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B(H)-Commutators: A Historical Survey

Gary Weiss

Abstract. This is a historical survey that includes a progress report on the
1971 seminal paper of Pearcy and Topping and 32 years of subsequent in-
vestigations by a number of researchers culminating in a completely general
characterization, for arbitrary ideal pairs, of their commutator ideal in terms
of arithmetic means.

This characterization has applications to the study of generalized traces,
linear functionals vanishing on a certain commutator ideal, and to the study
of the B(H)-ideal lattice and certain special sublattices. The structure of com-
mutator ideals is essential for investigating traces which in turn is relevant for
the calculation of the cyclic homology and the algebraic K-theory of operator
ideals.
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Commutators, linear operators of the form AB − BA, first appeared in physics,
for instance in a mathematical formulation of Heisenberg’s Uncertainty Principle
([17]). A simple concrete example is the product rule in calculus applied to xf
expressed in terms of operators: I = d

dxMx−Mx
d
dx where the operators act on the

class of differentiable functions. The situation changes in B(H), that is, when the
operators act boundedly on a Hilbert space. Wintner ([32]) and Wielandt ([31]) in
1947 and 1949, respectively, gave two elegant distinct proofs that the identity is
not a commutator of two bounded linear operators on a Hilbert. Both apply also to
arbitrary complex normed algebras with unit, except Wintner’s proof requires that
the norm be complete. For the period preceding 1967, the Hilbert space problem
book ([15], Chapter 24) provides a brief history of B(H)-commutators including
their proofs. This survey starts with an elementary description of the subject
similar to the viewpoint held by the author in the 1970’s and continues with a
report on the main contributions including references and some open problems
spanning 1971–2003 from which our deeper understanding of the subject evolved.

AB−BA (also denoted by [A, B]) represents in a sense the “degree” to which
A and B do not commute, either via norm (the operator norm or some other norm,
i.e., quantitative measures) or via the commutator’s containment in a two-sided
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ideal (qualitative measures). (All ideals herein are two-sided B(H)-ideals where
H is a separable, infinite-dimensional, complex Hilbert space.) For instance, one
can study conditions for containment in the class F (H) of finite rank operators,
the smallest nonzero ideal in the lattice of all B(H)-ideals, or containment in the
class K(H) of compact operators, the largest proper ideal. The latter is equivalent
to commuting when projected canonically into the Calkin algebra, B(H)/K(H),
commonly called “commuting modulo the compact operators.” The Calkin algebra
being a unital normed algebra, Wintner and Wielandt reveals that its identity is
not a commutator. This translates in B(H) immediately to the fact that the “thin”
operators, λI + K where λ �= 0 and K ∈ K(H), are noncommutators.

Brown and Pearcy ([5]) in 1965 determined the structure of all commutators
in B(H) by proving that the thin operators are the only noncommutators. This
then determines as well the commutators in the Calkin algebra – all except the
nonzero scalars. (See also [15].)

Theorem 0.1 (Brown and Pearcy, 1965). An operator is a commutator if and only
if it is not thin.

An approximation consequence of Theorem 0.1 is that thin operators are
norm-close to commutators since thin operators are easily seen to be norm-close
to non-thin operators. But trying to get norm-close to the identity with a sequence
of commutators can only be achieved if the norms of the operators in the com-
mutators are not all uniformly bounded. (Cf., [15].) In fact, AnBn − BnAn → I
in the B(H)-norm implies max(‖AnBn‖, ‖BnAn‖) → ∞. This provides a hint of
what was to come. In a sense, it tells us that to obtain the identity as a commu-
tator it is necessary in one’s matrix design to “spread out” in order to exploit a
lot of cancellation. An example of this phenomenon is described in the following
paragraph. In later developments on solving commutator equations, various kinds
of spreading out matrix designs were discovered that provided quantitative con-
trol (i.e., of various norms) and qualitative control (i.e., forcing membership in
ideals-the smaller the ideal the better). (Cf., [27], [1], [29], [2], [3], [19] and [8].)

