp = w · up .

The resulting decomposition with respect to an orthonormal basis is18

w = (w · u1) u1 + (w · u2) u2 + · · ·+ (w · up) up .

Suppose W is a subspace of Rn with a basis {w1, w2, . . . , wp}, not neces-19

sarily orthogonal. We say that a vector z ∈ Rn is orthogonal to a subspace20

W if z is orthogonal to any vector in W , notation z ⊥W .21
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Lemma 5.2.1 If a vector z is orthogonal to the basis elements w1, w2, . . . , wp1

of W , then z is orthogonal to W .2

Proof: Indeed, decompose any element w ∈ W as w = x1w1 + x2w2 +3

· · ·+ xpwp. Given that z · wi = 0 for all i, obtain4

z · w = x1 z · w1 + x2 z · w2 + · · ·+ xp z · wp = 0 ,

so that z ⊥W . ♦5

Given any vector b ∈ Rn and a subspace W of Rn, we say that the6

vector Proj
W
b is the projection of b on W if the vector z = b− Proj

W
b is7

orthogonal to W . It is easy to project on W in case W has an orthogonal8

basis.9

Theorem 5.2.2 Assume that {v1, v2, . . . , vp} form an orthogonal basis of a10

subspace W . Then11

(2.4) Proj
W
b =

b · v1
||v1||2

v1 +
b · v2
||v2||2

v2 + · · ·+ b · vp

||vp||2
vp .

(So that Proj
W
b equals to the sum of projections of b on the basis elements.)12

Proof: We need to show that z = b− Proj
W
b is orthogonal to all basis13

elements of W (so that z ⊥W ). Using the orthogonality of vi’s calculate14

z · v1 = b · v1 − (Proj
W
b) · v1 = b · v1 −

b · v1
||v1||2

v1 · v1 = b · v1 − b · v1 = 0 ,

and similarly z · vi = 0 for all i. ♦15

In case b ∈W , Proj
W
b = b, as follows by comparing the formulas (2.3)16

and (2.4). If Proj
W
b 6= b, then b /∈W .17

Example 1 Let v1 =





1
−1

2



, v2 =





1
1
0



, b =





1
1
1



, and W =18

Span{v1, v2}. Let us calculate Proj
W
b. Since v1 · v2 = 0, these vectors are19

orthogonal, and then by (2.4)20

Proj
W
b =

b · v1
||v1||2

v1 +
b · v2
||v2||2

v2 =
2

6
v1 +

2

2
v2 =





4/3

2/3
2/3



 .
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The set of all vectors in Rn that are orthogonal to a subspace W of Rn is1

called the orthogonal complement of W , and is denoted by W⊥ (pronounced2

“W perp”). It is straightforward to verify that W⊥ is a subspace of Rn.3

By Lemma 5.2.1, W⊥ consists of all vectors in Rn that are orthogonal to4

any basis of W . In 3-d, vectors going along the z-axis give the orthogonal5

complement to vectors in the xy-plane, and vice versa.6

Example 2 Consider a subspace W of R4, W = Span {w1, w2}, where7

w1 =









1

0
1

−2









, w2 =









0

−1
0

1









. The subspace W⊥ consists of vectors x =8









x1

x2

x3

x4









that are orthogonal to the basis of W , so that x · w1 = 0 and9

x · w2 = 0, or in components10

x1 + x3 − 2x4 = 0

−x2 + x4 = 0 .

One sees thatW⊥ is just the null spaceN (A) of the matrixA =

[

1 0 1 −2
0 −1 0 1

]

11

of this system, and a short calculation shows that12

W⊥ = Span























2

1
0
1









,









−1

0
1
0























.

Recall that the vector z = b − Proj
W
b is orthogonal to the subspace13

W . In other words, z ∈ W⊥. We conclude that any vector b ∈ Rn can be14

decomposed as15

b = Proj
W
b+ z ,

with Proj
W
b ∈ W , and z ∈ W⊥. If b belongs to W , then b = Proj

W
b16

and z = 0. In case b /∈ W , then the vector Proj
W
b gives the vector (or17

the point) in W that is closest to b (which is justified in Exercises), and18

||b− Proj
W
b|| = ||z|| is defined to be the distance from b to W .19
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Fredholm Alternative1

We now revisit linear systems2

(2.5) Ax = b ,

with a given m× n matrix A, x ∈ Rn, and a given vector b ∈ Rm. We shall3

use the corresponding homogeneous system, with y ∈ Rn
4

(2.6) Ay = 0 ,

and the adjoint homogeneous system, with z ∈ Rm
5

(2.7) AT z = 0 .

Recall that the system (2.5) has a solution if and only if b ∈ C(A), the6

column space of A (or the range of the function Ax, for x ∈ Rn). The7

column space C(A) is a subspace of Rm. All solutions of the system (2.7)8

constitute the null space of AT , N (AT ), which is a subspace of Rm.9

Theorem 5.2.3 C(A)⊥ = N (AT ).10

Proof: To prove that two sets are identical, one shows that each element11

of either one of the sets belongs to the other set.12

(i) Assume that the vector z ∈ Rm belongs to C(A)⊥. Then13

z · Ax = zTAx =
(

zTA
)

x = 0 ,

for all x ∈ Rn. It follows that14

zTA = 0 ,

the zero row vector. Taking the adjoint gives (2.7), so that z ∈ N (AT ).15

(ii) Conversely, assume that the vector z ∈ Rm belongs to N (AT ), so that16

AT z = 0. Taking the adjoint gives zTA = 0. Then17

zTAx = z · Ax = 0 ,

for all x ∈ Rn. Hence z ∈ C(A)⊥. ♦18

For square matrices A we have the following important consequence.19



5.2. ORTHOGONAL BASES 139

Theorem 5.2.4 (Fredholm alternative) Let A be an n×n matrix, b ∈ Rn.1

Then either2

(i) The homogeneous system (2.6) has only the trivial solution, and the3

system (2.5) has a unique solution for any vector b.4

Or else5

(ii) Both homogeneous systems (2.6) and (2.7) have non-trivial solutions,6

and the system (2.5) has solutions if and only if b is orthogonal to any7

solution of (2.7).8

Proof: If the determinant |A| 6= 0, then A−1 exists, v = A−10 = 0 is9

the only solution of (2.6), and u = A−1b is the unique solution of (2.5). In10

case |A| = 0, one has |AT | = |A| = 0, so that both systems (2.6) and (2.7)11

have non-trivial solutions. In order for (2.5) to be solvable, b must belong to12

C(A). By Theorem 5.2.3, C(A) is the orthogonal complement of N (AT ), so13

that b must be orthogonal to all solutions of (2.7). (In this case the system14

(2.5) has infinitely many solutions of the form x+cy, where y is any solution15

of (2.6), and c is an arbitrary number.) ♦16

So that if A is invertible, the system Ax = b has a (unique) solution for17

any vector b. In case A is not invertible, solutions exist only for “lucky” b,18

the ones orthogonal to any solution of the adjoint system (2.7).19

Least Squares20

Consider a system21

(2.8) Ax = b ,

with an m × n matrix A, x ∈ Rn, and a vector b ∈ Rm. If C1, C2, . . . , Cn22

are the columns of A and x1, x2, . . . , xn are the components of x, then one23

can write (2.8) as24

x1C1 + x2C2 + · · ·+ xnCn = b .

The system (2.8) is consistent if and only if b belongs to the span of C1, C2, . . . , Cn,25

in other words b ∈ C(A), the column space of A. If b is not in C(A) the26

system (2.8) is inconsistent (there is no solution). What would be a good27

substitute for the solution? One answer to this question is presented next.28

Assume for simplicity that the columns of A are linearly independent.29

Let p denote the projection of the vector b on C(A), let x̄ be the unique30

solution of31

(2.9) Ax̄ = p .
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(The solution is unique because the columns of A are linearly independent.)1

The vector x̄ is called the least squares solution of (2.8). The vector Ax̄ = p2

is the closest vector to b in C(A), so that the value of ||Ax̄−b|| is the smallest3

possible. The formula for x̄ is derived next.4

By the definition of projection, the vector b− p is orthogonal to C(A),5

implying that b− p is orthogonal to all columns of A, or b− p is orthogonal6

to all rows of AT , so that7

AT (b− p) = 0 .

Write this as AT p = AT b, and use (2.9) to obtain8

(2.10) ATAx̄ = AT b ,

giving9

x̄ =
(

ATA
)−1

AT b ,

since the matrix ATA is invertible, as is shown in Exercises.10

The vector x̄ is the unique solution of the system (2.10), known as the11

normal equations. The projection of b on C(A) is12

p = Ax̄ = A
(

ATA
)−1

AT b ,

and the matrix P = A
(

ATA
)−1

AT projects any b ∈ Rm on C(A).13

Example 3 The 3× 2 system14

2x1 + x2 = 3

x1 − 2x2 = 4

0x1 + 0x2 = 1

is clearly inconsistent. Intuitively, the best we can do is to solve the first two15

equations to obtain x1 = 2, x2 = −1. Let us now apply the least squares16

method. Here A =





2 1

1 −2
0 0



, b =





3

4
1



, and a calculation gives the least17

squares solution18

x̄ =
(

ATA
)−1

AT b =

[

1
5 0
0 1

5

][

2 1 0
1 −2 0

]





3

4
1



 =

[

2
−1

]

.
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The column space of A consists of vectors in R3 with the third component1

zero, and the projection of b on C(A) is2

p = Ax̄ =





2 1

1 −2
0 0





[

2
−1

]

=





3

4
0



 ,

as expected.3

Exercises4

1. Verify that the vectors u1 = 1√
2

[

1

−1

]

and u2 =

[

1/
√

2

1/
√

2

]

form an5

orthonormal basis ofR2. Then find the coordinates of the vectors e1 =

[

1
0

]

6

and e2 =

[

0

1

]

with respect to this basis B = {u1, u2}.7

Answer. [e1]B =

[

1/
√

2

1/
√

2

]

, [e2]B =

[

−1/
√

2

1/
√

2

]

.8

2. Verify that the vectors u1 = 1√
3





1
1

1



, u2 = 1√
6





1
−2

1



, u3 = 1√
2





1
0

−1





9

form an orthonormal basis of R3. Then find coordinates of the vectors10

w1 =





1

1
1



, w2 =





−3

0
3



, and of the coordinate vector e2, with respect11

to this basis B = {u1, u2, u3}.12

Answer. [w1]B =





√
3
0
0



, [w2]B =





0

0
− 6√

2



, [e2]B =







1√
3

− 2√
6

0






.13

3. Let v1 =





2
−1

2



, v2 =





1
0

−1



, b =





1
1
1



, and W = Span{v1, v2}.14

a. Verify that the vectors v1 and v2 are orthogonal, and explain why these15

vectors form an orthogonal basis of W .16

b. Calculate Proj
W
b. Does b belong to W?17
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c. Calculate the coordinates of w =





1

1
−5



 with respect to the basis1

B = {v1, v2}. Answer. [w]B =

[

−1
3

]

.2

d. Calculate Proj
W
u. Does u belong to W?3

e. Describe geometrically the subspace W .4

f. FindW⊥, the orthogonal complement ofW , and describe it geometrically.5

6

4. Let u1 = 1
2









1

1
1

1









, u2 = 1
2









1

1
−1

−1









, u3 = 1
2









1

−1
−1

1









, b =









2

−1
0

−2









, and7

W = Span{u1, u2, u3}.8

a. Verify that the vectors u1, u2, u3 are orthonormal, and explain why these9

vectors form an orthonormal basis of W .10

b. Calculate Proj
W
b.11

c. Does b belong to W? If not, what is the point in W that is closest to b?12

d. What is the distance from b to W?13

5. Let W be a subspace of Rn of dimension k. Show that dimW⊥ = n−k.14

6. Let W be a subspace of Rn. Show that
(

W⊥)⊥ = W .15

7. Let q1, q2, . . . , qk be orthonormal vectors, and a = a1q1 +a2q2 + · · ·+akqk16

their linear combination. Justify the Pythagorean theorem17

||a||2 = a2
1 + a2

2 + · · ·+ a2
k .

Hint. ||a||2 = a · a = a2
1 q1 · q1 + a1a2 q1 · q2 + · · · .18

8. Let W be a subspace of Rn, and b /∈ W . Show that Proj W b gives the19

vector in W that is closest to b.20

Hint. Let z be any vector in W . Then21

||b− z||2 = || (b− ProjW b) + (ProjW b− z) ||2
= ||b− ProjW b||2 + ||ProjW b− z||2 ,

by the Pythagorean theorem. (Observe that the vectors b−Proj W b ∈W⊥
22

and Proj W b− z ∈W are orthogonal.) Then ||b− z||2 ≥ ||b− ProjW b||2.23
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9. Let A be an m×n matrix with linearly independent columns. Show that1

the matrix ATA is square, invertible, and symmetric.2

Hint. Assume that ATAx = 0 for some x ∈ Rn. Then 0 = xTATAx =3

(Ax)T Ax = ||Ax||2, so that Ax = 0. This implies that x = 0, since the4

columns of A are linearly independent. It follows that ATA is invertible.5

10. Let w1, w2, . . . , wn be vectors in Rm. The following n× n determinant6

G =

∣

∣

∣

∣

∣

∣

∣

∣

w1 ·w1 w1 · w2 . . . w1 · wn

w2 ·w1 w2 · w2 . . . w2 · wn

. . . . . . . . . . . .

wn ·w1 wn · w2 . . . wn · wn

∣

∣

∣

∣

∣

∣

∣

∣

is called the Gram determinant or the Gramian.7

a. Show that w1, w2, . . . , wn are linearly dependent if and only if the Gramian8

G = 0.9

b. Let A be an m × n matrix with linearly independent columns. Show10

again that the square matrix ATA is invertible and symmetric.11

Hint. The determinant |ATA| is the Gramian of the columns of A.12

11. Consider the system13

2x1 + x2 = 3

x1 − 2x2 = 4

2x1 − x2 = −5 .

a. Verify that this system is inconsistent.14

b. Calculate the least squares solution. Answer. x̄1 = 0, x̄2 = 0.15

c. Calculate the projection p of the vector b =





3

4
−5



 on the column space16

C(A) of the matrix of this system, and conclude that b ∈ C(A)⊥.17

Answer. p =





0

0
0



.18
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5.3 Gram-Schmidt Orthogonalization1

A given set of linearly independent vectors w1, w2, . . . , wp in Rn forms a basis2

for the subspace W that they span. It is desirable to have an orthogonal3

basis of the subspace W = Span{w1, w2, . . . , wp}. With an orthogonal basis4

it is easy to calculate the coordinates of any vector w ∈ W , and if a vector5

b is not in W , it is easy to calculate the projection of b on W . Given an6

arbitrary basis of a subspace W , our goal is to produce an orthonormal basis7

spanning the same subspace W .8

The Gram-Schmidt orthogonalization process produces an orthogonal ba-9

sis v1, v2, . . . , vp of the subspace W = Span{w1, w2, . . . , wp} as follows10

v1 = w1

v2 = w2 − w2·v1

||v1||2 v1

v3 = w3 − w3·v1

||v1||2 v1 − w3·v2

||v2||2 v2

· · · · · ·
vp = wp − wp·v1

||v1||2 v1 − wp·v2

||v2||2v2 − · · · − wp ·vp−1

||vp−1||2vp−1 .

The first vector w1 is included in the new basis as v1. To obtain v2, we sub-11

tract from w2 its projection on v1. It follows that v2 is orthogonal to v1. To12

obtain v3, we subtract from w3 its projection on the previously constructed13

vectors v1 and v2, in other words, we subtract from w3 its projection on the14

subspace spanned by v1 and v2. By the definition of projection on a subspace15

and Theorem 5.2.2, v3 is orthogonal to that subspace, and in particular, v316

is orthogonal to v1 and v2. In general, to obtain vp, we subtract from wp17

its projection on the previously constructed vectors v1, v2, . . . , vp−1. By the18

definition of projection on a subspace and Theorem 5.2.2, vp is orthogonal19

to v1, v2, . . . , vp−1.20

The new vectors vi belong to the subspace W because they are linear21

combinations of the old vectors wi. The vectors v1, v2, . . . , vp are linearly22

independent, because they form an orthogonal set, and since their number23

is p, they form a basis of W , an orthogonal basis of W .24

Once the orthogonal basis v1, v2, . . . , vp is constructed, one can obtain25

an orthonormal basis u1, u2, . . . , up by normalization, taking ui =
vi

||vi||
.26
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Example 1 Let w1 =









1

−1
−1

1









, w2 =









1

−2
2

3









, w3 =









0

1
1

2









. It is easy1

to check that these vectors are linearly independent, and hence they form a2

basis of W = Span{w1, w2, w3}. We now use the Gram-Schmidt process to3

obtain an orthonormal basis of W .4

Start with v1 = w1 =









1
−1
−1

1









. Calculate ||v1||2 = ||w1||2 = 4, w2 · v1 =5

w2 ·w1 = 4. Obtain6

v2 = w2 −
w2 · v1
||v1||2

v1 = w2 −
4

4
v1 =









1

−2
2

3









−









1

−1
−1

1









=









0

−1
3

2









.

Next, w3 · v1 = 0, w3 · v2 = 6, ||v2||2 = 14, and then7

v3 = w3 − w3·v1
||v1||2 v1 −

w3·v2
||v2||2v2

= w3 − 0 · v1 − 6
14v2 =









0
1

1
2









− 3
7









0
−1

3
2









=









0
10/7

−2/7
8/7









.

The orthogonal basis of W is8

v1 =









1
−1

−1
1









, v2 =









0
−1

3
2









, v3 =
1

7









0
10

−2
8









.

Calculate ||v1|| = 2, ||v2|| =
√

14, ||v3|| = 1
7

√
168. The orthonormal basis of9

W is obtained by normalization:10

u1 =
1

2









1
−1

−1
1









, u2 =
1√
14









0
−1

3
2









, u3 =
1√
168









0
10

−2
8









.
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5.3.1 QR Factorization1

Let A = [w1w2 . . . wn] be an m × n matrix, and assume that its columns2

w1, w2, . . . , wn are linearly independent. Then they form a basis of the3

column space C(A). Applying Gram-Schmidt process to the columns of A4

produces an orthonormal basis {u1, u2, . . . , un} of C(A). Form an m × n5

matrix6

Q = [u1 u2 . . . un] ,

using these orthonormal columns.7

Turning to matrixR, from the first line of Gram-Schmidt process express8

the vector w1 as a multiple of u19

(3.1) w1 = r11u1 ,

with the coefficient denoted by r11 (r11 = w1 ·u1 = ||w1||). From the second10

line of Gram-Schmidt process express w2 as a linear combination of v1 and11

v2, and then of u1 and u212

(3.2) w2 = r12u1 + r22u2 ,

with some coefficients r12 and r22 (r12 = w2 · u1, r22 = w2 · u2). From the13

third line of Gram-Schmidt process express14

w3 = r13u1 + r23u2 + r33u3 ,

with the appropriate coefficients (r13 = w3 · u1, r23 = w3 · u2, r33 = w3 · u3).15

The final line of Gram-Schmidt process gives16

wn = r1nu1 + r2nu2 + · · ·+ rnnun .

Form the n× n upper triangular matrix R17

R =













r11 r12 r13 . . . r1n

0 r22 r23 . . . r2n

0 0 r33 . . . r3n

· · · · · ·
0 0 0 . . . rnn













.

Then the definition of matrix multiplication implies that18

(3.3) A = QR ,

what is known as the QR decomposition of the matrix A.19
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We now justify the formula (3.3) by comparing the corresponding columns1

of the matrices A and QR. The first column of A is w1, while the first col-2

umn of QR is the product of Q and the vector











r11

0
...

0











(the first column of3

R), which gives r11u1, and by (3.1) the first columns are equal. The second4

column of A is w2, while the second column of QR is the product of Q and5

the vector











r12

r22
...

0











(the second column of R), which is r12u1 +r22u2, and by6

(3.2) the second columns are equal. Similarly, all other columns are equal.7

Example 2 Let us find the QR decomposition of8

A =









1 1 0
−1 −2 1

−1 2 1
1 3 2









.

The columns of A are the vectors w1, w2, w3 from Example 1 above. There-9

fore the matrix Q = [u1 u2 u3 ] has the orthonormal columns u1, u2, u3 pro-10

duced in Example 1. To obtain the entries of the matrix R, we “reverse”11

our calculations in Example 1, expressing w1, w2, w3 first through v1, v2, v3,12

and then through u1, u2, u3. Recall that13

w1 = v1 = ||v1||u1 = 2u1 ,

so that r11 = 2. Similarly,14

w2 = v1 + v2 = ||v1||u1 + ||v2||u2 = 2u1 +
√

14u2 ,

giving r12 = 2 and r22 =
√

14. Finally,15

w3 = 0v1 +
3

7
v2 +v3 = 0u1 +

3

7
||v2||u2 + ||v3||u3 = 0u1+

3

7

√
14u2 +

√
168

7
u3 ,

so that r13 = 0, r23 = 3
7

√
14, r33 =

√
168
7 . Then R =





2 2 0

0
√

14 3
7

√
14

0 0
√

168
7



,16
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and the QR factorization is1









1 1 0

−1 −2 1
−1 2 1

1 3 2









=



























1

2
0 0

−1

2
− 1√

14

10√
168

−1

2

3√
14

− 2√
168

1

2

2√
14

8√
168











































2 2 0

0
√

14 3
7

√
14

0 0
√

168
7

















.

Since the vectors u1, u2, u3 are orthonormal, one has (as mentioned2

above)3

w1 = (w1 · u1) u1

w2 = (w2 · u1)u1 + (w2 · u2)u2

w3 = (w3 · u1) u1 + (w3 · u2) u2 + (w3 · u3) u3 .

Then4

R =





w1 · u1 w2 · u1 w3 · u1

0 w2 · u2 w3 · u2

0 0 w3 · u3





gives an alternative way to calculate R.5

5.3.2 Orthogonal Matrices6

The matrix Q = [u1 u2 . . . un] in the QR decomposition has orthonormal7

columns. If Q is of size m×n, its transpose QT is an n×m matrix with the8

rows uT
1 , u

T
2 , . . . , u

T
n , so that QT =











uT
1

uT
2
...
uT

n











. The product QTQ is an n × n9

matrix, and we claim that (I is the n× n identity matrix)10

(3.4) QTQ = I .

Indeed, the diagonal entries of the product11

QTQ =











uT
1

uT
2
...
uT

n











[u1 u2 . . . un]
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are uT
i ui = ui · ui = ||ui||2 = 1, while the off-diagonal entries are uT

i uj =1

ui · uj = 0 for i 6= j.2

A square n × n matrix with orthonormal columns is called orthogonal3

matrix. For orthogonal matrices the formula (3.4) implies that4

(3.5) QT = Q−1 .

Conversely, if the formula (3.5) holds, then QTQ = I so that Q has orthonor-5

mal columns. We conclude that matrix Q is orthogonal if and only if (3.5)6

holds. The formula (3.5) provides an alternative definition of orthogonal7

matrices.8

We claim that9

||Qx|| = ||x|| ,
for any orthogonal matrix Q, and all x ∈ Rn. Indeed,10

||Qx||2 = Qx ·Qx = x ·QTQx = x ·Q−1Qx = x · Ix = ||x||2 .

One shows similarly that11

Qx ·Qy = x · y
for any x, y ∈ Rn. It follows that the orthogonal transformation Qx preserves12

the length of vectors, and the angles between vectors (since cos θ = x·y
||x|| ||y|| =13

Qx·Qy
||Qx|| ||Qy||).14

Equating the determinants of both sides of (3.5), obtain |QT | = |Q−1|,15

giving |Q| = 1
|Q| or |Q|2 = 1, which implies that16

|Q| = ±1 ,

for any orthogonal matrix Q.17

A product of two orthogonal matrices P and Q is also an orthogonal18

matrix. Indeed, since PT = P−1 and QT = Q−1, obtain19

(PQ)T = QTPT = Q−1P−1 = (PQ)−1 .

proving that PQ is orthogonal.20

If P is a 2×2 orthogonal matrix, it turns out that either P =

[

cos θ − sin θ
sin θ cos θ

]

21

or P =

[

cos θ sin θ
sin θ − cos θ

]

, for some number θ. Indeed, let P =

[

α β
γ δ

]

be22
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any orthogonal matrix. We know that the determinant |P | = αδ−βγ = ±1.1

Let us assume first that |P | = αδ − βγ = 1. Then2

P−1 =
1

αδ − βγ

[

δ −β
−γ α

]

=

[

δ −β
−γ α

]

,

and also3

PT =

[

α γ
β δ

]

.

Since P−1 = PT , it follows that δ = α and β = −γ, so that P =

[

α −γ
γ α

]

.4

The columns of the orthogonal matrix P are of unit length, so that α2+γ2 =5

1. We can then find a number θ so that α = cos θ and γ = sin θ, and conclude6

that P =

[

cos θ − sin θ
sin θ cos θ

]

.7

In the other case, when |P | = −1, observe that the product of two8

orthogonal matrices

[

1 0

0 −1

]

P is an orthogonal matrix with determinant9

equal to 1. By the above,

[

1 0

0 −1

]

P =

[

cos θ − sin θ

sin θ cos θ

]

for some θ.10

Then, with θ = −ϕ,11

P =

[

1 0
0 −1

]−1 [
cos θ − sin θ
sin θ cos θ

]

=

[

1 0
0 −1

] [

cos θ − sin θ
sin θ cos θ

]

12

=

[

cos θ − sin θ
− sin θ − cos θ

]

=

[

cosϕ sinϕ
sinϕ − cosϕ

]

.

Exercises13

1. Use the Gram-Schmidt process to find an orthonormal basis for the14

subspace spanned by the given vectors.15

a. w1 =





1

0
1



, w2 =





1

1
1



.16

Answer. u1 =







1√
2

0
1√
2






, u2 =





0

1
0



.17
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b. w1 =





1

−2
2



, w2 =





−1

2
1



.1

Answer. u1 = 1
3





1

−2
2



, u2 = 1
3
√

5





−2

4
5



.2

c. w1 =









2
1

−1
0









, w2 =









3
2

−4
1









, w3 =









1
1

0
−2









.3

Answer. u1 = 1√
6









2

1
−1

0









, u2 = 1√
6









−1

0
−2

1









, u3 = 1
2
√

3









−1

1
−1

−3









.4

d. w1 =









1

1
−1

−1









, w2 =









1

0
0

1









, w3 =









1

1
0

0









.5

Answer. u1 = 1
2









1
1

−1
−1









, u2 = 1√
2









1
0

0
1









, u3 = 1√
2









0
1

1
0









.6

e. w1 =













3
−2

1
1

−1













, w2 =













−1
0

0
0

1













. Answer. u1 = 1
4













3
−2

1
1

−1













, u2 = 1
4













−1
−2

1
1

3













.7

8

f. Let W = Span{w1, w2}, where w1, w2 ∈ R5 are the vectors from the9

preceding exercise (e), and b =













1

0
1

−1
−1













. Find the projection Proj
W
b.10

Answer. Proj
W
b = u1 − u2.11

2. Find an orthogonal basis for the null-space N (A) of the following matri-12

ces.13
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Hint. Find a basis of N (A), then apply the Gram-Schmidt process.1

a. A =





0 2 −1 0

−2 1 2 1
−2 3 1 1



.2

Answer. u1 = 1√
5









1

0
0

2









, u2 = 1√
10









2

1
2

−1









.3

b. A =

[

1 −1 0
1 2 −3

]

. Answer. u1 = 1√
3





1

1
1



.4

c. A =
[

1 −1 0 1
]

.5

Answer. u1 = 1√
2









−1

0
0
1









, u2 =









0

0
1
0









, u3 = 1√
6









1

2
0
1









.6

3. Let A = QR be the QR decomposition of A.7

a. Assume that A is a non-singular square matrix. Show that R is also8

non-singular, and all of its diagonal entries are positive.9

b. Show that R = QTA (which gives an alternative way to calculate R).10

4. Find the QR decomposition of the following matrices.11

a. A =

[

3 −1
4 0

]

.12

Answer. Q =

[

3
5 −4

5
4
5

3
5

]

, R =

[

w1 · u1 w2 · u1

0 w2 · u2

]

=

[

5 −3
5

0 4
5

]

.13

b. A =





2 −1

−1 1
2 0



.14

Answer. Q =





2
3 −1

3
−1

3
2
3

2
3

2
3



, R =

[

3 −1

0 1

]

.15
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c. A =









1 −1

−1 1
1 0

1 2









.1

Hint. The columns of A are orthogonal.2

Answer. Q =











1
2 − 1√

6

−1
2

1√
6

1
2 0
1
2

2√
6











, R =

[

2 0

0
√

6

]

.3

d. A =





1 0 0

−2 1 0
2 0 1



.4

Answer. Q =







1
3

2
3
√

5
− 2√

5

−2
3

√
5

3 0
2
3

4
3
√

5
1√
5






, R =







3 −2
3

2
3

0
√

5
3

4
3
√

5

0 0 1√
5






.5

e. A =









1 1 −1

−1 0 −1
−1 −1 1

1 2 −1









.6

Answer. Q =











1
2 0 −1

2
−1

2
1√
2

−1
2

−1
2 0 1

2
1
2

1√
2

1
2











, R =





2 2 −1

0
√

2 −
√

2

0 0 1



.7

5. Let Q be an orthogonal matrix.8

a. Show that QT is orthogonal.9

b. Show that an orthogonal matrix has orthonormal rows.10

c. Show that Q−1 is orthogonal.11

6. Fill in the missing entries of the following 3× 3 orthogonal matrix12

Q =





cos θ − sin θ ∗
sin θ cos θ ∗
∗ ∗ ∗



 .

7. a. If an orthogonal matrix Q has a real eigenvalue λ show that λ = ±1.13
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Hint. If Qx = λx, then λ2x · x = Qx ·Qx = x ·QTQx.1

b. Give an example of an orthogonal matrix without real eigenvalues.2

c. Describe all orthogonal matrices that are upper triangular.3

8. The matrix





−1 1 1

1 −1 1
1 1 −1



 has eigenvalues λ1 = λ2 = −2, λ3 = 1.4

Find an orthonormal basis of the eigenspace corresponding to λ1 = λ2 = −2.5

6

9. For the factorization A = QR assume that w1, w2, . . . , wn in Rm are the7

columns of A, and u1, u2, . . . , un are the columns of Q. Show that8

R =













w1 · u1 w2 · u1 w3 · u1 . . . wn · u1

0 w2 · u2 w3 · u2 . . . wn · u2

0 0 w3 · u3 . . . wn · u3

. . . . . .
0 0 0 . . . wn · un













.

10. Let A be an n×nmatrix, with mutually orthogonal columns v1, v2, . . . , vn.9

Show that10

detA = ±||v1||||v2|| · · · ||vn|| .
Hint. Consider the A = QR decomposition, where Q is an orthogonal matrix11

with detQ = ±1. Observe that R is a diagonal matrix with the diagonal12

entries ||v1||, ||v2||, . . . , ||vn||.13

11. a. Let A be an n × n matrix, with linearly independent columns14

a1, a2, . . . , an. Justify Hadamard’s inequality15

| detA| ≤ ||a1||||a2|| · · · ||an|| .
Hint. Consider the A = QR decomposition, where Q is an orthogonal16

matrix with the orthonormal columns q1, q2, . . . , qn, and rij are the entries17

of R. Then aj = r1jq1 + r2jq2 + · · ·+ rjjqj. By the Pythagorean theorem18

||aj||2 = r21j + r22j + · · ·+ r2jj ≥ r2jj, so that |rjj| ≤ ||aj||. It follows that19

| detA| = | detQ| | detR| = 1 · (|r11| |r22| · · · |rnn|) ≤ ||a1||||a2|| · · · ||an|| .
b. Give geometrical interpretation of Hadamard’s inequality in case of three20

vectors a1, a2, a3 in R3.21

Hint. In that case the matrix A is of size 3×3, and | detA| gives the volume22

of the parallelepiped spanned by the vectors a1, a2, a3 (by a property of triple23

products from Calculus), while the right hand side of Hadamard’s inequality24

gives the volume of the rectangular parallelepiped (a box) with edges of the25

same length.26
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5.4 Linear Transformations1

Suppose A is anm×n matrix, x ∈ Rn. Then the product Ax defines a trans-2

formation of vectors x ∈ Rn into the vectors Ax ∈ Rm. Transformations3

often have geometrical significance as the following examples show.4

Let x =

[

x1

x2

]

be any vector in R2. If A =

[

1 0

0 0

]

, then Ax =

[

x1

0

]

,5

gives the projection of x on the x1-axis. For B =

[

1 0

0 −1

]

, Bx =

[

x1

−x2

]

,6

provides the reflection of x across the x1-axis. If C =

[

−2 0

0 −2

]

, then7

Cx =

[

−2x1

−2x2

]

, so that x is transformed into a vector of the opposite8

direction, which is also stretched in length by a factor of 2.9

Suppose that we have a transformation (a function) taking each vector x10

in Rn into a unique vector T (x) in Rm, with common notation T (x) : Rn →11

Rm. We say that T (x) is a linear transformation if for any vectors u and v12

in Rn and any scalar c13

(i) T (cu) = cT (u) (T is homogeneous)14

(ii) T (u+ v) = T (u) + T (v). (T is additive)15

The property (ii) holds true for arbitrary number of vectors, as follows by16

applying it to two vectors at a time. Taking c = 0 in (i), we see that T (0) = 017

for any linear transformation. (T (x) takes the zero vector in Rn into the18

zero vector in Rm.) It follows that in case T (0) 6= 0 the transformation T (x)19

is not linear. For example, the transformation T (x) : R3 → R2 given by20

T









x1

x2

x3







 =

[

2x1 − x2 + 5x3

x1 + x2 + 1

]

is not linear, because T









0

0
0







 =21

[

0
1

]

, is not equal to the zero vector

[

0
0

]

.22

If A is any m× n matrix, and x ∈ Rn, then T (x) = Ax is a linear trans-23

formation from Rn to Rm, since the properties (i) and (ii) clearly hold. The24

2×2 matrices A, B and C above provided examples of linear transformations25

from R2 to R2.26

It turns out that any linear transformation T (x) : Rn → Rm can be27
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represented by a matrix. Indeed, let e1 =











1

0
...
0











, e2 =











0

1
...
0











, . . . , en =1











0
0
...

1











be the standard basis of Rn. Any x =











x1

x2
...

xn











in Rn can be written2

as3

x = x1e1 + x2e2 + · · ·+ xnen .

We assume that the vectors T (x) ∈ Rm are also represented through their4

coordinates with respect to the standard basis in Rm. By linearity of the5

transformation T (x)6

(4.1) T (x) = x1T (e1) + x2T (e2) + · · ·+ xnT (en) .

Form the m × n matrix A = [ T (e1) T (e2) . . . T (en) ], by using the vectors7

T (ei)’s as its columns. Then (4.1) implies that8

T (x) = Ax ,

by the definition of matrix product. One says that A is the matrix of linear9

transformation T (x).10

Example 1 Let T (x) : R2 → R2 be the rotation of any vector x ∈ R2 by11

the angle θ, counterclockwise. Clearly, this transformation is linear (it does12

not matter if you stretch a vector by a factor of c and then rotate the result,13

or if the same vector is rotated first, and then is stretched). The standard14

basis in R2 is e1 =

[

1
0

]

, e2 =

[

0
1

]

. T (e1) is the rotation of e1, which15

is a unit vector at the angle θ with the x1-axis, so that T (e1) =

[

cos θ
sin θ

]

.16

Similarly, T (e2) is a vector in the second quarter at the angle θ with the17

x2-axis, so that T (e2) =

[

− sin θ

cos θ

]

. Then18

A = [ T (e1) T (e2) ] =

[

cos θ − sin θ
sin θ cos θ

]

,

the rotation matrix. Observe that this matrix is orthogonal. Conclusion:19

T (x) = Ax, so that rotation can be performed through matrix multiplica-20
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tion. If x =

[

x1

x2

]

, then the vector1

[

cos θ − sin θ
sin θ cos θ

] [

x1

x2

]

is the rotation of x by the angle θ, counterclockwise. If we take θ = π
2 , then2

A =

[

0 −1
1 0

]

, and3

[

0 −1
1 0

] [

x1

x2

]

=

[

−x2

x1

]

is the rotation of x =

[

x1

x2

]

by the angle π
2 counterclockwise.4

Matrix representation of a linear transformation depends on the basis5

used. For example, consider a new basis ofR2, {e2, e1}, obtained by changing6

the order of elements in the standard basis. Then the matrix of rotation in7

the new basis is8

B = [ T (e2) T (e1) ] =

[

− sin θ cos θ

cos θ sin θ

]

.

