Paving Small Matrices and The Kadison-Singer Extension Problem AIM Workshop Notes

Gary Weiss Vrej Zarikian

University of Cincinnati
United States Naval Academy

Contents

Part 1. Pavings	5
Chapter 1. Notation	7
Chapter 2. 2-Pavings	9
1. Selfadjoint	9
2. Real Symmetric	12
Chapter 3. 3-Pavings	15
1. General	16
2. Selfadjoint	19
3. Nonnegative	23
Chapter 4. 2,3-Pavings Summary Table	25
Part 2. Supplementary Material and Tools	27
Chapter 5. Supplementary Material: 2-Pavings	29
Chapter 6. Supplementary Material: 3-Pavings	31
1. 4×4 General	31
Chapter 7. Tools	35
1. Universal Selfadjoint 3-Identity and consequences	35
2. Universal Selfadjoint 4-Identity and consequences	36
3. Operator Norm/p-Norm Comparisons	37
4. Operator Norm/Hilbert-Schmidt Norm Comparisons	41
5. Averaging and Constrained Averaging	44
Bibliography	47

Part 1

Pavings

CHAPTER 1

Notation

 $\mathbb{M}_n=n\times n$ complex matrices $\mathbb{M}_n^0=n\times n \text{ complex matrices with zero diagonal}$

 $\mathbb{M}_{n,sa} = n \times n$ selfadjoint complex matrices

 $\mathbb{M}^0_{n,sa} = n \times n$ selfadjoint complex matrices with zero diagonal

 $\mathbb{M}_{n,sym} = n \times n$ real symmetric matrices

 $\mathbb{M}_{n,sym}^0 = n \times n$ real symmetric matrices with zero diagonal

 $\mathbb{M}_{n,++} = n \times n$ non-negative matrices

 $\mathbb{M}_{n,++}^{0}=n\times n$ non-negative matrices with zero diagonal

 $\mathbb{D}_n = n \times n$ diagonal matrices

If $A \in \mathbb{M}_n$, define

$$\alpha_k(A) = \min_{\text{diagonal projections } P_1 + \dots + P_k = I_n} \quad \max_{1 \, \leq \, j \, \leq \, k} \, ||P_j A P_j||$$

If $0 \neq A \in \mathbb{M}_n$, define

$$\tilde{\alpha}_k(A) = \frac{\alpha_k(A)}{\|A\|}.$$

If $\mathcal{S} \subset \mathbb{M}_n$, define

$$\tilde{\alpha}_k(\mathcal{S}) = \sup_{0 \neq A \in \mathcal{S}} \tilde{\alpha}_k(A).$$

2-Pavings

Theorem 2.1 (2-pavings).

n	$\tilde{\alpha}_2(\mathbb{M}_n^0)$	$\tilde{\alpha}_2(\mathbb{M}_{n,sa}^0)$	$\tilde{\alpha}_2(\mathbb{M}_{n,sym}^0)$
3	1	$\frac{1}{\sqrt{3}}$	$\frac{1}{2}$
		0.5773	0.5000
4			$[?, \frac{1}{\sqrt{3}}]$
	"	"	[0.5493, 0.5773]
5		$\frac{2}{\sqrt{5}}$	$\frac{2}{\sqrt{5}}$
	//	0.8944	0.8944

1. Selfadjoint

PROPOSITION 2.2 (3 × 3 selfadjoint). $\tilde{\alpha}_2(\mathbb{M}_{3,sa}^0) = \frac{1}{\sqrt{3}} \approx 0.5773$.

Proof. Suppose

$$A = \begin{bmatrix} 0 & a & b \\ \overline{a} & 0 & c \\ \overline{b} & \overline{c} & 0 \end{bmatrix} \in \mathbb{M}^0_{3,sa} \text{ with } \alpha_2(A) = 1.$$

Then $|a|, |b|, |c| \ge 1$. By the Universal Selfadjoint 3-Identity (Lemma 7.1),

$$1 = \frac{|a|^2 + |b|^2 + |c|^2}{\|A\|^2} + \frac{2|\operatorname{Re}(a\overline{b}c)|}{\|A\|^3} \ge \frac{3}{\|A\|^2}.$$

Thus, $||A|| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_2(A) \leq \frac{1}{\sqrt{3}}$. This bound is attained by

$$A = \begin{bmatrix} 0 & 1 & i \\ 1 & 0 & 1 \\ -i & 1 & 0 \end{bmatrix}$$

because $\alpha_2(A) = 1$ and $||A|| = \sqrt{3}$ by Corollary 7.2.

Proposition 2.3 (4 × 4 selfadjoint). $\tilde{\alpha}_2(\mathbb{M}^0_{4,sa}) = \frac{1}{\sqrt{3}}$.