In finite-dimensional Hilbert space, the trace distinguishes between commu-
tators and noncommutators. There the trace of a product of two operators is
independent of their order (unlike three or more) and so, there, commutators have
trace zero. Moreover having a nonzero trace is the only obstruction to being a
commutator. Likewise for infinite-dimensions for the analogous class, F (H). That
is, on infinite dimensional Hilbert space, a finite rank operator is a commutator if
and only if it has trace zero. That the infinite dimensional case is different is evi-
dent from Theorem 0.1, but more simply from the fact that the self-commutator
of the unilateral shift, U∗U − UU∗ = diag(1, 0, . . . ), the diagonal matrix with di-
agonal sequence (1, 0, . . . ), is a rank one projection operator with trace one. This
commutator provided a beginning framework from which to approach many matrix
design problems in the subject and is therefore one of the underlying themes of this
survey. For instance, since the unilateral shift is not compact, in order to express
the rank one projection diag(1, 0, . . . ) as a commutator or sum of commutators
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of compact operators, a key step in [25], another approach needed to be found.
An illuminating and more transparent construction leading to its representation
as such a sum follows from the identity illustrating the matricial spreading out
phenomenon mentioned above:

diag(1, 0, . . . ) = 1 ⊕ Σ⊕(−xnD) + 0 ⊕ Σ⊕xnD

where D := diag(1,−1/2,−1/2) and < xn > is the sequence 1
2n -repeated 2n-

times for n ≥ 0 (cf. [27], Chapter 1.3, pp. 34–40.) Noting that D is simply a
self-commutator of a 3 × 3 weighted shift with weights 1, 1√

2
and that 〈xn〉 
 〈 1

n 〉
(the harmonic sequence), each summand can be represented as a commutator of
compact operators. Moreover, the summands are (I, J)-commutators when the di-
agonal operator with eigenvalues the harmonic sequence is contained in the ideal
IJ (for notations see: the third paragraph below and the explanation following
Theorem 2.3). That containment of diag(1, 1/2, 1/3, . . . ) is necessary followed sub-
sequently as one application of Theorem 2.3 (see the section below on Traces and
Arithmetic Means, fourth paragraph).

When the trace of a trace class commutator must be zero is a deep ques-
tion (cf. [13], Section III.8 for background). If AB and BA for instance are in
the trace class (the trace ideal C1), then their commutator has trace zero (cf.,
[21], Lemma 2.1). I know of no weaker general condition on AB and BA that
would insure that Tr (AB −BA) = 0 whenever the commutator is trace class. At
one extreme, it is easy to produce operators, even compact operators, with zero

product but non-trace class commutator, e.g., [
(

0 A
0 0

)
,

(
B 0
0 0

)
]. But when the

operators are both in the Hilbert-Schmidt class (the Hilbert-Schmidt ideal C2)
or one is a trace class operator and the other a B(H)-operator, then their prod-
ucts, in either order, are trace class operators so their commutator has trace zero.
Hence the questions: Is every trace class operator with trace zero representable as
a commutator of Hilbert-Schmidt operators or as a commutator of a trace class
operator with a B(H)-operator? I.e., is the trace the only obstruction for a trace
class operator to be either type of commutator?

In 1971 Pearcy and Topping ([25]) posed four seminal problems described
below that have dominated the subject of B(H)-commutators ever since and that
led to breakthroughs in the study of generalized traces with applications to al-
gebraic K-theory for operator ideals, e.g., the computation of certain K-groups.
(For further details see [8], [2] and [3].) Indeed, the study of generalized traces
depends fundamentally on understanding particularly the structure of the com-
mutator ideals [I, B(H)]. This is because ideals are the natural domains of gen-
eralized traces (algebraic linear functionals that are unitarily invariant) and for
algebraic linear functionals, unitary invariance is equivalent to their vanishing on
the commutator ideal [I, B(H)]. This equivalence follows from the commutator
identity [TU∗, U ] = T − UTU∗ for T arbitrary and U unitary and from the fact
that every operator is the linear combination of four unitary operators.
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Commutator ideals also play a role in the Fong, Miers, Sourour characteriza-
tion of the Lie ideals of B(H) ([12]) where they prove: if L is a Lie ideal of B(H)
(i.e., L is a linear subspace of B(H) containing [L, B(H)]), then [I, B(H)] ⊆ L ⊆
I + C1 for some B(H)-ideal I.

For each pair of not necessarily proper B(H)-ideals I, J , denote by [I, J ] their
commutator ideal, that is, the algebraic linear span of the class [I, J ]1 of single
(I, J)-commutators (the commutators AB − BA with A ∈ I and B ∈ J). Let
[I, J ]n denote the class of all n-sums of (I, J)-commutators.