Example 2 Let T (x) : R3 → R3 be rotation of any vector x =





x1

x2

x3





9

around the x3-axis by an angle θ, counterclockwise.10

It is straightforward to verify that T (x) is a linear transformation. Let11

e1, e2, e3 be the standard basis in R3. Similarly to Example 1, T (e1) =12




cos θ
sin θ

0



, T (e2) =





− sin θ
cos θ

0



, because for vectors lying in the x1x2-plane13

T (x) is just a rotation in that plane. Clearly, T (e3) = e3 =





0

0
1



. Then14

the matrix of this transformation is15

A =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 .

Again, we obtained an orthogonal matrix.16
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Sometimes one can find the matrix of a linear transformation T (x) with-1

out evaluating T (x) on the elements of a basis. For example, fix a vector2

a ∈ Rn and define T (x) = Proj ax, the projection of any vector x ∈ Rn on3

a. It is straightforward to verify that T (x) is a linear transformation. Recall4

that Proj ax = x·a
||a||2 a, which we can rewrite as5

(4.2) Proj ax = a
a · x
||a||2 =

a aTx

||a||2 =
a aT

||a||2 x .

Define an n×n matrix P = aaT

||a||2 , the projection matrix. Then Proj ax = Px.6

7

Example 3 Let a =





1
1
1



 ∈ R3. Then the matrix that projects on the8

line through a is9

P =
1

3





1

1
1





[

1 1 1
]

=
1

3





1 1 1

1 1 1
1 1 1



 .

For any x ∈ R3, Px = Proj ax.10

We say that a linear transformation T (x) : Rn → Rn has an eigenvector11

x, corresponding to the eigenvalue λ if12

T (x) = λx , x 6= 0 .

Theorem 5.4.1 Vector x is an eigenvector of T (x) if and only if it is an13

eigenvector of the corresponding matrix representation A (with respect to14

any basis). The corresponding eigenvalues are the same.15

Proof: Follows immediately from the relation T (x) = Ax. ♦16

In Example 2, the vector e3 is an eigenvector for both the rotation T (x)17

and its 3×3 matrixA, corresponding to λ = 1. For Example 3, the vector a is18

an eigenvector for both the projection on a and its matrix P , corresponding19

to λ = 1.20

Suppose that we have a linear transformation T1(x) : Rn → Rm with the21

corresponding m×n matrixA, and a linear transformation T2(x) : Rm → Rk
22

with the corresponding k×mmatrixB, so that T1(x) = Ax and T2(x) = Bx.23
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It is straightforward to show that the composition T2 (T1(x)) : Rn → Rk is1

a linear transformation. We have2

T2 (T1(x)) = BT1(x) = BAx ,

so that k × n product matrix BA is the matrix of composition T2 (T1(x)).3

Exercises4

1. Is the following map T (x) : R2 → R3 a linear transformation? In case it5

is a linear transformation, write down its matrix A.6

a. T

([

x1

x2

])

=





2x1 − x2

x1 + x2 + 1

3x1



.7

Answer. No, T (0) 6= 0.8

b. T

([

x1

x2

])

=





2x1 − x2

x1 + x2

0



.9

Answer. Yes, T (x) is both homogeneous and additive. A =





2 −1
1 1

0 0



.10

c. T

([

x1

x2

])

=





−5x2

2x1 + x2

3x1 − 3x2



.11

Answer. Yes. A =





0 −5

2 1
3 −3



.12

d. T

([

x1

x2

])

=





2x1 − x2

x1

3



.13

Answer. No.14

e. T

([

x1

x2

])

=





ax1 + bx2

cx1 + dx2

ex1 + fx2



. Here a, b, c, d, e, f are arbitrary scalars.15
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Answer. Yes. A =





a b

c d
e f



.1

f. T

([

x1

x2

])

=





x1x2

0

0



.2

Answer. No.3

2. Determine the matrices of the following linear transformations.4

a. T

















x1

x2

x3

x4

















=









x4

x3

x2

x1









. Answer. A =









0 0 0 1
0 0 1 0

0 1 0 0
1 0 0 0









.5

b. T

















x1

x2

x3

x4

















=





x1 − 2x3 − x4

−x1 + 5x2 + x3 − 2x4

5x2 + 2x3 − 4x4



. Answer. A =





1 0 −2 −1
−1 5 1 −2

0 5 2 −4



.6

7

c. T









x1

x2

x3







 =









x1 + x2 − 2x3

−2x1 + 3x2 + x3

0
2x1 + 6x2 − 2x3









. Answer. A =









1 1 −2

−2 3 1
0 0 0
2 6 −2









.8

9

d. T









x1

x2

x3







 = 7x1 + 3x2 − 2x3 . Answer. A =
[

7 3 −2
]

.10

e. T (x) projects x ∈ R3 on the x1x2-plane, then reflects the result with11

respect to the origin, and finally doubles the length.12

Answer. A =





−2 0 0

0 −2 0
0 0 0



.13

f. T (x) rotates the projection of x ∈ R3 on the x1x2-plane by the angle θ14

counterclockwise, while it triples the projection of x on the x3-axis.15

Answer. A =





cos θ − sin θ 0

sin θ cos θ 0
0 0 3



.16

g. T (x) reflects x ∈ R3 with respect to the x1x3 plane, and then doubles17

the length.18
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Answer. A =





2 0 0

0 −2 0
0 0 2



.1

h. T (x) projects x ∈ R4 on the subspace spanned by a =









1

−1
1

−1









.2

Hint. Use (4.2).3

3. Show that the composition of two linear transformations is a linear trans-4

formation.5

Hint. T2 (T1(x1 + x2)) = T2 (T1(x1) + T1(x2)) = T2 (T1(x1)) + T2 (T1(x2)).6

4. A linear transformation T (u) : Rn → Rm is said to be one-to-one if7

T (u1) = T (u2) implies that u1 = u2.8

a. Show that T (u) is one-to-one if and only if T (u) = 0 implies that u = 0.9

b. Assume that n > m. Show that T (u) cannot be one-to-one.10

Hint. Represent T (u) = Au with an m× n matrix A. The system Au = 011

has non-trivial solutions.12

5. A linear transformation T (x) : Rn → Rm is said to be onto if for every13

y ∈ Rm there is x ∈ Rn such that y = T (x). (So that Rm is the range of14

T (x).)15

a. Let A be matrix of T (x). Show that T (x) is onto if and only if rankA = m.16

17

b. Assume that m > n. Show that T (x) cannot be onto.18

6. Assume that a linear transformation T (x) : Rn → Rn has an invertible19

matrix A.20

a. Show that T (x) is both one-to-one and onto.21

b. Show that for any y ∈ Rn the equation T (x) = y has a unique solution22

x ∈ Rn. The map y → x is called the inverse transformation, and is denoted23

by x = T−1(y).24

c. Show that T−1(y) is a linear transformation.25

7. A linear transformation T (x) : R3 → R3 projects vector x on





1

2
−1



.26
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a. Is T (x) one-to-one? (Or is it “many-to-one”?)1

b. Is T (x) onto?2

c. Determine the matrix A of this transformation. Hint. Use (4.2).3

d. Calculate N (A) and C(A), and relate them to parts a and b.4

8. Consider an orthogonal matrix P =

[

cos θ − sin θ
− sin θ − cos θ

]

.5

a. Show that P−1 = P for any θ.6

b. Show that P is the matrix of the following linear transformation: rotate7

x ∈ R2 by an angle θ counterclockwise, then reflect the result with respect8

to x1 axis.9

c. Explain geometrically why PP = I .10

d. Show that P =

[

1 0
0 −1

][

cos θ − sin θ
sin θ cos θ

]

, the product of the rotation11

matrix and the matrix representing reflection with respect to x1 axis.12

e. Let Q be the matrix of the following linear transformation: reflect x ∈ R2
13

with respect to x1 axis, then rotate the result by an angle θ counterclockwise.14

Show that Q =

[

cos θ − sin θ
sin θ cos θ

] [

1 0
0 −1

]

=

[

cos θ sin θ
sin θ − cos θ

]

.15

f. Explain geometrically why QQ = I .16

5.5 Symmetric Transformations17

A square matrix A is called symmetric if AT = A. If aij denote the entries18

of A, then symmetric matrices satisfy19

aij = aji , for all i and j .

(Symmetric off-diagonal elements are equal, while the diagonal elements20

are not restricted.) For example, the matrix A =





1 3 −4
3 −1 0

−4 0 0



 is21

symmetric.22

Symmetric matrices have a number of nice properties. For example,23

(5.1) Ax · y = x ·Ay .
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Indeed, by a property of inner product1

Ax · y = x · AT y = x · Ay .

Theorem 5.5.1 All eigenvalues of a symmetric matrix A are real, and2

eigenvectors corresponding to different eigenvalues are orthogonal.3

Proof: Let us prove the orthogonality part first. Let x 6= 0 and λ be an4

eigenvector-eigenvalue pair, so that5

(5.2) Ax = λx .

Let y 6= 0 and µ be another such pair:6

(5.3) Ay = µy ,

and assume that λ 6= µ. Take inner product of both sides of (5.2) with y:7

(5.4) Ax · y = λ x · y .

Similarly, take the inner product of x with both sides of (5.3):8

(5.5) x · Ay = µx · y .

From (5.4) subtract (5.5), and use (5.1)9

0 = (λ− µ) x · y .

Since λ−µ 6= 0, it follows that x ·y = 0, proving that x and y are orthogonal.10

11

Turning to all eigenvalues being real, assume that on the contrary λ =12

a+ib, with b 6= 0, is a complex eigenvalue and z =











z1
z2
...

zn











is a corresponding13

eigenvector with complex valued entries. By Theorem 4.2.2, λ̄ = a − ib is14

also an eigenvalue, which is different from λ = a+ ib, and z̄ =











z̄1
z̄2
...

z̄n











is a15

corresponding eigenvector. We just proved that z · z̄ = 0. In components16

z · z̄ = z1z̄1 + z2z̄2 + · · ·+ znz̄n = |z1|2 + |z2|2 + · · ·+ |zn|2 = 0 .
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But then z1 = z2 = · · · = zn = 0, so that z is the zero vector, a contradic-1

tion, because an eigenvector cannot be the zero vector. It follows that all2

eigenvalues are real. ♦3

For the rest of this section W will denote a subspace of Rn, of dimension4

p. Let T (x) : Rn → Rn be a linear transformation. We say that W is an5

invariant subspace of T (x) if T (x) ∈ W , for any x ∈ W . In other words,6

T (x) maps W into itself, T (x) : W →W .7

Observe that for an n × n matrix A, and any two coordinate vectors ei8

and ej in Rn, one has Aej · ei = (A)ij - the i, j entry of A.9

A linear transformation T (x) : W →W is called self-adjoint if10

T (x) · y = x · T (y) , for all x, y ∈W .

Using matrix representation T (x) = Ax, relative to some basis w1, w2, . . . , wp11

of W , we can write this definition as12

(5.6) Ax · y = x · Ay = ATx · y , for all x, y ∈ Rp .

If A is symmetric, so that A = AT , then (5.6) holds and T (x) is self-adjoint.13

Conversely, if T (x) is self-adjoint, then (5.6) holds. Taking x = ej ∈ Rp
14

and y = ei ∈ Rp in (5.6) gives (A)ij =
(

AT
)

ij
, so that A = AT , and A is15

symmetric. We conclude that a linear transformation T (x) is self-adjoint if16

and only if its matrix (in any basis) A is symmetric.17

Theorem 5.5.2 A self-adjoint transformation T (x) : W → W has at least18

one eigenvector x ∈W .19

Proof: Let symmetric matrix A be a matrix representation of T (x) on20

W . Eigenvalues of A are the roots of its characteristic equation, and by21

the fundamental theorem of algebra there is at least one root. Since A22

is symmetric that root is real, and the corresponding eigenvector has real23

entries. By Theorem 5.4.1, T (x) has the same eigenvector. ♦24

The following theorem describes one of the central facts of Linear Alge-25

bra.26

Theorem 5.5.3 Any symmetric n × n matrix A has a complete set of n27

mutually orthogonal eigenvectors.28

Proof: Consider the self-adjoint transformation T (x) = Ax : Rn → Rn.29

By the preceding theorem, T (x) has an eigenvector, denoted by f1, and30
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let λ1 be the corresponding eigenvalue. By Theorem 5.4.1, Af1 = λ1f1.1

Consider the (n − 1)-dimensional subspace W = f⊥1 , consisting of x ∈ Rn
2

such that x · f1 = 0 (W is the orthogonal complement of f1). We claim3

that for any x ∈W , one has T (x) · f1 = 0, so that T (x) ∈ W , and W is an4

invariant subspace of T (x). Indeed,5

T (x) · f1 = Ax · f1 = x · Af1 = λ1x · f1 = 0 .

We now restrict T (x) to the subspace W , T (x) : W → W . Clearly, T (x) is6

self-adjoint on W . By the preceding theorem T (x) has an eigenvector f2 on7

W , and by its construction f2 is orthogonal to f1. Then we restrict T (x)8

to the (n − 2)-dimensional subspace W1 = f⊥2 , the orthogonal complement9

of f2 in W . Similarly to the above, one shows that W1 is an invariant10

subspace of T (x), so that T (x) has an eigenvector f3 ∈ W1, which by its11

construction is orthogonal to both f1 and f2. Continuing this process, we12

obtain an orthogonal set of eigenvectors f1, f2, . . . , fn of T (x), which by13

Theorem 5.4.1 are eigenvectors of A too. ♦14

Was it necessary to replace the matrix A by its “abstract” version T (x)?15

Yes. Any matrix representation of T (x) on W is of size (n − 1) × (n − 1),16

and definitely is not equal to A. The above process does not work for A.17

Since symmetric matrices have a complete set of eigenvectors they are18

diagonalizable.19

Theorem 5.5.4 Let A be a symmetric matrix. There is an orthogonal ma-20

trix P so that21

(5.7) P−1AP = D .

The entries of the diagonal matrix D are the eigenvalues of A, while the22

columns of P are the corresponding normalized eigenvectors.23

Proof: By the preceding theorem, A has a complete orthogonal set of24

eigenvectors. Normalize these eigenvectors of A, and use them as columns25

of the diagonalizing matrix P . The columns of P are orthonormal, so that26

P is an orthogonal matrix. ♦27

Recall that one can rewrite (5.7) as A = PDP−1. Since P is orthogonal,28

P−1 = PT , and both of these relations can be further rewritten as PTAP =29

D, and30

(5.8) A = PDPT .
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Example The matrix A =

[

0 −2

−2 3

]

is symmetric. It has an eigen-1

value λ1 = 4 with the corresponding normalized eigenvector 1√
5

[

−1
2

]

,2

and an eigenvalue λ2 = −1 with the corresponding normalized eigenvector3

1√
5

[

2

1

]

, Then P = 1√
5

[

−1 2

2 1

]

is the orthogonal diagonalizing matrix.4

A calculation shows that P−1 = 1√
5

[

−1 2

2 1

]

(this is a very rare example5

of a matrix equal to its inverse). The formula (5.7) becomes6

1√
5

[

−1 2

2 1

] [

0 −2

−2 3

]

1√
5

[

−1 2

2 1

]

=

[

4 0

0 −1

]

.

7

A symmetric matrix A is called positive definite if all of its eigenvalues8

are positive. A symmetric matrix A is called positive semi-definite if all of9

its eigenvalues are non-negative.10

Theorem 5.5.5 A symmetric matrix A is positive definite if and only if11

(5.9) Ax · x > 0 , for all x 6= 0 (x ∈ Rn) .

Proof: If A is positive definite, then A = PDPT by (5.8), where the12

matrix P is orthogonal, and the diagonal matrix D =











λ1 0 . . . 0

0 λ2 . . . 0
...

...
...

0 0 . . . λn











13

has positive diagonal entries. For any x 6= 0, consider the vector y = PTx,14

y =











y1
y2
...
yn











. Observe that y 6= 0, for otherwise PTx = 0, or P−1x = 0, so15

that x = P 0 = 0, a contradiction. Then for any x 6= 016

Ax ·x = PDPT x ·x = DPTx ·PTx = Dy ·y = λ1y
2
1 +λ2y

2
2 + · · ·+λny

2
n > 0 .

Conversely, assume that (5.9) holds, while λ and x 6= 0 is an eigenvalue-17

eigenvector pair:18

Ax = λx .
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Taking inner product of both sides with x, gives Ax · x = λ||x||2, so that1

λ =
Ax · x
||x||2 > 0 ,

proving that all eigenvalues are positive, so that A is positive definite. ♦2

The formula (5.9) provides an alternative definition of positive definite3

matrices, which is often more convenient to use. Similarly, a symmetric4

matrix is positive semi-definite if and only if Ax · x ≥ 0, for all x ∈ Rn.5

Write a positive definite matrix A in the form6

A = PDPT = P











λ1 0 . . . 0

0 λ2 . . . 0
...

...
...

0 0 . . . λn











PT .

One can define square root of A as follows7

√
A = P











√
λ1 0 . . . 0

0
√
λ2 . . . 0

...
...

...
0 0 . . .

√
λn











PT ,

using that all eigenvalues are positive. It follows that
(√

A
)2

= A, by squar-8

ing the diagonal entries. (Other choices for
√
A can be obtained replacing9 √

λi by ±
√
λi.)10

If A is any non-singular n× n matrix (not necessarily symmetric), then11

the matrix ATA is positive definite. Indeed,
(

ATA
)T

= AT
(

AT
)T

= ATA,12

so that this matrix is symmetric, and for any vector x 6= 0 (x ∈ Rn)13

ATAx · x = Ax ·
(

AT
)T
x = Ax ·Ax = ||Ax||2 > 0 ,

because Ax 6= 0 (if Ax = 0, then x = A−10 = 0, contrary to x 6= 0). By14

Theorem 5.5.5, the matrix ATA is positive definite. Let now A be an m×n15

matrix. Then ATA is a square n× n matrix, and a similar argument shows16

that ATA is symmetric and positive semidefinite.17
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Singular Value Decomposition1

We wish to extend the useful concept of diagonalization to non-square ma-2

trices. For a matrix A of size m × n the crucial role will be played by two3

square matrices ATA of size n × n, and ATA of size m × m. Both ma-4

trices are positive semidefinite (symmetric), and hence both matrices are5

diagonalizable, with non-negative eigenvalues.6

An m × n matrix A maps vectors from Rn to Rm (if x ∈ Rn, then7

Ax ∈ Rm). We shall use orthonormal bases in both Rn and Rm that are8

connected to A.9

Lemma 5.5.1 If x is an eigenvector of ATA corresponding to the eigen-10

value λ, then Ax is an eigenvector of AAT corresponding to the same eigen-11

value λ. Moreover, if x is unit vector, then the length ||Ax|| =
√
λ.12

If x1 and x2 are two orthogonal eigenvectors of ATA, then the vectors13

Ax1 and Ax2 are orthogonal.14

Proof: We are given that15

(5.10) ATAx = λx

for some non-zero x ∈ Rn. Multiplication by A from the left16

AAT (Ax) = λ (Ax)

shows that Ax ∈ Rm is an eigenvector of AAT corresponding to the eigen-17

value λ. If x is a unit eigenvector of ATA , multiply (5.10) by xT :18

xTATAx = λxTx = λ||x||2 = λ ,

19

(Ax)T (Ax) = λ ,
20

(5.11) ||Ax||2 = λ ,

justifying the second claim. For the final claim, we are given that ATAx2 =21

λ2x2 for some number λ2 and non-zero vector x2 ∈ Rn, and moreover that22

x1 · x2 = 0. Then23

Ax1 · Ax2 = x1 · ATAx2 = λ2x1 · x2 = 0 ,

proving the orthogonality of Ax1 and Ax2. ♦24
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If λi are the eigenvalues of ATA with corresponding eigenvectors xi, then1

the numbers σi =
√
λi ≥ 0 are called the singular values of A. Observe that2

σi = ||Axi|| by (5.11).3

For a non-square matrix A the elements aii are still considered to be4

diagonal entries. For example, if A is of size 2×7, then its diagonal consists5

of a11 and a22. An m×n matrix is called diagonal if all off-diagonal entries6

are zero.7

Singular Value Decomposition. Any m× n matrix A can be factored into8

A = Q1ΣQ
T
2 ,

where Q1 and Q2 are orthogonal matrices of sizes m×m and n× n respec-9

tively, and Σ is an m× n diagonal matrix with singular values of A on the10

diagonal.11

To explain the process, let us assume first that A is of size 3×2, mapping12

R2 to R3. Let x1 and x2 be the orthonormal eigenvectors of ATA, which is13

a 2 × 2 symmetric matrix. We use them as columns of a 2 × 2 orthogonal14

matrix Q2 = [x1 x2]. Let us begin by assuming that the singular values15

σ1 = ||Ax1|| and σ2 = ||Ax2|| are both non-zero (positive). The vectors16

q1 = Ax1
σ1

and q2 = Ax2
σ2

are orthonormal, in view of Lemma 5.5.1. Let17

q3 ∈ R3 be unit vector perpendicular to both q1 and q2 (q3 = ±q1 × q2).18

Form a 3 × 3 orthogonal matrix Q1 = [q1 q2 q3]. We claim that19

(5.12) A = Q1





σ1 0
0 σ2

0 0



QT
2 .

Indeed, since QT = Q−1 for orthogonal matrices, it suffices to justify an20

equivalent formula21

(5.13) QT
1 AQ2 =





σ1 0

0 σ2

0 0



 .

The i, j entry on the left is (here 1 ≤ i ≤ 3, 1 ≤ j ≤ 2)22

qT
i Axj = σjq

T
i qj ,

which is equal to σ1 if i = j = 1, it is equal to σ2 if i = j = 2, and to zero for23

all other i, j. The matrix on the right in (5.13) has the same entries. Thus24

(5.12) is justified.25
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Let us now consider the case when σ1 = Ax1 6= 0, but Ax2 = 0. Define1

q1 = Ax1
σ1

, as above. Form a 3 × 3 orthogonal matrix Q1 = [q1 q2 q3], where2

q2 and q2 are chosen to be orthonormal vectors that are both perpendicular3

to q1. With Q2 = [x1 x2], as above, we claim that4

A = Q1





σ1 0

0 0
0 0



QT
2 .

Indeed, in the equivalent formula (5.13) the i, 2 element is now5

qT
i Ax2 = 0 ,

so that all elements of the second column are zero.6

We now consider general m × n matrices that map Rn → Rm. If7

x1, x2, . . . , xn are orthonormal eigenvectors of ATA, define an n × n or-8

thogonal matrix Q2 = [x1 x2 . . . xn]. Assume that there are exactly r ≤ n9

positive singular values σ1 = Ax1, σ2 = Ax2, . . . , σr = Axr (which means10

that in case r < n one has Axi = 0 for i > r). Define q1 = Ax1
σ1
, . . . , qr = Axr

σr
.11

These vectors are mutually orthogonal by Lemma 5.5.1. If r = m these vec-12

tors form a basis of Rm. If r < m, we augment these vectors with m − r13

orthonormal vectors to obtain an orthonormal basis q1, q2, . . . , qm in Rm.14

(The case r > m is not possible, since the r vectors qi ∈ Rm are linearly15

independent.) Define an m ×m orthogonal matrix Q1 = [q1 q2 . . . qm]. As16

above,17

A = Q1ΣQ
T
2 ,

where Σ is an m × n diagonal matrix with r positive diagonal entries18

σ1, σ2, . . . , σr, and the rest of the diagonal entries of Σ are zero. It is cus-19

tomary to arrange singular values in decreasing order σ1 ≥ σ2 ≥ · · ·σr > 0.20

21

Singular value decomposition is useful in image processing. Suppose that22

a spaceship is taking a picture on the planet Jupiter, and encodes it, pixel23

by pixel, in a large m× n matrix A. Assume that A has r positive singular24

values (r may be smaller than m and n). Observe that25

A = Q1ΣQ
T
2 = σ1q1x

T
1 + σ2q2x

T
2 + · · ·+ σrqrx

T
r ,

which is similar to the spectral decomposition of square matrices considered26

in Exercises. Then it is sufficient to send to the Earth 2r vectors, xi’s and27

qi’s, and r positive singular values σi.28



5.5. SYMMETRIC TRANSFORMATIONS 171

Exercises1

1. Given an arbitrary square matrix A show that the matrices A+ AT and2

AAT are symmetric. If A is non-singular, show that AAT is positive definite.3

4

2. a. Given an arbitrary square matrix A and a symmetric B show that5

ATBA is symmetric.6

b. Suppose that both A and B are symmetric. Show that AB is symmetric7

if and only if A and B commute.8

3. Explain why both determinant and trace of a positive definite matrix are9

positive.10

4. Write the matrix A in the form A = PDPT with orthogonal P and11

diagonal D. Determine if A is positive definite (p.d.).12

a. A =

[

0 1
1 0

]

. Answer. P = 1√
2

[

−1 1
1 1

]

, D =

[

−1 0
0 1

]

, not p.d.13

14

b. A =

[

−1 2

2 2

]

. Answer. P = 1√
5

[

−2 1

1 2

]

, D =

[

−2 0

0 3

]

.15

c. A =





0 2 0
2 0 0
0 0 5



.16

Answer. P =







− 1√
2

1√
2

0
1√
2

1√
2

0

0 0 1






, D =





−2 0 0
0 2 0

0 0 5



, not p.d.17

d. A =





2 −1 1

−1 2 −1
1 −1 2



.18

Answer. P =







1√
3

− 1√
2

1√
2

− 1√
3

0 1√
2

1√
3

1√
2

0






, D =





4 0 0
0 1 0

0 0 1



, p.d.19

5. Let an n× n matrix A be skew-symmetric, so that AT = −A.20

a. Show that each eigenvalue is either zero or purely imaginary number.21

Hint. If Ax = λx and λ is real, then x ·x > 0 and λx ·x = Ax ·x = x ·ATx =22

−x ·Ax = −λx ·x, so that λ = 0. If Az = λz and λ is complex, then Az̄ = λ̄z̄23
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and z · z̄ > 0. Obtain λz · z̄ = Az · z̄ = z · AT z̄ = −z · Az̄ = −λ̄z · z̄, so that1

λ = −λ̄.2

b. If n is odd show that one of the eigenvalues is zero.3

Hint. What is |A|?4

c. Show that the matrix I + A is non-singular.5

Hint. What are the eigenvalues of this matrix?6

d. Show that the matrix (I − A)(I +A)−1 is orthogonal.7

6. Given an arbitrary square matrix A, show that the matrix ATA + I is8

positive definite.9

7. Assume that a matrix A is symmetric and invertible. Show that A−1 is10

symmetric.11

8. Let12

(5.14) A = λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λnunu

T
n ,

where the vectors u1, u2, . . . , un ∈ Rn form an orthonormal set, and λ1, λ2, . . . , λn13

are real numbers, not necessarily different.14

a. Show that A is an n × n symmetric matrix.15

b. Show that u1, u2, . . . , un ∈ Rn are the eigenvectors ofA, and λ1, λ2, . . . , λn16

are the corresponding eigenvalues of A.17

c. For any x ∈ Rn show that18

Ax = λ1Proju1
x+ λ2Proju2

x+ · · ·+ λnProjun
x .

(The formula (5.14) is known as the spectral decomposition of A, and the19

eigenvalues λ1, λ2, . . . , λn are often called the spectrum of A.)20

9. a. Determine if A =









−5 −1 1 1

−1 2 −1 0
1 −1 2 7

1 0 7 8









is positive definite.21

Hint. Let x = e1, then Ax · x = −5.22

b. Show that all diagonal entries of a positive definite matrix are positive.23

Hint. 0 < Aek · ek = akk.24
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10. Assume that a matrix A is positive definite, and S is a non-singular1

matrix of the same size. Show that the matrix STAS is positive definite.2

11. Let A = [aij] and U = [uij] be positive definite n × n matrices. Show3

that

n
∑

i,j=1

aijuij > 0.4

Hint. Diagonalize A = PDP−1, where the entries of the diagonal ma-5

trix D are the positive eigenvalues λ1, λ2, . . . , λn of A. Let V = PUP−1.6

The matrix V = [vij] is positive definite, and hence its diagonal entries7

are positive, vii > 0. Since similar matrices have the same trace, ob-8

tain:

n
∑

i,j=1

aijuij = tr (AU) = tr
(

PAUP−1
)

= tr
(

PAP−1 PUP−1
)

=9

tr (DV ) = λ1v11 + λ2v22 + · · ·+ λnvnn > 0.10

12. Calculate the singular value decomposition of A =





2 −4
−2 −8

1 −8



.11

Answer. A =





1/3 2/3 2/3
2/3 −2/3 1/3
2/3 1/3 −2/3









12 0
0 3
0 0





[

0 1
−1 0

]T

.12

5.6 Quadratic Forms13

All terms of the function f(x1, x2) = x2
1 − 3x1x2 + 5x2

2 are quadratic in its14

variables x1 and x2, giving an example of a quadratic form. If x =

[

x1

x2

]

15

and A =

[

1 −3
2

−3
2 5

]

, it is easy to verify that16

f(x1, x2) = Ax · x .
This symmetric matrix A is called the matrix of the quadratic form f(x1, x2).17

The quadratic form g(x1, x2) = x2
1 + 5x2

2 involves only a sum of squares. Its18

matrix is diagonal

[

1 0
0 5

]

. Such quadratic forms are easier to analyze.19

For example, the equation20

x2
1 + 5x2

2 = 1

defines an ellipse in the x1x2-plane, with the principal axes going along the21

x1 and x2 axes. We shall see in this section that the graph of22

x2
1 − 3x1x2 + 5x2

2 = 1
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is also an ellipse, with rotated principal axes.1

In general, given a symmetric n × n matrix A and x =











x1

x2
...
xn











∈ Rn,2

one considers a quadratic form Ax ·x, with the matrix A. The sum

n
∑

j=1

aijxj3

gives the component i of Ax, and then4

Ax · x =

n
∑

i=1

xi

n
∑

j=1

aijxj =

n
∑

i=1

n
∑

j=1

aijxixj .

This sum is equal to

n
∑

j=1

n
∑

i=1

aijxixj, and one often writesAx·x =

n
∑

i,j=1

aijxixj,5

meaning double summation in any order. If a quadratic form includes a term6

k xixj, with the coefficient k, then its matrix A has the entries aij = aji = k
2 ,7

so that A is symmetric.8

A quadratic form is called positive definite if its matrix A is positive9

definite, which implies that Ax · x > 0 for all x 6= 0 by Theorem 5.5.5.10

Example 1 Consider the quadratic form11

Ax · x = x2
1 + 2x2

2 + 3x2
3 − 2x1x2 + 2x2x3 ,

where





x1

x2

x3



 ∈ R3. The matrix of this form is A =





1 −1 0
−1 2 1

0 1 3



. To12

see if A is positive definite, let us calculate its eigenvalues. Expanding the13

characteristic polynomial |A − λI | in the first row, gives the characteristic14

equation15

λ3 − 6λ2 + 9λ− 2 = 0 .

Guessing a root, λ1 = 2, allows one to factor the characteristic equation:16

(λ− 2)
(

λ2 − 4λ+ 1
)

= 0 ,

so that λ2 = 2−
√

3 and λ3 = 2+
√

3. All eigenvalues are positive, therefore17

A is positive definite. By Theorem 5.5.5, Ax · x > 0 for all x 6= 0, which is18

the same as saying that19

x2
1 + 2x2

2 + 3x2
3 − 2x1x2 + 2x2x3 > 0 ,
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for all x1, x2, x3, except when x1 = x2 = x3 = 0.1

For a diagonal matrix2

(6.1) D =











λ1 0 . . . 0

0 λ2 . . . 0
...

... . . .
...

0 0 . . . λn











the corresponding quadratic form3

Dx · x = λ1x
2
1 + λ2x

2
2 + · · ·+ λnx

2
n .

is a sum of squares. In fact, a quadratic form is a sum of squares if and only4

if its matrix is diagonal.5

It is often advantageous to make a change of variables x = Sy in a6

quadratic form Ax ·x, using an invertible n×n matrix S. The old variables7

x1, x2, . . . , xn are replaced by the new variables y1, y2, . . . , yn. (One can8

express the new variables through the old ones by the transformation y =9

S−1x.) The quadratic form changes as follows10

(6.2) Ax · x = ASy · Sy = STASy · y

The matrices STAS and A are called congruent. They represent the same11

quadratic form in different variables.12

Recall that for any symmetric matrix A one can find an orthogonal13

matrix P , so that PTAP = D, where D is the diagonal matrix in (6.1).14

The entries of D are the eigenvalues of A, and the columns of P are the15

normalized eigenvectors of A (see (5.8)). Let now x = Py. Using (6.2)16

Ax · x = PTAPy · y = Dy · y = λ1y
2
1 + λ2y

2
2 + · · ·+ λny

2
n .

It follows that any quadratic form can be reduced to a sum of squares by an17

orthogonal change of variables. In other words, any quadratic form can be18

diagonalized.19

Example 2 Let us return to the quadratic form x2
1 − 3x1x2 + 5x2

2, with20

its matrix A =

[

1 −3
2

−3
2 5

]

. One calculates that A has an eigenvalue21

λ1 = 11
2 with the corresponding normalized eigenvector 1√

10

[

−1
3

]

, and an22
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eigenvalue λ2 = 1
2 with the corresponding normalized eigenvector 1√

10

[

3

1

]

,1

Then P = 1√
10

[

−1 3
3 1

]

is the orthogonal diagonalizing matrix. Write the2

change of variables x = Py, which is

[

x1

x2

]

=
1√
10

[

−1 3
3 1

] [

y1
y2

]

, in3

components as4

x1 = 1√
10

(−y1 + 3y2)(6.3)

x2 = 1√
10

(3y1 + y2) .

Substituting these expressions into the quadratic form x2
1−3x1x2 +5x2

2, and5

simplifying, obtain6

x2
1 − 3x1x2 + 5x2

2 =
11

2
y2
1 +

1

2
y2
2 ,

so that the quadratic form is a sum of squares in the new coordinates.7

We can now identify the curve8

(6.4) x2
1 − 3x1x2 + 5x2

2 = 1

as an ellipse, because in the y1,y2 coordinates9

(6.5)
11

2
y2
1 +

1

2
y2
2 = 1

is clearly an ellipse. The principal axes of the ellipse (6.5) are y1 = 0 and10

y2 = 0. Corresponding to y2 = 0 (or the y1 axis), obtain from (6.3)11

x1 = − 1√
10
y1(6.6)

x2 = 3 1√
10
y1 ,

a principal axis for (6.4), which is a line through the origin in the x1x2-plane12

parallel to the vector 1√
10

[

−1
3

]

(one of the eigenvectors of A), with y113

serving as a parameter on this line. This principal axis can also be written in14

the form x2 = −3x1, making it easy to plot in the x1x2-plane. Similarly, the15

line x2 = 1
3x1 through the other eigenvector of A gives the second principal16

axis (it is obtained by setting y1 = 0 in (6.3)). Observe that the principal17
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axes are perpendicular (orthogonal) to each other, as the eigenvectors of a1

symmetric matrix. (Here P is an orthogonal 2× 2 matrix with determinant2

|P | = −1. Hence, P is of the form

[

cos θ sin θ

sin θ − cos θ

]

, which corresponds3

to reflection with respect to x1 axis followed by a rotation. The change of4

variables x = Py produces the principal axes in the x1x2-coordinates from5

the principal axes in the y1y2-coordinates through reflection followed by a6

rotation.)7

Example 3 Let us diagonalize the quadratic form −x2
1−3x1x2+3x2

2, with8

the matrix B =

[

−1 −3
2

−3
2 3

]

. The matrix B has the same eigenvectors as9

the matrix A in the Example 2 (observe that B = A − 2I). Hence the10

diagonalizing matrix P is the same, and we use the same change of variable11

(6.3) to obtain12

−x2
1 − 3x1x2 + 3x2

2 =
7

2
y2
1 −

3

2
y2
2 .