PROOF. Suppose $A \in \mathbb{M}^0_{4,sa}$, with $\alpha_2(A) = 1$. Create a graph G = (V, E) as follows: $V = \{1, 2, 3, 4\}$ and $(i, j) \in E$ if $|a_{ij}| < 1$. We have the following axioms:

(1) G11 is not a subgraph of G. Otherwise, A admits a 2-2 paving of norm < 1, violating the assumption $\alpha_2(A) = 1$.

- (2) For all i, the degree of i is greater than 0. Otherwise, row i of A has three
- entries of absolute value $\geq 1 \Rightarrow ||A|| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{1}{\sqrt{3}}$. (3) By removing a vertex from G, one cannot arrive at G4. Otherwise, A has a 3-compression of norm $\geq \sqrt{3} \Rightarrow ||A|| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_2(A) \leq \frac{1}{\sqrt{3}}$.

This exhausts all possible 4-graphs and hence proves the inequality.

Proposition 2.4 (5 × 5 selfadjoint). Let $\tilde{\alpha}_2(\mathbb{M}_{5,sa}^0) = \frac{2}{\sqrt{5}} \approx 0.8944$.

PROOF. Suppose $A \in \mathbb{M}^0_{5,sa}$, with $\alpha_2(A) = 1$. Create a graph G = (V, E) as follows: $V = \{1, 2, 3, 4, 5\}$ and $(i, j) \in E$ if $|a_{ij}| < 1$. We may assume the following axiom:

(1) For all $i, deg(i) \geq 3$. Otherwise, row i of A has at least two entries of absolute value $\geq 1 \Rightarrow ||A|| \geq \sqrt{2} \Rightarrow \tilde{\alpha}_2(A) \leq \frac{1}{\sqrt{2}} \approx 0.7071$.

This leaves graphs G50, G51, and G52.

Case G50: Only two 2-compressions have norm ≥ 1 , and they are disjoint. Without loss of generality, $||A_{12}||, ||A_{34}|| \ge 1$. We claim that every 3-compression has norm ≥ 1 . Indeed, $||A_{125}|| \geq ||A_{12}|| \geq 1$, $||A_{345}|| \geq ||A_{34}|| \geq 1$, and the remaining 3-compressions have norm ≥ 1 because their complementary 2compressions have norm < 1. It follows that $||A|| \ge \frac{\sqrt{5}}{2} \Rightarrow \tilde{\alpha}_2(A) \le \frac{2}{\sqrt{5}}$. Case G51: Only one 2-compression has norm ≥ 1 . Without loss of generality, $||A_{12}|| \ge 1$

1. It follows that

$$||A||^{2} \geq \frac{1}{4}||A||_{HS}^{2}$$

$$= \frac{1}{4} \left[||A_{12}||_{HS}^{2} + \frac{1}{2} \sum_{1 \in B, 2 \notin B}^{3} ||B||_{HS}^{2} + \frac{1}{2} \sum_{2 \in B, 1 \notin B}^{3} ||B||_{HS}^{2} \right]$$

$$\geq \frac{1}{4} \left[2 + \frac{1}{2} \cdot 3 \cdot \frac{3}{2} + \frac{1}{2} \cdot 3 \cdot \frac{3}{2} \right] = \frac{13}{8}.$$

Thus, $\|A\| \ge \sqrt{\frac{13}{8}} \Rightarrow \tilde{\alpha}_2(A) \le \sqrt{\frac{8}{13}} \approx 0.7845$. Case G52: Every 2-compression has norm $< 1 \Rightarrow$ every 3-compression has norm $\ge 1 \Rightarrow \|A\| \ge \frac{\sqrt{5}}{2} \Rightarrow \tilde{\alpha}_2(A) \le \frac{2}{\sqrt{5}}$.

The matrix

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & -1 \\ 1 & 1 & 0 & -1 & 1 \\ 1 & 1 & -1 & 0 & -1 \\ 1 & -1 & 1 & -1 & 0 \end{bmatrix}$$

shows that the inequality is sharp. The unimodular circular

$$B = \begin{bmatrix} 0 & e^{2\pi i/5} & e^{-\pi i/5} & e^{\pi i/5} & e^{-2\pi i/5} \\ e^{-2\pi i/5} & 0 & e^{2\pi i/5} & e^{-\pi i/5} & e^{\pi i/5} \\ e^{\pi i/5} & e^{-2\pi i/5} & 0 & e^{2\pi i/5} & e^{-\pi i/5} \\ e^{-\pi i/5} & e^{\pi i/5} & e^{-2\pi i/5} & 0 & e^{2\pi i/5} \\ e^{2\pi i/5} & e^{-\pi i/5} & e^{\pi i/5} & e^{-2\pi i/5} & 0 \end{bmatrix}$$

also works. Note: A and B are unitarily equivalent

ALTERNATE PROOF. Suppose $A \in \mathbb{M}^0_{5,sa}$, with $\alpha_2(A) = 1$.