In 1954 ([14]) Halmos proved [B(H), B(H)]2 = B(H) and thereafter investi-
gators on the structure of commutator ideals, once a particular commutator ideal
representation was proven, would try to reduce the number of commutators needed
in the sum. To date, the strongest result known on this is: [I, J ] = [I, J ]4 (cf., [8],
Corollary 6.5). Under various additional conditions the number can be further
reduced. For instance, [I, B(H)] = [I, B(H)]3 (cf., [8], Theorem 6.1). For more
results of this type see [8], Chapter 6.

The Pearcy-Topping problems and progress to date on them are as follows.

Problem 1. (Pearcy-Topping [25], 1971) Is K(H) = [K(H), K(H)]1?

In particular, is diag(1, 0, . . . ) and hence any rank one projection operator a
commutator of compact operators?

Pearcy and Topping considered this a key test question presumably because
representing a rank one projection as sums of appropriate types of commutators
was at the core of their proofs in [25]: that K(H) = [K(H), K(H)] and that Cp =
[C2p, C2p] when p > 1. Until then, matrix forms designed to solve commutator
equations were bounded but not compact operators, even when the target operator
was compact. Indeed, representing this simplest nonzero compact operator without
trace zero, diag(1, 0, . . . ), provided the first inroad into controlling the matrix
forms’ membership in prescribed ideals.

Problem 2. Is Cp = [C2p, C2p]1 when p > 1?

When I ⊂ C1 let Io denote the class of all operators in I with trace zero.

Problem 3. Is Co
1 = [C2, C2]1? I.e., is every trace class trace zero operator a

commutator of Hilbert-Schmidt operators?

Problem 3′. Is Co
1 = [C2, C2]? I.e., is every trace class trace zero operator a finite

sum of commutators of Hilbert-Schmidt operators?

Problem 1 remains open and the structure of [C2, C2]1 and [C1, B(H)]1 re-
main unknown. Indeed, little progress has been made on characterizing any of
the single commutator classes [I, J ]1 or even on understanding their structure
with four notable exceptions: the fundamental work of Anderson in 1977 ([1]) re-
lated contrasting work of L.G. Brown in 1994 ([4]), work related to both in [8]
(Chapter 7), and the negative solution to Problem 3 in 1980 ([28]; respectively,
Theorems 1.1–2.1 below).
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Commutator ideals, in contrast, have seen significant progress. Of Prob-
lems 3–3′ Pearcy and Topping wrote “The techniques involved in giving an af-
firmative answer to this question would likely enable us to solve some stubborn
problems in the theory of commutators in finite von Neumann algebras (see [24]).
Problem 3 is so intractable that we cannot even answer the weaker Problem 3′”.

1. Single commutators

Theorem 1.1 (Anderson, [1], 1977). Rank one projections and more generally op-
erators whose kernels contain infinite-dimensional reducing subspaces are commu-
tators of compact operators.

Consequently, every compact operator is a (K(H), B(H))-commutator, that
is, K(H) = [K(H), B(H)]1. Moreover, Cp ⊂ [C2p, B(H)]1 when p > 1.

Theorem 1.2 (L.G. Brown, [4], 1994). If A ∈ Cp, B ∈ Cq, p−1 + q−1 ≥ 1
2 and the

commutator [A, B] has finite rank, then Tr [A, B] = 0.

Theorem 1.3 (ii) below is a paired down version of a theorem in [8] (the main
theorem in Chapter 7). Chapter 7 is an outgrowth of a prior question of Wodzicki
on when [I, B(H)]1 can contain a finite rank operator with nonzero trace. In
particular, is containment in I of the diagonal operator diag〈1/

√
n〉 necessary and

sufficient. Sufficiency follows from [1] (cf., [8] (Chapter 7)). Chapter 7 provides
conditions on necessity for general single commutator classes [I, J ]1. Necessity
remains an open question. (The necessity of the weaker containment conditions:
diag〈1/n〉 ∈ I, respectively IJ , follows by blending methods in [4] and [8].)

Problem 4. If [I, J ]1 contains a finite rank operator with nonzero trace, must IJ
contain the diagonal operator diag〈1/

√
n〉? If not, what about the cases [I, B(H)]1?

Theorem 1.3 (Dykema, Figiel, Weiss and Wodzicki, [8], 2001, Theorems 7.1–7.3).

(i) If the diagonal operator diag〈1/
√

n〉 ∈ I, then [I, B(H)]1 contains a finite
rank operator with nonzero trace.