The equation13

7

2
y2
1 −

3

2
y2
2 = 1

gives a hyperbola in the y1y2-plane (y2 = ±
√

7
3y

2
1 − 2

3 ), extending along the14

y2-axis. It follows that the curve15

−x2
1 − 3x1x2 + 3x2

2 = 1

is also a hyperbola, with the principal axes x2 = −3x1 and x2 = 1
3x1. (This16

hyperbola extends along the x2 = 1
3x1 axis.)17

Simultaneous Diagonalization18

Suppose that we have two quadratic forms Ax · x and Bx · x, with x ∈ Rn.19

Each form can be diagonalized, or reduced to a sum of squares. Is it possible20

to diagonalize both forms simultaneously, by using the same non-singular21

change of variables?22

Theorem 5.6.1 Two quadratic forms can be simultaneously diagonalized,23

provided that one of them is positive definite.24

Proof: Assume that A is a positive definite matrix. By a change of25

variables x = S1y (where S1 is an orthogonal matrix), we can diagonalize26

the corresponding quadratic form:27

Ax · x = λ1y
2
1 + λ2y

2
2 + · · ·+ λny

2
n .
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Since A is positive definite, its eigenvalues λ1, λ2, . . . , λn are positive. We1

now make a further change of variables y1 = 1√
λ1
z1, y2 = 1√

λ2
z2, . . . , yn =2

1√
λn
zn, or in matrix form y = S2z, where3

S2 =













1√
λ1

0 . . . 0

0 1√
λ2

. . . 0
...

... . . .
...

0 0 . . . 1√
λn













,

a diagonal matrix. Then4

(6.7) Ax · x = z2
1 + z2

2 + · · ·+ z2
n = z · z .

Denote S = S1S2. The change of variables we used to achieve (6.7) is5

x = S1y = S1S2z = Sz.6

By the same change of variables x = Sz, the second quadratic form Bx·x7

is transformed to a new quadratic form STBSz · z. Let us now diagonalize8

this new quadratic form by a change of variables z = Pu, where P is an9

orthogonal matrix. With the second quadratic form now diagonalized, let10

us see what happens to the first quadratic form after the last change of11

variables. Since PT = P−1 for orthogonal matrices, obtain in view of (6.7):12

Ax · x = z · z = Pu · Pu = u · PTPu = u · u = u2
1 + u2

2 + · · ·+ u2
n ,

so that the first quadratic form is also diagonalized. (The change of variables13

that diagonalized both quadratic forms is x = Sz = SPu = S1S2Pu.) ♦14

The Law of Inertia15

Recall that diagonalization of a quadratic formAx·x is a sum of square terms16

∑n
i=1 λiy

2
i , where λi’s are the eigenvalues of the n×n matrixA. The number17

of positive eigenvalues of A determines the number of positive terms in the18

diagonalization. A non-singular change of variables x = Sz transforms the19

quadratic forms Ax ·x into STASz · z, with a congruent matrix STAS. The20

diagonalization of STASz · z will be different from that of Ax · x, however21

the number of positive and negative terms will remain the same. This fact22

is known as the law of inertia, and it is justified next.23

Theorem 5.6.2 If |S| 6= 0, then the congruent matrix STAS has the same24

number of positive eigenvalues, and the same number of negative eigenvalues25

as A.26
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Proof: The idea of the proof is to gradually change the matrix S to an1

orthogonal matrix Q through a family S(t), while preserving the number2

of positive, negative and zero eigenvalues of the matrix S(t)TAS(t) in the3

process. Once S(t) = Q, this matrix becomes Q−1AQ, which is a similar4

matrix to A, with the same eigenvalues.5

Assume first that |A| 6= 0, so that A has no zero eigenvalue. Write6

down S = QR decomposition. Observe that |R| 6= 0 (because |Q||R| =7

|S| 6= 0), and hence all diagonal entries of the upper triangular matrix R8

are positive. Consider two families of matrices S(t) = Q [(1− t)I + tR]9

and F (t) = ST (t)AS(t) depending on a parameter t, with 0 ≤ t ≤ 1.10

Observe that |S(t)| 6= 0 for all t ∈ [0, 1], because |Q| = ±1, while the11

matrix (1 − t)I + tR is an upper triangular matrix with positive diagonal12

entries, and hence its determinant is positive. It follows that |F (t)| 6= 013

for all t ∈ [0, 1]. As t varies from 0 to 1, the eigenvalues of F (t) change14

continuously. These eigenvalues cannot be zero, since zero eigenvalue would15

imply |F (t)| = 0, which is not possible. It follows that the number of positive16

eigenvalues of F (t) remains the same for all t. When t = 0, S(0) = Q17

and then F (0) = QT (t)AQ(t) = Q−1(t)AQ(t), which is a matrix similar18

to A, and hence F (0) has the same eigenvalues as A, and in particular19

the same number of positive eigenvalues as A. At t = 1, F (1) = STAS,20

since S(1) = S. We conclude that the matrices A and STAS have the same21

number of positive eigenvalues. The same argument shows that the matrices22

A and STAS have the same number of negative eigenvalues.23

We now turn to the case |A| = 0, so that A has zero eigenvalue(s). If24

ε > 0 is small enough, then the matrix A − εI has no zero eigenvalue, and25

it has the same number of positive eigenvalues as A, which by above is the26

same as the number of positive eigenvalues of ST (A− εI)S, which in turn27

is the same as the number of positive eigenvalues of STAS (decreasing ε, if28

necessary). Considering A+ εI , with small ε > 0, one shows similarly that29

the number of negative eigenvalues of STAS and A is the same. ♦30

Rayleigh Quotient31

It is often desirable to find the minimum and the maximum values of a32

quadratic form Ax · x over all unit vectors x in Rn (i.e., over the unit ball33

||x|| = 1 in Rn). Since all eigenvalues of a symmetric n × n matrix A are34

real, let us arrange them in increasing order λ1 ≤ λ2 ≤ · · · ≤ λn, with some35

eigenvalues possibly repeated. Even with repeated eigenvalues, a symmetric36

matrix A has a complete set of n orthonormal eigenvectors ξ1, ξ2, . . . , ξn,37
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according to Theorem 5.5.3. Here Aξ1 = λ1ξ1, Aξ2 = λ2ξ2, . . . , Aξn = λnξn,1

and ||ξi|| = 1 for all i.2

When x = ξ1 the quadratic form Ax · x is equal to3

Aξ1 · ξ1 = λ1ξ1 · ξ1 = λ1 ,

which turns out to be the minimum value of Ax ·x. Similarly, the maximum4

value of Ax · x will be shown to be λn, and it occurs at x = ξn.5

Proposition 5.6.1 The extreme values of Ax · x over the set of all unit6

vectors are the smallest and the largest eigenvalues of A:7

min
||x||=1

Ax · x = λ1 , it occurs at x = ξ1 ,

8

max
||x||=1

Ax · x = λn , taken on at x = ξn .

Proof: Since Aξ1 · ξ1 = λ1 and Aξn · ξn = λn, it suffices to show that for9

all unit vectors x10

(6.8) λ1 ≤ Ax · x ≤ λn .

Since the eigenvectors ξ1, ξ2, . . . , ξn form an orthonormal basis of Rn, we11

may represent12

x = c1ξ1 + c2ξ2 + · · ·+ cnξn ,

and by the Pythagorean theorem13

(6.9) c21 + c22 + · · ·+ c2n = ||x||2 = 1 .

Also14

Ax = c1Aξ1 + c2Aξ2 + · · ·+ cnAξn = c1λ1ξ1 + c2λ2ξ2 + · · ·+ cnλnξn .

Then, using that ξi · ξj = 0 for i 6= j, and ξi · ξi = ||ξi||2 = 1, obtain15

Ax · x = (c1λ1ξ1 + c2λ2ξ2 + · · ·+ cnλnξn) · (c1ξ1 + c2ξ2 + · · ·+ cnξn)

= λ1c
2
1 + λ2c

2
2 + · · ·+ λnc

2
n ≤ λn

(

c21 + c22 + · · ·+ c2n
)

= λn ,

using (6.9), and the other inequality is proved similarly. ♦16

The ratio
Ax · x
x · x is called the Rayleigh quotient, where the vector x is no17

longer assumed to be unit. Set α = ||x||. The vector z = 1
αx is unit, and18

then (since x = αz)19

Ax · x
x · x =

Az · z
z · z = Az · z .

Suppose that Ax1 = λ1x1, Axn = λnxn, and eigenvectors x1, xn are not20

assumed to be unit.21
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Theorem 5.6.3 The extreme values of the Rayleigh quotient are1

min
x∈Rn

Ax · x
x · x = λ1 , it occurs at x = x1 (or at x = αξ1, for any α 6= 0) ,

2

max
x∈Rn

Ax · x
x · x = λn , it occurs at x = xn (or at x = αξn, for any α 6= 0) .

Proof: In view of Proposition 5.6.1, with z =
1

||x||x, obtain3

min
x∈Rn

Ax · x
x · x = min

||z||=1
Az · z = λ1 .

The minimum occurs at z = ξ1, or at x = αξ1 with any α. The second part4

is justified similarly. ♦5

Exercises6

1. Given a matrix A, write down the corresponding quadratic form Ax · x.7

a. A =

[

2 −1

−1 −3

]

. Answer. 2x2
1 − 2x1x2 − 3x2

2.8

b. A =

[

−1 3
2

3
2 0

]

. Answer. −x2
1 + 3x1x2.9

c. A =





0 −3
2 −3

−3
2 1 2

−3 2 −2



. Answer. x2
2 − 3x1x2 − 6x1x3 + 4x2x3 − 2x2

3.10

2. Write down the matrix A of the following quadratic forms.11

a. 2x2
1 − 6x1x2 + 5x2

2. Answer. A =

[

2 −3

−3 5

]

.12

b. −x1x2 − 4x2
2. Answer. A =

[

0 −1
2

−1
2 −4

]

.13

c. 3x2
1 − 2x1x2 + 8x2x3 + x2

2 − 5x2
3. Answer. A =





3 −1 0

−1 1 4
0 4 −5



.14

d. 3x1x2 − 6x1x3 + 4x2x3. Answer. A =





0 3
2 −3

3
2 0 2

−3 2 0



.15
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e. −x2
1 + 4x2

2 + 2x2
3 − 5x1x2 − 4x1x3 + 4x2x3 − 8x3x4.1

Answer. A =









−1 −5
2 −2 0

−5
2 4 2 0

−2 2 2 −4
0 0 −4 0









.2

3. Let A be a 20 × 20 matrix with aij = i+ j.3

a. Show that A is symmetric.4

b. In the quadratic form Ax · x find the coefficient of the x3x8 term.5

Answer. 22.6

c. How many terms can the form Ax · x contain? Answer. 20·21
2 = 210.7

4. Diagonalize the following quadratic forms.8

a. 3x2
1 + 2x1x2 + 3x2

2.9

Answer. P = 1√
2

[

−1 1

1 1

]

, the change of variables x = Py gives 2y2
1 +4y2

2 .10

11

b. −4x1x2 + 3x2
2.12

Answer. P = 1√
5

[

2 −1
1 2

]

, obtain −y2
1 + 4y2

2.13

c. 3x2
1 + x2

2 − 2x2
3 + 4x2x3.14

Answer. P =







1 0 0
0 − 1√

5
2√
5

0 2√
5

1√
5






, the change of variables x1 = y1, x2 =15

− 1√
5
y2 + 2√

5
y3, x3 = 2√

5
y2 + 1√

5
y3 produces 3y2

1 − 3y2
2 + 2y2

3.16

d. −x2
1 − x2

2 − x2
3 + 2x1x2 + 2x1x3 + 2x2x3.17

Hint. The matrix of the quadratic form has eigenvalues -2,-2,1. The eigen-18

value -2 has two linearly independent eigenvectors. One needs to apply19

Gram-Schmidt process to these eigenvectors to obtain the first two columns20

of the orthogonal matrix P.21
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Answer. The orthogonal P =







− 1√
2

− 1√
6

1√
3

0 2√
6

1√
3

1√
2

− 1√
6

1√
3






, the change of variables1

x1 = − 1√
2
y1 − 1√

6
y2 + 1√

3
y3, x2 = 2√

6
y2 + 1√

3
y3, x3 = 1√

2
y1 − 1√

6
y2 + 1√

3
y32

produces −2y2
1 − 2y2

2 + y2
3.3

5. Consider congruent matrices A and STAS, with |S| 6= 0. Assume that A4

has zero eigenvalue. Show that STAS also has zero eigenvalue of the same5

multiplicity as A.6

Hint. By the law of inertia, the matrices STAS and A have the same number7

of positive eigenvalues, and the same number of negative eigenvalues.8

6. a. Let A be a 3×3 symmetric matrix with the eigenvalues λ1 > 0, λ2 > 0,9

and λ3 = 0. Show that Ax · x ≥ 0 for all x ∈ R3. Show also that there is a10

vector x0 ∈ R3 such that Ax0 · x0 = 0.11

Hint. If P is the orthogonal diagonalizing matrix for A, and x = Py, then12

Ax · x = λ1y
2
1 + λ2y

2
2 ≥ 0.13

b. Recall that a symmetric n × n matrix is called positive semi-definite if14

Ax · x ≥ 0 for all x ∈ Rn. Using quadratic forms, show that a symmetric15

matrix A is positive semi-definite if and only if all eigenvalues of A are16

non-negative.17

c. Show that a positive semi-definite matrix with non-zero determinant is18

positive definite.19

d. A symmetric n × n matrix is called negative semi-definite if Ax · x ≤ 020

for all x ∈ Rn. Show that a symmetric matrix A is negative semi-definite if21

and only if all eigenvalues of A are non-positive.22

7. An n × n matrix with the entries aij = 1
i+j−1 is known as the Hilbert23
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matrix1

A =











































1
1

2

1

3
. . .

1

n

1

2

1

3

1

4
. . .

1

n+ 1

1

3

1

4

1

5
. . .

1

n+ 2

...
...

...
. . .

...

1

n

1

n+ 1

1

n+ 2
. . .

1

2n− 1











































.

Show that A is positive definite.2

Hint. For any x ∈ Rn, x 6= 0,3

Ax · x =
∑n

i,j=1
xixj

i+j−1 =
∑n

i,j=1 xixj

∫ 1
0 t

i+j−2 dt

=
∫ 1
0

(
∑n

i=1 xit
i−1
)2
dt > 0 .

5.7 Vector Spaces4

Vectors in Rn can be added, and multiplied by scalars. There are other5

mathematical objects that can be added and multiplied by numbers (scalars),6

for example matrices or functions. We shall refer to such objects as vectors,7

belonging to abstract vector spaces, provided that the operations of addition8

and scalar multiplication satisfy the familiar properties of vectors in Rn.9

Definition A vector space V is a collection of objects called vectors, which10

may be added together and multiplied by numbers. So that for any x, y ∈ V11

and any number c, one has x + y ∈ V and c x ∈ V . Moreover, addition12

and scalar multiplication are required to satisfy the following natural rules,13

also called axioms (which hold for all vectors x, y, z ∈ V and any numbers14
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c, c1, c2):1

x+ y = y + x ,

x+ (y + z) = (x+ y) + z ,

there is a unique “zero vector”, denoted 0, such that x+ 0 = x ,

for each x in V there is a unique vector −x such that x+ (−x) = 0 ,

1x = x ,

(c1c2) x = c1 (c2x) ,

c (x+ y) = cx+ cy ,

(c1 + c2) x = c1x+ c2x .

The following additional rules can be easily deduced from the above axioms:2

0 x = 0 ,

c 0 = 0 ,

(−1) x = −x .

Any subspace in Rn provides an example of a vector space. In particular,3

any plane through the origin in R3 is a vector space. Other examples of4

vector spaces involve matrices and polynomials.5

Example 1 Two by two matrices can be added and multiplied by scalars,6

and the above axioms are clearly satisfied, so that 2 × 2 matrices form a7

vector space, denoted by M2×2. Each 2 × 2 matrix is now regarded as a8

vector in M2×2. The role of the zero vector 0 is played by the zero matrix9

O =

[

0 0
0 0

]

.10

The standard basis for M2×2 is provided by the matrices E11 =

[

1 0
0 0

]

,11

E12 =

[

0 1
0 0

]

, E21 =

[

0 0
1 0

]

, and E22 =

[

0 0
0 1

]

, so that the12

vector space M2×2 is four-dimensional. Indeed, given an arbitrary A =13
[

a11 a12

a21 a22

]

∈M2×2, one can decompose14

A = a11E11 + a12E12 + a21E21 + a22E22 ,

so that a11, a12, a21, a22 are the coordinates of A with respect to the standard15

basis.16
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One defines similarly the vector space Mm×n of m × n matrices. The1

dimension of Mm×n is mn.2

Example 2 One checks that the above axioms apply for polynomials of3

power n of the form anx
n +an−1x

n−1 + · · ·+a2x
2 +a1x+a0, with numerical4

coefficients a0, a1, a2, . . . , an. Hence, these polynomials form a vector space,5

denoted by Pn. Particular polynomials are regarded as vectors in Pn. The6

vectors 1, x, x2, . . . , xn form the standard basis of Pn, so that Pn is an7

(n+ 1)-dimensional vector space.8

Example 3 The vector space Pn(−1, 1) consists of polynomials of power9

n, which are considered only on the interval x ∈ (−1, 1). What is the reason10

for restricting polynomials to an interval? We can now define the notion of11

an inner (scalar) product. Given two vectors p(x), q(x) ∈ Pn(−1, 1) define12

their inner product as13

p(x) · q(x) =

∫ 1

−1
p(x)q(x) dx .

The norm (or the “magnitude”) ||p(x)|| of a vector p(x) ∈ Pn(−1, 1) is14

defined by the relation15

||p(x)||2 = p(x) · p(x) =

∫ 1

−1

p2(x) dx ,

so that ||p(x)|| =
√

p(x) · p(x). If p(x)·q(x) = 0, we say that the polynomials16

are orthogonal. For example, the vectors p(x) = x and q(x) = x2 are17

orthogonal, because18

x · x2 =

∫ 1

−1
x3 dx = 0 .

Calculate19

||1||2 = 1 · 1 =

∫ 1

−1
1 dx = 2 ,

so that the norm of the vector p(x) = 1 is ||1|| =
√

2. The projection of q(x)20

on p(x)21

Proj p(x) q(x) =
p(x) · q(x)
p(x) · p(x) p(x)

is defined similarly to vectors in Rn. For example, the projection of x2 on 122

Proj1 x
2 =

x2 · 1
1 · 1 1 =

1

3
,
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since x2 · 1 =

∫ 1

−1
x2 dx =

2

3
.1

The standard basis 1, x, x2, . . . , xn of Pn(−1, 1) is not orthogonal. While2

the vectors 1 and x are orthogonal, the vectors 1 and x2 are not. We now3

apply the Gram-Schmidt process to produce an orthogonal basis4

p0(x), p1(x), p2(x), . . . , pn(x), but instead of normalization it is customary to5

standardize the polynomials by requiring that pi(1) = 1 for all i. Set p0(x) =6

1. Since the second element x of the standard basis is orthogonal to p0(x),7

we take p1(x) = x. (Observe that p0(x) and p1(x) are already standardized.)8

According to the Gram-Schmidt process, calculate (subtracting from x2 its9

projections on 1, and on x)10

x2 − x2 · 1
1 · 1 1 − x2 · x

x · x x = x2 − 1

3
.

Multiply this polynomial by 3
2 , to obtain p2(x) = 1

2

(

3x2 − 1
)

, with p2(1) =11

1. The next step of the Gram-Schmidt process involves (subtracting from12

x3 its projections on p0(x), p1(x), p2(x))13

x3 − x3 · 1
1 · 1 1 − x3 · x

x · x x− x3 · p2(x)

p2(x) · p2(x)
p2(x) = x3 − 3

5
x .

Multiply this polynomial by 5
2 , to obtain p3(x) = 1

2

(

5x3 − 3x
)

, with p3(1) =14

1, and so on. The orthogonal polynomials p0(x), p1(x), p2(x), p3(x), . . . are15

known as the Legendre polynomials. They have many applications.16

Next, we discuss linear transformations and their matrices. Let V1, V2 be17

two vector spaces. We say that a map T : V1 → V2 is a linear transformation18

if for any x, x1, x2 ∈ V1, and any number c19

T (cx) = cT (x)

T (x1 + x2) = T (x1) + T (x2) .

Clearly the second of these properties applies to any number of terms. Let-20

ting c = 0, we conclude that any linear transformation satisfies T (0) = 021

(T (x) takes the zero vector in V1 into the zero vector in V2). It follows22

that in case T (0) 6= 0, the map is not a linear transformation. For exam-23

ple, the map T : M2×2 → M2×2 given by T (A) = 3A − I is not a linear24

transformation, because T (O) = −I 6= O.25

Example 4 Let D : P4 → P3 be a transformation taking any polynomial26

p(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0 into27

D (p(x)) = 4a4x
3 + 3a3x

2 + 2a2x+ a1 .
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Clearly, D is just differentiation, and hence this transformation is linear.1

Let T (x) be a linear transformation T : V1 → V2. Assume that B1 =2

{w1, w2, . . . , wp} is a basis of V1, and B2 = {z1, z2, . . . , zs} is a basis of V2.3

Any vector x ∈ V1 can be written as4

x = x1w1 + x2w2 + · · ·+ xpwp ,

with the coordinates [x]B1 =











x1

x2
...

xp











∈ Rp. Any vector y ∈ V2 can be5

written as6

y = y1z1 + y2z2 + · · ·+ yszs ,

with the coordinates [y]B2 =











y1
y2
...
ys











∈ Rs. We show next that the co-7

ordinate vectors [x]B1 ∈ Rp and [T (x)]B2 ∈ Rs are related by a matrix8

multiplication. By the linearity of transformation T (x)9

T (x) = x1T (e1) + x2T (e2) + · · ·+ xpT (ep) .

In coordinates (here [T (x)]B2 is a vector in Rs)10

(7.1) [T (x)]B2 = x1[T (e1)]B2 + x2[T (e2)]B2 + · · ·+ xp[T (ep)]B2 .

Form a matrix A = [ [T (e1)]B2 [T (e2)]B2 . . . [T (ep)]B2 ], of size s × p, by11

using the vectors [T (ei)]B2 as its columns. Then (7.1) implies that12

[T (x)]B2 = A[x]B1 ,

by the definition of matrix multiplication. One says that A is the matrix of13

linear transformation T (x).14

Example 5 Let us return to the differentiation D : P4 → P3, and use the15

standard bases B1 = {1, x, x2, x3, x4} of P4, and B2 = {1, x, x2, x3} of P3.16

Since17

D(1) = 0 = 0 × 1 + 0 × x+ 0 × x2 + 0× x3 ,
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obtain the coordinates [D(1)]B2 =









0

0
0

0









. (Here 0× 1 means zero times the1

vector 1, 0 × x is zero times the vector x, etc.) Similarly,2

D(x) = 1 = 1× 1 + 0 × x + 0 × x2 + 0× x3 ,

giving [D(x)]B2 =









1
0

0
0









. Next, D(x2) = 2x, giving [D(x2)]B2 =









0
2

0
0









,3

D(x3) = 3x2, giving [D(x3)]B2 =









0
0

3
0









, D(x4) = 4x3, giving [D(x4)]B2 =4









0
0

0
4









. The matrix of the transformation D is then5

A =









0 1 0 0 0
0 0 2 0 0

0 0 0 3 0
0 0 0 0 4









.

This matrix A allows one to perform differentiation of polynomials in P46

through matrix multiplication. For example, let p(x) = −2x4 +x3 + 5x− 6,7

with p′(x) = −8x3 +3x2 +5. Then [p(x)]B1 =













−6
5

0
1

−2













, [p′(x)]B2 =









5

0
3

−8









,8

and one verifies that9









5
0

3
−8









=









0 1 0 0 0
0 0 2 0 0

0 0 0 3 0
0 0 0 0 4





















−6
5

0
1

−2













.

The matrix A transforms the coefficients of p(x) into those of p′(x).10
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Exercises1

1. Write down the standard basis S in M2×3, and then find the coordinates2

of A =

[

1 −3 2

−5 0 4

]

with respect to this basis.3

Answer. E11 =

[

1 0 0
0 0 0

]

, E12 =

[

0 1 0
0 0 0

]

, E13 =

[

0 0 1
0 0 0

]

, E21 =4

[

0 0 0
1 0 0

]

, E22 =

[

0 0 0
0 1 0

]

, E23 =

[

0 0 0
0 0 1

]

; [A]S =

















1

−3
2

−5

0
4

















.5

2. a. Show that the matrices A1 =

[

1 0
0 0

]

, A2 =

[

1 2
0 0

]

and A3 =6

[

1 2
3 0

]

are linearly independent vectors of M2×2.7

b. Let C =

[

3 4

3 0

]

. Show that the matrices A1, A2, A3, C are linearly8

dependent vectors of M2×2.9

Hint. Express C as a linear combination of A1, A2, A3.10

c. Let A4 =

[

0 0
0 1

]

. Show that B = {A1, A2, A3, A4} is a basis of M2×2.11

d. F =

[

3 4
0 −7

]

. Find the coordinates of F with respect to the basis B.12

Answer. [F ]B =









1

2
0

−7









.13

3. Calculate the norm of the following vectors in P2(−1, 1).14

a. x. Hint. ||x||2 = x · x =
∫ 1
−1 x

2 dx.15

b. p(x) = x2 − 1. Answer. ||x2 − 1|| = 4√
15

.16

c. q(x) =
√

2. Answer. ||
√

2|| = 2.17
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4. Apply the Gram-Schmidt process to the vectors 1, x + 2, x2 − x of1

P2(−1, 1), to obtain a standardized orthogonal basis of P2(−1, 1).2

5. Let I : P3 → P4 be a map taking any polynomial p(x) = a3x
3 + a2x

2 +3

a1x+ a0 into I (p(x)) = a3
x4

4 + a2
x3

3 + a1
x2

2 + a0x.4

a. Identify I with a calculus operation, and explain why I is a linear trans-5

formation.6

b. Find the matrix representation of I (using the standard bases in both P37

and P4).8

Answer.













0 0 0 0
1 0 0 0

0 1/2 0 0
0 0 1/3 0

0 0 0 1/4













.9

c. Is the map I onto?10

6. Let T : M2×2 → M2×2 be a map taking matrices A =

[

a b
c d

]

into11

T (A) =

[

2c 2d
a b

]

.12

a. Show that T is a linear transformation.13

b. Find the matrix representation of T (using the standard bases).14

Answer.









0 0 2 0

0 0 0 2
1 0 0 0

0 1 0 0









.15

7. Let T : M2×2 → M2×2 be a map taking matrices A =

[

a b
c d

]

into16

T (A) =

[

c a
1 b

]

. Show that T is not a linear transformation.17

Hint. Consider T (O).18

8. Justify Rodrigues’ formula for Legendre polynomials19

Pn(x) =
1

2nn!

dn

dxn

[(

x2 − 1
)n]

.

Hint. Differentiations produce a polynomial of degree n, with Pn(0) = 1.20

To see that
∫ 1
−1 Pn(x)Pm(x) dx = 0, with n < m, perform m integrations by21

parts, shifting all derivatives on Pn(x).22



Chapter 61

Systems of Differential and2

Difference Equations3

Solving of systems of differential equations provides one of the most useful4

applications of eigenvectors and eigenvalues. Generalized eigenvectors and5

eigenvector chains are introduced in the process. For simplicity, the presen-6

tation begins with 3× 3 systems, and then the general theory is developed.7

Functions of matrices are developed, particularly matrix exponentials. Fun-8

damental solution matrices are applied to systems with periodic coefficients,9

including Hamiltonian systems and Massera’s theorem. The last section10

covers systems of difference equations, and their applications to Markov11

matrices and Jacobi’s iterations.12

6.1 Linear Systems with Constant Coefficients13

We wish to find the functions x1(t), x2(t), x3(t) that solve a system of dif-14

ferential equations, with given numerical coefficients aij,15

x′1 = a11x1 + a12x2 + a13x3(1.1)

x′2 = a21x1 + a22x2 + a23x3

x′3 = a31x1 + a32x2 + a33x3 ,

subject to the initial conditions16

x1(t0) = α, x2(t0) = β, x3(t0) = γ ,

with given numbers t0, α, β and γ. Using matrix notation we may write this17

system as18

(1.2) x′ = Ax, x(t0) = x0 ,

192
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where x(t) =





x1(t)

x2(t)
x3(t)



 is the unknown vector function, A =





a11 a12 a13

a21 a22 a23

a31 a32 a33





1

is 3 × 3 matrix of the coefficients, and x0 =





α
β

γ



 is the vector of initial2

conditions. Indeed, the left side in (1.1) contains components of the vector3

x′(t) =





x′1(t)
x′2(t)
x′3(t)



, while components of the vector function Ax are on the4

right side.5

If two vector functions y(t) and z(t) are solutions of the system x′ = Ax,6

their linear combination c1y(t)+c2z(t) is also a solution of the same system,7

for any numbers c1 and c2, which is straightforward to justify. It is known8

from the theory of differential equations that the initial value problem (1.2)9

has a unique solution x(t), valid for all t ∈ (−∞,∞).10

Let us search for solution of (1.2) in the form11

(1.3) x(t) = eλtξ ,

where λ is a number, and ξ is a vector with entries independent of t. Sub-12

stitution of x(t) into (1.2) gives13

λeλtξ = A
(

eλtξ
)

,

simplifying to14

Aξ = λξ .

So that if λ is an eigenvalue of A, and ξ is a corresponding eigenvector,15

then (1.3) provides a solution of the system in (1.2). Let λ1, λ2, λ3 be the16

eigenvalues of the matrix A. There are several cases to consider.17

Case 1 The eigenvalues of A are real and distinct. Then the correspond-18

ing eigenvectors ξ1, ξ2 and ξ3 are linearly independent by Theorem 4.2.1.19

Since eλ1tξ1, e
λ2tξ2 and eλ3tξ3 are solutions of the system (1.2), their linear20

combination21

(1.4) x(t) = c1e
λ1tξ1 + c2e

λ2tξ2 + c3e
λ3tξ3

also solves the system (1.2). We claim that (1.4) gives the general solution of22

the system (1.2), meaning that it is possible to choose the constants c1, c2, c323

to satisfy any initial condition:24

(1.5) x(t0) = c1e
λ1t0ξ1 + c2e

λ2t0ξ2 + c3e
λ3t0ξ3 = x0 .
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We need to solve a system of three linear equations with three unknowns1

c1, c2, c3. The matrix of this system is non-singular, because its columns2

eλ1t0ξ1, e
λ2t0ξ2, e

λ3t0ξ3 are linearly independent (as multiples of linearly in-3

dependent vectors ξ1, ξ2, ξ3). Therefore, there is a unique solution triple c̄1,4

c̄2, c̄3 of the system (1.5). Then x(t) = c̄1e
λ1tξ1 + c̄2e

λ2tξ2 + c̄3e
λ3tξ3 gives5

the solution of the initial value problem (1.2).6

Example 1 Solve the system7

x′ =





2 1 1

1 2 1
0 0 4



x, x(0) =





−2

2
−1



 .

8

Calculate the eigenvalues λ1 = 1, with corresponding eigenvector ξ1 =9




−1
1

0



, λ2 = 3, with corresponding eigenvector ξ2 =





1
1

0



, and λ3 = 4,10

with corresponding eigenvector ξ3 =





1

1
1



. The general solution is then11

x(t) = c1e
t





−1

1
0



+ c2e
3t





1

1
0



+ c3e
4t





1

1
1



 ,

or in components12

x1(t) = −c1et + c2e
3t + c3e

4t

x2(t) = c1e
t + c2e

3t + c3e
4t

x3(t) = c3e
4t .

Turning to the initial conditions, obtain a system of equations13

x1(0) = −c1 + c2 + c3 = −2

x2(0) = c1 + c2 + c3 = 2

x3(0) = c3 = −1 .

Calculate c1 = 2, c2 = 1 and c3 = −1. Answer:14

x1(t) = −2et + e3t − e4t

x2(t) = 2et + e3t − e4t

x3(t) = −e4t .
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The answer can also be presented in the vector form1

x(t) = 2et





−1

1
0



 + e3t





1

1
0



− e4t





1

1
1



 .

Case 2 The eigenvalue λ1 is double, so that λ2 = λ1, while λ3 6= λ1, and2

assume that λ1 has two linearly independent eigenvectors ξ1 and ξ2. Let3

ξ3 denote an eigenvector corresponding to λ3. This vector does not lie in4

the plane spanned by ξ1 and ξ2, and then the vectors ξ1, ξ2, ξ3 are linearly5

independent. Claim: the general solution of (1.2) is given by the formula6

(1.4), with λ2 replaced by λ1:7

x(t) = c1e
λ1tξ1 + c2e

λ1tξ2 + c3e
λ3tξ3 .

Indeed, this vector function solves (1.2) for any c1, c2, c3. To satisfy the8

initial conditions, obtain a linear system for c1, c2, c39

c1e
λ1t0ξ1 + c2e

λ1t0ξ2 + c3e
λ3t0ξ3 = x0 ,

which has a unique solution for any x0, because its matrix has linearly10

independent columns, and hence is non-singular. The existence of a complete11

set of eigenvectors is the key here!12

Example 2 Solve the system13

x′ =





2 1 1
1 2 1

1 1 2



x , x(0) =





1
0

−4



 .

The eigenvalues and eigenvectors of this matrix were calculated in Section14

4.2. The eigenvalues are: λ1 = 1, λ2 = 1, λ3 = 4. The double eigenvalue15

λ1 = 1 has two linearly independent eigenvectors ξ1 =





−1
0
1



 and ξ2 =16





−1

1
0



. The other eigenvalue λ3 = 4 comes with corresponding eigenvector17

ξ3 =





1
1

1



. The general solution is then18

x(t) = c1e
t





−1

0
1



 + c2e
t





−1

1
0



+ c3e
4t





1

1
1



 .
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In components,1

x1(t) = −c1et − c2e
t + c3e

4t

x2(t) = c2e
t + c3e

4t

x3(t) = c1e
t + c3e

4t .

Using the initial conditions, obtain a system of equations2

x1(0) = −c1 − c2 + c3 = 1

x2(0) = c2 + c3 = 0

x3(0) = c1 + c3 = −4 .

Calculate c1 = −3, c2 = 1, and c3 = −1. Answer:3

x1(t) = 2et − e4t

x2(t) = et − e4t

x3(t) = −3et − e4t .

Proceeding similarly, one can solve the initial value problem (1.2) for4

any n × n matrix A, provided that all of its eigenvalues are real, and A5

has a complete set of n linearly independent eigenvectors. For example, if6

matrix A is symmetric, then all of its eigenvalues are real, and there is7

always a complete set of n linearly independent eigenvectors (even though8

some eigenvalues may be repeated).9

Case 3 The eigenvalue λ1 has multiplicity two (λ1 is a double root of the10

characteristic equation, λ2 = λ1), λ3 6= λ1, but λ1 has only one linearly11

independent eigenvector ξ. The eigenvalue λ1 brings in only one solution12

eλ1tξ. By analogy with the second order equations, one can try teλ1tξ for13

the second solution. However, this vector function is a scalar multiple of the14

first solution, linearly dependent with it, at any t = t0. Modify the guess:15

(1.6) x(t) = teλ1tξ + eλ1tη ,

and search for a constant vector η, to obtain a second linearly independent16

solution of (1.2). Substituting (1.6) into (1.2), and using that Aξ = λ1ξ,17

obtain18

eλ1tξ + λ1te
λ1tξ + λ1e

λ1tη = λ1te
λ1tξ + eλ1tAη.

Cancelling a pair of terms, and dividing by eλ1t gives19

(1.7) (A− λ1I)η = ξ .
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Even though the matrix A− λ1I is singular (its determinant is zero), it can1

be shown (using the Jordan normal forms) that the linear system (1.7) has2

a solution η, called generalized eigenvector. It follows from (1.7) that η is3

not a multiple of ξ. (Indeed, if η = cξ, then (A − λ1I)η = c(A − λ1I)ξ =4

c(Aξ − λ1ξ) = 0, while ξ 6= 0.) Using this vector η in (1.6), provides the5

second linearly independent solution, corresponding to λ = λ1.6

Example 3 Solve the system7

x′ =

[

1 −1

1 3

]

x .

This matrix has a double eigenvalue λ1 = λ2 = 2, and only one linearly8

independent eigenvector ξ =

[

1

−1

]

, giving only one solution: x1(t) =9

e2t

[

1

−1

]

. The system (1.7) to determine the generalized eigenvector η =10

[

η1

η2

]

takes the form (A− 2I)η = ξ, or in components11

−η1 − η2 = 1

η1 + η2 = −1 .

Discard the second equation, because it is a multiple of the first one. The12

first equation has infinitely many solutions, but all we need is just one so-13

lution, that is not a multiple of ξ. Set η2 = 0, which gives η1 = −1. So14

that η =

[

−1
0

]

is a generalized eigenvector. (Observe that infinitely many15

generalized eigenvectors can be obtained by choosing an arbitrary η2 6= 0.)16

The second linearly independent solution is (in view of (1.6))17

x2(t) = te2t

[

1

−1

]

+ e2t

[

−1

0

]

.