- (1) Assume that all 3-compressions of A have norm ≥ 1 . Then $\tilde{\alpha}_2(A) \leq \frac{2}{\sqrt{5}}$ (see the previous proof).
- (2) Assume that exactly one 3-compression, say A_{345} , has norm < 1, then $||A_{12}|| \ge 1 \Rightarrow \tilde{\alpha}_2(A) \le \sqrt{\frac{8}{13}}$ (see the previous proof).
- (3) Assume that exactly two 3-compressions have norm < 1. We may assume that the complementary 2-compressions are disjoint. Otherwise, $||A|| \ge \sqrt{2} \Rightarrow \tilde{\alpha}_2(A) \le \frac{1}{\sqrt{2}}$. Without loss of generality, $||A_{12}||, ||A_{34}|| \ge 1$ and $||A_{345}||, ||A_{125}|| < 1$. This is a contradiction.
- (4) Assume that more than two 3-compressions have norm < 1. Then their complementary 2-compressions cannot be disjoint. Thus, $||A|| \ge \sqrt{2} \Rightarrow \tilde{\alpha}_2(A) \le \frac{1}{\sqrt{2}}$.

2. Real Symmetric

PROPOSITION 2.5 (3 × 3 real symmetric). $\tilde{\alpha}_2(\mathbb{M}_{3,sym}^0) = \frac{1}{2}$.

Proof. Suppose

$$A = \begin{bmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{bmatrix} \in \mathbb{M}_{3,sym}^0 \text{ with } \alpha_2(A) = 1.$$

Then $|a|, |b|, |c| \ge 1$. By the Universal Selfadjoint 3-Identity (Lemma 7.1),

$$1 = \frac{a^2 + b^2 + c^2}{\|A\|^2} + \frac{2|abc|}{\|A\|^3} \ge \frac{3}{\|A\|^2} + \frac{2}{\|A\|^3}$$

which implies $||A|| \geq 2$, hence $\tilde{\alpha}_2(A) \leq \frac{1}{2}$. This bound is attained by

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \in \mathbb{M}^{0}_{3,sym}$$

since $\alpha_2(A) = 1$ and ||A|| = 2 by Corollary 7.2.

Lemma 2.6. Let

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & d & e \\ 1 & d & 0 & f \\ 1 & e & f & 0 \end{bmatrix} \in \mathbb{M}^0_{4,sym} \,.$$

If

$$\left\| \begin{bmatrix} 0 & d & e \\ d & 0 & f \\ e & f & 0 \end{bmatrix} \right\| \ge 1,$$

then $||A|| \ge (9.75)^{1/4} \approx 1.767$.

PROOF. Let $x = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ and

$$B = \begin{bmatrix} 0 & d & e \\ d & 0 & f \\ e & f & 0 \end{bmatrix}.$$

Then

$$A = \begin{bmatrix} 0 & x \\ x^* & B \end{bmatrix} \Rightarrow A^*A = \begin{bmatrix} xx^* & xB \\ B^*x^* & x^*x + B^*B \end{bmatrix}.$$

Thus

$$||A||^4 = ||A^*A||^2 \ge ||[xx^* \quad xB]||^2$$

= $9 + (d+e)^2 + (d+f)^2 + (e+f)^2$.

We claim that

$$(d+e)^{2} + (d+f)^{2} + (e+f)^{2} \ge d^{2} + e^{2} + f^{2}.$$

Indeed, let $F(d, e, f) = (d + e)^2 + (d + f)^2 + (e + f)^2$ and $G(d, e, f) = d^2 + e^2 + f^2$. Using the Method of Lagrange Multipliers, we minimize F(d, e, f) subject to the constraint $G(d, e, f) = r^2$:

$$2(d+e) + 2(d+f) = 2\lambda d$$

$$2(d+e) + 2(e+f) = 2\lambda e$$

$$2(d+f) + 2(e+f) = 2\lambda f$$

$$\Rightarrow \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} d \\ e \\ f \end{bmatrix} = \lambda \begin{bmatrix} d \\ e \\ f \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} d \\ e \\ f \end{bmatrix} = \begin{bmatrix} x \\ x \\ x \end{bmatrix} \text{ or } \begin{bmatrix} d \\ e \\ f \end{bmatrix} = \begin{bmatrix} x+y \\ x-y \\ -2x \end{bmatrix}.$$

In the former case,

$$3x^2 = d^2 + e^2 + f^2 = r^2 \Rightarrow (d+e)^2 + (d+f)^2 + (e+f)^2 = 12x^2 = 4r^2$$

In the later case,

$$(x+y)^2 + (x-y)^2 + (-2x)^2 = d^2 + e^2 + f^2 = r^2$$

$$\Rightarrow (d+e)^2 + (d+f)^2 + (e+f)^2 = (2x)^2 + (-x+y)^2 + (-x-y)^2 = r^2.$$
 Thus, $r^2 \le (d+e)^2 + (d+f)^2 + (e+f)^2 \le 4r^2$, which proves the claim. Now $\|B\| \ge 1 \Rightarrow \|B\|_{HS}^2 \ge 1.5 \Rightarrow d^2 + e^2 + f^2 \ge 0.75.$

Hence, $||A||^4 \ge 9.75$, which proves the lemma.