(ii) If [I, B(H)]1 contains a finite rank operator with nonzero trace, then
diag〈1/

√
n〉 is contained in the arithmetic mean closure of I (see below) and,

in particular, in I itself when it is arithmetically mean closed.
(iii) For every compact operator T , T ∈ [(T ⊗diag〈1/

√
n〉), B(H)]1, the first ideal

being the principal ideal generated by T ⊗ diag〈1/
√

n〉.
The arithmetic mean (am) closure of an ideal I is the smallest enveloping

ideal that is solid under domination by the induced arithmetic mean sequences
of the s-numbers of its operators (i.e., T ∈ I whenever s(T )a ≤ s(A)a for some
A ∈ I). This condition is equivalent to I being solid under domination in the sense
of the Hardy-Littlewood-Polya-Schur majorization (≺) of an operators’ s-number
sequences, that is, T ∈ I whenever s(T ) ≺ s(A) for some A ∈ I. (s(T ) ≺ s(A)
means

∑n
1 s(T )j ≤ ∑n

1 s(A)j ∀n). This ordering for finite sequences with equality
at n provided their characterization of when two nonincreasing sequences x, y of
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length n satisfy
∑n

1 φ(xj) ≤ ∑n
1 φ(xj) for every convex functions φ (cf., [16],

Section 3.17, Theorem 108, and also for general reference, [23] beginning pp. 3–4).
An arithmetic mean closed ideal is one that is equal to its closure. (See the

section below on arithmetic mean ideals for more details. Cf., [8] Theorem 7.3 and
Section 2.8.) Theorem 1.3 strengthens some of the results in [1] blending some of
Anderson’s methods there with methods in [8].

Problems 3–3′ were settled in 1980 in the negative via Theorem 2.1 below [28].
A negative answer to Problem 3′ provides automatically the same for Problem 3.
And since Co

1 ⊃ [C2, C2]1 is automatic as discussed earlier, the problems reduce
to whether or not Co

1 ⊂ [C2, C2]1 (resp., Co
1 ⊂ [C2, C2]), that is, whether or not

all trace class trace zero operators are commutators of Hilbert-Schmidt operators
(respectively, sums of such commutators). An even more important question as it
turned out is: if not, which ones are? Some of the important single commutator
open problems are summarized below in Problem 5.

The sufficiency of the condition for this class of diagonal operators was orig-
inally proved in 1973 ([27]) with a shortened proof in 1986 ([29]) with the help of
E. Azoff. The necessity was originally proved in 1976 ([28]).

2. Commutator ideals

Theorem 2.1 (Weiss [28], 1980). Setting d :=
∑∞

1 dn for an arbitrary sequence
dn ↓ 0, the following are equivalent.

(i) diag(−d, d1, d2, . . . ) ∈ [C2, C2]
(ii) diag(−d, d1, d2, . . . ) ∈ [C1, B(H)]
(iii)

∑∞
1 dn log n < ∞.

In particular, if 〈dn〉 = 〈 1
n log2 n

〉, then diag(−d, d1, d2, . . . ) ∈ Co
1 \ [C2, C2].

Theorem 2.1 (ii), although not included in [28], with minor modifications can
be obtained from the same construction and computations.

Diagonal operators of the form diag(−d, d1, d2, . . . ) became the test cases
inside Co

1 in [27]–[29] for early approaches to commutator problems where having
trace zero was a necessary condition, and they continue to play an essential role
in the C1 study, for instance in the proof of the main summability theorem in [8],
Theorem 5.11 (iii) (Theorem 2.4 below). Indeed, when I ⊂ C1, i.e., inside C1 they
are the building blocks of Io in that every Io-operator has its real and imaginary
parts easily decomposable as the sum of two compact selfadjoint operators each
unitarily equivalent to diagonals of this form. Another important point about
these diagonal forms is their resemblance to diag(1, 0, 0, . . . ) so that matricially
they provide reasonable analogs to the rank one projection and its commutator
problems mentioned earlier (for instance, Problem 1 and Problem 4 for the case
diag(1, 0, 0, . . . )).

The study of this class began in 1973 (cf., [27] and [28]) by considering low
dimension finite-dimensional cases (especially important were dimensions 2, 3 and
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4), and this survey concludes with a discussion of some of the remaining open
problems there that might lead to better insights into the structure of single com-
mutator classes.