The general solution is then18

x(t) = c1e
2t

[

1
−1

]

+ c2

(

te2t

[

1
−1

]

+ e2t

[

−1
0

])

.

Example 4 Let us solve the system19

x′ =





1 4 0

−4 −7 0
0 0 5



x .
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This matrix has a double eigenvalue λ1 = λ2 = −3, with only one linearly1

independent eigenvector ξ1 =





−1

1
0



, giving only one solution: x1(t) =2

e−3t





−1
1

0



. The system (1.7) to determine the generalized eigenvector3

η =





η1

η2

η3



 takes the form (A+ 3I)η = ξ1, or in components4

4η1 + 4η2 = −1

−4η1 − 4η2 = 1

8η3 = 0 .

Obtain η3 = 0. Discard the second equation. Set η2 = 0 in the first equation,5

so that η1 = −1
4 . Conclude that η =





−1
4
0
0



 is a generalized eigenvector.6

The second linearly independent solution is7

x2(t) = e−3t



t





−1
1

0



 +





−1
4
0

0







 .

The third eigenvalue λ3 = 5 is simple, with corresponding eigenvector





0
0

1



,8

so that x3(t) = e5t





0
0
1



. The general solution is then9

x(t) = c1e
−3t





−1
1

0



+ c2e
−3t



t





−1
1

0



 +





−1
4
0

0







+ c3e
5t





0
0

1



 .

For larger matrices A it is possible to have repeated eigenvalues of mul-10

tiplicity greater than two, missing more than one eigenvector compared to11

a complete set. We shall cover such a possibility later on.12

Exercises13
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1. Find the general solution for the following systems of differential equa-1

tions.2

a. x′(t) =

[

3 4
−1 −2

]

x(t).3

Answer. x(t) = c1e
−t

[

−1
1

]

+ c2e
2t

[

−4
1

]

.4

b. x′(t) =

[

4 −2
−2 1

]

x(t).5

Answer. x(t) = c1e
5t

[

−2
1

]

+ c2

[

1
2

]

.6

c. x′(t) =

[

1 2
−1 4

]

x(t).7

Answer. x(t) = c1e
2t

[

2
1

]

+ c2e
3t

[

1
1

]

.8

d. x′(t) =





1 1 1
2 2 1

4 −2 1



x(t).9

Answer. x(t) = c1e
−t





−1

0
2



+ c2e
2t





−1

−3
2



+ c3e
3t





1

2
0



.10

e. x′(t) =





1 1 −1
2 0 −1

0 −2 1



x(t).11

Answer. x(t) = c1e
−t





0

1
1



 + c2e
3t





−1

−1
1



+ c3





1

1
2



.12

f. x′(t) =









0 1 0 0
1 0 0 0

0 0 4 −5
0 0 1 −2









x(t).13

Answer. x(t) = c1e
−t









0
0

1
1









+ c2e
−t









−1
1

0
0









+ c3e
t









1
1

0
0









+ c4e
3t









0
0

5
1









.14
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g. x′(t) =





2 1 1

1 2 1
1 1 2



x(t).1

Answer. x(t) = c1e
4t





1

1
1



 + c2e
t





−1

0
1



+ c3e
t





−1

1
0



.2

2. Solve the following initial value problems.3

a. x′(t) =

[

1 2

4 3

]

x(t), x(0) =

[

1

−2

]

.4

Answer. x1(t) =
4e−t

3
− e5t

3
, x2(t) = −4e−t

3
− 2e5t

3
.5

b. x′(t) =





1 −1 1
2 1 2

3 0 3



x(t), x(0) =





0
−1

1



.6

Answer. x1(t) = −1 + e2t, x2(t) = −4e2t + 3e3t, x3(t) = 1 − 3e2t + 3e3t.7

3. Given a vector function x(t) =





x1(t)
x2(t)

x3(t)



 define its derivative as x′(t) =8

limh→0
x(t+h)−x(t)

h .9

a. Show that x′(t) =





x′1(t)
x′2(t)
x′3(t)



.10

b. If x(t) = eλtξ, where λ is a number, and a vector ξ has constant entries,11

show that x′(t) = λeλtξ.12

4. Let x(t) and y(t) be two vector functions in Rn. Show that the product13

rule holds for the scalar product14

d

dt
x(t) · y(t) = x′(t) · y(t) + x(t) · y′(t) .

5. Solve15

a. x′(t) =

[

1 −1
4 −3

]

x(t).16

b.17 x′1 = x1 − x2 , x1(0) = 1

x′2 = 4x1 − 3x2 , x2(0) = −1 .
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Answer. x1(t) = e−t (3t+ 1), x2(t) = e−t (6t− 1).1

c. x′(t) =





0 −1 1

2 −3 1
1 −1 −1



x(t).2

Answer. x(t) = c1e
−t





1
1

0



 + c2e
−t



t





1
1

0



+





1
1

1







 + c3e
−2t





0
1

1



.3

Show also that all solutions tend to zero, as t→ ∞.4

6. Calculate the eigenvalues of A =









−3 5 −1 1
0 −1 0 0

2 4 −3 2
3 −5 0 −1









.5

Without calculating the general solution, explain why all solutions of6

x′ = Ax tend to zero, as t→ ∞.7

Hint. The eigenvalues are −4,−2,−1,−1.8

7. Show that the system x′ =

[

a 1
2 −a

]

x has solutions that tend to zero,9

and solutions that tend to infinity, as t→ ∞. Here a is any number.10

Hint. The eigenvalues are real, of opposite sign.11

8. Let η be a generalized eigenvector corresponding to an eigenvector ξ.12

Show that 2η is not a generalized eigenvector.13

9. Show that generalized eigenvector is not unique.14

Hint. Consider η + cξ, with an arbitrary number c.15

10. Explain why generalized eigenvectors are not possible for symmetric16

matrices, and why generalized eigenvectors are not needed to solve x′ = Ax17

for symmetric A.18

Hint. If (A− λI)η = ξ and AT = A, then ξ · ξ = (A− λI)η · ξ = η ·19

(A− λI) ξ = 0.20

6.2 A Pair of Complex Conjugate Eigenvalues21

Complex Valued and Real Valued Solutions22

Recall that one differentiates complex valued functions similarly to the real23

valued ones. For example,24

d

dt
eit = ieit ,
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where i =
√
−1 is treated the same way as any other number. Any complex1

valued function x(t) can be written in the form x(t) = u(t)+iv(t), where u(t)2

and v(t) are real valued functions. It follows by the definition of derivative,3

x′(t) = limh→0
x(t+h)−x(t)

h , that x′(t) = u′(t) + iv′(t). For example, using4

Euler’s formula,5

d

dt
eit =

d

dt
(cos t+ i sin t) = − sin t+ i cos t = i(cos t+ i sin t) = ieit .

If a system6

(2.1) x′ = Ax

has a complex valued solution x(t) = u(t) + iv(t), then7

u′(t) + iv′(t) = A (u(t) + iv(t)) .

Equating the real and imaginary parts, obtain u′ = Au and v′ = Av, so that8

both u(t) and v(t) are real valued solutions of the system (2.1).9

The General Solution10

Assume that matrix A of the system (2.1) has a pair of complex conjugate11

eigenvalues p + iq and p − iq, q 6= 0. They need to contribute two linearly12

independent solutions. The eigenvector corresponding to p + iq is complex13

valued, which we may write as ξ+ iη, where ξ and η are real valued vectors.14

Then x(t) = e(p+iq)t(ξ+ iη) is a complex valued solution of the system (2.1).15

To get two real valued solutions, take the real and the imaginary parts of16

this solution. Using Euler’s formula17

x(t) = ept(cos qt+ i sinqt)(ξ + iη)

= ept(cos qt ξ − sin qt η) + iept(sin qt ξ + cos qt η) .

So that18

u(t) = ept(cos qt ξ − sin qt η) ,(2.2)

v(t) = ept(sin qt ξ + cos qt η)

are two real valued solutions of (2.1), corresponding to a pair of eigenvalues19

p± iq.20

In case of a 2 × 2 matrix A (when there are no other eigenvalues), the21

general solution is22

(2.3) x(t) = c1u(t) + c2v(t) ,
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since it is shown in Exercises that the vectors u(t) and v(t) are linearly in-1

dependent, so that it is possible to choose c1 and c2 to satisfy any initial2

condition x(t0) = x0. If one applies the same procedure to the other eigen-3

value p − iq, and corresponding eigenvector ξ − iη, the answer is the same,4

as is easy to check.5

For larger matrices A, the solutions in (2.2) contribute to the general6

solution, along with other solutions.7

Example 1 Solve the system8

x′ =

[

1 −2

2 1

]

x, x(0) =

[

2

1

]

.

Calculate the eigenvalues λ1 = 1 + 2i and λ2 = 1 − 2i. An eigenvector9

corresponding to λ1 is

[

i
1

]

. So that there is a complex valued solution10

e(1+2i)t

[

i
1

]

. Using Euler’s formula, rewrite this solution as11

et(cos 2t+ i sin 2t)

[

i

1

]

= et
[

− sin 2t

cos 2t

]

+ iet
[

cos 2t

sin 2t

]

.

Taking the real and imaginary parts obtain two linearly independent real12

valued solutions, so that the general solution is13

x(t) = c1e
t

[

− sin 2t

cos 2t

]

+ c2e
t

[

cos 2t

sin 2t

]

.

In components14

x1(t) = −c1et sin 2t+ c2e
t cos 2t

x2(t) = c1e
t cos 2t+ c2e

t sin 2t .

From the initial conditions15

x1(0) = c2 = 2

x2(0) = c1 = 1 ,

so that c1 = 1, and c2 = 2. Answer:16

x1(t) = −et sin 2t+ 2et cos 2t

x2(t) = et cos 2t+ 2et sin 2t .
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Example 2 Solve the system1

x′ =





2 −1 2
1 0 2

−2 1 −1



x .

2

One of the eigenvalues is λ1 = 1, with an eigenvector





0

2
1



. Then et





0

2
1





3

gives a solution. The other two eigenvalues are λ2 = i and λ3 = −i. An4

eigenvector corresponding to λ2 = i is





−1 − i

−1 − i
1



, giving a complex valued5

solution eit





−1 − i
−1 − i

1



 that can be rewriten as6

(cos t+ i sin t)





−1 − i

−1 − i
1



 =





− cos t+ sin t

− cos t+ sin t
cos t



+ i





− cos t− sin t

− cos t− sin t
sin t





Taking the real and imaginary parts gives us two more real valued linearly7

independent solutions, so that the general solution is8

x(t) = c1e
t





0

2
1



 + c2





− cos t+ sin t

− cos t+ sin t
cos t



 + c3





− cos t− sin t

− cos t− sin t
sin t



 .

Exercises9

1. Solve the following systems.10

a. x′ =

[

1 −1
1 1

]

x.11

Answer. x(t) = c1e
t

[

cos t
sin t

]

+ c2e
t

[

− sin t
cos t

]

.12

b. x′ =

[

3 −2
2 3

]

x, x(0) =

[

0
1

]

.13

Answer. x1(t) = −e3t sin 2t, x2(t) = e3t cos 2t.14
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c.1 x′1 = 3x1 + 5x2 , x1(0) = −1

x′2 = −5x1 − 3x2 , x2(0) = 2 .

Answer. x1(t) =
7

4
sin 4t− cos 4t, x2(t) = 2 cos 4t− 1

4
sin 4t.2

d. x′ =





1 2 −1
−2 −1 1

−1 1 0



x.3

Answer. x(t) = c1





1

1
3



+ c2





cos t+ sin t

cos t− sin t
2 cos t



+ c3





− cos t+ sin t

cos t+ sin t
2 sin t



.4

e. x′ =





−1 −1 1

−1 0 2
−2 −1 2



x, x(0) =





3

−1
1



.5

Answer. x1(t) = et − 2 sin t+ 2 cos t, x2(t) = −3et + 2 sin t+ 2 cos t, x3(t) =6

−et − 2 sin t+ 2 cos t.7

f. x′ =





2 −1 −3
1 1 4

2 −1 −3



x, x(0) =





0
0

4



.8

Answer. x1(t) = cos 2t−6 sin 2t−1, x2(t) = 11 cos2t+8 sin 2t−11, x3(t) =9

cos 2t− 6 sin2t+ 3.10

2. Without calculating the eigenvectors show that all solutions of x′ =11
[

−3 −2

4 1

]

x tend to zero as t→ ∞.12

Hint. The eigenvalues λ = −1 ± 2i have negative real parts, so that the13

vectors u(t) and v(t) in (2.2) tend to zero as t→ ∞, for any ξ and η.14

3. Solve the system15

x′ =

[

0 −1

1 0

]

x , x(0) =

[

α

β

]

,

with given numbers α and β. Show that the solution x(t) represents rotation16

of the initial vector

[

α

β

]

by an angle t counterclockwise.17

4. Define the derivative of a complex valued function x(t) = u(t) + iv(t) as18

x′(t) = limh→0
x(t+h−x(t)

h . Show that x′(t) = u′(t) + iv′(t).19
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5. Consider the system1

x′1 = ax1 + bx2
2

x′2 = cx1 + dx2 ,

with given numbers a, b, c and d. Assume that a + d < 0 and ad− bc > 0.3

Show that all solutions tend to zero, as t → ∞ (meaning that x1(t) → 0,4

and x2(t) → 0, as t→ ∞).5

Hint: Show that the eigenvalues for the matrix of this system are either6

negative, or have negative real parts.7

6. a. Let A be a 3 × 3 constant matrix. Suppose that all solutions of8

x′ = Ax are bounded as t → +∞, and as t → −∞. Show that every9

non-constant solution is periodic, and there is a common period for all non-10

constant solutions.11

Hint. One of the eigenvalues of A must be zero, and the other two purely12

imaginary.13

b. Assume that a non-zero 3× 3 matrix A is skew-symmetric, which means14

that AT = −A. Show that one of the eigenvalues of A is zero, and the other15

two are purely imaginary.16

Hint. Write A in the form A =





0 p q
−p 0 r

−q −r 0



, and calculate its charac-17

teristic polynomial.18

c. Show that all non-constant solutions of x′ =





0 p q
−p 0 r

−q −r 0



x are peri-19

odic, with the period 2π√
p2+q2+r2

.20

7. Let A be a 2 × 2 matrix with a negative determinant. Show that the21

system x′ = Ax does not have periodic solutions.22

8. Suppose that p+ iq is an eigenvalue of A, and ξ + iη is a corresponding23

eigenvector.24

a. Show that ξ and η are linearly independent. (There is no complex number25

c, such that η = c ξ.)26

Hint. Linear dependence of ξ and η would imply linear dependence of the27

distinct eigenvectors ξ + iη and ξ − iη.28

b. Show that the vectors u(t) and v(t) defined in (2.2) are linearly indepen-29

dent for all t.30
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6.3 The Exponential of a Matrix1

In matrix notation a system of differential equations2

(3.1) x′ = Ax, x(0) = x0 ,

looks like a single equation. In case A and x(t) are scalars, the solution of3

(3.1) is4

(3.2) x(t) = eAtx0 .

In order to extend this formula to systems, we shall define the notion of the5

exponential of a matrix. Recall the powers of square matrices: A2 = A · A,6

A3 = A2 ·A, and so on. Starting with the Maclauren series7

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · · =

∞
∑

n=0

xn

n!
,

define (I is the identity matrix)8

(3.3) eA = I + A+
A2

2!
+
A3

3!
+
A4

4!
+ · · · =

∞
∑

n=0

An

n!
.

So that eA is the sum of infinitely many matrices, and each entry of eA is an9

infinite series. We shall justify later on that all of these series are convergent10

for any matrix A. If O denotes the zero matrix (with all entries equal to11

zero), then eO = I .12

For a scalar t, the formula (3.3) implies13

eAt = I +At+
A2t2

2!
+
A3t3

3!
+
A4t4

4!
+ · · · ,

and then differentiating term by term obtain14

d

dt
eAt = A+A2t+

A3t2

2!
+
A4t3

3!
+ · · · = A

(

I + At+
A2t2

2!
· · ·
)

= AeAt .

By direct substitution one verifies that the formula (3.2) gives the solution15

of the initial-value problem (3.1). (Observe that x(0) = eOx0 = x0.)16
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Example 1 Let A =

[

a 0

0 b

]

, where a and b are given numbers. Then1

An =

[

an 0
0 bn

]

, and addition of diagonal matrices in (3.3) gives2

eA =

[

1 + a+ a2

2! + a3

3! + · · · 0

0 1 + b+ b2

2! + b3

3! + · · ·

]

=

[

ea 0

0 eb

]

.

Exponentials of larger diagonal matrices are calculated similarly.3

The next example connects matrix exponentials to geometrical reason-4

ing.5

Example 2 Let A =

[

0 −1
1 0

]

. Calculate: A2 = −I , A3 = −A, A4 = I .6

After that the powers repeat (for example, A61 = A). Then for any scalar t7

eAt =

[

1 − t2/2! + t4/4! + · · · −t+ t3/3!− t5/5! + · · ·
t− t3/3! + t5/5! + · · · 1 − t2/2! + t4/4! + · · ·

]

=

[

cos t − sin t
sin t cos t

]

,

the rotation matrix. Then one can express solutions of the system8

(3.4) x′1 = −x2 , x1(0) = α
9

x′2 = x1 , x2(0) = β ,

with prescribed initial conditions α and β, in the form10

[

x1(t)
x2(t)

]

= eAt

[

α
β

]

=

[

cos t − sin t
sin t cos t

] [

α
β

]

,

involving the rotation matrix, and representing rotation of the initial po-11

sition vector

[

α

β

]

by an angle t, counterclockwise. We see that solution12

curves of the system (3.4) are circles in the (x1, x2) plane. This is consistent13

with velocity vector

[

x′1
x′2

]

=

[

−x2

x1

]

being perpendicular to the position14

vector

[

x1

x2

]

at all t.15

In general, eA+B 6= eA eB. This is because AB 6= BA, for general n × n16

matrices. One way to show that ex+y = ex ey holds for numbers is to expand17

all three exponentials in power series, and show that the series on the left18

is the same as the one on the right. In the process, we use that xy = yx19
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for numbers. The same argument shows that eA+B = eA eB , provided that1

BA = AB, or the matrices commute. In particular, eaI+A = eaIeA, because2

(aI)A = A(aI) (a is any number).3

Example 3 Let A =

[

3 −1
1 3

]

, then A = 3I+

[

0 −1
1 0

]

, and therefore4

eAt = e3tIe

2

4

0 −t
t 0

3

5

=

[

e3t 0
0 e3t

] [

cos t − sin t
sin t cos t

]

5

= e3t

[

1 0

0 1

] [

cos t − sin t

sin t cos t

]

= e3t

[

cos t − sin t

sin t cos t

]

.

Since eaI = eaI , it follows that eaI+A = eaeA holds for any number a and6

square matrix A.7

For nilpotent matrices the series for eA has only finitely many terms.8

Example 4 Let K =









0 1 0 0

0 0 1 0
0 0 0 1

0 0 0 0









. Calculate K2 =









0 0 1 0

0 0 0 1
0 0 0 0

0 0 0 0









,9

K3 =









0 0 0 1

0 0 0 0
0 0 0 0

0 0 0 0









, K4 = O, the zero matrix, and therefore Km = O for10

all powers m ≥ 4, so that K is nilpotent. The series for eKt terminates:11

eKt = I +Kt+
1

2!
K2t2 +

1

3!
K3t3 =









1 t 1
2!t

2 1
3!t

3

0 1 t 1
2!t

2

0 0 1 t
0 0 0 1









.

Example 5 Let J =









−2 1 0 0
0 −2 1 0

0 0 −2 1
0 0 0 −2









, a Jordan block. Writing12

J = −2I + K, with K from Example 4, and proceeding as in Example 3,13

obtain14

eJt = e−2t









1 t 1
2! t

2 1
3! t

3

0 1 t 1
2! t

2

0 0 1 t
0 0 0 1









.
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Norm of a Matrix, and Convergence of the Series for eA1

Recall the concept of length (or magnitude, or norm) ||x|| of an n-dimensional2

vector x ∈ Rn, defined by3

||x||2 = x · x =
n
∑

i=1

x2
i ,

and the Cauchy-Schwarz inequality that states:4

|x · y| = |
n
∑

i=1

xiyi| ≤ ||x|| ||y|| .

Let A be an n × n matrix, given by its columns A = [C1 C2 . . .Cn]. (Here5

C1 ∈ Rn is the first column of A, etc.) Define the norm ||A|| of A, as follows6

7

(3.5) ||A||2 =
n
∑

i=1

||Ci||2 =
n
∑

i=1

n
∑

j=1

a2
ji =

n
∑

i,j=1

a2
ij .

Clearly8

(3.6) |aij| ≤ ||A|| , for all i and j ,

since the double summation on the right in (3.5) is greater or equal than9

any one of its terms. If x ∈ Rn, we claim that10

(3.7) ||Ax|| ≤ ||A|| ||x|| .

Indeed, using the Cauchy-Schwarz inequality11

||Ax||2 =
∑n

i=1

(

∑n
j=1 aijxj

)2
≤∑n

i=1

(

∑n
j=1 a

2
ij

∑n
j=1 x

2
j

)

= ||x||2∑n
i=1

∑n
j=1 a

2
ij = ||A||2 ||x||2 .

Let B be another n × n matrix, given by its columns B = [K1K2 . . .Kn].12

Recall that AB = [AK1AK2 . . .AKn]. (AK1 is the first column of the13

product AB, etc.) Then, using (3.7),14

||AB||2 =

n
∑

i=1

||AKi||2 ≤ ||A||2
n
∑

i=1

||Ki||2 = ||A||2||B||2 ,

which implies that15

||AB|| ≤ ||A|| ||B|| .
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Applying this inequality to two matrices at a time, one shows that1

(3.8) ||A1A2 · · ·Am|| ≤ ||A1|| ||A2|| · · · ||Am|| ,

for any integer m ≥ 2, and in particular that ||Am|| ≤ ||A||m. We show in2

Exercises that the triangle inequality holds for matrices:3

||A+ B|| ≤ ||A||+ ||B|| ,

and by applying the triangle inequality to two matrices at a time4

(3.9) ||A1 +A2 + · · ·+Am|| ≤ ||A1|| + ||A2|| + · · ·+ ||Am||

holds for an arbitrary number of square matrices of the same size.5

The above inequalities imply that the exponential of any matrix A6

eA =

∞
∑

k=0

1

k!
Ak

is a convergent series in each component. Indeed, by (3.6), we estimate the7

absolute value of the i, j-component of each term of this series as8

1

k!
|
(

Ak
)

ij
| ≤ 1

k!
||Ak|| ≤ 1

k!
||A||k .

The series
∑∞

k=0
1
k! ||A||k is convergent (its sum is e||A||). The series for eA9

converges absolutely in each component by the comparison test.10

Exercises11

1. Find the exponentials eAt of the following matrices.12

a. A =

[

0 −1
0 0

]

. Answer. eAt =

[

1 −t
0 1

]

.13

b. D =

[

1 0

0 −4

]

. Answer. eDt =

[

et 0

0 e−4t

]

.14

c. D =





2 0 0
0 0 0
0 0 −3



. Answer. eDt =





e2t 0 0
0 1 0
0 0 e−3t



.15

d. A =





0 1 0

0 0 1
0 0 0



. Answer. eAt =





1 t 1
2t

2

0 1 t
0 0 1



.16
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e. A =





−2 1 0
0 −2 1
0 0 −2



. Answer. eAt = e−2t





1 t 1
2 t

2

0 1 t
0 0 1



.1

f. A =





0 −1 0

1 0 0
0 0 −2



. Answer. eAt =





cos t − sin t 0

sin t cos t 0
0 0 e−2t



.2

2. Show that
(

eA
)−1

= e−A.3

Hint. The matrices A and −A commute.4

3. Show that
(

eA
)m

= emA, for any positive integer m.5

4. Show that
(

eA
)T

= eA
T

.6

5. a. Let λ be an eigenvalue of a square matrix A, corresponding to an7

eigenvector x. Show that eA has an eigenvalue eλ, corresponding to the8

same eigenvector x.9

Hint. If Ax = λx, then10

eAx =

∞
∑

k=0

Akx

k!
=

∞
∑

k=0

λk

k!
x = eλx .

b. Show that det eA = etrA.11

Hint. Determinant equals to the product of eigenvalues.12

c. Explain why eA is non-singular, for any A.13

6. If A is symmetric, show that eA is positive definite.14

Hint. eAx · x = eA/2eA/2x · x = ||eA/2x||2 > 0, for any x 6= 0.15

7. Let A be a skew-symmetric matrix (so that AT = −A).16

a. Show that eAt is an orthogonal matrix for any t.17

Hint. If Q = eAt, then QT = eA
T t = e−At = Q−1.18

b. Show that the solution x(t) of19

x′ = Ax , x(0) = x0

satisfies ||x(t)|| = ||x0|| for all t.20
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8. For any square matrix X define the sine of X as1

sinX = X − 1

3!
X3 +

1

5!
X5 − · · ·

a. Show that the series converges for any X .2

b. Let K =









0 1 0 0

0 0 1 0
0 0 0 1

0 0 0 0









. Show that sinKt =









0 t 0 −1
6 t

3

0 0 t 0
0 0 0 t

0 0 0 0









.3

Hint. Kk = O for any k ≥ 4. (The matrix K is nilpotent.)4

9. Show that A2eAt = eAtA2 for any square matrix A and number t.5

10. Show that the triangle inequality6

||A+B|| ≤ ||A||+ ||B||
holds for any two n× n matrices.7

Hint. Using that (a+ b)2 = a2 + b2 + 2ab,8

||A+B||2 =
n
∑

i,j=1

(aij + bij)
2 = ||A||2 + ||B||2 + 2

n
∑

i,j=1

aijbij .

Using the Cauchy-Schwarz inequality9

n
∑

i,j=1

aijbij ≤





n
∑

i,j=1

a2
ij





1
2




n
∑

i,j=1

b2ij





1
2

= ||A|| ||B|| ,

so that ||A+ B||2 ≤ ||A||2 + ||B||2 + 2||A|| ||B|| = (||A||+ ||B||)2.10

11. Show that ||eA|| ≤ e||A||.11

12. a. Assume that a square matrix A is diagonalizable, and that its eigen-12

value λk is the largest in modulus, so that |λk| ≥ |λi| for all i. Show that13

||Am|| ≤ c|λk|m ,

for all positive integers m, and some number c > 0.14

Hint. DiagonalizeA = PDP−1, Am = PDmP−1, where the diagonal matrix15

D has λi’s as its entries. Begin by showing that ||Dm|| ≤ c|λk|m.16

b. Assume that all eigenvalues of a diagonalizable matrix A have modulus17

|λi| < 1. Show that limm→∞Am = O (the zero matrix), the series
∑∞

m=0 A
m

18

converges, and19

I +A+ A2 + · · ·+ Am + · · · = (I −A)−1 .
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6.4 The General Case of Repeated Eigenvalues1

We now return to solving linear systems2

(4.1) x′ = Ax , x(0) = w ,

with a given n×n matrixA, and a given initial vector w ∈ Rn. Suppose that3

λ = r is an eigenvalue of A of multiplicity s, meaning that λ = r is a root of4

multiplicity s of the corresponding characteristic equation |A−λI | = 0. This5

root must bring in s linearly independent solutions for the general solution.6

If there are s linearly independent eigenvectors ξ1, ξ2, . . . , ξs corresponding7

to λ = r, then ertξ1, e
rtξ2, . . . , e

rtξs give the desired s linearly independent8

solutions. However, if there are only k < s linearly independent eigenvectors9

one needs the notion of generalized eigenvectors. (Recall that the case s = 2,10

k = 1 was considered previously.)11

A vector wm is called a generalized eigenvector of rank m, corresponding12

to an eigenvalue λ = r, provided that13

(4.2) (A− rI)mwm = 0 ,

but14

(4.3) (A− rI)m−1 wm 6= 0 .

Assume that wm is known. Through matrix multiplications define a chain15

of vectors16

wm−1 = (A− rI)wm

wm−2 = (A− rI)wm−1 = (A− rI)2 wm

. . . . . .

w1 = (A− rI)w2 = (A− rI)m−1 wm ,

or17

wm−i = (A− rI)iwm , for i = 1, 2, . . . , m− 1 .

Since i steps in the chain bring us down from wm to wm−i, it follows that18

m− i steps take us down from wm to wi:19

(4.4) wi = (A− rI)m−i wm .
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Observe that1

(4.5) (A − rI)i wi = (A− rI)m wm = 0 ,

using (4.2), and then2

(4.6) (A− rI)j wi = 0 , for j ≥ i .

Notice also that w1 is an eigenvector of A corresponding to λ = r because3

(A− rI)w1 = (A − rI)m wm = 0 ,

giving Aw1 = rw1, with w1 = (A − rI)m−1 wm 6= 0 by (4.3). So that a chain4

begins with a generalized eigenvector wm and ends with an eigenvector w1.5

Lemma 6.4.1 The vectors wm, wm−1, . . . , w1 of a chain are linearly inde-6

pendent.7

Proof: We need to show that8

(4.7) cmwm + cm−1wm−1 + · · ·+ c1w1 = 0

is possible only if all of the coefficients ci = 0. Multiply all terms of the9

equation (4.7) by (A − rI)m−1. Using (4.6), obtain10

cm (A − rI)m−1 wm = 0 .

Since (A− rI)m−1 wm 6= 0, by the definition of the generalized eigenvector,11

it follows that cm = 0, so that (4.7) becomes12

cm−1wm−1 + cm−2wm−2 + · · ·+ c1w1 = 0 .

Multiplying this equation by (A− rI)m−2 gives cm−1 (A − rI)m−2 wm−1 =13

0, which implies that cm−1 = 0 because14

(A− rI)m−2 wm−1 = (A − rI)m−1 wm 6= 0 .

Proceed similarly to obtain cm = cm−1 = · · · = c1 = 0. ♦15

This lemma implies that all wi 6= 0. Since (A− rI)iwi = 0 by (4.5),16

while (A− rI)i−1 wi = w1 6= 0, it follows that all elements of a chain wi are17

generalized eigenvectors of rank i.18
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Solution of the system (4.1) can be written as1

x(t) = eAtw = ertIe(A−rI)tw = erte(A−rI)tw(4.8)

= ert
[

I + (A− rI) t+ 1
2! (A − rI)2 t2 + 1

3! (A− rI)3 t3 + · · ·
]

w

= ert
[

w + (A− rI)w t+ (A− rI)2w 1
2! t

2 + (A− rI)3w 1
3!t

3 + · · ·
]

.

Here we used matrix exponentials, and the fact that the matrices A−rI and2

rI commute. In case w is any vector of the chain, it follows by (4.6) that3

these series terminate after finitely many terms, and we obtain m linearly4

independent solutions of the system (4.1), corresponding to the eigenvalue5

λ = r, by setting w equal to w1, w2, . . . , wm, and using (4.8) and (4.4):6

x1(t) = eAtw1 = ertw1(4.9)

x2(t) = eAtw2 = ert [w2 + w1t]

x3(t) = eAtw3 = ert
[

w3 +w2t+w1
1
2!t

2
]

. . . . . .

xm(t) = eAtwm = ert
[

wm +wm−1t+wm−2
1
2! t

2 + · · ·+ w1
1

(m−1)! t
m−1

]

.

These solutions are linearly independent because each wk does not belong7

to the span of w1, . . . , wk−1, by Lemma 6.4.1.8

The formulas (4.9) are sufficient to deal with a repeated eigenvalue of9

multiplicity m > 1 that has only one linearly independent eigenvector. It is10

then not hard to find a generalized eigenvector wm, and construct m linearly11

independent solutions. This fact and the general case are discussed later on.12

13

Example 1 Let us find the general solution of14

x′(t) =





2 1 2
−5 −1 −7

1 0 2



 x(t) .

The matrix of this system A =





2 1 2
−5 −1 −7

1 0 2



 has an eigenvalue r = 1 of15

multiplicity m = 3, and only one linearly independent eigenvector





−1

−1
1



.16
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Calculate1

A − rI = A− I =





1 1 2

−5 −2 −7
1 0 1



 ,

2

(A− rI)2 = (A− I)2 =





−2 −1 −3

−2 −1 −3
2 1 3



 ,

3

(A− rI)3 = (A− I)3 =





0 0 0
0 0 0

0 0 0



 .

Clearly, any vector w ∈ R3 satisfies (A − I)3w = 0, for example w3 =4




1

0
0



. Since (A−I)2w3 6= 0, it follows that w3 is a generalized eigenvector.5

Calculate the chain6

w2 = (A− I)w3 =





1 1 2
−5 −2 −7

1 0 1









1
0

0



 =





1
−5

1



 ,

7

w1 = (A− I)w1 =





1 1 2
−5 −2 −7

1 0 1









1
−5

1



 =





−2
−2

2



 .

(Observe that w1 is an eigenvector corresponding to r = 1.) The three8

linearly independent solutions are9

x1(t) =





−2

−2
2



 et ,

10

x2(t) =





1

−5
1



 et +





−2

−2
2



 tet ,

11

x3(t) =





1
0

0



 et +





1
−5

1



 tet +





−2
−2

2





1
2 t

2et .
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The general solution is then1

x(t) = c1x1(t) + c2x2(t) + c3x3(t) .

The constants c1, c2, c3 are determined by the initial conditions.2

Chains can be constructed “from the other end”, beginning with eigen-3

vectors. Assume that w1 is an eigenvector of A corresponding to a repeated4

eigenvalue r. Let w2 be any solution of5

(4.10) (A − rI)w2 = w1 ,

provided that such solution exists. The matrix of this system is singular6

(since |A− rI | = 0), so that solution w2 may or may not exist. (If solution7

exists, there are infinitely many solutions, in the form w2 + cw1.) In case8

w2 does not exist, we say that the chain ends at w1, and denote it {w1}, a9

chain of length one. If a solution w2 exists, to get w3 we find (if possible)10

any solution of11

(A − rI)w3 = w2 .

If solution w3 does not exist, we say that the chain ends at w2, and de-12

note it {w1, w2}, a chain of length two. In such a case, w2 is a generalized13

eigenvector. Indeed, by (4.10)14

(A− rI)2w2 = (A − rI)w1 = 0 ,

while using (4.10) again15

(A− rI)w2 6= 0 .

If a solution w3 exists, solve if possible16

(A − rI)w4 = w3

to get w4. In case w4 does not exist, obtain the chain {w1, w2, w3} of length17

three. As above, w1, w2, w3 are linearly independent, w2, w3 are generalized18

eigenvectors, and there are infinitely many choices for w2, w3. Continue in19

the same fashion. All chains eventually end, since their elements are linearly20

independent vectors in Rn.21

We now turn to the general case of repeated eigenvalues. Suppose that22

a matrix A has several linearly independent eigenvectors ξ1, ξ2, ξ3, . . . , ξp23

corresponding to a repeated eigenvalue λ = r of multiplicitym, with p < m.24

One can construct a chain beginning with any eigenvector. We shall employ25

the following notation for these chains: (ξ1, ξ12, ξ13, . . .), (ξ2, ξ22, ξ23, . . .),26
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(ξ3, ξ32, ξ33, . . .), and so on. By Lemma 6.4.1, the elements of each chain are1

linearly independent. It turns out that if all elements of each chain are put2

together, they form a linearly independent set of m vectors, see Proposition3

6.4.1 below.4

Example 2 Consider a 6 × 6 matrix5

J =

















2 1 0 0 0 0

0 2 1 0 0 0
0 0 2 0 0 0

0 0 0 2 1 0
0 0 0 0 2 0

0 0 0 0 0 2

















.

Its only eigenvalue λ = 2 has multiplicity 6, but there are only 3 linearly6

independent eigenvectors, which happened to be the coordinate vectors ξ1 =7

e1, ξ2 = e4, and ξ3 = e6 in R6, at which three chains will begin. To find8

the next element of each chain we need to solve the systems (J − 2I) ξ12 =9

ξ1 = e1, (J − 2I) ξ22 = ξ2 = e4, and (J − 2I) ξ32 = ξ3 = e6. These systems10

have the same matrix, and hence they can be solved in parallel, with the11

augmented matrix

[

J − 2I
... e1

... e4
... e6

]

, which is12

















0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

















.