PROPOSITION 2.7 (4 × 4 real symmetric). $\tilde{\alpha}_2(\mathbb{M}_{4.sym}^0) \in [0.5493, 0.5773].$

PROOF. Suppose $A \in \mathbb{M}^0_{4,sym}$, with $\alpha_2(A) = 1$. Create a graph G = (V, E) as follows: $V = \{1, 2, 3, 4\}$ and $(i, j) \in E$ if $|a_{ij}| < 1$. We have the following axioms:

- (1) G11 is not a subgraph of G. Otherwise, A admits a 2-2 paving of norm < 1, violating the assumption $\alpha_2(A) = 1$.
- (2) By removing a vertex from G, one cannot arrive at G4. Otherwise, A has a 3-compression of norm $\geq 2 \Rightarrow ||A|| \geq 2 \Rightarrow \tilde{\alpha}_2(A) \leq \frac{1}{2}$.

This leaves only graph G12. Thus,

$$A = \begin{bmatrix} 0 & a & b & c \\ a & 0 & d & e \\ b & d & 0 & f \\ c & e & f & 0 \end{bmatrix},$$

where $|a|, |b|, |c| \ge 1, |d|, |e|, |f| < 1$, and

$$\left\| \begin{bmatrix} 0 & d & e \\ d & 0 & f \\ e & f & 0 \end{bmatrix} \right\| \ge 1.$$

Lower bound:

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & -0.3946 & 0.6854 \\ 1 & -0.3946 & 0 & -0.3986 \\ 1 & 0.6854 & -0.3986 & 0 \end{bmatrix}.$$

CHAPTER 3

3-Pavings

In 1987 the 3-paving problem was posed: whether or not 3-pavings suffice for Anderson's Paving Conjecture and hence for Kadison-Singer. To date we have heard of no refutation to this. Recall also the $\frac{2}{3}$ -challenge from then: whether or not $\tilde{\alpha}_3(\mathbb{M}_n^0) \leq \frac{2}{3}$, which the following table refutes.

Theorem 3.1 (3-pavings).

n	$\tilde{\alpha}_3(\mathbb{M}_n^0)$	$\tilde{\alpha}_3(\mathbb{M}_{n,sa}^0)$	$\tilde{\alpha}_3(\mathbb{M}_{n,++}^0)$
4	$\frac{2}{1+\sqrt{5}}$	$\frac{1}{\sqrt{3}}$	κ
	0.6180	0.5773	0.5550
5	"	"	$ \begin{bmatrix} \kappa, \frac{2}{1+\sqrt{5}} \\ \hline [0.5550, 0.6180] \end{bmatrix} $
6	0.7071	"	"
7	[?,1)	$\left[\frac{2}{3}, \frac{2}{\sqrt{7}}\right)$	$\left[\kappa, \frac{2}{3}\right]$
	[0.8231, 1)	[0.6667, 0.7559)	[0.5550, 0.6667]
8	[?,1] $[0.8231,1]$	$[rac{2}{3},rac{2}{\sqrt{5}}] \ [0.6667,0.8944]$	"
10	//	$[rac{\sqrt{5}}{3},1] \ [0.7454,1]$	"

where

$$\kappa = \sqrt{\frac{3}{5 + 2\sqrt{7}\cos(\tan^{-1}(3\sqrt{3})/3)}},$$

boldface signifies what we feel are the most interesting facts, "?" signifies a lack of a closed form, and " signifies "ditto from above".

1. General

Lemma 3.2. Let

$$A = \begin{bmatrix} r_1 e^{i\theta_1} & r_2 e^{i\theta_2} \\ 0 & r_3 e^{i\theta_3} \end{bmatrix} \in \mathbb{M}_2.$$

Then there exist unitaries $U, V \in \mathbb{D}_2$ such that

$$UAV = \begin{bmatrix} r_1 & r_2 \\ 0 & r_3 \end{bmatrix}.$$

Proof. Let

$$U = \begin{bmatrix} e^{-i\theta_2} & 0 \\ 0 & e^{-i\theta_3} \end{bmatrix}, V = \begin{bmatrix} e^{i(\theta_2 - \theta_1)} & 0 \\ 0 & 1 \end{bmatrix}.$$

Corollary 3.3. Let

$$A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \in \mathbb{M}_2.$$

If $|a|, |b|, |c| \ge 1$, then $||A|| \ge \frac{1+\sqrt{5}}{2}$.

PROOF. By the previous lemma,

$$\|A\| = \left\| \begin{bmatrix} |a| & |b| \\ 0 & |c| \end{bmatrix} \right\| \ge \left\| \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right\| = \frac{1+\sqrt{5}}{2}.$$

Proposition 3.4 (4 × 4 general). $\tilde{\alpha}_3(\mathbb{M}_4^0) = \frac{2}{1+\sqrt{5}} \approx 0.6180$.