One negative weight and the rest positive in practice were the hardest opera-
tors to deal with in this investigation. In contrast, operators of the form diag〈±dn〉
are easy to represent as single commutators using tensors of diagonals and 2 × 2
scalar matrices with the best possible control on their norms or on their member-
ship in prescribed ideals. Indeed, for every product representation dn = anbn:

diag〈±dn〉 =
[
diag〈an〉 ⊗

(
0 1
0 0

)
, diag〈bn〉 ⊗

(
0 0
1 0

)]
.

Indeed, from this it follows easily that IJ is the ideal generated by [I, J ]. Since
1971, much of the work on commutators depended significantly on increasingly
complicated methods of organizing cancellation in operator equations. Another
elementary example of this was discussed above in the third paragraph succeeding
Theorem 0.1.

Regarding the monotone ordering on the sequence 〈dn〉, since the summabil-
ity condition in Theorem 2.1 along with other weighted summability conditions
with nondecreasing weights appearing in [27] are minimal when the sequence 〈dn〉
is arranged in nonincreasing order and since all the commutator classes under dis-
cussion are unitarily invariant, there is no loss of generality in assuming that the
sequence is nonincreasing.

Anderson [3] in 1986 proved Co
p = [Cp, B(H)] when p < 1 and applied this

to the computation of the K-groups, K1(Cp, B(H)) (cf., [2]).
Kalton [19] in 1989 linked arithmetic means to [C1, B(H)] and to [C2, C2]

achieving the remarkable characterizations of the spaces:

Theorem 2.2 (Kalton, [19], 1989). An operator T is in [C1, B(H)] (or in [C2, C2])
if and only if λ(T )a is absolutely summable.

Here λ(T ) := 〈λn(T )〉 denotes the sequence of eigenvalues counting alge-
braic multiplicity and arranged in order of nonincreasing moduli and λ(T )a :=
〈λ1(T )+···+λn(T )

n 〉 denotes its averaging sequence.
Surprisingly and only indirectly via their same characterization did Kalton

obtain: [C1, B(H)] = [C2, C2]. No direct proof of this is known.
Theorem 2.2 provided some of the inspiration and methodology for the gen-

eral characterization of commutator ideals in the following theorem (in some re-
spects the central result of [8]). For more of Kalton’s work on this subject, some
joint with Dykema and some related to the following theorem; see [20] and [9].

Theorem 2.3 (Dykema, Figiel, Weiss and Wodzicki, [8], 2001). If I, J are two
arbitrary B(H)-ideals, at least one of which is proper, and T = T ∗ ∈ IJ , then

T ∈ [I, J ] if and only if diag λ(T )a ∈ IJ.

Consequently, [I, J ] = [IJ, B(H)].
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For normal compact operators, λ(T ) is simply the sequence of eigenvalues count-
ing ordinary multiplicity and arranged in order of decreasing moduli, as described
above. (A stronger version of Theorem 2.3 requires only a more general condition
than monotoniztion: that |λ(T )| ≤ ν for some ν ∈ Σ(I).) Moreover, IJ tradition-
ally defined in ring theory as the ideal generated by all (I, J)-products, in B(H)
it is precisely the class of all single (I, J)-products (cf., [8], Lemma 6.3). Alter-
natively, IJ is the class of compact operators T dominated by (I, J)-products in
the sense of s-numbers, i.e., all compact operators T for which s(T ) ≤ s(A)s(B)
for some A ∈ I, B ∈ J , and this reveals that the ideal product is a commu-
tative operation. These facts follow in part from Calkin’s inclusion preserving
lattice isomorphism, I → Σ(I), from the class of B(H)-ideals onto the class of
characteristic subsets of c∗o (i.e., solid subsets of the class of nonincreasing nonneg-
ative sequences tending to zero that are invariant under ampliation, D2(s(T )) :=
(s(T )1, s(T )1, s(T )2, s(T )2, . . . ), and closed under addition) [6]. (See also [8], Chap-
ter 2.)

Part of the value of Theorem 2.3 lies in the fact that, because IJ is a com-
mutative ideal operation, the theorem reduces many noncommutative problems
in this study to commutative problems involving c∗o-sequences, often achieving
greater accessibility. This is evidenced in [8] and [18].

Like Kalton’s result, that [I, J ] = [IJ, B(H)] follows likewise only indirectly
from their same characterization and no direct proof is known. (That [I, J ]2 ⊃
[IJ, B(H)]1 is straightforward.) Hence the primary general single commutator
questions (cf., [8], Chapter 7):

Problem 5. (i) Characterize [I, J ]1.