The last of these systems has no solutions. The chain beginning with ξ3 = e613

terminates immediately, giving {e6} a chain of length one. The systems for14

ξ12 and ξ22 have infinitely many solutions, out of which we select the simple15

ones: ξ12 = e2, ξ22 = e5. For the next elements of the chains we solve16

(J − 2I) ξ13 = ξ12 = e2 and (J − 2I) ξ23 = ξ22 = e5. The second of these17

systems has no solutions, so that the corresponding chain terminates at the18

second step giving {ξ2, ξ22} = {e4, e5} a chain of length two. The first of19

these systems has a solution ξ13 = e3. We obtain a chain {ξ1, ξ12, ξ13} =20

{e1, e2, e3} of length three. This chain cannot be continued any further,21

because (J − 2I) ξ14 = e3 has no solutions. Conclusion: the eigenvalue22

λ = 2 of the matrix J has three chains {e1, e2, e3}, {e4, e5}, and {e6}, of23

total length six. Observe that putting together all elements of the three24
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chains produces a linearly independent set of six vectors, giving a basis in1

R6. The matrix J provides an example for the following general facts, see2

e.g., S.H. Friedberg et al [8].3

Proposition 6.4.1 If some matrix A has a repeated eigenvalue λ = r of4

multiplicity m, then putting together all elements of all chains, beginning5

with linearly independent eigenvectors corresponding to λ = r, produces a6

set of m linearly independent vectors.7

The matrix J of the above example is very special, with all elements8

of the chains being the coordinate vectors in R6. Let now A0 be a 6 × 69

matrix that has an eigenvalue λ = 2 of multiplicity 6 with three-dimensional10

eigenspace, spanned by the eigenvectors ξ1, ξ2 and ξ3. Form the 3 chains,11

beginning with ξ1, ξ2 and ξ3 respectively. The length of each chain is between12

1 and 4. Indeed, putting together all elements of the three chains produces13

a linearly independent set of six vectors in R6, so that there is “no room”14

for a chain of length 5 or more. So that the matrix A0 has three chains15

of total length 6. Possible combinations of their length: 6 = 4 + 1 + 1,16

6 = 3 + 2 + 1, 6 = 2 + 2 + 2. Let us assume that it is the second possibility,17

so that the eigenspace of λ = 2 is spanned by ξ1, ξ2, ξ3, and the chains are:18

{ξ1, ξ12, ξ13}, {ξ2, ξ22}, {ξ3}. The general solution of the system19

x′ = A0x

is (here c1, c2, . . . , c6 are arbitrary numbers)20

x(t) = c1x1(t) + c2x2(t) + c3x3(t) + c4x4(t) + c5x5(t) + c6x6(t) ,

where according to (4.9)21

x1(t) = e2tξ1(4.11)

x2(t) = e2t (ξ12 + ξ1t)

x3(t) = e2t
(

ξ13 + ξ12t+ ξ1
t2

2

)

x4(t) = e2tξ2

x5(t) = e2t (ξ22 + ξ2t)

x6(t) = e2tξ3 .

These solutions are linearly independent, in view of Proposition 6.4.1.22
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We now use the above chains to reduce the matrix A0 to a simpler form.1

Since (A0 − 2I) ξ12 = ξ1, it follows that2

A0ξ12 = 2ξ12 + ξ1 .

Similarly3

A0ξ13 = 2ξ13 + ξ12 ,
4

A0ξ22 = 2ξ22 + ξ2 .

Form a 6× 6 non-singular matrix S = [ξ1 ξ12 ξ13 ξ2 ξ22 ξ3] using the vectors5

of the chains as its columns. By the definition of matrix multiplication6

A0S = [A0ξ1 A0ξ12 A0ξ13 A0ξ2 A0ξ22 A0ξ3]

= [2ξ1 2ξ12 + ξ1 2ξ13 + ξ12 2ξ2 2ξ22 + ξ2 2ξ3]

= S

















2 1 0 0 0 0
0 2 1 0 0 0

0 0 2 0 0 0
0 0 0 2 1 0

0 0 0 0 2 0
0 0 0 0 0 2

















= SJ ,

where J denotes the second matrix on the right, which is the matrix consid-7

ered in Example 2 above. (For example, the second column of SJ is equal8

to the product of S and the second column of J, giving 2ξ12 +ξ1, the second9

column of A0S.) We conclude that10

A0 = SJS−1 .

The matrix J is called the Jordan normal form of A0. The matrix A0 is11

not diagonalizable, since it has only 3 linearly independent eigenvectors, not12

a complete set of 6 linearly independent eigenvectors. The Jordan normal13

form provides a substitute. The matrix A0 is similar to its Jordan normal14

form J. The columns of S form the Jordan canonical basis of R6.15

The matrix J is a block diagonal matrix, with the 3× 3, 2× 2 and 1× 116

blocks:17

(4.12)





2 1 0
0 2 1

0 0 2



 ,

[

2 1
0 2

]

, [2] ,

called the Jordan block matrices.18
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The Jordan Normal Form1

We now describe the Jordan normal form for a general n×n matrix with mul-2

tiple eigenvalues, some possibly repeated. Basically, it is a block-diagonal3

matrix consisting of Jordan blocks, and A is similar to it. If A has an4

eigenvalue λ = 2 of multiplicity six, with a three-dimensional eigenspace,5

we construct the three chains. If the lengths of the chains happen to be 3,6

2 and 1, then the Jordan normal form contains the three blocks listed in7

(4.12). If an eigenvalue λ = −3 is simple, it contributes a diagonal entry of8

−3 in the Jordan normal form. If an eigenvalue λ = −1 has multiplicity 49

but only one linearly independent eigenvector, it contributes a Jordan block10









−1 1 0 0

0 −1 1 0
0 0 −1 1

0 0 0 −1









,

and so on. For more details see the following example, and S.H. Friedberg11

et al [8].12

Example 3 Assume that a 9 × 9 matrix B has an eigenvalue λ1 = −2 of13

multiplicity 4 with only two linearly independent eigenvectors, each giving14

rise to a chain of length two; an eigenvalue λ2 = 3 of multiplicity two15

with only one linearly independent eigenvector; an eigenvalue λ3 = 0 of16

multiplicity two with only one linearly independent eigenvector; and finally17

a simple eigenvalue λ4 = 4. The Jordan normal form will be18

J0 =





























−2 1 0 0 0 0 0 0 0

0 −2 0 0 0 0 0 0 0
0 0 −2 1 0 0 0 0 0
0 0 0 −2 0 0 0 0 0

0 0 0 0 3 1 0 0 0
0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 4





























,

and19

(4.13) B = SJ0S
−1 .

The columns of S consist of all eigenvectors of B, together with all elements20

of the chains that they generate, as is explained next. Assume that ξ1 and21
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ξ2 are two linearly independent eigenvectors corresponding to λ1 = 2, giving1

rise to the chains {ξ1, ξ12} and {ξ2, ξ22}; ξ3 is an eigenvector corresponding to2

λ2 = 3, giving rise to the chain {ξ3, ξ32}; ξ4 is an eigenvector corresponding3

to λ3 = 0, giving rise to the chain {ξ4, ξ42}, and finally ξ5 is an eigenvector4

corresponding to the simple eigenvalue λ4 = 4. The matrix S in (4.13) is5

S = [ξ1 ξ12 ξ2 ξ22 ξ3 ξ32 ξ4 ξ42 ξ5].6

The general solution of the corresponding system of differential equations7

x′ = Bx, according to the procedure in (4.9), is8

x(t) = c1e
−2tξ1 + c2e

−2t (ξ12 + ξ1t) + c3e
−2tξ2 + c4e

−2t (ξ22 + ξ2t)

+c5e
3tξ3 + c6e

3t (ξ32 + ξ3t) + c7ξ4 + c8 (ξ42 + ξ4t) + c9e
4tξ5 ,

with arbitrary constants ci.9

The methods we developed for solving systems x′ = Ax work for complex10

eigenvalues as well. For example, consider a complex valued solution z =11

tke(p+iq)tξ corresponding to an eigenvalue λ = p + iq of A, with a complex12

valued eigenvector ξ = α+ iβ. Taking the real and the imaginary parts of z,13

we obtain (as previously) two real valued solutions of the form tkept cos qt α14

and tkept sin qt β, with real valued vectors α and β.15

The following important theorem follows.16

Theorem 6.4.1 Assume that all eigenvalues of the matrix A are either17

negative or have negative real parts. Then all solutions of the system18

x′ = Ax

tend to zero as t→ ∞.19

Proof: If λ < 0 is a simple eigenvalue, it contributes the term eλtξ to20

the general solution (ξ is the corresponding eigenvector) that tends to zero21

as t → ∞. If λ < 0 is a repeated eigenvalue, the vectors it contributes to22

the general solution are of the form tkeλtξ, where k is a positive integer. By23

L’Hospital’s rule limt→∞ tkeλtξ = 0. In case λ = p+ iq is simple and p < 0,24

it contributes the terms ept cos qt α and ept sin qt β, both tending to zero as25

t → ∞. A repeated complex eigenvalue contributes the terms of the form26

tkept cos qt α and tkept sin qt β, also tending to zero as t→ ∞. ♦27
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Fundamental Solution Matrix1

For an arbitrary n × n system2

(4.14) x′ = Ax

it is always possible to find n linearly independent solutions x1(t), x2(t), . . . , xn(t),3

as we saw above. Their linear combination4

(4.15) x(t) = c1x1(t) + c2x2(t) + · · ·+ cnxn(t) ,

with arbitrary coefficients c1, c2, . . . , cn, is also a solution of (4.14). Form5

an n × n solution matrix X(t) = [x1(t) x2(t) . . .xn(t)], using these solutions6

as its columns, and consider the vector c =











c1
c2
...
cn











. Then the solution in7

(4.15) can be written as a matrix product8

(4.16) x(t) = X(t)c .

The matrix X(t) is invertible for all t because its columns are linearly in-9

dependent. The formula (4.15) (or (4.16)) gives the general solution of the10

system (4.14), meaning that solution of the initial value problem11

(4.17) x′ = Ax , x(0) = x0 ,

with any given vector x0 ∈ Rn, can be found among the solutions in (4.15)12

(or in (4.16)) for some choice of numbers c1, c2, . . . , cn. Indeed, the solution13

x(t) needs to satisfy14

x(0) = X(0)c= x0 ,

and one can solve this n × n system for the vector c, because X(0) is an15

invertible matrix.16

If one chooses the solutions satisfying x1(0) = e1, x2(0) = e2, . . . , xn(0) =17

en, the coordinate vectors, then the corresponding solution matrix X(t) =18

[x1(t) x2(t) . . .xn(t)] is called the fundamental solution matrix of (4.14), or19

the fundamental matrix, for short. Its advantage is that x(t) = X(t)x0 gives20

the solution of the initial value problem (4.17). Indeed, this solution satisfies21

x(0) = X(0)x0 = [x1(0) x2(0) . . .xn(0)]x0 = [e1 e2 . . . en]x0 = Ix0 = x0 .
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Example 2 Find the fundamental solution matrix for1

x′(t) =

[

0 −1
1 0

]

x(t) ,

and use it to express the solution with x1(0) = −2, x2(0) = 3.2

Solution x1(t) =

[

cos t

sin t

]

satisfies x1(0) = e1, and solution x2(t) =

[

− sin t

cos t

]

3

satisfies x2(0) = e2. It follows that X(t) =

[

cos t − sin t
sin t cos t

]

(the rotation4

matrix) is the fundamental solution matrix, and the solution with the pre-5

scribed initial conditions is6

x(t) = X(t)

[

−2

3

]

=

[

cos t − sin t

sin t cos t

][

−2

3

]

=

[

−2 cos t− 3 sin t

−2 sin t+ 3 cos t

]

.

Solution matrices X(t) are constructed the same way for systems with7

variable coefficients8

(4.18) x′ = A(t)x ,

where n × n matrix A = [aij(t)] has functions aij(t) as its entries. Namely,9

the columns of X(t) are linearly independent solutions of (4.18). Again,10

X(t)c provides the general solution of (4.18). Even though X(t) can be11

explicitly calculated only rarely, unless A(t) is a constant matrix, it will12

have some theoretical applications later on in the text.13

Finally, observe that any solution matrix X(t) satisfies the following14

matrix differential equation15

(4.19) X ′(t) = A(t)X(t) .

Indeed, the first column on the left is x′1(t), and on the right the first column16

is A(t)x1, and their equality x′1 = A(t)x1 reflects the fact that x1 is a solution17

of our system x′ = A(t)x. Similarly one shows that the other columns are18

identical.19

Exercises20

1. Solve the following systems.21

a. x′(t) =





2 1 2

−5 −1 −7
1 0 2



 x(t), x(0) =





2

−1
1



.22
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Answer. x1(t) = −et
(

3t2 − 3t− 2
)

, x2(t) = −et
(

3t2 + 15t+ 1
)

, x3(t) =1

et
(

3t2 + 3t+ 1
)

.2

b. x′(t) =





2 1 1

0 2 −3
0 0 −1



 x(t), x(0) =





0

−1
3



.3

Answer. x1(t) = −2e−t + 2e2t − 4te2t, x2(t) = 3e−t − 4e2t, x3(t) = 3e−t.4

c. x′(t) =





0 1 2
1 −2 1

−2 −1 −4



 x(t), x(0) =





6
0

2



.5

Answer. x(t) =





2e−2t
(

2t2 + 8t+ 3
)

8te−2t

−2e−2t
(

2t2 + 8t− 1
)



.6

d. x′(t) =





0 0 1

0 1 0
1 0 0



 x(t), x(0) =





1

2
3



.7

Hint. Here the matrix has a repeated eigenvalue, but a complete set of8

eigenvectors.9

Answer. x(t) =





2et − e−t

2et + e−t

2et



.10

2. Construct the fundamental solution matrices of the system x′ = Ax for11

the following matrices A.12

a. A =

[

0 −4

1 0

]

. Answer. X(t) =

[

cos 2t −2 sin 2t
1
2 sin 2t cos 2t

]

.13

b. A =

[

−2 1
4 1

]

. Answer. X(t) =

[

1
5

(

e2t + 4e−3t
)

1
5

(

e2t − e−3t
)

4
5

(

e2t − e−3t
)

1
5

(

4e2t + e−3t
)

]

.14

15

c. A =

[

3 −1

2 1

]

. Answer. X(t) =

[

e2t (cos t+ sin t) −e2t sin t

2e2t sin t e2t (cos t− sin t)

]

.16

17

d. A =

[

−1 1
0 −1

]

. Answer. X(t) =

[

e−t te−t

0 e−t

]

.18



6.4. THE GENERAL CASE OF REPEATED EIGENVALUES 227

e. A =





0 0 −1

0 −3 0
1 0 0



. Answer. X(t) =





cos t 0 − sin t

0 e−3t 0
sin t 0 cos t



.1

3. Consider an n × n system x′ = A(t)x, where the matrix A(t) is skew-2

symmetric (AT = −A).3

a. If x(t) and y(t) are two solutions, show that4

x(t) · y(t) = x(0) · y(0) for all t ,

and in particular x(t) and y(t) are orthogonal, provided that x(0) and y(0)5

are orthogonal.6

Hint. Differentiate x(t) · y(t).7

b. Show that ||x(t)|| = ||x(0)|| for all t.8

c. Show that the fundamental solution matrix X(t) is an orthogonal matrix9

for all t.10

Hint. Columns of X(t) are orthonormal for all t.11

4. a. Verify that the matrix A =









−1 0 0 1
1 −1 0 0

0 0 −1 0
0 0 1 −1









has an eigenvalue12

λ = −1 of multiplicity four, with a one-dimensional eigenspace, spanned by13

e2, the second coordinate vector in R4.14

b. Let w4 = e3, where e3 is the third coordinate vector in R4. Verify15

that w4 is a generalized eigenvector of rank 4 (so that (A+ I)4w4 = 0, but16

(A+ I)3w4 6= 0).17

c. Construct the chain w3 = (A+ I)w4, w2 = (A+ I)w3, w1 = (A + I)w2,18

and verify that w1 is an eigenvector of A.19

Answer. w3 = e4, w2 = e1, w1 = e2.20

d. Find the general solution of the system x′ = Ax. Answer.21

22

x(t) = c1e
−te2 + c2e

−t (e1 + e2t) + c3e
−t
(

e4 + e1t+ e2
t2

2

)

+c4e
−t
(

e3 + e4t+ e1
t2

2 + e2
t3

3!

)

.

5. Suppose that the eigenvalues of a matrix A are λ1 = 0 with one linearly23

independent eigenvector ξ1, giving rise to the chain {ξ1, ξ12, ξ13, ξ14}, and24
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λ2 = −4 with two linearly independent eigenvectors ξ2 and ξ3; ξ2 giving rise1

to the chain {ξ2, ξ22}, and ξ3 giving rise to the chain {ξ3}.2

a. What is the size of A? Answer. 7× 7.3

b. Write down the general solution of x′ = Ax. Answer.4

5

x(t) = c1ξ1 + c2 (ξ12 + ξ1t) + c3

(

ξ13 + ξ12t+ ξ1
t2

2

)

+c4

(

ξ14 + ξ13t+ ξ12
t2

2 + ξ1
t3

3!

)

+c5e
−4tξ2 + c6e

−4t (ξ22 + ξ2t) + c7e
−4tξ3 .

6. Show that eAt gives the fundamental solution matrix of x′ = Ax.6

Hint. eAte1 gives the first column of eAt, and also a solution of x′ = Ax,7

so that the columns of eAt are solutions of x′ = Ax. These solutions are8

linearly independent, since det eAt = etr (At) > 0. Hence eAt is a solution9

matrix. Setting t = 0, makes eAt = I .10

7. Consider J0 =





λ 1 0
0 λ 1

0 0 λ



, where λ is either real or complex number.11

a. Show that12

Jn
0 =





λn nλn−1 n(n−1)
2 λn−2

0 λn nλn−1

0 0 λn



 .

Hint. Write J0 = λI +N , with a nilpotent N .13

b. Assume that the modulus |λ| < 1. Show that lim
n→∞

Jn
0 = O, the zero14

matrix.15

c. Assume that all eigenvalues of an n × n matrix A have modulus less16

than one, |λi| < 1 for all i. Show that lim
n→∞

An = O, the series
∞
∑

k=0

Ak is17

convergent, and
∞
∑

k=0

Ak = (I −A)−1.18

6.5 Non-Homogeneous Systems19

We now consider non-homogeneous systems20

(5.1) x′ = A(t)x+ f(t) .
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Here A(t) = [aij(t)] is an n × n matrix, with given functions aij(t), and a1

vector-function f(t) ∈ Rn is also prescribed. For the corresponding homoge-2

neous system3

(5.2) x′ = A(t)x

the general solution, which is denoted by z(t), can be obtained by the meth-4

ods studied above (z(t) depends on n arbitrary constants, by the represen-5

tation z(t) = X(t)c using solution matrix). Let vector-function Y (t) be any6

particular solution of (5.1) so that7

(5.3) Y ′ = A(t)Y + f(t) .

Subtracting (5.3) from (5.1) gives8

(x− Y )′ = A(t) (x− Y ) ,

so that x− Y is a solution of the corresponding homogeneous system (5.2),9

and then x(t) − Y (t) = z(t) = X(t)c for some choice of arbitrary constants10

c. It follows that11

x(t) = Y (t) + z(t) = Y (t) +X(t)c .

Conclusion: the general solution of the non-homogeneous system (5.1) is12

equal to sum of any particular solution Y (t) of this system and the general13

solution X(t)c of the corresponding homogeneous system.14

Sometimes one can guess the form of a particular solution Y (t), and then15

calculate Y (t).16

Example 1 Solve the system17

x′1 = 2x1 + x2 − 8e−t

x′2 = x1 + 2x2 .

Search for a particular solution in the form Y (t) =

[

Ae−t

Be−t

]

, or x1 = Ae−t,18

x2 = Be−t, with numbers A and B to be determined. Substitution produces19

an algebraic system for A and B:20

−A = 2A+B − 8

−B = A+ 2B .
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Calculate A = 3, B = −1, so that Y (t) =

[

3e−t

−e−t

]

. The general solution1

of the corresponding homogeneous system2

x′ =

[

2 1

1 2

]

x

is z(t) = c1e
t

[

−1
1

]

+ c2e
3t

[

1
1

]

.3

Answer. x(t) =

[

3e−t

−e−t

]

+c1e
t

[

−1

1

]

+c2e
3t

[

1

1

]

is the general solution.4

5

Example 2 Solve the system6

x′ =

[

2 1
1 2

]

x+

[

−3t+ 1
−6

]

.

Search for a particular solution in the form Y (t) =

[

At+B

Ct+D

]

, and cal-7

culate Y (t) =

[

2t− 1

−t+ 3

]

. The corresponding homogeneous system is the8

same as in Example 1.9

Answer. x(t) =

[

2t− 1

−t+ 3

]

+ c1e
t

[

−1
1

]

+ c2e
3t

[

1
1

]

.10

Guessing the form of a particular solution Y (t) is not possible in most11

cases. A more general method for finding a particular solution of non-12

homogeneous systems, called the variation of parameters, is described next.13

14

If X(t) is a solution matrix of the corresponding homogeneous system15

(5.2), then x(t) = X(t)c = c1x1(t)+ c2x2(t)+ · · ·+ cnxn(t) gives the general16

solution of (5.2), as we saw in the preceding section. Let us search for a17

particular solution of (5.1) in the form18

(5.4) x(t) = X(t)c(t) = c1(t)x1(t) + c2(t)x2(t) + · · ·+ cn(t)xn(t) .

Here the parameters c1, c2, . . . , cn from general solution are replaced by the19

unknown functions c1(t), c2(t), . . . , cn(t). (Functions are “variable quanti-20

ties”, explaining the name of this method.) By the product rule, x′(t) =21

X ′(t)c(t) +X(t)c′(t) so that substitution of x(t) = X(t)c(t) into (5.1) gives22

X ′(t)c(t) +X(t)c′(t) = A(t)X(t)c(t) + f(t) .
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Since X ′(t) = A(t)X(t) by the formula (4.19), two terms cancel, giving1

(5.5) X(t)c′(t) = f(t) .

Because solution matrixX(t) is non-singular, one can solve this n×n system2

of linear equations for c′1(t), c
′
2(t), . . . , c

′
n(t), and then obtain c1(t), c2(t), . . . , cn(t)3

by integration.4

Example 3 Find the general solution to the system5

x′1 = 2x1 − x2 + te−t

x′2 = 3x1 − 2x2 − 2 .

Here A =

[

2 −1

3 −2

]

and f(t) =

[

te−t

−2

]

. The matrix A has an eigenvalue6

λ1 = −1 with corresponding eigenvector ξ1 =

[

1

3

]

, and an eigenvalue λ2 =7

1 with corresponding eigenvector ξ2 =

[

1
1

]

. It follows that the general8

solution of the corresponding homogeneous system (denoting x =

[

x1

x2

]

)9

x′ =

[

2 −1

3 −2

]

x

is z(t) = c1e
−t

[

1

3

]

+ c2e
t

[

1

1

]

= c1

[

e−t

3e−t

]

+ c2

[

et

et

]

, and X(t) =10

[

e−t et

3e−t et

]

is a solution matrix. We search for a particular solution in the11

form Y (t) = X(t)c(t), where c(t) =

[

c1(t)

c2(t)

]

. By (5.5) one needs to solve12

the system X(t)c′(t) = f(t), or13

[

e−t et

3e−t et

] [

c′1(t)
c′2(t)

]

=

[

te−t

−2

]

.

In components14

e−tc′1(t) + etc′2(t) = te−t

3e−tc′1(t) + etc′2(t) = −2 .
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Use Cramer’s rule to solve this system for c′1(t) and c′2(t):1

c′1(t) =

∣

∣

∣

∣

te−t et

−2 et

∣

∣

∣

∣

∣

∣

∣

∣

e−t et

3e−t et

∣

∣

∣

∣

=
t+ 2et

−2
= −1

2
t− et ,

2

c′2(t) =

∣

∣

∣

∣

e−t te−t

3e−t −2

∣

∣

∣

∣

∣

∣

∣

∣

e−t et

3e−t et

∣

∣

∣

∣

=
−2e−t − 3te−2t

−2
= e−t +

3

2
te−2t .

Integration gives c1(t) = −1
4 t

2 − et and c2(t) = −e−t − 3
4te

−2t − 3
8e

−2t. In3

both cases we took the constant of integration to be zero, because one needs4

only one particular solution. Obtain a particular solution5

Y (t) = X(t)c(t) =

[

e−t et

3e−t et

][

−1
4 t

2 − et

−e−t − 3
4 te

−2t − 3
8e

−2t

]

=

[

−1
8e

−t
(

2t2 + 6t+ 3
)

− 2
−3

8e
−t
(

2t2 + 2t+ 1
)

− 4

]

.

Answer. x(t) =

[

−1
8e

−t
(

2t2 + 6t+ 3
)

− 2

−3
8e

−t
(

2t2 + 2t+ 1
)

− 4

]

+ c1e
−t

[

1

3

]

+ c2e
t

[

1

1

]

.6

From (5.5) one can express c′(t) = X−1(t)f(t), and then c(t) =
∫ t
t0
X−1(s)f(s) ds,7

with t0 arbitrary. It follows that Y (t) = X(t)
∫ t
t0
X−1(s)f(s) ds is a particu-8

lar solution, and the general solution of the non-homogeneous system (5.1)9

is then10

(5.6) x(t) = X(t)c+X(t)

∫ t

t0

X−1(s)f(s) ds .

In case matrix A(t) has constant coefficients, A(t) = A, the fundamental11

solution matrix of x′ = Ax is given by eAt, and this formula becomes12

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−s)f(s) ds .

Indeed, with X(t) = eAt, one has X−1(t) = e−At and X(t)X−1(s) = eA(t−s).13

Also, since x(t0) = eAt0c, obtain c = e−At0x(t0).14
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Systems with Periodic Coefficients1

We consider now p-periodic systems2

(5.7) x′ = A(t)x+ f(t) ,

and the corresponding homogeneous systems3

(5.8) x′ = A(t)x .

Assume that an n× n matrix A(t) and a vector f(t) ∈ Rn have continuous4

entries, that are periodic functions of common period p > 0, so that aij(t+5

p) = aij(t) and fi(t + p) = fi(t) for all i, j and t. The questions we shall6

address are: do these systems have p-periodic solutions, so that x(t+ p) =7

x(t) (which means that xi(t+ p) = xi(t) for all i and t), and whether non-8

periodic solutions are bounded as t→ ∞.9

If X(t) denotes the fundamental solution matrix of (5.8), then the solu-10

tion of (5.8) satisfying the initial condition x(0) = x0 is11

x(t) = X(t)x0 .

For the non-homogeneous system (5.7), the solution satisfying the initial12

condition x(0) = x0, and often denoted by x(t, x0), is given by13

(5.9) x(t) = X(t)x0 +X(t)

∫ t

0
X−1(s)f(s) ds .

Indeed, use t0 = 0 in (5.6), then calculate c = x0, by setting t = 0.14

It is known from the theory of differential equations that a solution x(t)15

of the system (5.7) is p-periodic if and only if x(p) = x(0), and the same is16

true for the system (5.8), which can be seen as a particular case of (5.7).17

The homogeneous system (5.8) has a p-periodic solution satisfying x(p) =18

x(0), or X(p)x0 = x0, provided that the n× n system of linear equations19

(5.10) (I −X(p))x0 = 0

has a non-trivial solution x0. In such a case X(p)x0 = x0, so that X(p) has20

an eigenvalue 1, and the matrix I −X(p) is singular.21

Define the vector22

(5.11) b = X(p)

∫ p

0
X−1(s)f(s) ds .
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Then x(p) = X(p)x0 + b, by (5.9). The non-homogeneous system (5.7) has1

a p-periodic solution x(t) with x(p) = x(0), or X(p)x0 + b = x0, provided2

that the system of linear equations3

(5.12) (I −X(p))x0 = b

has a solution x0. (If x0 ∈ Rn is a solution of (5.12), then x(t, x0) given by4

(5.9) is a p-periodic solution of (5.7).)5

The Case 1 of the following theorem deals with an example of resonance,6

when periodic forcing term f(t) produces unbounded solutions.7

Theorem 6.5.1 Assume that (5.8) has a p-periodic solution (so that the8

matrix I −X(p) is singular).9

Case 1. The vector b does not belong to the range (the column space) of10

I −X(p). Then all solutions of (5.7) are unbounded as t→ ∞.11

Case 2. The vector b belongs to the range of I − X(p). Then (5.7) has12

infinitely many p-periodic solutions. If, moreover, X(p)) has an eigenvalue13

µ with modulus |µ| > 1, then (5.7) has also unbounded solutions (in addition14

to the p-periodic ones).15

Proof: Let x(t) be any solution of (5.7), represented by (5.9). We shall16

consider the iterates x(mp). With the vector b as defined by (5.11)17

x(p) = X(p)x0 + b .

By periodicity of the system (5.7), x(t+ p) is also a solution of (5.7), equal18

to x(p) at t = 0. Using (5.9) again19

x(t+ p) = X(t)x(p) +X(t)

∫ t

0

X−1(s)f(s) ds .

Then20

x(2p) = X(p)x(p) + b = X(p) (X(p)x0 + b) + b = X2(p)x0 +X(p)b+ b .

By induction, for any integer m > 0,21

(5.13) x(mp) = Xm(p)x0 +

m−1
∑

k=0

Xk(p)b .

Case 1. Assume that b does not belong to the range of I −X(p). Then22

the linear system (5.12) has no solutions, and hence its determinant is zero.23

Since det (I −X(p))T = det (I −X(p)) = 0, it follows that the system24

(5.14) (I −X(p))T v = 0



6.5. NON-HOMOGENEOUS SYSTEMS 235

has non-trivial solutions. We claim that it is possible to find a non-trivial1

solution v0 of (5.14), for which the scalar product with b satisfies2

(5.15) b · v0 6= 0 .

Indeed, assuming otherwise, b would be orthogonal to the null-space of3

(I −X(p))T , and then by the Fredholm alternative the linear system (5.12)4

would be solvable, a contradiction. From (5.14), v0 = X(p)Tv0, then5

X(p)Tv0 = X2(p)Tv0, which gives v0 = X2(p)Tv0, and inductively obtain6

(5.16) v0 = Xk(p)Tv0, for all positive integers k.

Using (5.13)7

x(mp) · v0 = Xm(p)x0 · v0 +

m−1
∑

k=0

Xk(p)b · v0

8

= x0 ·Xm(p)Tv0 +

m−1
∑

k=0

b ·Xk(p)Tv0 = x0 · v0 +mb · v0 → ∞ ,

as m → ∞, in view of (5.15). Hence, the solution x(t) is unbounded.9

Case 2. Assume that b belongs to the range of I−X(p). Then the linear10

system (5.12) has a solution x̄0, and x(t, x̄0) is a p-periodic solution of (5.7).11

Adding to it non-trivial solutions of the corresponding homogeneous system12

produces infinitely many p-periodic solutions of (5.7).13

Assume now that X(p) has an eigenvalue µ, with modulus |µ| > 1. Since14

x̄0 is a solution of (5.12)15

(5.17) x̄0 = X(p)x̄0 + b .

Then16

X(p)x̄0 = X2(p)x̄0 +X(p)b .

Using here (5.17)17

x̄0 = X2(p)x̄0 +X(p)b+ b .

Continuing to use the latest expression for x̄0 in (5.17), obtain inductively18

x̄0 = Xm(p)x̄0 +

m−1
∑

k=0

Xk(p)b ,
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so that
∑m−1

k=0 Xk(p)b = x̄0 −Xm(p)x̄0. Using this in (5.13), obtain1

(5.18) x(mp) = x̄0 +Xm(p) (x0 − x̄0) .

Let now y be an eigenvector of X(p), corresponding to the eigenvalue µ,2

with |µ| > 1, so that X(p)y = µy, and then Xm(p)y = µmy. Choose x0 so3

that x0 − x̄0 = y, which is x0 = x̄0 + y. Then4

x(mp) = x̄0 +Xm(p)y = x̄0 + µmy ,

and x(mp) becomes unbounded as m → ∞. ♦5

The following famous theorem is a consequence.6

Theorem 6.5.2 (Massera’s Theorem) If the non-homogeneous system (5.7)7

(with p-periodic A(t) and f(t)) has a bounded solution (as t → ∞), then it8

has a p-periodic solution.9

Proof: We shall prove an equivalent statement obtained by logical con-10

traposition: If the system (5.7) has no p-periodic solution, then all of its11

solutions are unbounded. Indeed, if (5.7) has no p-periodic solution, then12

the vector b does not lie in the range of I−X(p), while the matrix I −X(p)13

is singular (if this matrix was non-singular, its range would be all of Rn),14

and hence the homogeneous system (5.8) has a p-periodic solution. We are15

in the conditions of Case 1 of the preceding Theorem 6.5.1, and hence all16

solutions of (5.7) are unbounded. ♦17

The assumption of Theorem 6.5.1 that the homogeneous system (5.8) has18

a p-periodic solution can be seen as a case of resonance. The complementary19

case, when (5.8) does not have a p-periodic solution, is easy. Then the matrix20

I−X(p) is non-singular, so that the system (5.12) has a unique solution for21

any b, and hence the non-homogeneous system (5.7) has a unique p-periodic22

solution for any p-periodic f(t).23

The eigenvalues ρ of the matrix X(p) are called the Floquet multipliers.24

(X(p) is known as the monodromy matrix.) As we saw above, the homoge-25

neous system (5.8) has a p-periodic solution if and only if one of the Floquet26

multipliers is ρ = 1. By a reasoning similar to the above theorem, one can27

justify the following statement.28

Proposition 6.5.1 All solutions of (5.8) tend to zero, as t → ∞, if and29

only if all Floquet multipliers satisfy |ρ| < 1. If, on the other hand, one of30

the Floquet multipliers has modulus |ρ| > 1, then (5.8) has an unbounded31

solution, as t→ ∞.32
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Periodic Hamiltonian systems1

The motion of n particles on a line with positions at time t given by functions2

qi(t) is governed by Newton’s second law3

(5.19) miq
′′
i = Fi , i = 1, 2, . . . , n .

Here mi is the mass of particle i, function Fi gives the force acting on4

i-th particle. Assume that there is a function U(t, q1, q2, . . . , qn), so that5

Fi = − ∂U
∂qi

. The function U(t, q1, q2, . . . , qn) is called the potential energy,6

it reflects the interactions between the particles (it “couples” the particles).7

Introduce the impulses pi = miq
′
i, the kinetic energy

∑n
i=1

1
2mi

p2
i , and the8

total energy (also called the Hamiltonian function)9

H = K + U =

n
∑

i=1

1

2mi
p2

i + U(t, q1, q2, . . . , qn) .

One can write the equations of motion (5.19) as a Hamiltonian system10

q′i = ∂H
∂pi

(5.20)

p′i = −∂H
∂qi

.

(Indeed, ∂H
∂pi

= 1
mi
pi, so that the first equation in (5.20) follows by the11

definition of impulses, while the second equation follows by (5.19).) The12

system (5.20) has 2n equations and 2n unknowns q1, . . . , qn, p1, . . . , pn, and13

H = H (t, q1, . . . , qn, p1, . . . , pn). Introduce the vectors q =







q1
...
qn






and14

p =







p1
...
pn






. One can write (5.20) in the vector form as15

q′ = ∂H
∂p(5.21)

p′ = −∂H
∂q .

If the Hamiltonian function is independent of t, meaning that H = H(p, q),16

then along the solutions of (5.21)17

H(p(t), q(t)) = constant .
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Indeed, using the chain rule1

d

dt
H(p(t), q(t)) =

∂H

∂p
p′ +

∂H

∂q
q′ =

∂H

∂p

(

−∂H
∂q

)

+
∂H

∂q

∂H

∂p
= 0 .

Consider the vector x =

[

q

p

]

∈ R2n and the block matrix J =

[

O I

−I O

]

2

of size 2n× 2n, the symplectic unit matrix. Here O is the zero matrix and I3

the identity matrix, both of size n× n. One may write (5.21) in the form4

(5.22) x′ = JHx ,

where Hx denotes the gradient, Hx =

[

Hq

Hp

]

.5

Assume that the Hamiltonian function H(t, x) is a quadratic form6

H(t, x) =
1

2

2n
∑

i,j=1

aij(t)xixj ,

with a symmetric matrix A(t) = [aij(t)] of size 2n× 2n. Then (5.22) takes7

the form8

(5.23) x′ = JA(t)x ,

which is a linear system with p-periodic coefficients. Let X(t) be the fun-9

damental solution matrix of (5.23) of size 2n × 2n, so that each column of10

X(t) is a solution of (5.23), and X(0) = I . Observe that11

X ′(t) = JA(t)X(t) .