Proof. Let

$$A = \begin{bmatrix} 0 & 1 & 1 & -\frac{2}{1+\sqrt{5}} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \in \mathbb{M}_4^0.$$

Then $\tilde{\alpha}_3(A) = \frac{2}{1+\sqrt{5}}$ ($\alpha_3(A) = 1$ and $||A|| = \frac{1+\sqrt{5}}{2}$ by applying to the upper-right 3×3 corner either Parrott's Completion Lemma with Formula, or factoring the characteristic polynomial of the square of its absolute value, or Matlab).

Now suppose $A \in \mathbb{M}_4^0$, with $\alpha_3(A) = 1$. Create a digraph D = (V, E) as follows: $V = \{1, 2, 3, 4\}$ and $(i, j) \in E$ if $|a_{ij}| \ge 1$. We may assume the following axioms:

- (1) For all $i \neq j$, either $(i, j) \in E$ or $(j, i) \in E$. Otherwise A admits a 1-1-2 paving of norm < 1, violating the assumption $\alpha_3(A) = 1$.
- (2) For all *i*, the in-degree of *i* and the out-degree of *i* are less than 3. Otherwise, $||A|| \ge \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \le \frac{1}{\sqrt{3}} \approx 0.5774$.

This leaves only digraphs D149, D185, D186, and D218 as labeled in [1]. Now each of these digraphs has D12 as a subgraph [ibid.]. Thus, $||A|| \ge \frac{1+\sqrt{5}}{2}$ (Corollary 3.3) $\Rightarrow \tilde{\alpha}_3(A) \le \frac{2}{1+\sqrt{5}}$.

1. GENERAL

17

Proposition 3.5 (5 × 5 general). $\tilde{\alpha}_3(\mathbb{M}_5^0) = \frac{2}{1+\sqrt{5}} \approx 0.6180$.

PROOF. Clearly,

$$\tilde{\alpha}_3(\mathbb{M}_5^0) \ge \tilde{\alpha}_3(\mathbb{M}_4^0) = \frac{2}{1 + \sqrt{5}}.$$

Now let $A \in \mathbb{M}_5^0$, with $\alpha_3(A) = 1$. Construct a graph G = (V, E) as follows: $V = \{1, 2, 3, 4, 5\}$ and $(i, j) \in E$ if $|a_{ij}|, |a_{ji}| < 1$. We may assume the following axioms:

- (1) G11 is not a subgraph of G. Otherwise, G has a 1-2-2 paving of norm < 1, violating the fact that $\alpha_3(A) = 1$.
- (2) By removing a vertex from G one cannot arrive at G8. Otherwise, there exists a 4-compression B of A such that $\alpha_3(B) \geq 1$. Since $\tilde{\alpha}_3(\mathbb{M}_4^0) = \frac{2}{1+\sqrt{5}}$, this would imply $||B|| \geq \frac{1+\sqrt{5}}{2} \Rightarrow ||A|| \geq \frac{1+\sqrt{5}}{2} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{2}{1+\sqrt{5}}$.

This leaves G23. After permuting indices, we may assume that

$$A = \begin{bmatrix} 0 & s_{12} & s_{13} & b_{14} & b_{15} \\ s_{21} & 0 & s_{23} & b_{24} & b_{25} \\ s_{31} & s_{32} & 0 & b_{34} & b_{35} \\ b_{41} & b_{42} & b_{43} & 0 & b_{45} \\ b_{51} & b_{52} & b_{53} & b_{54} & 0 \end{bmatrix},$$

where $|s_{ij}| < 1$ and $\max\{|b_{ij}|, |b_{ji}|\} \ge 1\}$ for all $i \ne j$. Permuting the indices 4 and 5, if necessary, we may assume $|b_{45}| \ge 1$. If b_{51} , b_{52} , and b_{53} all have magnitude ≥ 1 , then $||A|| \ge \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \le \frac{1}{\sqrt{3}} < \frac{2}{1+\sqrt{5}}$. Thus, we may assume that one of them has magnitude $< 1 \Rightarrow$ either b_{15} , b_{25} , or b_{35} has magnitude ≥ 1 . Permuting the indices 1, 2, and 3, if necessary, we may assume $|b_{35}| \ge 1$. If $|b_{34}| \ge 1$, then

$$||A|| \ge \left\| \begin{bmatrix} b_{34} & b_{35} \\ 0 & b_{45} \end{bmatrix} \right\| \ge \frac{1 + \sqrt{5}}{2}.$$

Likewise, if $|b_{43}| \geq 1$, then

$$||A|| \ge \left\| \begin{bmatrix} 0 & b_{35} \\ b_{43} & b_{45} \end{bmatrix} \right\| \ge \frac{1 + \sqrt{5}}{2}.$$

It follows that $\tilde{\alpha}_3(A) \leq \frac{2}{1+\sqrt{5}}$

Proposition 3.6 (6 × 6 general). $\tilde{\alpha}_3(\mathbb{M}_6^0) = \frac{1}{\sqrt{2}} \approx 0.7071$.