(ii) Absent this, characterize [I, J ]1 for any pair I, J �= F (H)
distinct from those covered in [8], Corollaries 7.2 and 7.6.

(iii) Is [I, J ]1 = [IJ, B(H)]1?
(iv) In particular, is [C1, B(H)]1 = [C2, C2]1?

In C1, Theorem 2.3 also reveals the summability theory.

Theorem 2.4 (Dykema, Figiel, Weiss and Wodzicki [8], 2001, Theorem 5.11-(iii)).
If I, J, L are B(H)-ideals where IJ ⊂ K(H), then

(i) diag(−d, d1, d2, . . . ) ∈ [I, J ] if and only if diag〈dn〉a∞ ∈ IJ
(ii) If L ⊂ C1, then Lo ⊂ [I, J ] if and only if La∞ ⊂ IJ .
(iii) If I ⊂ C1, then Io = [I, B(H)] if and only if Ia∞ = I

(equivalently Ia∞ ⊂ I since the reverse inclusion is automatic).

Here the arithmetic mean at infinity is defined for summable sequences λ by:
λa∞ := λn+1 + λn+2 + ···

n . See the third paragraph below for the definition of the
arithmetic mean at infinity Ia∞ .
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3. Traces and arithmetic mean ideals

Consequences of Theorem 2.3 can be found in [8] and in [18]. It provides a new point
of view on traces and arithmetic mean ideals and a brief introduction including
a few of its consequences are presented below. Applications of Theorem 2.3 to
cyclic homology and the algebraic K-theory of operator ideals are described in [8],
Introduction.

Theorem 2.3 characterizes when traces and nonsingular traces exist. Traces
(also called generalized traces), as mentioned earlier, are unitarily invariant lin-
ear functionals on an ideal I and unitary invariance is equivalent to the linear
functional vanishing on the commutator ideal [I, B(H)]. Alternatively, traces are
simply natural liftings to I of linear functionals on the quotient I

[I,B(H)] , so they
exist precisely when I �= [I, B(H)], or equivalently, by Theorem 2.3, when I �= Ia

(i.e., when Σ(I)a �⊂ Σ(I)).
Ia and aI, the basic arithmetic mean ideals called respectively the arithmetic

mean ideal and the pre-arithmetic mean ideal of I, are defined as:

Ia := {T ∈ K(H) | s(T ) ≤ s(A)a for some A ∈ I} and

aI := {T ∈ K(H) | s(T )a ≤ s(A) for some A ∈ I}.
Likewise Ia∞ and a∞I, the basic arithmetic mean ideals at infinity called respec-
tively the arithmetic mean ideal at infinity and the pre-arithmetic mean ideal at
infinity of I, are defined as:

Ia∞ := {T ∈ K(H) | s(T ) ≤ s(A)a∞ for some A ∈ I} and

a∞I := {T ∈ K(H) | s(T )a∞ ≤ s(A) for some A ∈ I}.
Nonsingular traces exist precisely when diag(1, 1/2, 1/3, . . . ) /∈ I. Nonsin-

gular traces are those generalized traces nonvanishing on F (H), or equivalently,
whose restrictions to F (H) up to scalar multiplication are simply the classical
trace. The necessity of diag(1, 1/2, 1/3, . . . ) /∈ I follows by applying Theorem 2.3
to obtain the key idea that

diag(1, 0, 0, . . . ) ∈ [I, B(H)] if and only if diag〈1/n〉 ∈ I.

Examples of nonsingular traces are: the classical trace on F (H) or C1; and an
example of a singular trace is the Dixmier trace on the Köthe dual of the Macaev
ideal (cf., [7] and [22]). In the language of arithmetic mean ideals (see below), the
Macaev ideal is the Lorentz ideal L(log n) and its Kothe dual is the pre-arithmetic
mean ideal of a principal ideal, a(diag〈 log n

n 〉), also known as the Marcinkiewicz
ideal M(〈 n

log n 〉), and which is also the arithmetic mean closure of a principal ideal,
a((diag〈1/n〉)a). (Cf., [8], Sections 4.7 and 4.10.) The arithmetic mean (am) closure
was discussed earlier in the paragraph following Theorem 1.3. Indeed many classi-
cal ideals arising from classical spaces in the literature (e.g., Lorentz, Marcinkiewicz
and Orlicz sequence spaces) fit this new context identified in [8] and the additional
notions of “softness” and “soft enveloping ideals” in [18] arose from Theorem 2.3
applied to the work of Dixmier ([7]) and Varga ([26]).
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One consequence of Theorem 2.3 for nonsingular traces is that the classical
trace extends beyond the trace class to the strictly larger ideal of operators T
whose s-numbers s(T ) = o(1/n) (see also [10]). This is the soft interior of the
principal ideal generated by diag〈1/n〉.