Since the trace tr (JA(t)) = 0 (which is justified in Exercises), it follows by12

Liouville’s formula (which is stated and justified in Exercises) that13

(5.24) detX(t) = detX(0) e
R t

0
tr (JA(s)) ds = 1 , for all t ,

since detX(0) = det I = 1.14

If x(t) and y(t) are two solutions of (5.23), their symplectic product xTJy15

remains constant for all t. Indeed,16

d
dtx

TJy =
(

xT
)′
Jy + xTJy′ = xTATJTJy + xTJJAy

= −xTAJ2y + xTJ2Ay = xTAy − xTAy = 0 ,
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since AT = A, JT = −J, and J2 = −I . If X(t) and Y (t) are two solution1

matrices (meaning that each column of both X(t) and Y (t) is a solution of2

(5.23)), then similarly3

(5.25) XT (t)JY (t) = constant matrix .

Indeed, the i, j entry of XTJY is xT
i Jyj , where xi is the column i of X ,4

yj is the column j of Y , both solutions of (5.23), and hence xT
i Jyj remains5

constant. In particular, in case of fundamental solution matrix X(t) and6

Y (t) = X(t), setting t = 0 in (5.25) gives7

(5.26) XT (t)JX(t) = J , for all t .

A polynomial equation for ρ, with numerical coefficients a0, a1, . . . , am,8

(5.27) P (ρ) ≡ a0ρ
m + a1ρ

m−1 + · · ·+ am−1ρ+ am = 0

is called symmetric if ak = am−k for all integers k, 0 ≤ k ≤ m. For such9

equations10

(5.28)

P (
1

ρ
) =

1

ρm

(

a0 + a1ρ+ · · ·+ am−1ρ
m−1 + amρ

m
)

=
1

ρm
P (ρ) , (ρ 6= 0)

so that if ρ0 is a root of (5.27), then 1
ρ0

is also a root. Conversely, if (5.28)11

holds, then the equation (5.27) is symmetric.12

Theorem 6.5.3 (Lyapunov-Poincare) Assume that the matrix A(t) is pe-13

riodic, A(t + p) = A(t) for some p > 0 and all t. Then the characteristic14

equation of the fundamental solution matrix X(p) of (5.23):15

(5.29) f(ρ) ≡ det [ρI −X(p)] = 0

is symmetric.16

Proof: Since X(p) is of size 2n × 2n, so is ρI − X(p), and (5.29) is a17

polynomial equation of degree 2n. Observing that det J = det J−1 = 1, and18

using (5.26) which implies that XT (p) = JX−1(p)J−1, and then using that19

detX−1(p) = 1 by (5.24), obtain20

f( 1
ρ) = det

[

1
ρI −X(p)

]

= 1
ρ2n det [I − ρX(p)]

= 1
ρ2n det

[

I − ρXT (p)
]

= 1
ρ2n det

[

JIJ−1 − ρJX−1(p)J−1
]

= 1
ρ2n det J det

[

I − ρX−1(p)
]

det J−1 =
(−1)2n

ρ2n detX−1(p) det [ρI −X(p)]

= 1
ρ2n det [ρI −X(p)] = 1

ρ2n f(ρ) ,
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so that f(ρ) is a symmetric polynomial. ♦1

This theorem implies that if ρ is a Floquet multiplier of (5.23), then so2

is 1
ρ . Hence, it is not possible for a Hamiltonian system (5.23) to have all3

solutions tending to zero as t→ ∞, since the Floquet multipliers cannot all4

satisfy |ρ| < 1. In fact, if there are some solutions of (5.23) tending to zero,5

then there are other solutions that are unbounded, as t→ ∞.6

The proof given above is due to I.M. Gel’fand and V.B. Lidskii [10]. We7

followed the nice presentation in B.P. Demidovič [6].8

Exercises9

1. Find the general solution of the following systems by guessing the form10

of a particular solution.11

a. x′ =

[

0 1
1 0

]

x+

[

2e2t

−e2t

]

.12

Answer. x(t) =

[

e2t

0

]

+ c1e
−t

[

−1

1

]

+ c2e
t

[

1

1

]

.13

b. x′ =

[

0 1

1 0

]

x+

[

e2t

0

]

.14

Answer. x(t) =

[

2
3e

2t

1
3e

2t

]

+ c1e
−t

[

−1
1

]

+ c2e
t

[

1
1

]

.15

c. x′ =

[

0 −1
1 0

]

x+

[

0
3 cos 2t

]

.16

Hint. Search for a particular solution in the form x(t) =

[

A cos 2t+B sin 2t
C cos 2t+D sin 2t

]

.17

18

Answer. x(t) =

[

cos 2t
2 sin 2t

]

+ c1

[

cos t
sin t

]

+ c2

[

− sin t
cos t

]

.19

d. x′ =

[

2 2

2 −1

]

x+

[

2t− 1

−t

]

.20

Hint. Search for a particular solution in the form x(t) =

[

At+ B

Ct+D

]

.21

Answer. x(t) =

[

−1
6

−t+ 2
3

]

+ c1e
−2t

[

−1
2

]

+ c2e
3t

[

2
1

]

.22
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e. x′ =

[

0 1

1 0

]

x+

[

e2t

−t

]

.1

Hint. Break the search for a particular solution into two pieces Y (t) =2

Y1(t) +Y2(t), where Y1(t) is a particular solution for the system in part (b),3

and Y2(t) is a particular solution for the system x′ =

[

0 1
1 0

]

x+

[

0
−t

]

.4

Answer. x(t) =

[

2
3e

2t + t
1
3e

2t + 1

]

+ c1e
−t

[

−1
1

]

+ c2e
t

[

1
1

]

.5

f. x′ =

[

0 −1

1 0

]

x+

[

e2t

−2et

]

.6

2. Solve the following initial value problems.7

a. x′(t) =

[

1 2
4 3

]

x(t) +

[

1
−1

]

, x(0) =

[

1
−2

]

.8

Answer. x1(t) =
e−t

3
− e5t

3
+ 1, x2(t) = −e−t

3 − 2e5t

3 − 1.9

b.10 x′1 = 3x1 + 5x2 + t , x1(0) = 0

x′2 = −5x1 − 3x2 , x2(0) = 0 .

Answer. x1(t) =
1

64
(12t+ 4− 3 sin 4t− 4 cos 4t), x2(t) =

5

64
(sin 4t− 4t).11

3. Solve the following initial value problems.12

a.13 x′1 = x1 + 2x2 + e−t , x1(0) = 0

x′2 = 4x1 + 3x2 , x2(0) = 0 .

Answer. x1(t) =
e5t

18
+

1

18
e−t(12t− 1), x2(t) =

e5t

9
− 1

9
e−t(6t+ 1).14

b.15

x′1 = −x2 + sin t , x1(0) = 1

x′2 = x1 , x2(0) = 0 .

Answer. x1(t) =
1

2
t sin t+ cos t, x2(t) =

1

2
(3 sin t− t cos t).16

4. a. Justify the formula for differentiation of a determinant17

d

dt

∣

∣

∣

∣

a(t) b(t)
c(t) d(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

a′(t) b′(t)
c(t) d(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

a(t) b(t)
c′(t) d′(t)

∣

∣

∣

∣

.
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b. Consider a system1

(5.30) x′ = A(t)x ,

where a 2× 2 matrix A(t) = [aij(t)] has entries depending on t. Let X(t) =2
[

x11(t) x12(t)
x21(t) x22(t)

]

be any solution matrix, so that the vectors

[

x11(t)
x21(t)

]

and3

[

x12(t)
x22(t)

]

are two linearly independent solutions of (5.30). The determinant4

W (t) = |X(t)| is called the Wronskian determinant of (5.30). Show that5

Liouville’s formula holds, for any number t06

(5.31) W (t) = W (t0)e
R t

t0
trA(s) ds

,

where the trace trA(t) = a11(t) + a22(t).7

Hint: Calculate8

(5.32) W ′ =

∣

∣

∣

∣

x′11(t) x′12(t)

x21(t) x22(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

x11(t) x12(t)

x′21(t) x′22(t)

∣

∣

∣

∣

.

Using (5.30) and properties of determinants, calculate9

∣

∣

∣

∣

x′11(t) x′12(t)

x21(t) x22(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

a11x11 + a12x21 a11x12 + a12x22

x21 x22

∣

∣

∣

∣

10

=

∣

∣

∣

∣

a11x11 a11x12

x21 x22

∣

∣

∣

∣

= a11W .

Similarly, the second determinant in (5.32) is equal to a22W . Then11

W ′ = (a11 + a22)W = trAW .

Solving this differential equation for W gives (5.31).12

c. Show that Liouville’s formula (5.31) holds also for n× n systems (5.30).13

5. a. Let Y (t) be an n× n matrix function, and suppose the inverse Y −1(t)14

exists for t. Show that15

d

dt
Y −1(t) = −Y −1 dY

dt
Y −1 .

Hint. Differentiate the identity Y (t)Y −1(t) = I .16
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b. Let X(t) be the fundamental solution matrix of1

(5.33) x′ = A(t)x .

Show that the fundamental solution matrix of the adjoint system2

(5.34) z′ = −AT (t)z

satisfies Z(t) = Y −1(t), where Y (t) = XT (t).3

Hint. The fundamental solution matrix of (5.33) satisfies X ′ = AX . Then4

Y ′ = Y AT , or Y −1Y ′ = AT . Multiply by Y −1, and use part a.5

c. Assume that the matrix A(t) is p-periodic, so that A(t+p) = A(t) for all6

t, and suppose that (5.33) has a p-periodic solution. Show that the same is7

true for (5.34).8

Hint. X(p) has an eigenvalue λ = 1.9

d. Assume that the homogeneous system (5.33) has a p-periodic solution.10

Show that the non-homogeneous system11

x′ = A(t)x+ f(t) ,

with a given p-periodic vector f(t), has a p-periodic solution if and only if12

∫ p

0
f(t) · z(t) dt = 0 ,

where z(t) is any p-periodic solution of (5.34).13

6. Let a matrix A be symmetric, and J is the symplectic unit matrix, both14

of size 2n× 2n.15

a. Show that the trace tr (JA) = 0.16

Hint. Write A as a block matrix A =

[

A1 A2

A2 A3

]

, where A1, A2, A3 are17

n × n matrices. Then JA =

[

A2 A3

−A1 −A2

]

.18

b. Show that J−1 = −J.19

c. Show that |J| = 1.20

Hint. Expand |J| in the first row, then in the last row, and conclude that21

|J| is independent of n. When n = 1, |J| = 1.22
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6.6 Difference Equations1

Suppose one day there a radio communication from somewhere in the Uni-2

verse. How to test if it was sent by intelligent beings? Perhaps one could send3

them the digits of π. Or you can try the numbers 1, 1, 2, 3, 5, 8, 13, 21, . . .,4

the Fibonacci sequence. These numbers have a long history on our planet,5

dating back to 1202, with a myriad of applications, particularly to botany.6

The Fibonacci sequence begins with two ones F1 = 1, F2 = 1, and then each7

number is sum of the preceding two8

Fn = Fn−1 + Fn−2 , n = 3, 4, . . .(6.1)

F1 = 1, F2 = 1 .

To derive a formula for Fn, let us look for a solution of this difference9

equation in the form Fn = rn, with the number r to be determined. Substi-10

tution into the equation, followed by division by rn−2, gives11

rn = rn−1 + rn−2 ,

which simplifies to12

r2 = r + 1 ,

a quadratic equation with the roots r1 = 1−
√

5
2 , r2 =

√
5+1
2 (r2 is known from13

antiquity as the golden section). We found two solutions of the equation in14

(6.1): rn
1 and rn

2 . Their linear combination with arbitrary coefficients c115

and c2 is also a solution of the difference equation, and we shall obtain the16

Fibonacci numbers17

Fn = c1r
n
1 + c2r

n
2 ,

once c1 and c2 are chosen to satisfy the initial conditions (the second line in18

(6.1)). Obtain19

F1 = c1r1 + c2r2 = 1

F2 = c1r
2
1 + c2r

2
2 = 1 .

Solving this system gives c1 = − 1√
5
, c2 = 1√

5
. Obtain Binet’s formula20

Fn =
1√
5

[(√
5 + 1

2

)n

−
(

1 −
√

5

2

)n]

.

Other difference equations can be solved similarly. Their theory is “par-21

allel” to differential equations.22
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We consider next matrix recurrence relations (also known as matrix dif-1

ference equations) of the form2

(6.2) xn = Axn−1 , n = 1, 2, . . . ,

where x ∈ Rm, and A is anm×mmatrix. The initial vector x0 is prescribed.3

Solving (6.2) is easy: x1 = Ax0, x2 = Ax1 = AAx0 = A2x0, x3 = Ax2 =4

AA2x0 = A3x0, and in general5

(6.3) xn = Anx0 .

We now analyze this solution in case A has a complete set of m linearly6

independent eigenvectors x1, x2, . . . , xm with the corresponding eigenvalues7

λ1, λ2, . . . , λm, some possibly repeated (recall that such A is diagonalizable).8

Since Axi = λixi, it follows that Anxi = λn
i xi, for all i and n. The eigen-9

vectors x1, x2, . . . , xm form a basis of Rm, which can be used to decompose10

the initial vector11

x0 = c1x1 + c2x2 + · · ·+ cmxm ,

with some numbers c1, c2, . . . , cm. Then the solution (6.3) takes the form12

xn = An (c1x1 + c2x2 + · · ·+ cmxm)(6.4)

= c1A
nx1 + c2A

nx2 + · · ·+ cmA
nxm

= c1λ
n
1x1 + c2λ

n
2x2 + · · ·+ cmλ

n
mxm .

In case all eigenvalues ofA have modulus |λi| < 1, the solution xn approaches13

the zero vector as n→ ∞. The difference equation (6.2) is then called stable.14

If there are eigenvalues of A satisfying |λi| > 1, some solutions become15

unbounded as n→ ∞. The difference equation (6.2) is then called unstable.16

For example, if |λ1| > 1, and x0 = c1x1 with some c1 6= 0, then the sequence17

Anx0 = c1λ
n
1x1 is unbounded. In case all eigenvalues of A satisfy |λi| ≤ 1,18

and at least one has |λ| = 1, the difference equation (6.2) is called neutrally19

stable.20

The following example introduces an important class of difference equa-21

tions, with applications to probability theory.22

Example 1 Suppose that each year 0.8 (or 80%) of democrat voters23

remain democrat, while 0.1 switches to republicans and 0.1 to independents24

(these are the probabilities, with 0.8+0.1+0.1 = 1). For independent voters25

the probabilities are: 0.1 switch to democrats, 0.8 remain independent, and26
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0.1 switch to republicans. For republican voters: 0 switches to democrats,1

0.3 join independents, while 0.7 remain republican. Denoting dn, in, rn the2

numbers of democrats, independents and republicans respectively after n3

years, obtain the recurrence relations4

dn = 0.8dn−1 + 0.1in−1(6.5)

in = 0.1dn−1 + 0.8in−1 + 0.3rn−1

rn = 0.1dn−1 + 0.1in−1 + 0.7rn−1 .

The initial numbers d0, i0, r0 are prescribed, and add up to the total number5

of voters denoted by V6

d0 + i0 + r0 = V .

Introducing the transition matrix7

A =





0.8 0.1 0

0.1 0.8 0.3
0.1 0.1 0.7



 ,

and the vector xn =





dn

in
rn



 one puts the system (6.5) into the form8

xn = Axn−1. Then xn = Anx0, where x0 =





d0

i0
r0



, the initial vector.9

Calculations show that A has an eigenvalue λ1 = 1 with a correspond-10

ing eigenvector x1 =





1
2
1



, an eigenvalue λ2 = 7
10 with a corresponding11

eigenvector x2 =





−1
1

0



, and an eigenvalue λ3 = 3
5 with a corresponding12

eigenvector x3 =





1
−2

1



. By (6.4)13

xn = c1x1 + c2

(

7

10

)n

x2 + c3

(

3

5

)n

x3 → c1x1 =





c1
2c1
c1



 ,
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as n → ∞. Since the sum of the entries of xn gives the total number of1

voters V , c1 + 2c1 + c1 = V or c1 = 1
4V , we conclude that2

xn =





dn

in
rn



→





1
4V
1
2V
1
4V



 as n→ ∞ ,

so that eventually a quarter of voters will vote democrat, a quarter repub-3

lican, and the remaining half will be independents. The initial numbers4

d0, i0, r0 do not matter in the long run for the percentages of voter distribu-5

tion. One says that the iterates xn approach a steady state.6

The transition xn−1 → xn in the last example is known as Markov pro-7

cess. The matrix A is an example of Markov matrix. These are square8

m × m matrices A = [aij] with non-negative entries, aij ≥ 0, and each9

column adding up to 1:10

(6.6)

m
∑

i=1

aij = 1 , for all j .

Theorem 6.6.1 Any Markov matrix A has an eigenvalue λ = 1. All other11

eigenvalues have modulus |λ| ≤ 1.12

Proof: The columns of the matrix A− I add up to zero. Hence |A− I | =13

|A− 1I | = 0, so that λ = 1 is an eigenvalue of A.14

Turning to the second statement, take the modulus of component i of15

the relation Ax = λx (with x 6= 0), then apply the triangle inequality, and16

use that aij ≥ 017

λxi =
m
∑

j=1

aijxj ,

18

|λ||xi| ≤
m
∑

j=1

|aij||xj| =
m
∑

j=1

aij |xj| .

Sum in i, then switch the order of summation, and use (6.6)19

|λ|
m
∑

i=1

|xi| ≤
m
∑

i=1

m
∑

j=1

aij|xj| =
m
∑

j=1

(

m
∑

i=1

aij

)

|xj| =
m
∑

j=1

|xj| .

Dividing both sides by
∑m

i=1 |xi| > 0 gives |λ| ≤ 1. ♦20
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We consider next more general matrix recurrence relations of the form1

(6.7) xn = Axn−1 + b , x0 is prescribed ,

where x ∈ Rm; an m×m matrix A and a vector b ∈ Rm are given.2

Proposition 6.6.1 Assume that all eigenvalues of a matrix A have mod-3

ulus |λi| < 1. Then the iterations in (6.7) converge, and limn→∞ xn =4

(I − A)−1 b.5

Proof: The iterates are x1 = Ax0 + b, x2 = Ax1 + b = A (Ax0 + b) + b =6

A2x0 + (I + A)b, x3 = A3x0 +
(

I +A+ A2
)

b, and in general7

xn = Anx0 +
(

I + A+A2 + · · ·+An−1
)

b .

An exercise in Section 6.4 used Jordan normal form to conclude that An →8

O, and

n−1
∑

k=0

Akb→ (I − A)−1 b. ♦9

In the complex plane (where the eigenvalues λi lie) the condition |λi| < 110

implies that all eigenvalues lie inside of the unit circle around the origin.11

Gershgorin’s circles12

Recall that any complex number x+ iy can be represented by a point (x, y)13

in a plane, called the complex plane. Real numbers x lie on the x-axis of14

the complex plane. Eigenvalues λ of a matrix A are represented by points15

in the complex plane. The modulus |λ| gives the distance from the point λ16

to the origin of the complex plane.17

Given anm×mmatrixA = [aij], define Gershgorin’s circlesC1, C2, . . . , Cm18

in the complex plane, where Ci has its center at the diagonal entry aii (the19

point (aii, 0)), and its radius is ri =
∑

j 6=i |aij| (the sum of absolute values20

along the rest of row i), so that Ci : |λ− aii| = ri.21

Theorem 6.6.2 (Gershgorin’s circle theorem) Every eigenvalue of A lies22

in at least one of the circles C1, C2, . . . , Cm.23

Proof: Suppose that λ is any eigenvalue of A, and x is a corresponding24

eigenvector. Let xk be the largest in modulus component of x, so that25

|xk| ≥ |xj| for all j. Considering the component k of Ax = λx leads to26

(λ− akk)xk =
∑

j 6=k

akjxj .
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Take the modulus of both sides, then use the triangle inequality1

|λ− akk| ≤
∑

j 6=k

|akj|
|xj|
|xk|

≤
∑

j 6=k

|akj| = rk ,

so that λ lies in Ck (possibly on its rim). ♦2

A square matrix A is called diagonally dominant if |aii| >
∑

j 6=i |aij| (or3

|aii| > ri) for all i.4

Proposition 6.6.2 Diagonally dominant matrices are non-singular (invert-5

ible).6

Proof: Gershgorin’s circle Ci is centered at aii which lies at the distance7

|aii| from the origin of the complex plane. The radius of Ci is smaller than8

|aii|. Hence, the origin (λ = 0) is not included in any of Gershgorin’s circles,9

and then A has no zero eigenvalue. ♦10

Proposition 6.6.3 Assume that a matrix A is symmetric, diagonally dom-11

inant, and it has positive diagonal entries, aii > 0 for all i. Then A is12

positive definite.13

Proof: Since A is symmetric, its eigenvalues are real, and in fact the14

eigenvalues are positive because all of Gershgorin’s circles lie in the right15

half of the complex plane. ♦16

Jacobi’s iterations17

For solving an m×m system of linear equations18

(6.8) Ax = b ,

Gaussian elimination is fast and efficient, provided that m is not too large19

(say m ≤ 100). Computers have to round off numbers, in order to store20

them ( 1
3 ≈ 0.33 . . .3). Therefore, round off errors occur often in numerical21

operations. These round off errors may accumulate for large matrices A22

(that require many numerical operations), making the answers unreliable.23

Therefore for large systems one uses iterative methods of the form24

(6.9) xn = Cxn−1 + d ,

with an appropriate m×m matrix C, and d ∈ Rm. If the iterates xn ∈ Rm
25

converge to the solution of (6.8), beginning with any x0 ∈ Rm, the method26
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will be self-correcting with respect to the round off errors. The component i1

of the system (6.8) is
∑m

i=1 aijxj = bi, or2

aiixi +
∑

j 6=i

aijxj = bi .

Solve for xi (assuming that aii 6= 0 for all i)3

(6.10) xi =
1

aii



bi −
∑

j 6=i

aijxj



 ,

and introduce Jacobi’s iterations xn =

















xn
1
...

xn
i
...
xn

m

















:4

(6.11) xn
i =

1

aii



bi −
∑

j 6=i

aijx
n−1
j



 , n = 1, 2, . . . .

(Here xn
i denotes the component i of the vector xn.)5

Proposition 6.6.4 If the matrix A is diagonally dominant, Jacobi’s itera-6

tions (6.11) converge to the solution of (6.8) for any initial vector x0.7

Proof: Observe that aii 6= 0 for diagonally dominant matrices, so that8

Jacobi’s iterations (6.11) are well defined. Put Jacobi’s iterations into the9

matrix form (6.9). Here the matrix C has zero diagonal entries, cii = 0, and10

the off diagonal entries cij = −aij

aii
. The vector d has components bi

dii
. All11

of Gershgorin’s circles for matrix C are centered at the origin of the com-12

plex plane, with the radii ri = 1
|aii|

∑

j 6=i |aij| < 1, because A is diagonally13

dominant. By Gershgorin’s circle theorem all eigenvalues of matrix C lie14

inside of the unit circle around the origin, so that they satisfy |λ| < 1. By15

Proposition 6.6.1, Jacobi’s iterations converge.16

Denote xi = limn→∞ xn
i . Passing to the limit in (6.11) gives (6.10), which17

is equivalent to (6.8), so that Jacobi’s iterations converge to the solution x18

of (6.8). ♦19

Exercises20
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1. Show that every third Fibonacci number is even.1

2. Show that limn→∞
Fn+1

Fn
=

√
5+1
2 , the golden section.2

3. Solve the difference equation xn = 3xn−1 − 2xn−2, with the initial3

conditions x0 = 4, x1 = 5.4

Answer. xn = 3 + 2n.5

4. a. Show that the difference equation (6.1), defining the Fibonacci num-6

bers, can be put into the matrix form xn = Axn−1, with xn =

[

Fn

Fn−1

]

and7

A =

[

1 1

1 0

]

, for n = 3, 4, . . ., with x2 =

[

1

1

]

.8

b. Conclude that xn = An−2

[

1
1

]

.9

c. Diagonalize A, and obtain another derivation of Binet’s formula for Fn.10

5. Calculate the n×n tridiagonal determinantDn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1

1 1 −1
1 1 −1

· · ·
1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.11

(Ones on the main diagonal, and on the lower subdiagonal, −1’s on the upper12

subdiagonal. All other entries of Dn are zero.)13

Hint. Expand D4 in the first row14

D4 =

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 0

1 1 −1 0
0 1 1 −1

0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 −1 0
1 1 −1

0 1 1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1 −1 0
0 1 −1

0 1 1

∣

∣

∣

∣

∣

∣

.

The first determinant on the right is D3. The second determinant expand15

in the first column to get D2. Hence, D4 = D3 +D2. By a similar reasoning16

Dn = Dn−1 +Dn−2 for n ≥ 3. Also, D1 = 1, D2 = 2. Then Dn = Fn+1.17

6. a. From the fact that column1 + column 2 = 2(column3) (so that the18

columns are linearly dependent) determine one of the eigenvalues of the19

following matrix A and the corresponding eigenvector.20

A =





1/6 1/3 1/4

1/6 2/3 5/12
2/3 0 1/3



 .



252CHAPTER 6. SYSTEMS OF DIFFERENTIAL AND DIFFERENCE EQUATIONS

Answer. λ1 = 0, corresponding to x1 =





1

1
−2



.1

b. Verify that A is Markov matrix.2

c. Without calculating the characteristic polynomial, determine the other3

eigenvalues of A.4

Answer. λ2 = 1
6 , λ3 = 1.5

7. Recall the Hilbert matrix with entries aij = 1
i+j−1 .6

a. Set up Jacoby’s iterations for the 3 × 3 Hilbert matrix and an arbitrary7

vector b ∈ R3.8

b∗. Write a computer program for the general n× n case.9

8. Given two vectors x, y ∈ Rn we write x > y if xi > yi for all components.10

Similarly, x ≥ y if xi ≥ yi for all i. For example, x ≥ 0 means that xi ≥ 011

for all i.12

a. Suppose that x ∈ Rn satisfies x ≥ 0 and x 6= 0. Assume that an n × n13

matrix A has positive entries, so that all aij > 0. Show that Ax > 0.14

b∗. Justify the Perron-Frobenius theorem. Assume that the n × n matrix15

A has positive entries. Then the largest in absolute value eigenvalue is16

positive and simple (it is a simple root of the corresponding characteristic17

equation). Every component of the corresponding eigenvector can be chosen18

to be positive (with a proper factor).19

c. Let A be Markov matrix with positive entries. Show that Theorem 6.6.120

can be sharpened as follows: A has a simple eigenvalue λ = 1, and all entries21

of the corresponding eigenvector are positive; moreover all other eigenvalues22

satisfy |λ| < 1.23

d. If the entries of Markov matrix are only assumed to be non-negative,24

show that it is possible to have other eigenvalues on the circle |λ| = 1 in the25

complex plane, in addition to λ = 1.26

Hint. The matrix B =

[

0 1

1 0

]

has eigenvalues 1,−1.27

9. Let A be an n×n Markov matrix, x ∈ Rn and y = Ax. Show that the sum28

of the entries of y is the same as the sum of the entries of x. Conclude that29

for any Markov process xn = Axn−1 the sum of the entries of xn remains30

the same for all n.31
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Hint.
∑n

i=1

∑n
j=1 aijxj =

∑n
j=1

∑n
i=1 aijxj =

∑n
j=1 xj.1

10. Consider a Markov matrix A =





1
2 0 1

2
0 1

2
1
2

1
2

1
2 0



.2

a. Show that for any x0 ∈ R3, limn→∞Anx0 = α





1/3

1/3
1/3



, where α is the3

sum of the entries of x0.4

Hint. A has an eigenvalue λ = 1 with an eigenvector





1/3

1/3
1/3



, and the5

eigenvalues ±1
2 .6

b. Consider A0 =





1/3 1/3 1/3
1/3 1/3 1/3

1/3 1/3 1/3



. Show that limn→∞An = A0.7

Hint. Show that for any vector x0 ∈ R3, limn→∞Anx0 = A0x0.8

11. Draw Gershgorin’s circles for the matrix A =





−3 1 1

1 4 −1
0 2 4



. Is A9

diagonally dominant?10



Chapter 71

Applications to Calculus and2

Differential Geometry3

Linear Algebra has many uses in diverse areas of science, engineering, eco-4

nomics, image processing, etc. It is perhaps ironic that applications to other5

branches of mathematics are often neglected. In this chapter we use Hessian6

matrices to develop Taylor’s series for functions of many variables, leading to7

the second derivative test for extrema. In the process, Sylvester’s test is cov-8

ered, thus adding to the theory of positive definite matrices. Application to9

Differential Geometry is also “a two way street”, with generalized eigenvalue10

problem and generalized Rayleigh quotient deepening our understanding of11

the standard topics.12

7.1 Hessian Matrix13

In this section we use positive definite matrices to determine minimums14

and maximums of functions with two or more variables. But first a useful15

decomposition of symmetric matrices is discussed.16

A = LDLT decomposition17

Assume that Gaussian elimination can be performed for an n× n matrix A18

without any row exchanges, and |A| 6= 0. Recall that in such a case one can19

decompose A = LU , where L is a lower triangular matrix with the diagonal20

entries equal to 1, and U is an upper triangular matrix with the diagonal21

entries equal to the pivots of A, denoted by d1, d2, . . . , dn. Observe that22

all di 6= 0, because |A| = d1d2 · · ·dn 6= 0. The decomposition A = LU is23

254
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unique.1

Write U = DU1, where D is a diagonal matrix, with the diagonal entries2

equal to d1, d2, . . . , dn, and U1 is another upper triangular matrix with the3

diagonal entries equal to 1. (The row i of U1 is obtained by dividing the row4

i of U by di.) Then5

(1.1) A = LDU1 ,

and this decomposition (known as LDU decomposition) is unique.6

Now suppose, in addition, that A is symmetric, so that AT = A. Then7

A = AT = (LDU1)
T = UT

1 DL
T ,

where UT
1 is lower triangular and LT is upper triangular. Comparison with8

(1.1) gives UT
1 = L and LT = U1, since the decomposition (1.1) is unique.9

We conclude that any symmetric matrixA, with |A| 6= 0, can be decomposed10

as11

(1.2) A = LDLT ,

where L is a lower triangular matrix with the diagonal entries equal to 1,12

and D is a diagonal matrix, provided that no row exchanges are needed in13

the row reduction of A. The diagonal entries of D are the non-zero pivots14

of A.15

Sylvester’s Criterion16

For the n × n matrix17

A =













a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

. . . . . . . . . . . . . . .
an1 an2 an3 . . . ann













the sub-matrices18

A1 = a11 , A2 =

[

a11 a12

a21 a22

]

, A3 =





a11 a12 a13

a21 a22 a23

a31 a32 a33



 , . . . , An = A
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are called the principal sub-matrices. The determinants of the principal1

sub-matrices2

|A1| = a11 , |A2| =

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

, |A3| =

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

, . . . , |An| = |A|

are called the principal minors.3

Theorem 7.1.1 (Sylvester’s criterion) A symmetric matrix A is positive4

definite if and only if all of its principal minors are positive.5

Proof: Assume that A is positive definite, so that Ax ·x > 0 for all x 6= 0.6

Let x = e1, the first coordinate vector in Rn. Then |A1| = a11 = Ae1 ·e1 > 0.7

(Using x = ei, one can similarly conclude that aii > 0 for all i.) Let now8

x =















x1

x2

0
...
0















. Then9

0 < Ax · x = A2

[

x1

x2

]

·
[

x1

x2

]

,

for any vector

[

x1

x2

]

∈ R2. It follows that the 2 × 2 matrix A2 is positive10

definite, and then both eigenvalues of A2 are positive, so that |A2| > 0 as the11

product of positive eigenvalues. Using x =



















x1

x2

x3

0
...
0



















, one concludes similarly12

that that |A3| > 0, and so on.13

Conversely, assume that all principal minors are positive. Let us apply14

Gaussian elimination to A. We claim that all pivots are positive. (We shall15

show that all diagonal entries obtained in the process of row reduction are16

positive.) Indeed, the first pivot d1 is the first principal minor a11 > 0. If17

d2 denotes the second pivot, then18

0 < |A2| = d1d2 ,
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so that d2 > 0. (Gaussian elimination reduces A2 to an upper triangular1

matrix with d1 and d2 on the diagonal.) Similarly2

0 < |A3| = d1d2d3 ,

implying that the third pivot d3 is positive, and so on.3

Since all pivots of A are positive, no row exchanges are needed in Gaus-4

sian elimination, and by (1.2) we can decompose A = LDLT , where L is a5

lower triangular matrix with the diagonal entries equal to 1, and D is a diag-6

onal matrix. The diagonal entries of D are the positive pivots d1, d2, . . . , dn7

of A.8

For any x 6= 0, let y = LTx. Observe that y 6= 0, since otherwise9

x =
(

LT
)−1

y = 0, a contradiction (LT is invertible, because |LT | = 1 6= 0).10

Then11

Ax · x = LDLTx · x = DLTx · LTx = Dy · y
= d1y

2
1 + d2y

2
2 + · · ·+ dny

2
n > 0 ,

so that A is positive definite. ♦12

A symmetric matrixA is called negative definite if −A is positive definite,13

which implies that (−A)x · x > 0 for all x 6= 0, and that all eigenvalues of14

−A are positive. It follows that for a negative definite matrix Ax · x < 0 for15

all x 6= 0, and that all eigenvalues of A are negative.16

Theorem 7.1.2 A symmetric matrix A is negative definite if and only if17

all of its principal minors satisfy (−1)k|Ak| > 0.18

Proof: Assume that (−1)k|Ak| > 0 for all k. The principal minors of the19

matrix −A are20

|(−A)k| = | −Ak| = (−1)k|Ak| > 0 , for all k .

By Sylvester’s criterion the matrix −A is positive definite. The converse21

statement follows by reversing this argument. ♦22

The Second Derivative Test23

By Taylor’s formula, any twice continuously differentiable function can be24

approximated around an arbitrary point x0 as25

(1.3) f(x) ≈ f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)

2 ,
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for x near x0. If x0 is a critical point, where f ′(x0) = 0, one has1

(1.4) f(x) ≈ f(x0) +
1

2
f ′′(x0)(x− x0)

2 .

In case f ′′(x0) > 0 it follows that f(x) > f(x0) for x near x0, so that x0 is a2

point of local minimum. If f ′′(x0) < 0, then x0 is a point of local maximum.3

Setting x = x0 + h, one can rewrite (1.3) as4

f(x0 + h) ≈ f(x0) + f ′(x0)h+
1

2
f ′′(x0)h

2 ,

for |h| small.5

Let now f(x, y) be twice continuously differentiable function of two vari-6

ables. Taylor’s approximation near a fixed point (x0, y0) uses partial deriva-7

tives (here fx = ∂f
∂x , fxx = ∂2f

∂x2 , etc.)8

f(x0 + h1, y0 + h2) ≈ f(x0, y0) + fx(x0, y0)h1 + fy(x0, y0)h2(1.5)

+1
2

[

fxx(x0, y0)h
2
1 + 2fxy(x0, y0)h1h2 + fyy(x0, y0)h

2
2

]

,

provided that both |h1| and |h2| are small. If (x0, y0) is a critical point,9

where fx(x0, y0) = fy(x0, y0) = 0, then10

f(x0 + h1, y0 + h2) ≈ f(x0, y0)(1.6)

+1
2

[

fxx(x0, y0)h
2
1 + 2fxy(x0, y0)h1h2 + fyy(x0, y0)h

2
2

]

.