PROOF. Construct a graph G=(V,E) as follows: $V=\{1,2,3,4,5,6\}$ and $(i,j) \in E$ if $|a_{ij}|, |a_{ji}| < 1$. We may assume the following axioms:

- (1) G61 is not a subgraph of G. Otherwise A would have a 2-2-2 paving of norm < 1, violating the fact that $\alpha_3(A) = 1$.
- (2) By removing vertices from G, one cannot arrive at G8. Otherwise A would have a 4-compression B such that $\alpha_3(B) \geq 1$. Since $\tilde{\alpha}_3(\mathbb{M}_4^0) = \frac{2}{1+\sqrt{5}}$, this would imply $||B|| \geq \frac{1+\sqrt{5}}{2} \Rightarrow ||A|| \geq \frac{1+\sqrt{5}}{2} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{2}{1+\sqrt{5}} < \frac{1}{\sqrt{2}}$.

 (3) For all vertices i, $deg(i) \geq 3$. Otherwise, if $deg(i) \leq 2$, then either row
- (3) For all vertices i, $deg(i) \geq 3$. Otherwise, if $deg(i) \leq 2$, then either row i or column i of A would have at least two entries of magnitude $\geq 1 \Rightarrow ||A|| \geq \sqrt{2} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{1}{\sqrt{2}}$.

This eliminates all graphs. Now let

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1\\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & 0 & 1 & 0\\ 0 & 0 & 0 & -1 & 0 & 1\\ -\frac{1}{2} & 1 & \frac{1}{2} & 0 & \frac{1}{\sqrt{2}} & 0\\ 1 & 0 & 1 & 0 & 0 & 0\\ \frac{1}{2} & 1 & -\frac{1}{2} & 0 & -\frac{1}{\sqrt{2}} & 0 \end{bmatrix} \in \mathbb{M}_{6}^{0}.$$

Then $\alpha_3(A) = 1$ and $A^*A = 2I$.

PROPOSITION 3.7 (7 × 7 general). $\tilde{\alpha}_3(\mathbb{M}_7^0) \in [0.8231, 1)$.

PROOF. The following matrix was discovered by searching among 7×7 unitary circulants for bad pavers. The starting point for the search was a 7×7 unitary circulant with the eigenvalue distribution $(1, e^{\pi i/3}, e^{-\pi i/3}, i, -i, -1, -1)$.

$$A = \begin{bmatrix} 0 & a & b & c & d & e & f \\ f & 0 & a & b & c & d & e \\ e & f & 0 & a & b & c & d \\ d & e & f & 0 & a & b & c \\ c & d & e & f & 0 & a & b \\ b & c & d & e & f & 0 & a \\ a & b & c & d & e & f & 0 \end{bmatrix},$$

where

$$\begin{split} a &= -0.19104830537481 - 0.18571483276728i \\ b &= 0.03404378754044 + 0.00110165928527i \\ c &= -0.13926357252448 + 0.42165365488402i \\ d &= 0.21474405201775 - 0.42217403069332i \\ e &= -0.28337369310887 - 0.48101315713848i \\ f &= 0.29151538363540 - 0.33115367910212i. \end{split}$$

Then $\alpha_3(A) = 0.82305627367962$ and $A^*A = I$, i.e. $\tilde{\alpha}_3(A) = 0.82305627367962$.

It remains to show that $\tilde{\alpha}_3(\mathbb{M}_7^0) \neq 1$. To that end, let $A \in \mathbb{M}_7^0$, with $\alpha_3(A) = 1$. If every 3-compression of A has norm ≥ 1 , then ||A|| > 1 (Corollary 7.10). If, on the other hand, some 3-compression of A has norm < 1, then the complementary 4-compression B satisfies $\alpha_2(B) \geq 1$. In particular, every 2-2 paving of B has norm ≥ 1 . By Lemma 7.11, we may assume that

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & * & * & * \\ 0 & 0 & a & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & b & 0 & 0 & 0 \\ 0 & c & 0 & 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 & 0 & * & * \\ * & 0 & 0 & 0 & * & 0 & * \\ * & 0 & 0 & 0 & * & * & 0 \end{bmatrix},$$

where |a| = |b| = |c| = 1 and $||A_{567}|| < 1$. Since $||A_{12}|| = ||A_{35}|| = 0$, $||A_{467}|| = 1 \Rightarrow ||A_{67}|| = 1 \Rightarrow ||A_{567}|| = 1$, a contradiction.