By Theorem 2.3, (aI)+ =[I,B(H)]+ and the ideal aI⊂ [I,B(H)] consequently.
As mentioned earlier, the ideal generated by [I, B(H)] is I. So aI ⊂ [I, B(H)] ⊂ I
where aI, I form the optimal upper and lower ideal envelopes for [I, B(H)] and
the inclusions become equalities if and only if [I, B(H)] is itself an ideal.

In c∗o, the new double inequality linking tensors with arithmetic means (see
[8], Proposition 3.14): (x ⊗ ω)∗ ≤ xa ≤ 2 (x ⊗ ω)∗ provides an alternate
characterization of the arithmetic mean ideal of I: Ia = I ⊗ (diag ω). Here ∗
means monotonization and ω := 〈1/n〉.

Am-stability, I = Ia, is equivalent to aI = I, and from the previous comment,
am-stability is equivalent to the condition I = I ⊗ (diag ω) (i.e., I ⊃ I ⊗ (diag ω)
since the reverse inclusion is automatic). This is related to the tensor product
closure property (TPCP), I = I ⊗ I, investigated in [27]. (See [8], Sections 2.8
and 4.3 for more details on the tensor operation for ideals.)

The following 5-chain with some arithmetic mean relations links the basic
arithmetic mean ideals: aI ⊂ (aI)a ⊂ I ⊂ a(Ia) ⊂ Ia. Denoting A(I) := Ia and
A−1(I) := aI for convenience of notation, ∀ n ∈ Z am-ideals satisfy the rela-
tions AnA−nAn = An which imply the 5-chain and that AnA−n and AnA−2nAn

are idempotents. The interior Io := (aI)a and the closure I− := a(Ia) reveal a
topological like structure (except of course the complement of an ideal is not an
ideal) where the am-closed ideals are those equal to their closures (equivalently
as mentioned earlier, those solid under Hardy-Littlewood-Polya-Schur majoriza-
tion), and the am-open ideals are those equal to their interiors. More generally,
am-interiors/am-closures form the optimal am-open/am-closed inner and outer en-
velopes, respectively. For am-stability, all the inclusions become equality. An open
question here is whether or not there exists a clopen ideal that is not am-stable.

Three notable features of this structure are that every ideal contains a largest
am-closed ideal and is contained in a smallest am-open ideal; that they can be
expressed in terms of certain inner and outer convex envelopes; and that the am-
closure operation distributes over finite sums of ideals. (Cf., [18] for details on this
topological like structure.)

There is also an emerging summability theory with analogous phenomena
related to the slightly subtler 5-chain for arithmetic mean ideals at infinity: a∞I ⊂
(a∞I)a∞ ⊂ I ⊂ a∞(Ia∞) ⊂ Ia∞ .

4. Single commutator problems on diag(−d, d1, d2, . . . )

The development leading to Theorem 2.1 left some interesting open questions.
This is a brief description of the related work and problems from [27], Section 1.8,
pp. 122–136, [28], Section I, pp. 576–580, and [29], p. 885.
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An early construct used by the author in this study was that, using the
standard notation [A, B] := AB − BA and a parameter 0 ≤ t ≤ 1:


−∑∞
1 dn 0 0 ···
0 d1 0 ···
0 0 d2

. . .
...

...
. . . . . .




=







0 0 0 ···
(
∑∞

1 dn)1−t 0 0 ···
0 (

∑∞
2 dn)1−t 0 ···

...
. . . . . . . . .


,




0 (
∑∞

1 dn)t 0 ···
0 0 (

∑∞
2 dn)t ···

0 0 0
. . .

...
...

...
. . .





.

Here the IJ-norm in both the [C1, B(H)]1 and [C2, C2]1 contexts is
∞∑
1

∞∑
k

dn =
∞∑
1

ndn.