The second term on the right is 1
2 times a quadratic form in h1, h2 with the11

matrix12

H =

[

fxx(x0, y0) fxy(x0, y0)

fxy(x0, y0) fyy(x0, y0)

]

called the Hessian matrix. (One can also writeH =

[

fxx(x0, y0) fxy(x0, y0)

fyx(x0, y0) fyy(x0, y0)

]

,13

because fyx(x0, y0) = fxy(x0, y0). Observe also that H = H(x0, y0).) Intro-14

ducing the vector h =

[

h1

h2

]

, one can write the quadratic form in (1.6) as15

1
2Hh · h. Then (1.6) takes the form16

f(x0 + h1, y0 + h2) ≈ f(x0, y0) +
1

2
Hh · h .

If the Hessian matrix H is positive definite, so that Hh ·h > 0 for all h 6= 0,17

then for all h1 and h2, with |h1| and |h2| small18

f(x0 + h1, y0 + h2) > f(x0, y0) .
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It follows that f(x, y) > f(x0, y0) for all points (x, y) near (x0, y0), so that1

(x0, y0) is a point of local minimum. By Sylvester’s criterion, Theorem 7.1.1,2

H is positive definite provided that fxx(x0, y0) > 0 and fxx(x0, y0)fyy(x0, y0)−3

f2
xy(x0, y0) > 0. If the Hessian matrix H is negative definite, then for all h14

and h2, with |h1| and |h2| small5

f(x0 + h1, y0 + h2) < f(x0, y0) ,

and (x0, y0) is a point of local maximum. By Theorem 7.1.2, H is neg-6

ative definite provided that fxx(x0, y0) < 0 and fxx(x0, y0)fyy(x0, y0) −7

f2
xy(x0, y0) > 0.8

A symmetric matrix A is called indefinite provided that the quadratic9

form Ah · h takes on both positive and negative values. This happens when10

A has both positive and negative eigenvalues (as follows by diagonalization11

of Ah ·h). If the Hessian matrixH(x0, y0) is indefinite, there is no extremum12

of f(x, y) at (x0, y0). One says that (x0, y0) is a saddle point. A saddle point13

occurs provided that14

fxx(x0, y0)fyy(x0, y0) − f2
xy(x0, y0) < 0 .

Indeed, this quantity gives the determinant of H(x0, y0), which equals to the15

product of the eigenvalues of H(x0, y0), so that the eigenvalues of H(x0, y0)16

have opposite signs.17

For functions of more than two variables it is convenient to use vector no-18

tation. If f = f(x1, x2, . . . , xn), we define a row vector x = (x1, x2, . . . , xn),19

and then f = f(x). Taylor’s formula around some point x0 = (x0
1, x

0
2, . . . , x

0
n)20

takes the form21

f(x) ≈ f(x0) + ∇f(x0) · (x− x0) +
1

2
H(x0)(x− x0) · (x− x0) ,

for x close to x0 (i.e., when the distance ||x− x0|| is small). Here ∇f(x0) =22










fx1(x0)

fx2(x0)
...

fxn(x0)











is the gradient vector, and23

H(x0) =











fx1x1(x0) fx1x2(x0) . . . fx1xn(x0)

fx2x1(x0) fx2x2(x0) . . . fx2xn(x0)

. . . . . .
. . . . . .

fxnx1(x0) fxnx2(x0) . . . fxnxn(x0)
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is the Hessian matrix.1

A point x0 is called critical if ∇f(x0) = 0, or in components:2

fx1(x
0
1, x

0
2, . . . , x

0
n) = fx2(x

0
1, x

0
2, . . . , x

0
n) = · · · = fxn(x0

1, x
0
2, . . . , x

0
n) = 0 .

At a critical point3

f(x) ≈ f(x0) +
1

2
H(x0)(x− x0) · (x− x0) ,

for x near x0. So that x0 is a point of minimum of f(x) if the Hessian matrix4

H(x0) is positive definite, and x0 is a point of maximum if H(x0) is negative5

definite. Sylvester’s criterion and Theorem 7.1.2 give a straightforward way6

to decide. If H(x0) is indefinite then x0 is called a saddle point (there is no7

extremum at x0).8

Example Let f(x, y, z) = 2x2 − xy + 2xz + 2y2 + yz + z2 + 3y.9

To find the critical points, set the first partials to zero10

fx = 4x− y + 2z = 0

fy = −x + 4y + z + 3 = 0

fz = 2x+ y + 2z = 0 .

This 3 × 3 linear system has a unique solution x = −2, y = −2, z = 3. To11

apply the second derivative test at the point (−2,−2, 3), calculate the Hes-12

sian matrix H(−2,−2, 3) =





4 −1 2

−1 4 1
2 1 2



. Its principal minors 4, 15, 613

are all positive, and hence H(−2,−2, 3) is positive definite by Sylvester’s14

criterion. There is a local minimum at the point (−2,−2, 3), and since there15

are no other critical points, this is the point of global minimum.16

Exercises17

1. a. If a matrix A is positive definite show that aii > 0 for all i.18

Hint. aii = Aei · ei, where ei is the coordinate vector.19

b. If a 5×5 matrixA is positive definite show that the submatrix

[

a22 a24

a42 a44

]

20

is also positive definite.21

Hint. Consider Ax · x, where x ∈ R5 has x1 = x3 = x5 = 0.22
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c. Show that all other submatrices of the form

[

aii aij

aji ajj

]

are positive1

definite, 1 ≤ i < j ≤ 5.2

2. By inspection (just by looking) determine why the following matrices are3

not positive definite.4

a.





5 2 1

2 1 −1
1 −1 −2



. b.





5 2 0

2 1 1
0 1 0



. c.





5 3 1

3 1 1
1 2 8



. d.





4 2 1

2 1 −1
1 −1 2



.5

6

3. Determine if the following symmetric matrices are positive definite, neg-7

ative definite, indefinite, or none of the above.8

a.

[

4 2
2 2

]

. Answer. Positive definite.9

b.

[

−4 1

1 −3

]

. Answer. Negative definite.10

c.

[

4 3
3 −4

]

. Answer. Indefinite.11

d.

[

4 2
2 1

]

.12

Answer. None of the above. (This matrix is positive semi-definite.)13

4. a. Use Gershgorin’s circle theorem to confirm that the following symmet-14

ric matrix is positive definite15









4 2 0 −1
2 7 −1 3

0 −1 6 2
−1 3 2 7









.

Hint. Show that all eigenvalues are positive.16

b. Use Sylvester’s criterion on the same matrix.17

5. Determine the critical points of the following functions, and examine18

them by the second derivative test.19

a. f(x, y, z) = x3 + 30xy + 3y2 + z2.20

Answer. Saddle point at (0, 0, 0), and a point of minimum at (50,−250, 0).21

(The Hessian matrix H(0, 0, 0) has eigenvalues 3 − 3
√

101, 3 + 3
√

101, 2.)22
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b. f(x, y, z) = −x2 − 2y2 − z2 + xy + 2xz.1

Answer. Saddle point at (0, 0, 0).2

c. f(x, y, z) = −x2 − 2y2 − 4z2 + xy + 2xz.3

Answer. Point of maximum at (0, 0, 0).4

d. f(x, y) = xy + 20
x + 50

y .5

Answer. Point of minimum at (2, 5).6

e. f(x, y, z) = y2

2x + 2x+ 2z2

y + 4
z .7

Answer. Point of minimum at (1
2 , 1, 1), point of maximum at (−1

2 ,−1,−1).8

9

f∗. f(x1, x2, . . . , xn) = x1 +
x2

x1
+
x3

x2
+ · · ·+ xn

xn−1
+

2

xn
, xi > 0 for all i.10

Answer. Global minimum of (n + 1)2
1

n+1 , occurs at the point x1 = 2
1

n+1 ,11

x2 = x2
1, . . . , xn = xn

1 .12

6. Find the maximum value of f(x, y, z) = sinx+sin y+sin z−sin(x+y+z)13

over the cube 0 < x < π, 0 < y < π, 0 < z < π.14

Answer. The point of maximum is (π
2 ,

π
2 ,

π
2 ), the maximum value is 4.15

7. (The Second Derivative Test) Let (x0, y0) be a critical point of f(x, y), so16

that fx(x0, y0) = fy(x0, y0) = 0. Let D = fxx(x0, y0)fyy(x0, y0)−f2
xy(x0, y0).17

Show that18

a. If D > 0 and fxx(x0, y0) > 0, then (x0, y0) is a point of minimum;19

b. If D > 0 and fxx(x0, y0) < 0, then (x0, y0) is a point of maximum;20

c. If D < 0, then (x0, y0) is a saddle point.21

8. Find the A = LDU decomposition of the following matrices.22

a. A =

[

1 2
3 4

]

.23

Answer. L =

[

1 0

3 1

]

, D =

[

1 0

0 −2

]

, U =

[

1 2

0 1

]

.24

b. A =





1 2 1

−2 −1 1
1 −1 0



.25
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Answer. L =





1 0 0

−2 1 0
1 −1 1



, D =





1 0 0

0 3 0
0 0 2



, U =





1 2 1

0 1 1
0 0 1



.1

9. Find the A = LDLT decomposition of the following symmetric matrices.2

3

a. A =





1 −1 1

−1 4 −4
1 −4 6



.4

Answer. L =





1 0 0

−1 1 0
1 −1 1



, D =





1 0 0

0 3 0
0 0 2



.5

b. A =





1 −1 2
−1 2 −3

2 −3 6



. Answer. L =





1 0 0
−1 1 0

2 −1 1



, D = I .6

7.2 Jacobian Matrix7

For vector functions of multiple arguments the central role of derivative is8

played by the Jacobian matrix studied in this section.9

The inverse function of y = 5x is x = 1
5y. How about y = x2? The10

inverse function cannot be x = ±√
y because functions have unique values.11

So that the function f(x) = x2 does not have an inverse function, which12

is valid for all x. Let us try to invert this function near x = 1. Near that13

point both x and y are positive, so that x =
√
y gives the inverse function.14

(Near x = 0 one cannot invert y = x2, since there are both positive and15

negative x’s near x = 0, and the formula would have to be x = ±√
y, which16

is not a function.) Observe that f ′(1) = 2 > 0 so that f(x) is increasing17

near x = 1. It follows that all y’s near f(1) = 1 come from a unique x,18

and the inverse function exists. At x = 0, f ′(0) = 0, and there is no inverse19

function. Recall the inverse function theorem from Calculus: if y = f(x) is20

defined on some interval around x0, with y0 = f(x0), and f ′(x0) 6= 0, then21

the inverse function x = x(y) exists on some interval around y0.22

Now suppose there is a map (x, y) → (u, v)23

u = f(x, y)(2.1)

v = g(x, y) ,
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given by continuously differentiable functions f(x, y) and g(x, y), and let us1

try to solve for x and y in terms of u and v. What will replace the notion2

of derivative in this case? The matrix of partial derivatives3

J(x, y) =

[

fx(x, y) fy(x, y)

gx(x, y) gy(x, y)

]

is called the Jacobian matrix. Its determinant |J(x, y)| is called the Jacobian4

determinant. Suppose that5

u0 = f(x0, y0)

v0 = g(x0, y0) ,

and the Jacobian determinant6

|J(x0, y0)| =

∣

∣

∣

∣

fx(x0, y0) fy(x0, y0)
gx(x0, y0) gy(x0, y0)

∣

∣

∣

∣

6= 0 .

The inverse function theorem asserts that for (u, v) lying in a sufficiently7

small disk around the point (u0, v0), one can solve the system (2.1) for8

x = ϕ(u, v) and y = ψ(u, v), with two continuously differentiable functions9

ϕ(u, v) and ψ(u, v) satisfying x0 = ϕ(u0, v0) and y0 = ψ(u0, v0). Moreover,10

the system (2.1) has no other solutions near the point (u0, v0). The proof of11

this theorem can be found for example in the book of V.I. Arnold [1].12

Example 1 The surface13

x = u3v + 2u+ 2

y = u+ v

z = 3u− v2

passes through the point (2, 1,−1) when u = 0 and v = 1. The Jacobian14

matrix of the first two of these equations is15

J(u, v) =

[

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]

=

[

3u2v + 2 u3

1 1

]

.

Since the Jacobian determinant16

|J(0, 1)| =
∣

∣

∣

∣

2 0

1 1

∣

∣

∣

∣

= 2 6= 0 ,

it follows by the inverse function theorem that we can solve the first two17

equations for u and v as functions of x and y (near the point (x, y) = (2, 1)),18
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obtaining u = ϕ(x, y) and v = ψ(x, y), and then use these functions in the1

third equation to express z as a function of x and y. Conclusion: near the2

point (2, 1,−1) this surface can be represented in the form z = F (x, y) with3

some function F (x, y).4

More generally, for a surface5

x = x(u, v)

y = y(u, v)

z = z(u, v) ,

with given functions x(u, v), y(u, v), z(u, v), assume that the rank of the6

Jacobian matrix7

J(u, v) =





∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v





is two. Then a pair of rows of J(u, v) is linearly independent, and we can8

express one of the coordinates (x, y, z) through the other two. Indeed, if9

say row one and row three are linearly independent, then

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂z
∂u

∂z
∂v

∣

∣

∣

∣

6= 0,10

and we can express u, v through x, z by the inverse function theorem. Then11

from row two obtain y = F (x, z) with some function F (x, z) (near some12

point (x0, y0, z0)).13

For a map R3 → R3 given by (f(x, y, z), g(x, y, z), h(x, y, z)), with some14

differentiable functions f(x, y, z), g(x, y, z), h(x, y, z), the Jacobian matrix15

takes the form16

J(x, y, z) =





fx(x, y, z) fy(x, y, z) fz(x, y, z)
gx(x, y, z) gy(x, y, z) gz(x, y, z)

hx(x, y, z) hy(x, y, z) hz(x, y, z)



 ,

and the statement of the inverse function theorem is similar.17

Recall that Jacobian determinants also occur in Calculus when one18

changes coordinates in double and triple integrals. If19

x = x(u, v)

y = y(u, v)

is a one-to-one map taking a region D in the uv-plane onto a region R of20

the xy-plane, then21

∫∫

R

f(x, y) dxdy =

∫∫

D

f (x(u, v), y(u, v)) |
∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

| dudv .
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Here the absolute value of the Jacobian determinant gives the magnification1

factor of the element of area. This formula is justified in exercises of Section2

7.4.3

Example 2 If one switches from the Cartesian to polar coordinates, x =4

r cos θ, y = r sin θ, then5

∣

∣

∣

∣

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣

∣

∣

∣

=

∣

∣

∣

∣

cos θ −r sin θ

sin θ r cos θ

∣

∣

∣

∣

= r ,

leading to the familiar formula dxdy = r drdθ for double integrals.6

Example 3 Evaluate

∫∫

R

√

1 − x2

a2
− y2

b2
dxdy, over an elliptical region7

R: x2

a2 + y2

b2
≤ 1, with a > 0, b > 0.8

Use the map x = au, y = bv, taking R onto the unit disc D: u2 + v2 ≤ 1.9

The Jacobian determinant is10

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

=

∣

∣

∣

∣

a 0

0 b

∣

∣

∣

∣

= ab .

Then11

∫∫

R

√

1 − x2

a2 − y2

b2
dxdy = ab

∫∫

D

√
1 − u2 − v2 dudv

= ab
∫ 2π
0

∫ 1
0

√
1 − r2 r drdθ = 2

3πab ,

using polar coordinates in the uv-plane on the second step.12

Exercises13

1. Consider the map (x, y) → (u, v), u = x3 + y2, v = yex + 1. For a given14

point (x0, y0) calculate the corresponding point (u0, v0). Determine if the15

inverse function theorem (IFT) applies, and if it does, state its conclusion.16

a. (x0, y0) = (0, 0). Answer. IFT does not apply.17

b. (x0, y0) = (0, 1).18

Answer. IFT applies. An inverse map x = ϕ(u, v), y = ψ(u, v) exists for19

(u, v) near (u0, v0) = (1, 2). Also, ϕ(1, 2) = 0 and ψ(1, 2) = 1.20

c. (x0, y0) = (1, 0).21
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2. a. Consider a map (u, v) → (x, y) given by some functions x = x(u, v),1

y = y(u, v), and a map (p, q) → (u, v) given by u = u(p, q), v = v(p, q).2

Together they define a composite map (p, q) → (x, y): x = x(u(p, q), v(p, q)),3

y = y(u(p, q), v(p, q)). Justify the chain rule for Jacobian matrices4

[

xp xq

yp yq

]

=

[

xu xv

yu yv

] [

up uq

vp vq

]

.

b. Assume that a map (u, v) → (x, y), given by x = f(u, v) and y = g(u, v),5

has an inverse map (x, y) → (u, v), given by u = p(x, y) and v = q(x, y), so6

that x = f(p(x, y), q(x, y)), y = g(p(x, y), q(x, y)). Show that7

[

px py

qx qy

]

=

[

fu fv

gu gv

]−1

.

8

3. a. If one switches from Cartesian coordinates to the spherical ones:9

x = ρ sinϕ cos θ

y = ρ sinϕ sin θ

z = ρ cosϕ ,

with ρ > 0, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π, show that the absolute value of the10

Jacobian determinant is11

|

∣

∣

∣

∣

∣

∣

∣

∂x
∂ρ

∂x
∂θ

∂x
∂ϕ

∂y
∂ρ

∂y
∂θ

∂y
∂ϕ

∂z
∂ρ

∂z
∂θ

∂z
∂ϕ

∣

∣

∣

∣

∣

∣

∣

| = ρ2 sinϕ ,

and conclude that dxdydz = ρ2 sinϕ dρdθdϕ for triple integrals.12

b. Evaluate

∫∫∫

V

√

1 − x2

a2
− y2

b2
− z2

c2
dxdydz over an ellipsoidal region V :13

x2

a2 + y2

b2
+ z2

c2
≤ 1.14

c. Find the volume of the ellipsoid V .15

Answer. 4
3πabc.16

4. a. Sketch the parallelogramR bounded by the lines −x+y = 0, −x+y =17

1, 2x+ y = 2, 2x+ y = 4.18

b. Show that the map (x, y) → (u, v), given by u = −x+ y and v = 2x+ y,19

takes R onto a rectangle D : 0 ≤ u ≤ 1, 2 ≤ v ≤ 4, and the Jacobian20

determinant

∣

∣

∣

∣

ux uy

vx vy

∣

∣

∣

∣

is −3.21
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c. Show that the inverse map (u, v) → (x, y) taking D onto R is given by1

x = −1
3u+ 1

3v, y = 2
3u+ 1

3v, and the Jacobian determinant

∣

∣

∣

∣

xu xv

yu yv

∣

∣

∣

∣

= −1
3 .2

3

d. Evaluate
∫∫

R(x+ 2y) dxdy.4

Hint. Reduce this integral to 1
3

∫∫

D(u+ v) dudv.5

7.3 Curves and Surfaces6

We now review the notions of arc length and curvature for curves in two and7

three dimensions, and of coordinate curves and tangent planes for surfaces.8

Curves9

Parametric equations of a circle of radius 2 around the origin in the xy-plane10

can be written as11

x = 2 cos t

y = 2 sin t,

0 ≤ t ≤ 2π .

Indeed, here x2 + y2 = 4 cos2 t+ 4 sin2 t = 4. As the parameter t varies over12

the interval [0, 2π], the point (x, y) traces out this circle, moving counter-13

clockwise. The polar angle of the point (x, y) is equal to t (since y
x = tan t).14

Consider a vector γ(t) = (2 cos t, 2 sin t). As t varies from 0 to 2π, the tip15

of γ(t) traces out the circle x2 + y2 = 4. Thus γ(t) represents this circle.16

Similarly, γ1(t) = (2 cos t, sin t) represents the ellipse x2

4 + y2 = 1.17

A vector function γ(t) = (f(t), g(t), h(t)) with given functions f(t), g(t),18

h(t), and t0 ≤ t ≤ t1, defines a three-dimensional curve. If a particle is19

moving on the curve γ(t), and t is time, then γ ′(t) gives velocity of the20

particle, and ||γ ′(t)|| its speed. The distance covered by the particle (or the21

length of this curve) is the integral of its speed:22

L =

∫ t1

t0

||γ ′(t)|| dt =

∫ t1

t0

||γ ′(z)|| dz .

(Indeed, this integral is limit of the Riemann sum

n
∑

i=1

||γ ′(ti)||∆t, which on23

each subinterval is product of speed and time.) If we let the upper limit of24
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integration vary, and call it t, then the resulting function of t1

s(t) =

∫ t

t0

||γ ′(z)|| dz

is called the arc length function, and it provides the distance traveled be-2

tween the time instances t0 and t. By the fundamental theorem of Calculus3

(3.1)
ds

dt
= ||γ ′(t)|| .

(Both sides of this relation give speed.)4

The velocity vector γ ′(t) is tangent to the curve γ(t), T (t) = γ′(t)
||γ′(t)|| gives5

the unit tangent vector.6

Example 1 Consider a helix γ(t) = (cos t, sin t, t). (The xy-component7

(cos t, sin t) moves on the unit circle around the origin, while z = t, so that8

the curve climbs.) Calculate the velocity vector γ ′(t) = (− sin t, cos t, 1), the9

speed ||γ ′(t)|| =
√

2, and the unit tangent vector10

T (t) =
1√
2

(− sin t, cos t, 1) .

The arc length function, as measured from t0 = 0, is11

s =

∫ t

0
||γ ′(z)|| dz =

∫ t

0

√
2 dz =

√
2t .

Let us express t = s√
2

and reparameterize this helix using the arc length s12

as a parameter13

γ(s) =

(

cos
s√
2
, sin

s√
2
,
s√
2

)

.

Are there any advantages of the new parameterization? Let us calculate14

γ ′(s) =

(

− 1√
2

sin
s√
2
,

1√
2

cos
s√
2
,

1√
2

)

,

15

||γ ′(s)|| = 1

2
+

1

2
= 1 .

The speed equals one at all points, the curve is now of unit speed.16

Arc length parameterization always produces unit speed curves, as is17

shown next.18
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Theorem 7.3.1 If s is the arc length function on the curve γ(t), and the1

parameterization γ(s) is used, then ||γ ′(s)|| = 1, and therefore γ ′(s) = T (s),2

the unit tangent vector.3

Proof: Relate the two parameterizations4

γ(t) = γ(s(t)) .

By the chain rule, and the formula (3.1),5

γ ′(t) =
dγ

ds

ds

dt
=
dγ

ds
||γ ′(t)||.

Then6

γ ′(s) =
γ ′(t)

||γ ′(t)|| ,

which is the unit tangent vector T (s). ♦7

Suppose that a particle moves on a sphere. Then its velocity vector γ ′(t)8

is perpendicular to the radius vector γ(t) at all time.9

Proposition 7.3.1 Assume that ||γ(t)|| = a for all t, where a is a number.10

Then γ ′(t) · γ(t) = 0, so that γ ′(t) ⊥ γ(t) = 0 for all t.11

Proof: We are given that12

γ(t) · γ(t) = a2 .

Differentiate both sides and simplify13

γ ′(t) · γ(t) + γ(t) · γ ′(t) = 0 ,

2γ ′(t) · γ(t) = 0 ,

so that γ ′(t) · γ(t) = 0. ♦14

Let γ(s) be a unit speed curve (i.e., s is the arc length). Define the15

curvature of the curve as16

(3.2) κ(s) = ||γ ′′(s)|| = ||T ′(s)|| .

Since17

(3.3) γ ′′(s) = lim
∆s→0

γ ′(s+ ∆s) − γ ′(s)
∆s

,
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and both γ ′(s+ ∆s) and γ ′(s) are unit tangent vectors, the curvature mea-1

sures how quickly the unit tangent vector turns. Since ||γ ′(s)|| = 1 for all s,2

it follows by Proposition 7.3.1 that γ ′′(s) ⊥ γ ′(s). The vector γ ′′(s) is called3

the normal vector. It is perpendicular to the tangent vector, and it points4

in the direction that the curve γ(s) bends to, as can be seen from (3.3).5

Example 2 Consider γ(t) = (a cos t, a sin t), a circle of radius a around6

the origin. Expect curvature to be the same at all points. Let us switch to7

the arc length parameter: s =
∫ t
0 ||γ ′(z)|| dz =

∫ t
0 a dz = at, so that t = s

a .8

Then9

γ(s) =
(

a cos
s

a
, a sin

s

a

)

,

10

γ ′(s) =
(

− sin
s

a
, cos

s

a

)

,

11

γ ′′(s) =

(

−1

a
cos

s

a
,−1

a
sin

s

a

)

,

κ(s) = ||γ ′′(s)|| =
1

a
.

The curvature is inverse proportional to the radius of the circle.12

Arc length parameterization is rarely available for a general curve γ(t) =13

(x(t), y(t), z(t)) because the integral s =
∫ t
t0

√

x′2 + y′2 + z′2 dz tends to be14

complicated. Therefore, we wish to express curvature as a function of t,15

κ = κ(t). Using the chain rule, the inverse function theorem, and (3.1),16

express17

(3.4) κ = ||T ′(s)|| = ||T ′(t)
dt

ds
|| =

||T ′(t)||
ds
dt

=
||T ′(t)||
||γ ′(t)|| .

The problem with this formula is that the vector18

T (t) =





x′(t)
√

x′2(t) + y′2(t) + z′2(t)
,

y′
√

x′2 + y′2 + z′2
,

z′
√

x′2 + y′2 + z′2





is cumbersome to differentiate. A convenient formula for the curvature is19

given next.20

Theorem 7.3.2 κ(t) =
||γ ′(t) × γ ′′(t)||

||γ ′(t)||3 .21
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Proof: By the definition of T (t) and (3.1)1

γ ′(t) = T (t)||γ ′(t)|| = T (t)
ds

dt
.

Using the product rule2

γ ′′(t) = T ′ds
dt

+ T
d2s

dt2
.

Take vector product of both sides with T , and use that T × T = 03

T × γ ′′(t) = T × T ′ ||γ ′(t)|| .

Substitute T = γ′(t)
||γ′(t)|| on the left, to express4

γ ′(t) × γ ′′(t) = T × T ′ ||γ ′(t)||2 .

Take length of both sides5

||γ ′(t) × γ ′′(t)|| = ||T × T ′|| ||γ ′(t)||2 = ||T ′|| ||γ ′(t)||2 .

(Because ||T × T ′|| = ||T ||||T ′|| sin π
2 = ||T ′||, using that T ′ ⊥ T by Proposi-6

tion 7.3.1.) Then7

||γ ′(t) × γ ′′(t)||
||γ ′(t)||3 =

||T ′(t)||
||γ ′(t)|| = κ(t) ,

in view of (3.4). ♦8

Surfaces9

Two parameters, called u and v, are needed to define a surface σ(u, v) =10

(x(u, v), y(u, v), z(u, v)), with given functions x(u, v), y(u, v), z(u, v). As the11

point (u, v) varies in some parameter region D of the uv-plane, the tip of12

the vector function σ(u, v) traces out a surface, which can be alternatively13

represented in a parametric form as14

x = x(u, v)

y = y(u, v)

z = z(u, v) .

Example 3 σ(u, v) =
(

u, v + 1, u2 + v2
)

. Here x = u, y = v + 1, z =15

u2 + v2, or z = x2 + (y− 1)2. The surface is a paraboloid with the vertex at16

(0, 1, 0) (see a Calculus book if a review is needed).17
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Example 4 A sphere of radius a around the origin can be described1

in spherical coordinates as ρ = a. Expressing the Cartesian coordinates2

through the spherical ones gives a parameterization:3

x = a sinϕ cos θ

y = a sinϕ sinθ

z = a cosϕ .

Here 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π. The rectangle [0, 2π]× [0, π] is the parameter4

region D in the θϕ-plane.5

Example 5 A completely different parameterization of a sphere of radius6

a around the origin, called the Mercator projection, was introduced in the7

sixteenth century for the needs of naval navigation:8

σ(u, v) = (a sechu cos v, a sechu sin v, a tanhu) ,

with −∞ < u < ∞, 0 ≤ v ≤ 2π. It uses hyperbolic functions reviewed9

in Exercises, where it is also shown that the components of σ(u, v) satisfy10

x2 + y2 + z2 = a2.11

Example 6 Suppose that a curve12

y = f(u)

z = g(u) ,

u0 ≤ u ≤ u1

in the yz-plane is rotated around the z-axis. Let us parameterize the result-13

ing surface of revolution. We need to express (x, y, z) on this surface. The14

z coordinate is z = g(u). The trace of this surface on each horizontal plane15

is a circle around the origin of radius f(u). Obtain:16

σ(u, v) = (f(u) cos v, f(u) sinv, g(u)) ,

with u0 ≤ u ≤ u1, 0 ≤ v ≤ 2π.17

Example 7 Assume that a circle of radius a, centered at the point (b, 0)18

in the yz-plane, is rotated around the z-axis, b > a. The resulting surface19

is called torus (or doughnut, or bagel). Parameterizing this circle as20

y = b+ a cos θ

z = a sin θ ,

0 ≤ θ ≤ 2π ,
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Figure 7.1: Torus, a = 1 and b = 3

we obtain a parameterization of this torus, as a surface of revolution,1

σ(θ, ϕ) = ((b+ a cos θ) cosϕ, (b+ a cos θ) sinϕ, a sinθ) ,

with 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ 2π.2

At a particular pair of parameters u = u0 and v = v0 we have a point3

σ(u0, v0), call it P , on a surface σ(u, v) called S. The curve σ(u, v0) depends4

on a parameter u, it lies on S, and passes through P at u = u0. The curve5

σ(u, v0) is called the u-curve through P . Similarly, the v-curve through P is6

σ(u0, v). The u-curves and the v-curves are known as the coordinate curves.7

The tangent vectors to the u-curve and to the v-curve at the point P are8

respectively σu(u0, v0) and σv(u0, v0).9

Example 8 Figure 7.1 shows the graph of the torus10

σ(θ, ϕ) = ((3 + cos θ) cosϕ, (3 + cos θ) sinϕ, sinθ)

drawn by Mathematica, together with the θ-curve σ(θ, π
4 ) and the ϕ-curve11

σ(π
4 , ϕ) drawn at the point σ(π

4 ,
π
4 ). Observe that Mathematica draws other12

coordinate curves to produce a good looking graph.13

We shall consider only regular surfaces, meaning that the vectors σu(u0, v0)14

and σv(u0, v0) are linearly independent at all points (u0, v0). The plane15

through P that σu(u0, v0) and σv(u0, v0) span is called the tangent plane to16

S at P . The vector σu(u0, v0)× σv(u0, v0) is normal to this tangent plane.17
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Example 9 Let us find the tangent plane to the surface1

σ(u, v) =
(

u2 + 1, v3 + 1, u+ v
)

at the point P = (5, 2, 3) .

This surface passes through P at u0 = 2, v0 = 1. Calculate σu(2, 1) =2

(4, 0, 1) = 4i + k, σv(2, 1) = (0, 3, 1) = 3j + k, the normal vector σu(2, 1)×3

σv(2, 1) = −3i − 4j + 12k. Obtain4

−3(x− 5) − 4(y − 2) + 12(z − 3) = 0 ,

which simplifies to −3x − 4y + 12z = 13. (Recall that a(x − x0) + b(y −5

y0) + c(z− z0) = 0 gives an equation of the plane passing through the point6

(x0, y0, z0) with normal vector ai + bj + ck.)7

Consider a surface σ(u, v), with (u, v) belonging to a parameter regionD8

of the uv-plane. Any curve u = u(t), v = v(t) lying in the regionD produces9

a curve σ(u(t), v(t)) lying on this surface, see Figure 7.2 in the next section10

for an example.11

Exercises12

1. a. Sketch the graph of the ellipse γ(t) = (2 cos t, 3 sin t), 0 ≤ t ≤ 2π.13

b. Is t the polar angle here? Hint. Try t = π
4 . Answer. No.14

2. Find the curvature κ of a planar curve x = x(t), y = y(t).15

Hint. Write this curve as γ(t) = (x(t), y(t), 0) and use Theorem 7.3.2.16

Answer. κ(t) = |x′(t)y′′(t)−x′′(t)y′(t)|

(x′2(t)+y′2(t))
3
2

.17

3. Let (x(s), y(s)) be a planar curve, s is the arc length. Let θ(s) be the18

angle that the unit tangent vector T (s) = (x′(s), y′(s)) makes with the x-19

axis. Justify the following formulas.20

a. κ(s) = |x′(s)y′′(s) − x′′(s)y′(s)|.21

b. θ(s) = tan−1 y′(s)
x′(s) .22

c. κ(s) = |θ′(s)|. (Curvature gives the speed of rotation of T (s).)23

4. Find the curvature κ of a planar curve y = f(x).24

Hint. Write this curve as γ(x) = (x, f(x), 0) and use Theorem 7.3.2.25

Answer. κ(x) =
|f ′′(x)|

(1+f ′2(x))
3
2
.26
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5. a. Recall the hyperbolic cosine cosh t = et+e−t

2 , and the hyperbolic sine1

sinh t = et−e−t

2 . Calculate the derivatives (sinh t)′ = cosh t, (cosh t)′ = sinh t.2

3

b. Show that cosh2 t− sinh2 t = 1 for all t.4

c. Using the quotient rule, calculate the derivatives of other hyperbolic5

functions: tanhu = sinhu
coshu and sechu = 1

coshu .6

Answer. (tanhu)′ = sech2 u, (sechu)′ = −sechu tanhu.7

d. Show that tanh2 u+ sech2 u = 1 for all u.8

e. For the Mercator projection of the sphere of radius a around the origin9

σ(u, v) = (a sechu cos v, a sechu sin v, a tanhu) show that x2 + y2 + z2 = a2.10

11

6. a. On the unit sphere σ(θ, ϕ) = (sinϕ cos θ, sinϕ sinθ, cosϕ) sketch and12

identify the θ-curve σ(θ, π
4 ), 0 ≤ θ ≤ 2π.13

b. Find the length of this curve. Answer.
√

2π.14

c. Find an equation of the tangent plane at the point σ(π
4 ,

π
4 ).15

7.4 The First Fundamental Form16

The first fundamental form extends the concept of arc length to surfaces,17

and is used to calculate length of curves, angles between curves, and areas18

of regions on surfaces.19

Consider a surface S given by a vector function σ(u, v), with (u, v) be-20

longing to some parameter region D. Any curve (u(t), v(t)) in the region21

D defines a curve on the surface S: γ(t) = σ(u(t), v(t)). The length of this22

curve between two parameter values of t = t0 and t = t1 is23

(4.1) L =

∫ t1

t0

||γ ′(t)|| dt =

∫ t1

t0

ds .

Here ||γ ′(t)|| dt = ds, since ds
dt = ||γ ′(t)|| by (3.1). Using the chain rule24

calculate25

γ ′(t) = σuu
′(t) + σvv

′(t) ,

and then26

||γ ′(t)||2 = γ ′(t) · γ ′(t) = (σuu
′(t) + σvv

′(t)) · (σuu
′(t) + σvv

′(t))

= σu · σu u
′2(t) + 2σu · σv u

′(t)v′(t) + σv · σv v
′2(t) .
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It is customary to denote1

E = σu · σu ,(4.2)

F = σu · σv ,

G = σv · σv .

(Observe that E = E(u, v), F = F (u, v), G = G(u, v).) Then2

(4.3) ||γ ′(t)|| =

√

E u′2(t) + 2F u′(t)v′(t) +Gv′2(t) ,

so that the length of γ(t) is3

(4.4) L =

∫ t1

t0

√

E u′2(t) + 2F u′(t)v′(t) +Gv′2(t) dt .

(Here E = E(u(t), v(t)), F = F (u(t), v(t)), G = G(u(t), v(t)).) Since ds =4

||γ ′(t)|| dt, using (4.3) obtain5

ds =
√

E u′2(t) + 2F u′(t)v′(t) +Gv′2(t) dt

=

√

E [u′(t) dt]2 + 2F [u′(t) dt] [v′(t) dt] +G [v′(t) dt]2

=
√
E du2 + 2F dudv +Gdv2 ,

using the differentials du = u′(t) dt, dv = v′(t) dt, so that6

(4.5) ds2 = E du2 + 2F dudv +Gdv2 .

This quadratic form in the variables du and dv is called the first fundamental7

form.8

Example 1 Recall that the unit sphere around the origin, ρ = 1, can be9

represented as σ(θ, ϕ) = (sinϕ cos θ, sinϕ sin θ, cosϕ). Calculate10

σθ(θ, ϕ) = (− sinϕ sinθ, sinϕ cos θ, 0) ,
11

σϕ(θ, ϕ) = (cosϕ cos θ, cosϕ sin θ,− sinϕ) .
12

E = σθ · σθ = ||σθ||2 = sin2 ϕ
(

sin2 θ + cos2 θ
)

= sin2 ϕ,
13

F = σθ · σϕ = 0,
14

G = σϕ · σϕ = ||σϕ||2 = cos2 ϕ
(

sin2 θ + sin2 θ
)

+ sin2 ϕ = 1.
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The first fundamental form is1

ds2 = sin2 ϕ dθ2 + dϕ2 .

Example 2 For the helicoid σ(u, v) = (u cos v, u sinv, v) calculate2

σu(u, v) = (cos v, sinv, 0) ,
3

σv(u, v) = (−u sin v, u cosv, 1) ,
4

E = σu · σu = 1,
5

F = σu · σv = 0,
6

G = σv · σv = u2 + 1 .

The first fundamental form is7

ds2 = du2 + (u2 + 1) dv2 .