2. Selfadjoint

Proposition 3.8 (4 × 4 selfadjoint). $\tilde{\alpha}_3(\mathbb{M}^0_{4,sa}) = \frac{1}{\sqrt{3}} \approx 0.5773.$

PROOF. Suppose $A \in \mathbb{M}^0_{4,sa}$, with $\alpha_3(A) = 1$. Then $|a_{ij}| \geq 1$ for all $i \neq j$. Thus, $||A|| \ge \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \le \frac{1}{\sqrt{3}}$. Now let

$$A = \begin{bmatrix} 0 & i & 1 & 1 \\ -i & 0 & 1 & -1 \\ 1 & 1 & 0 & i \\ 1 & -1 & -i & 0 \end{bmatrix} \in \mathbb{M}_{4,sa}^{0}.$$

Then $\tilde{\alpha}_3(A) = \frac{1}{\sqrt{3}} \ (\alpha_3(A) = 1 \text{ and } A^*A = 3I).$

PROPOSITION 3.9 (5 × 5 selfadjoint). $\tilde{\alpha}_3(\mathbb{M}_{5,sa}^0) = \frac{1}{\sqrt{3}}$.

Proof. Clearly,

$$\tilde{\alpha}_3(\mathbb{M}^0_{5,sa}) \ge \tilde{\alpha}_3(\mathbb{M}^0_{4,sa}) = \frac{1}{\sqrt{3}}.$$

Now let $A \in \mathbb{M}^0_{5,sa}$, with $\alpha_3(A) = 1$. Construct a graph G = (V, E) as follows: $V = \{1, 2, 3, 4, 5\}$ and $(i, j) \in E$ if $|a_{ij}| < 1 \ (\Rightarrow |a_{ji}| < 1)$. We may assume the following axioms:

- (1) G11 is not a subgraph of G. Otherwise, A would have a 1-2-2 paving of norm < 1, violating the assumption $\alpha_3(A) = 1$.
- (2) By removing a vertex from G, one cannot arrive at G8. Otherwise, Awould have a 4-compression B such that $\alpha_3(B) \geq 1$. Since $\tilde{\alpha}_3(\mathbb{M}^0_{4,sa}) = \frac{1}{\sqrt{3}}$, this would imply $||B|| \geq \sqrt{3} \Rightarrow ||A|| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{1}{\sqrt{3}}$. (3) For every vertex i, $deg(i) \geq 2$. Otherwise, if $deg(i) \leq 1$, then row i of A has at least three entries of magnitude $\geq 1 \Rightarrow ||A|| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{1}{\sqrt{3}}$.

This eliminates all graphs.

PROPOSITION 3.10 (6 × 6 selfadjoint). $\tilde{\alpha}_3(\mathbb{M}_{6,sa}^0) = \frac{1}{\sqrt{3}}$

Proof. Clearly,

$$\tilde{\alpha}_3(\mathbb{M}_{6,sa}^0) \ge \tilde{\alpha}_3(\mathbb{M}_{5,sa}^0) = \frac{1}{\sqrt{3}}.$$

Now let $A \in \mathbb{M}^0_{6,sa}$, with $\alpha_3(A) = 1$. Construct a graph G = (V, E) as follows: $V = \{1, 2, 3, 4, 5, 6\}$ and $(i, j) \in E$ if $|a_{ij}| < 1 \ (\Rightarrow |a_{ji}| < 1)$. We may assume the following axioms:

- (1) G61 is not a subgraph of G. Otherwise, A would have a 2-2-2 paving of norm < 1, violating the assumption $\alpha_3(A) = 1$.
- (2) By removing a vertices from G, one cannot arrive at G8. Otherwise, Awould have a 4-compression B such that $\alpha_3(B) \geq 1$. Since $\tilde{\alpha}_3(\mathbb{M}_{4,sa}^0) =$ $\frac{1}{\sqrt{3}}$, this would imply $||B|| \ge \sqrt{3} \Rightarrow ||A|| \ge \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \le \frac{1}{\sqrt{3}}$. (3) For every vertex i, $deg(i) \ge 3$. Otherwise, if $deg(i) \le 2$, then row i of A
- has at least three entries of magnitude $\geq 1 \Rightarrow ||A|| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{1}{\sqrt{3}}$.

This eliminates all graphs.

Preliminaries for 7×7 Selfadjoints

Notation: $F = \begin{bmatrix} 1 - \delta_{ij} \end{bmatrix} \in \mathbb{M}_{n,sa}^0$ (the "fat" operator)

LEMMA 3.11. Let $0 \neq A \in \mathbb{M}_{n,sa}^0$. Then the following are equivalent:

- i. $\|A\|^2=\frac{n-1}{n}\|A\|^2_{HS}.$ ii. There exists a nonzero $\alpha\in\mathbb{R}$ such that

$$\sigma(\alpha^{-1}A) = \left(1, \underbrace{-\frac{1}{n-1}, -\frac{1}{n-1}, \dots, -\frac{1}{n-1}}_{n-1}\right).$$

iii. There exists a diagonal unitary $U \in \mathbb{D}_n$ and a nonzero $\beta \in \mathbb{R}$ such that

$$U^*AU = \beta F.$$

PROOF. (i \Leftrightarrow ii): We have seen that $||A||^2 = \frac{n-1}{n} ||A||^2_{HS}$ if and only if

$$\sigma(A) = \pm ||A|| \left(1, -\frac{1}{n-1}, -\frac{1}{n-1}, ..., -\frac{1}{n-1}\right).$$