That is, a sufficient condition that

diag(−d, d1, d2, . . . ) ∈ [C2, C2]1 or [C1, B(H)]1 is that
∞∑
1

ndn < ∞.

Weighted shifts such as these play a central role throughout the theory in
building solution operators for commutator equations. For instance, they were
essential for the sufficiency part of Theorem 2.1 (iii). The strategy back then
was to look for suitable matrix forms with smaller trace norms in the form of
weighted sums where the weights increase slower than n, say like o(n). The point of
Theorem 2.1 (iii) was that the sufficiency of the weights n were strengthened to the
sufficiency of the weights log n thereby weakening the condition on 〈dn〉 and hence
expanding the class of achievable diag(−d, d1, d2, . . . ). Attempts to reduce further
the summability condition qualitatively failed, but quantitatively, the following
construct succeeded.

First note that

diag(−d, d1, d2, . . . ) ∼= diag(−d, d1, d3, . . . ) ⊕ diag(d2, d4, . . . ) = [A, B]

where

A =
(

Ut −(∑∞
n=1 d2n

)t
P

0 −V ∗
t

)
and B =

(
U∗

1−t 0( ∑∞
n=1 d2n

)1−t
P V1−t

)

with P := diag(1, 0, . . . ), the parameter 0 ≤ t ≤ 1, the weighted shift

Ut := U
(( ∞∑

1

d2n−1

)t

,
∞∑
2

d2n−1

)t

, . . .
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and the weighted shift

Vt := U
(( ∞∑

2

d2n

)t

,

∞∑
3

d2n

)t

, . . . .

When t = 1, ‖A‖1 =
∑∞

1 [n+1
2 ] dn where [x] denotes the greatest integer function,

and ‖B‖ = 1. When t = 1
2 , ‖A‖2

2 = ‖B‖2
2 =

∑∞
1 [n+1

2 ] dn. And for any 0 ≤ t ≤ 1,
‖AB‖1 = ‖BA‖1 =

∑∞
1 [n+1

2 ] dn. These are all quantitative improvements over∑∞
1 ndn for the respective norms, but not qualitative improvements. Hence the

following test questions for investigating the structure of [C1, B(H)]1 and [C2, C2]1:

Problem 6. Is
∑∞

1 [n+1
2 ] dn minimal for each of these three contexts (max(‖AB‖1,

‖BA‖1), ‖A‖2‖B‖2 and ‖A‖1‖B‖)?
For which of these three contexts is the condition

∑∞
1 ndn < ∞ necessary?

Finally, the problems on diag(−d, d1, d2, . . . ) all have finite-dimensional
analogs by simply taking the sequence 〈dn〉 finite. Indeed Theorem 2.1 owes its
discovery as described in [28] to the test cases d1 = d2 = · · · = dN = 1

N . The
formula in Problem 6 for the cases diag(−1, 1

N , 1
N , . . . , 1

N ) is N+2
4 for N even and

(N+1)2

4N for N odd. Since ‖ diag(−1, d1, d2, . . . )‖1 = 2 (by normalizing, d = 1), we
see that diag(−1, d1, d2, . . . ) = AB − BA implies

2 = ‖AB − BA‖1 ≤ ‖AB‖1 + ‖BA‖1 hence by Hölder’s inequality,

‖A‖2‖B‖2, ‖A‖1‖B‖, max(‖AB‖1, ‖BA‖1) ≥ 1.
For N = 1, 2, the inequality

2 = ‖AB − BA‖1 ≤ ‖AB‖1 + ‖BA‖1 ≤ 2 ‖A‖2‖B‖2

in the “minimal” case is actually equality. But for N = 3, the ‖A‖2‖B‖2-minimum
turned out strictly larger than 1, namely 4/3, and for N = 4, the minimum is 3/2.
So for 1 ≤ N ≤ 4, the formula in Problem 6 is sharp for minimizing ‖A‖2‖B‖2 and
perhaps something interesting is occurring at N = 5 like new solution operators
providing smaller Hilbert-Schmidt norms or a new stronger proof of sharpness.
The proof for 1 ≤ N ≤ 4 provided the keys in [28] to proving Theorem 2.1.

Problem 7. Minimize ‖A‖2‖B‖2 for N ≥ 5 for the target operators diag(−1, 1
N ,

1
N , . . . , 1

N ) and diag(−1, 1
N , 1

N , . . . , 1
N ) ⊕ 0 where 0 is finite- and infinite-dimen-

sional?
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