Assume now that the parameter region D is a rectangle 1 ≤ u ≤ 6, 0 ≤8

v ≤ 4π. In Figure 7.2 we used Mathematica to draw this helicoid over D.9

Consider a curve u = t2, v = 5t, 1 ≤ t ≤ 2.3, which lies in the parameter10

region D, and hence it produces a curve on the helicoid shown in Figure 7.2.11

The length of this curve on the helicoid is calculated by the formula (4.4)12

to be13

L =
∫ 2.3
1

√

u′2(t) + (u2(t) + 1) v′2(t) dt =
∫ 2.3
1

√

4t2 + 25(t4 + 1) dt ≈ 20.39 .

The integral was approximately calculated using Mathematica.14

Example 3 Consider the Mercator projection of the unit sphere σ(u, v) =15

(sechu cos v, sechu sin v, tanhu). Recall that16

(sechu)′ =

(

1

coshu

)′
= − sinhu

cosh2 u
= −sech u tanhu ,

and similarly (tanhu)′ = sech2 u. Calculate17

σu(u, v) =
(

−sechu tanhu cos v,−sechu tanhu sin v, sech2 u
)

,

18

σv(u, v) = (−sechu sin v, sechu cos v, 0) ,
19

E = ||σu||2 = sech 2u tanh 2u+sech 4u = sech 2u
(

tanh 2u + sech 2u
)

= sech 2u ,
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Figure 7.2: A curve on the helicoid from Example 2

1

F = σu · σv = 0,
2

G = ||σv||2 = sech 2u .

The first fundamental form is3

ds2 = sech 2u
(

du2 + dv2
)

.

Recall that the angle between two curves at a point of intersection is de-4

fined to be the angle between their tangent lines at the point of intersection.5

On a surface σ = σ(u, v) consider two curves γ(t) = σ(u(t), v(t)) and γ1(t) =6

σ(u1(t), v1(t)). Suppose that the curves (u(t), v(t)) and (u1(t), v1(t)) inter-7

sect at some point (u0, v0) of the parameter region D, with (u(t1), v(t1)) =8

(u0, v0) and (u1(t2), v1(t2)) = (u0, v0). If t and t1 denote respective tangent9

vectors to γ(t) and γ1(t) at the point of intersection σ(u0, v0), the angle θ10

between the curves is given by11

cos θ =
t · t1

||t|| ||t1||
.

Calculate the tangent vectors12

t = γ ′(t1) = σuu
′(t1) + σvv

′(t1) ,
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t1 = γ ′1(t2) = σuu
′
1(t2) + σvv

′
1(t2) ,

and then (writing u′, v′ for u′(t1), v′(t1), and u′1, v
′
1 for u′1(t2), v

′
1(t2))1

t · t1 = (σuu
′ + σvv

′) · (σuu
′
1 + σvv

′
1)

= σu · σu u
′u′1 + σu · σv u

′v′1 + σv · σu u
′
1v

′ + σv · σv v
′v′1

= Eu′u′1 + F (u′v′1 + u′1v
′) +Gv′v′1 .

Using the formula (4.3), conclude2

(4.6) cos θ =
Eu′u′1 + F (u′v′1 + u′1v

′) +Gv′v′1
√

E u′2 + 2F u′v′ +Gv′2
√

E u′1
2 + 2F u′1v

′
1 +Gv′1

2
.

Here E, F, G are evaluated at (u0, v0), u
′ and v′ are evaluated at t1, u

′
1, and3

v′1 are evaluated at t2.4

Example 4 For an arbitrary surface σ(u, v) find the angle between the5

u-curve σ = σ(u, v0), and the v-curve σ = σ(u0, v), at any point σ(u0, v0)6

on the surface, corresponding to the point P = (u0, v0) in the parameter7

region.8

The u-curve can be parameterized as u(t) = t, v(t) = v0. At t = u0 it passes9

through the point P = (u0, v0). Calculate u′ = 1, v′ = 0. The v-curve can10

be parameterized as u1(t) = u0, v1(t) = t. At t = v0 it passes through the11

same point P . Calculate u′1 = 0, v′1 = 1. By (4.6)12

cos θ =
F (u0, v0)

√

E(u0, v0)G(u0, v0)
.

It follows that the coordinate curves are orthogonal at all points on the sur-13

face σ(u, v) if and only if F (u, v) = 0 for all (u, v). That was the case in14

the Examples 1, 2 and 3 above.15

Given two surfaces S and S1, a map S → S1 is defined to be a rule16

assigning to each point of S a unique point on S1. If σ(u, v) gives a parame-17

terization of S, a map from S to S1 allows one to use the coordinates u and v18

on S1 too, representing S1 with some other vector function σ1(u, v). Indeed,19

each (u, v) in the parameter region D is mapped by σ(u, v) to a unique point20

on S, and then to a unique point on S1 by our map. Consequently, a curve21

(u(t), v(t)) on D provides both a curve on S and its image curve on S1. A22

map from S to S1 is called conformal if given any point P on S, and any23

two curves on S passing through P , the angle between these curves is the24

same as the angle between their images on S1. (Such maps are rare, but25

very interesting.)26
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Theorem 7.4.1 Let E, F, G and E1, F1, G1 be the coefficients of the first1

fundamental forms for S and S1 respectively. The map σ(u, v) → σ1(u, v)2

is conformal, provided there exists a function λ(u, v) such that3

E1(u, v) = λ(u, v)E(u, v)(4.7)

F1(u, v) = λ(u, v)F (u, v)

G1(u, v) = λ(u, v)G(u, v) ,

for all (u, v) ∈ D. (In other words, the first fundamental forms of S and S14

are proportional, with a factor λ(u, v).)5

Proof: Let (u(t), v(t)) and (u1(t), v1(t)) represent two intersecting curves6

on S and their images on S1. By (4.6) the cosine of the angle between the7

curves on S1 is equal to8

E1u
′u′1 + F1 (u′v′1 + u′1v

′) +G1v
′v′1

√

E1 u′
2 + 2F1 u′v′ +G1 v′

2
√

E1 u
′
1
2 + 2F1 u

′
1v

′
1 +G1 v

′
1
2
.

Using the formulas (4.7), then factoring and cancelling λ(u, v) in both the9

numerator and denominator, obtain the formula (4.6), giving cos θ for the10

angle between the curves on S. ♦11

Observe that any representation σ(u, v) of a surface S can be viewed as12

a map from a coordinate region D of the uv-plane to S.13

Example 5 The Mercator projection σ(u, v) = (sechu cos v, sechu sin v, tanhu)14

can be viewed as a map form the strip −∞ < u < ∞, 0 ≤ v ≤ 2π15

to the unit sphere around the origin. Its first fundamental form ds2 =16

sech 2u
(

du2 + dv2
)

is proportional to du2 + dv2, the first fundamental form17

of the uv-plane. This map is conformal, by Theorem 7.4.1. This property of18

Mercator projection made it useful for naval navigation since the sixteenth19

century. Horizontal lines in the (u, v) coordinate plane are mapped into the20

meridians on the globe (the unit sphere). Lines making an angle α with the21

horizontal lines are mapped into curves on the sphere making an angle α22

with the meridians. These curves are called loxodromic, and while they do23

not give the shortest route, they are easy to maintain using compass.24

Exercises25

1. Identify the surface, and find the first fundamental form.26
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a. σ(u, v) =
(

u− v, u+ v, u2 + v2
)

.1

Answer. z = 1
2

(

x2 + y2
)

, a paraboloid; ds2 = (2 + 4u2) du2 + 4uv dudv +2

(2 + 4v2) dv2.3

b. σ(u, v) = (sinhu sinh v, sinhu cosh v, sinhu).4

Hint. y = ±
√
x2 + z2, a double cone extending along the y-axis.5

c. σ(u, v) = (coshu, sinhu, v).6

Answer. x2−y2 = 1, hyperbolic cylinder; ds2 = (sinh2 u+cosh2 u) du2+dv2.7

8

d. σ(u, v) =
(

u + 1, v, u2 + v2
)

.9

Answer. z = (x − 1)2 + y2, paraboloid; ds2 = (1 + 4u2) du2 + 4uv du dv +10

(1 + 4v2)dv2.11

e. σ(u, v) = (u cos v, u sinv, u), u ≥ 0.12

Answer. z =
√

x2 + y2, cone; ds2 = 2 du2 + u2dv2.13

2. On the cone σ(u, v) = (u cos v, u sinv, u), u ≥ 0, sketch the curve u = e2t,14

v = t, 0 ≤ t ≤ 2π, and find its length.15

Answer. 3
2

(

e4π − 1
)

.16

3. Find the first fundamental form for the surface z = f(x, y).17

Hint. Here σ(x, y) = (x, y, f(x, y)).18

Answer. ds2 =
(

1 + f2
x

)

dx2 + fxfy dxdy +
(

1 + f2
y

)

dy2.19

4. Identify the surface σ(u, v) =
(

u, v, u2 + v2 + 2u
)

, and find the angle20

between the coordinate curves at any point (u, v).21

5. a. Let a, b, c, d be vectors in R3. Justify the following vector identity22

(a × b) · (c× d) = (a · c) (b · d) − (a · d) (b · c) .

Hint. Write each vector in components. Mathematica can help with a rather23

tedious calculation.24

b. Show that the area of a surface σ(u, v) over a parameter regionD is given25

by the double integral Area =
∫∫

D ||σu × σv || dA (here dA = du dv).26

Hint. Show that the rectangle with vertices (u, v), (u+ ∆u, v), (u, v+ ∆v),27

(u+ ∆u, v + ∆v) in D is mapped onto a region on the surface σ(u, v) that28

is approximated by a parallelogram with sides σu(u, v)∆u and σv(u, v)∆v.29
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c. Conclude that Area =
∫∫

D

√
EG− F 2 dA.1

Hint. ||σu × σv||2 = (σu × σv) · (σu × σv).2

d. Show that the first fundamental form is a positive definite quadratic form3

for regular surfaces.4

e. On the unit sphere around the origin σ(θ, ϕ) = (sinϕ cosθ, sinϕ sinθ, cosϕ)5

sketch the region 0 ≤ ϕ ≤ π
4 , 0 ≤ θ ≤ 2π, and calculate its area.6

6. Let x = x(u, v), y = y(u, v) be a one-to-one map taking a region D in7

the uv-plane onto a region R of the xy-plane.8

a. Show that the area of the region R is9

A =

∫∫

R
dxdy =

∫∫

D
|
∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

| dudv ,

so that the absolute value of the Jacobian determinant gives the magnifica-10

tion factor of the element of area.11

Hint. Consider the surface σ(u, v) = (x(u, v), y(u, v), 0).12

b. Justify the change of variables formula for double integrals13

∫∫

R
f(x, y) dxdy =

∫∫

D
f (x(u, v), y(u, v)) |

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

| dudv .

7. a. Let σ(u, v) = (x(u, v), y(u, v), z(u, v)) be a vector function, and14

u(t), v(t) are given functions. Show that15

d

dt
σ(u(t), v(t)) = σu(u(t), v(t))u′(t) + σv(u(t), v(t))v

′(t) .

b. Derive the Maclaurin series16

σ(u, v) = σ(0, 0)+ σuu+ σvv +
1

2

(

σuuu
2 + 2σuvuv + σvvv

2
)

+ · · · ,

with all derivatives evaluated at (0, 0).17

Hint. Write Maclaurin series for g(s) = σ(su, sv), as a function of s.18
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7.5 The Second Fundamental Form1

The second fundamental form extends the concept of curvature to surfaces.2

Clearly, the theory is more involved than for curves.3

Recall that the unit normal to the tangent plane for a surface σ(u, v) is4

given by N̄ =
σu × σv

||σu × σv ||
. Observe that5

(5.1) σu · N̄ = 0 , σv · N̄ = 0 .

Given a point σ(u, v) and nearby points σ(u + ∆u, v + ∆v) on a surface,6

with |∆u| and |∆v| small, the scalar (inner) product7

(5.2) Q = [σ(u+ ∆u, v + ∆v)− σ(u, v)] · N̄

measures how quickly the surface bends away from its tangent plane at the8

point σ(u, v). (If σ(u + ∆u, v + ∆v) remains on this tangent plane, then9

Q = 0.) By Taylor’s formula10

σ(u+ ∆u, v + ∆v)− σ(u, v) ≈ σu(u, v)∆u+ σv(u, v)∆v

+1
2

(

σuu(u, v)∆u2 + 2σuv(u, v)∆u∆v+ σvv(u, v)∆v
2
)

,

for |∆u| and |∆v| small. In view of (5.1)11

Q ≈ 1
2

(

σuu(u, v) · N̄ ∆u2 + 2σuv(u, v) · N̄ ∆u∆v + σvv(u, v) · N̄ ∆v2
)

= 1
2

(

L∆u2 + 2M ∆u∆v +N ∆v2
)

,

using the standard notation12

L = σuu(u, v) · N̄(5.3)

M = σuv(u, v) · N̄
N = σvv(u, v) · N̄ .

The quadratic form in the variables du and dv13

L(u, v) du2 + 2M(u, v) dudv+N (u, v) dv2

is called the second fundamental form.14

Example 1 Consider a plane σ(u, v) = a + up + vq, passing through the15

tip of vector a, and spanned by vectors p and q. Calculate σu(u, v) = p,16

σv(u, v) = q, σuu(u, v) = σuv(u, v) = σvv(u, v) = 0. Hence, L = M = N =17

0. The second fundamental form of a plane is zero.18



7.5. THE SECOND FUNDAMENTAL FORM 285

Example 2 Consider a paraboloid σ(u, v) =
(

u, v, u2 + v2
)

(the same as1

z = x2 + y2). Calculate2

σu(u, v) = (1, 0, 2u) ,

3

σv(u, v) = (0, 1, 2v) ,
4

σuu(u, v) = σvv(u, v) = (0, 0, 2) ,
5

σuv(u, v) = (0, 0, 0) ,
6

σu(u, v)× σv(u, v) = (−2u,−2v, 1) ,
7

N̄ =
σu(u, v)× σv(u, v)

||σu(u, v)× σv(u, v)||
=

1√
4u2 + 4v2 + 1

(−2u,−2v, 1) ,

8

L = σuu(u, v) · N̄ =
2√

4u2 + 4v2 + 1
,

9

M = σuv(u, v) · N̄ = 0,
10

N = σvv(u, v) · N̄ =
2√

4u2 + 4v2 + 1
.

The second fundamental form is
2√

4u2 + 4v2 + 1

(

du2 + dv2
)

.11

If γ(t) is a unit speed curve, recall that the vector γ ′′(t) is normal to12

the curve, and ||γ ′′(t)|| = κ gives the curvature. Consider now a unit speed13

curve γ(t) = σ(u(t), v(t)) on a surface σ(u, v), where (u(t), v(t)) is a curve14

in the uv-plane of parameters. Define the normal curvature of γ(t) as15

(5.4) κn = γ ′′(t) · N̄ .

To motivate this notion, think of an object of unit mass moving on the curve16

γ(t) = σ(u(t), v(t)) lying on a surface S given by σ(u, v). Then γ ′′(t) gives17

force, and γ ′′(t) · N̄ is its normal component, or the force with which the18

object and the surface S act on each other.19

Proposition 7.5.1 If L(u, v), M(u, v) and N (u, v) are the coefficients of20

the second fundamental form, and σ(u(t), v(t)) is a unit speed curve, then21

(5.5) κn = L(u, v)u′2(t) + 2M(u, v)u′(t)v′(t) +N (u, v)v′2(t) .
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Proof: Using the chain rule, calculate1

γ ′(t) = σuu
′ + σvv

′ ,

γ ′′(t) = (σu)′ u′ + σuu
′′ + (σv)

′ v′ + σvv
′′

= (σuuu
′ + σuvv

′)u′ + σuu
′′ + (σvuu

′ + σvvv
′) v′ + σvv

′′

= σuuu
′2 + 2σuvu

′v′ + σvvv
′2 + σuu

′′ + σvv
′′ .

Then we obtain the formula (5.5) for κn = γ ′′(t) · N̄ by using the definitions2

of L,M,N and (5.1). ♦3

Let γ̄(t) = σ(ū(t), v̄(t)) be another unit speed curve passing through4

the same point P = σ(u0, v0) on the surface σ(u, v) as does the curve5

γ(t) = σ(u(t), v(t)), so that P = γ(t1) = γ̄(t2) for some t1 and t2. Assume6

that γ̄ ′(t2) = γ ′(t1). We claim that then ū′(t2) = u′(t1) and v̄′(t2) = v′(t1).7

Indeed, γ ′(t1) = σu(u0, v0)u
′ + σv(u0, v0)v

′ and γ̄ ′(t2) = σu(u0, v0)ū
′ +8

σv(u0, v0)v̄
′. We are given that at P9

σu(u0, v0)ū
′ + σv(u0, v0)v̄

′ = σu(u0, v0)u
′ + σv(u0, v0)v

′ ,

which implies that10

σu(ū′ − u′) + σv(v̄
′ − v′) = 0 .

(Here u′, v′ are evaluated at t1, while ū′, v̄′ at t2.) Since the vectors σu and11

σv are linearly independent (because we consider only regular surfaces), it12

follows that ū′ − u′ = 0 and v̄′ − v′ = 0, implying the claim. Then by (5.5)13

it follows that the normal curvature is the same for all unit speed curves on14

a surface, passing through the same point with the same tangent vector.15

Write the formula (5.5) in the form16

(5.6) κn = L(u, v)u′2(s) + 2M(u, v)u′(s)v′(s) +N (u, v)v′2(s)

to stress the fact that it uses the arc length parameter s (the same as saying17

unit speed curve). What if t is an arbitrary parameter?18

Proposition 7.5.2 If E(u, v), F (u, v), G(u, v), L(u, v),M(u, v) and N (u, v)19

are the coefficients of the first and second fundamental forms, and σ(u(t), v(t))20

is any curve on a surface σ(u, v), then its normal curvature is21

(5.7) κn =
L(u, v)u′2(t) + 2M(u, v)u′(t)v′(t) +N (u, v)v′2(t)

E(u, v)u′2(t) + 2F (u, v)u′(t)v′(t) +G(u, v)v′2(t)
.
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Proof: Use the chain rule1

du

ds
=
du

dt

dt

ds
=

du
dt
ds
dt

,

and a similar formula dv
ds =

dv
dt
ds
dt

in (5.6) to obtain2

(5.8) κn =
L(u, v)u′2(t) + 2M(u, v)u′(t)v′(t) +N (u, v)v′2(t)

(

ds
dt

)2 .

Dividing the first fundamental form by dt2 gives3

(

ds

dt

)2

= E(u, v)

(

du

dt

)2

+ 2F (u, v)
du

dt

dv

dt
+G(u, v)

(

dv

dt

)2

.

Use this formula in (5.8) to complete the proof. ♦4

Observe that κn in (5.7) is the ratio of two quadratic forms with the5

matrices A =

[

L M

M N

]

in the numerator, and B =

[

E F

F G

]

in the de-6

nominator. At any fixed point (u0, v0), with a curve (u(t0), v(t0)) = (u0, v0),7

the matrices A and B have numerical entries, while the direction vector8

(u′(t0), v′(t0)) is just a pair of numbers, call them (ξ, η) and denote x =9
[

ξ
η

]

. Then (5.7) takes the form10

(5.9) κn =
Ax · x
Bx · x ,

a ratio of two quadratic forms.11

In case B = I , this ratio is the Rayleigh quotient of A, studied earlier,12

and its extreme values are determined by the eigenvalues of A. For the gen-13

eral case one needs to study generalized eigenvalue problems, and generalized14

Rayleigh quotients.15

Observe that the quadratic form Bx · x is positive definite. Indeed,16

E = ||σu||2 > 0 for regular surfaces, and EG − F 2 > 0 by an exercise in17

Section 7.4. The matrix B is positive definite by Sylvester’s criterion.18
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Generalized Eigenvalue Problem1

If A and B are two n× n matrices, x ∈ Rn, and2

(5.10) Ax = λBx, x 6= 0

we say that x is a generalized eigenvector, and λ is the corresponding general-3

ized eigenvalue. (Observe that generalized eigenvectors here are not related4

at all to those of Chapter 6.) Calculations are similar to those for the usual5

eigenvalues and eigenvectors (where B = I). Write (5.10) as6

(A− λB)x = 0 .

This homogeneous system will have non-trivial solutions provided that7

|A− λB| = 0 .

Let λ1, λ2, . . . , λn be the solutions of this characteristic equation. Then solve8

the system9

(A− λ1B)x = 0

for generalized eigenvectors corresponding to λ1, and so on.10

Assume that a matrix B is positive definite. We say that two vectors11

x, y ∈ Rn are B-orthogonal provided that12

Bx · y = 0 .

A vector x ∈ Rn is called B-unit if13

Bx · x = 1 .

Proposition 7.5.3 Assume that a matrix A is symmetric, and a matrix B14

is positive definite. Then the generalized eigenvalues of Ax = λBx are real,15

and generalized eigenvectors corresponding to different generalized eigenval-16

ues are B-orthogonal.17

Proof: Generalized eigenvalues satisfy18

B−1Ax = λx, x 6= 0.

The matrix B−1A is symmetric, therefore its eigenvalues λ are real.19

Turning to the second part, assume that y is another generalized eigen-20

vector21

(5.11) Ay = µBy, y 6= 0 ,
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and µ 6= λ. Take the scalar products of (5.10) with y, and of (5.11) with x,1

and then subtract the results2

Ax · y − Ay · x = λBx · y − µBy · x .

Since Ax · y = x · AT y = x · Ay = Ay · x, the expression on the left is zero.3

Similarly, on the right By · x = Bx · y, and therefore4

0 = (λ− µ)Bx · y .

Since λ− µ 6= 0, it follows that Bx · y = 0. ♦5

We shall consider generalized Rayleigh quotients
Ax · x
Bx · x only for 2 × 26

matrices that occur in the formula κn =
Ax · x
Bx · x for the normal curvature.7

Proposition 7.5.4 Assume that a 2×2 matrix A is symmetric, and a 2×28

matrix B is positive definite. Let k1 < k2 be the generalized eigenvalues of9

Ax = λBx ,

and x1, x2 are corresponding generalized eigenvectors. Then10

min
x∈R2

Ax · x
Bx · x = k1 , achieved at x = x1 ,

11

max
x∈R2

Ax · x
Bx · x = k2 , achieved at x = x2 .

Proof: By scaling of x1 and x2, obtain Bx1 · x1 = Bx2 · x2 = 1. Since x112

and x2 are linearly independent (a multiple of x1 is a generalized eigenvector13

corresponding to k1, and not to k2), they span R2. Given any x ∈ R2,14

decompose15

x = c1x1 + c2x2 , with some numbers c1, c2 .

Using that Bx1 · x2 = 0 by Proposition 7.5.3, obtain16

Bx ·x = (c1Bx1 + c2Bx2) · (c1x1 + c2x2) = c21Bx1 ·x1 +c22Bx2 ·x2 = c21 +c22 .

Similarly, (recall that Ax1 = k1Bx1, Ax2 = k2Bx2)17

Ax · x = (c1Ax1 + c2Ax2) · (c1x1 + c2x2)

= (c1k1Bx1 + c2k2Bx2) · (c1x1 + c2x2) = k1c
2
1 + k2c

2
2 .
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Hence,1

min
x∈R2

Ax · x
Bx · x = min

(c1,c2)

k1c
2
1 + k2c

2
2

c21 + c22
= k1 ,

the minimum occurring when c1 = 1 and c2 = 0, or when x = x1, by the2

properties of Rayleigh quotient (or by a direct argument, see exercises). Sim-3

ilar argument shows that maxx∈R2
Ax·x
Bx·x = k2, and the maximum is achieved4

at x = x2. ♦5

Exercises6

1. a. Find the second fundamental form for a surface of revolution σ(u, v) =7

(f(u) cosv, f(u) sinv, g(u)), assuming that f(u) > 0 and f ′2(u)+g′2(u) = 1.8

(This surface is obtained by rotating the unit speed curve x = f(u), z = g(u)9

in the xz-plane around the z-axis.)10

Answer. (f ′g′′ − f ′′g′) du2 + fg′ dv2.11

b. By setting f(u) = cosu, g(u) = sinu, find the second fundamental form12

for the unit sphere.13

Answer. du2 + cos2 u dv2.14

c. By setting f(u) = 1, g(u) = u, find the second fundamental form for the15

cylinder x2 + y2 = 1.16

Answer. dv2.17

2. Find the generalized eigenvalues and the corresponding generalized eigen-18

vectors of Ax = λBx.19

a. A =

[

−1 0

0 2

]

, B =

[

3 0

0 4

]

.20

Answer. λ1 = −1
3 , x1 =

[

1
0

]

; λ2 = 1
2 , x2 =

[

0
1

]

.21

b. A =

[

1 2

2 1

]

, B =

[

2 1

1 2

]

.22

Answer. λ1 = −1, x1 =

[

−1
1

]

; λ2 = 1, x2 =

[

1
1

]

.23

c. A =

[

0 1

1 0

]

, B =

[

2 −1

−1 2

]

.24

Answer. λ1 = −1
3 , x1 =

[

−1
1

]

; λ2 = 1, x2 =

[

1
1

]

.25
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d. A =





0 1 1

1 0 1
1 1 0



, B =





2 1 0

1 2 1
0 1 2



.1

Answer. λ1 = −
√

5+1
2 , x1 =





1

−
√

5+1
2

1



; λ2 = −1
2 , x2 =





−1

0
1



; λ3 =2

√
5−1
2 , x3 =





1√
5−1
2
1



.3

3. Let B be a positive definite matrix.4

a. Show that the vector x√
Bx·x is B-unit, for any x 6= 0.5

b. Assume that vectors x1, x2, . . . , xp in Rn are mutually B-orthogonal6

(Bxi · xj = 0, for i 6= j). Show that they are linearly independent.7

4. Show that the generalized eigenvalues of B−1x = λA−1x are the recipro-8

cals of the eigenvalues of BA−1.9

5. Let k1 < k2, and c1, c2 any numbers with c21 + c22 6= 0.10

a. Show that11

k1 ≤ k1c
2
1 + k2c

2
2

c21 + c22
≤ k2 .

b. Conclude that12

min
(c1,c2)

k1c
2
1 + k2c

2
2

c21 + c22
= k1 ,

and the minimum occurs at c1 = 1, c2 = 0.13

7.6 Principal Curvatures14

At any point on a regular surface σ(u, v), the tangent plane is spanned by15

the vectors σu(u, v) and σv(u, v), so that any vector t of the tangent plane16

can written as17

(6.1) t = ξσu + ησv , with some numbers ξ, η .

Vectors σu and σv form a basis of the tangent plane, while (ξ, η) give the18

coordinates of t with respect to this basis. Let x =

[

ξ
η

]

. Then the normal19
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curvature in the direction of t was shown in (5.9) to be κn = Ax·x
Bx·x , where1

the matrices A =

[

L M
M N

]

and B =

[

E F
F G

]

involve the coefficients of2

the second and the first fundamental forms respectively. The minimum and3

the maximum values of κn are called the principal curvatures. Let k1 < k24

be the generalized eigenvalues of5

(6.2) Ax = λBx ,

and x1 =

[

ξ1
η1

]

, x2 =

[

ξ2
η2

]

corresponding generalized eigenvectors. Ac-6

cording to Proposition 7.5.4, the principal curvatures are k1 and k2. The7

following vectors in the tangent plane8

t1 = ξ1σu + η1σv ,(6.3)

t2 = ξ2σu + η2σv

are called the principal directions. The product K = k1k2 is called the9

Gaussian curvature.10

Theorem 7.6.1 Assume that k1 6= k2. Then11

(i) The principal directions t1 and t2 are perpendicular.12

(ii) If the generalized eigenvectors of (6.2), x1 and x2, are B-unit, then the13

principal directions t1 and t2 are unit vectors.14

Proof: (i) Recall that the matrix B is positive definite. Using (6.3), and15

the coefficients of the first fundamental form,16

(6.4) t1 · t2 = Eξ1ξ2 + Fξ1η2 + Fη1ξ2 +Gη1η2 = Bx1 · x2 = 0 ,

since x1 and x2 are B-orthogonal by Proposition 7.5.3.17

(ii) Following the derivation of (6.4), obtain18

t1 · t1 = Eξ21 + 2Fξ1η1 +Gη2
1 = Bx1 · x1 = 1 ,

and similarly t2 · t2 = 1. ♦19

Example Let us find the principal curvatures and the principal directions20

for the cylinder σ(u, v) = (cos v, sinv, u). Recall that E = 1, F = 0, G = 1,21

L = 0, M = 0, N = 1, so that A =

[

0 0
0 1

]

and B =

[

1 0
0 1

]

. Since22
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here B = I , the generalized eigenvalue problem becomes Ax = λx, with1

the eigenvalues (the principal curvatures) k1 = 0 and k2 = 1, and the2

corresponding eigenvectors x1 =

[

ξ1
η1

]

=

[

1

0

]

, x2 =

[

ξ2
η2

]

=

[

0

1

]

.3

The principal directions are4

t1 = σuξ1 + σvη1 = σu = (0, 0, 1)

t2 = σuξ2 + σvη2 = σv = (− sin v, cosv, 0) .

The vector t1 is vertical, while t2 is horizontal, tangent to the unit circle.5

We show next that knowledge of the principal curvatures κ1 and κ2,6

and of the principal directions t1 and t2, makes it possible to calculate the7

normal curvature of any curve on a surface.8

Theorem 7.6.2 (Euler’s Theorem) Let γ be a unit speed curve on a surface9

σ(u, v), with its unit tangent vector t making an angle θ with t1. Then the10

normal curvature of γ is11

κn = k1 cos2 θ + k2 sin2 θ .

Proof: Let x =

[

ξ
η

]

, x1 =

[

ξ1
η1

]

, and x2 =

[

ξ2
η2

]

be the coordinates12

of t, t1, t2 respectively, so that (6.1) and (6.3) hold. Recall that x1 and x213

are B-orthogonal by Proposition 7.5.3. By scaling we may assume that x114

and x2 are B-unit (Bx1 ·x1 = Bx2 ·x2 = 1), and then by Theorem 7.6.1 the15

vectors t1 and t2 are orthogonal and unit. Decompose16

t = (t · t1) t1 + (t · t2) t2 = cos θt1 + sin θt2

= cos θ (σuξ1 + σvη1) + sin θ (σuξ2 + σvη2)

= (ξ1 cos θ + ξ2 sin θ) σu + (η1 cos θ + η2 sin θ) σv .

In the coordinates of t, t1, t2 this implies:17

x =

[

ξ1 cos θ + ξ2 sin θ

η1 cos θ + η2 sin θ

]

=

[

ξ1
η1

]

cos θ+

[

ξ2
η2

]

sin θ = x1 cos θ+ x2 sin θ .

Using that x1 and x2 are B-orthogonal and B-unit18

Bx · x = (Bx1 cos θ + Bx2 sin θ) · (x1 cos θ + x2 sin θ)

= Bx1 · x1 cos2 θ + Bx2 · x2 sin2 θ = cos2 θ + sin2 θ = 1 ,
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and similarly1

Ax · x = (Ax1 cos θ + Ax2 sin θ) · (x1 cos θ + x2 sin θ)

= (k1Bx1 cos θ + k2Bx2 sin θ) · (x1 cos θ + x2 sin θ)

= k1Bx1 · x1 cos2 θ + k2Bx2 · x2 sin2 θ = k1 cos2 θ + k2 sin2 θ .

Since κn = Ax·x
Bx·x , the proof follows. ♦2

We discuss next geometrical significance of the principal curvatures. Let3

P be a point σ(u0, v0) on a surface σ(u, v). We can declare the point (u0, v0)4

to be the new origin in the uv-plane. Then P = σ(0, 0). We now declare P5

to be the origin in the (x, y, z) space where the surface σ(u, v) lies. Then6

P = σ(0, 0) = (0, 0, 0). Let t1 and t2 be the principal directions at P ,7

x1 =

[

ξ1
η1

]

and x2 =

[

ξ2
η2

]

their coordinates with respect to σu and σv8

basis, and k1, k2 the corresponding principal curvatures. We assume that x19

and x2 are B-unit, and therefore t1 and t2 are unit vectors. We now direct10

the x-axis along t1, the y-axis along t2, and the z-axis accordingly (along11

t1×t2). The tangent plane at P is then the xy-plane. Denote u = xξ1+yξ2,12

v = xη1 + yη2. Since13

uσu + vσv = (xξ1 + yξ2) σu + (xη1 + yη2) σv(6.5)

= x (ξ1σu + η1σv) + y (ξ2σu + η2σv) = xt1 + yt2 ,

it follows that the point (x, y, 0) in the tangent plane at P is equal to uσu +14

vσv.15

For |x| and |y| small, the point (u, v) is close to (0, 0), so that the point16

σ(u, v) lies near (0, 0, 0). Then, neglecting higher order terms, and using17

(6.5)18

σ(u, v) = σ(0, 0) + uσu + vσv + 1
2

(

u2σuu + 2uvσuv + v2σvv

)

= (x, y, 0) + 1
2

(

u2σuu + 2uvσuv + v2σvv

)

,

with all derivatives evaluated at (0, 0).19

Consider the vector20

w =

[

u
v

]

=

[

xξ1 + yξ2
xη1 + yη2

]

= xx1 + yx2 .
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We now calculate the z coordinate of the vector σ(u, v). Neglecting1

higher order terms, obtain (here N̄ = (0, 0, 1))2

z = σ(u, v) · N̄ = 1
2

(

Lu2 + 2Muv +Nv2
)

= 1
2Aw ·w

= 1
2A (xx1 + yx2) · (xx1 + yx2) = 1

2 (k1xBx1 + k2yBx2) · (xx1 + yx2)

= 1
2k1x

2 + 1
2k2y

2 ,

since the vectors x1 and x2 are B-orthogonal and B-unit. We conclude3

that near the point P the surface σ(u, v) coincides with the quadric surface4

z = 1
2k1x

2 + 1
2k2y

2, neglecting the terms of order greater than two.5

If k1 and k2 are both positive or both negative, the point P is called6

elliptic point on σ(u, v). The surface looks like a paraboloid near P . If k17

and k2 are of opposite signs, the point P is called hyperbolic point on σ(u, v).8

The surface looks like a saddle near P .9

Consider now a surface z = f(x, y). Assume that f(0, 0) = 0, so that10

the origin O = (0, 0, 0) lies on the surface, and that fx(0, 0) = fy(0, 0) = 0,11

so that the xy-plane gives the tangent plane to the surface at O. Writing12

σ(x, y) = (x, y, f(x, y)), calculate σx(0, 0) = (1, 0, 0), σy(0, 0) = (0, 1, 0), so13

that E = 1, F = 0, G = 1, and the matrix of the first fundamental form at14

O is B = I . Here N̄ is (0, 0, 1), and then15

L = σxx(0, 0) · N̄ = fxx(0, 0) ,
16

M = σxy(0, 0) · N̄ = fxy(0, 0) ,
17

N = σyy(0, 0) · N̄ = fyy(0, 0) ,

and the matrix of the second fundamental form at O is18

A = H(0, 0) =

[

fxx(0, 0) fxy(0, 0)

fxy(0, 0) fyy(0, 0)

]

,

which is the Hessian matrix at (0, 0). The normal curvature κn =
H(0, 0)w · w

w · w ,19

in the direction of vector w =

[

x

y

]

, is the Rayleigh quotient of the Hessian20

matrix. We conclude that the eigenvalues of the Hessian matrix H(0, 0) give21

the principal curvatures, and the corresponding eigenvectors are the princi-22

pal directions at O. (Observe that here x1 = t1 and x2 = t2, so that the23

principal directions coincide with their coordinate vectors.)24

Exercises25
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1. Show that the Gaussian curvature satisfies K = k1k2 = LN−M2

EG−F 2 .1

Hint. The principal curvatures k1 and k2 are roots of the quadratic equation2

∣

∣

∣

∣

L− kE M − kF

M − kF N − kG

∣

∣

∣

∣

= 0 .

Write this equation in the form ak2 + bk + c = 0, and use that k1k2 = c
a .3

2. a. For the torus σ(θ, ϕ) = ((a+ b cos θ) cosϕ, (a+ b cos θ) sinϕ, b sinθ),4

with a > b > 0, show that the first and the second fundamental forms5

respectively are6

b2dθ2 + (a+ b cosθ)2 dϕ2 and b dθ2 + (a+ b cosθ) cos θ dϕ2 .

b. Show that the principal curvatures are k1 = 1
b , k2 = cos θ

a+b cos θ .7

c. Which points on a doughnut are elliptic, and which ones are hyperbolic?8
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