(ii \Leftrightarrow iii): Set $\tilde{A} = \alpha^{-1}A$. If $\sigma(\tilde{A}) = \left(1, -\frac{1}{n-1}, -\frac{1}{n-1}, ..., -\frac{1}{n-1}\right)$, then there exists a unitary $U \in \mathbb{M}_n$ such that

$$\tilde{A} = V \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & -\frac{1}{n-1} & 0 & \dots & 0 \\ 0 & 0 & -\frac{1}{n-1} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -\frac{1}{n-1} \end{bmatrix} V^*.$$

Letting v stand for the first column of V, we have that

$$A = \frac{n}{n-1}vv^* - \frac{1}{n-1}I = \left[\frac{n}{n-1}v_i\overline{v_j} - \frac{1}{n-1}\delta_{ij}\right].$$

Since $\tilde{A} \in \mathbb{M}_{n,sa}^0$,

$$\frac{n}{n-1}|v_i|^2 - \frac{1}{n-1} = 0 \Rightarrow v_i = \frac{1}{\sqrt{n}}e^{i\theta_i}$$

for some $\theta_i \in \mathbb{R}$. It follows that

$$\tilde{A} = \frac{1}{n-1} \left[e^{i(\theta_i - \theta_j)} - \delta_{ij} \right] = \frac{1}{n-1} UFU^*,$$

where

$$U = \operatorname{diag}(e^{i\theta_1}, e^{i\theta_2}, ..., e^{i\theta_n}) \in \mathbb{D}_n$$
.

Thus, $U^*AU = \beta F$, where $\beta = \frac{\alpha}{n-1}$. (iii \Rightarrow ii): Clearly

$$F = nE - I$$
.

where all the off-diagonal entries of $E \in \mathbb{M}_n$ equal $\frac{1}{n}$. Since E is a rank-one projection,

$$\sigma(F) = (n-1, -1, -1, ..., -1).$$

The result follows.

LEMMA 3.12. Let $0 \neq A \in \mathbb{M}_{n,sa}^0$. Fix $k \geq 3$ and assume $||B||^2 = \frac{k-1}{k} ||B||_{HS}^2$ for all k-compressions B of A. Then there exists a diagonal unitary $U \in \mathbb{D}_n$ and an $\alpha > 0$ such that

$$U^*AU = \alpha S$$
,

where all the off-diagonal entries of $S \in \mathbb{M}_{n,sa}^0$ equal ± 1 .

PROOF. Let B be a k-compression of A. By Lemma 3.11, all the off-diagonal entries of B have the same modulus. It follows that all the off-diagonal entries of A have the same modulus, say α (here we use $k \geq 3$). Set $C = \alpha^{-1}A$. Then all the off-diagonal entries of C have modulus 1, and $\|B\|^2 = \frac{k-1}{k}\|B\|_{HS}^2$ for all k-compressions B of C. We claim that $c_{rs}c_{st} = \pm c_{rt}$ for all r < s < t. Indeed, this follows from Lemma 3.11 applied to any k-compression B of C containing r, s, and t (again we use $k \geq 3$). Now let $\phi_1, \phi_2, ..., \phi_{n-1} \in \mathbb{R}$ be such that $c_{i,i+1} = e^{i\phi_i}$, i = 1, 2, ..., n-1. For j = 1, 2, ..., n, define $\theta_j = -\sum_{i=1}^{j-1} \phi_i$. We claim that

$$c_{rs} = \pm e^{i(\theta_r - \theta_s)}, \ r < s.$$

Indeed,

$$c_{rs} = \pm c_{r,r+1} c_{r+1,r+2} \cdot s c_{s-1,s} = \pm e^{i\phi_r} e^{i\phi_{r+1}} \cdots e^{i\phi_{s-1}}$$
$$= \pm e^{i\sum_{i=r}^{s-1} \phi_i} = \pm e^{i\left(\sum_{i=1}^{s-1} \phi_i - \sum_{i=1}^{r-1} \phi_i\right)} = \pm e^{i(\theta_r - \theta_s)}.$$

Setting

$$U = \operatorname{diag}(e^{i\theta_1}, e^{i\theta_2}, ..., e^{i\theta_n}) \in \mathbb{D}_n,$$

we have that $U^*CU = S \in \mathbb{M}_{n,sa}^0$, where all the off-diagonal entries of S are ± 1 . \square

PROPOSITION 3.13 (7×7 selfadjoint). $\tilde{\alpha}_3(\mathbb{M}^0_{7,sa}) \in \left[\frac{2}{3}, \frac{2}{\sqrt{7}}\right) \approx [0.6667, 0.7559).$

Proof. Let

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & -1 & -1 \\ 1 & 1 & 0 & -1 & 1 & -1 & -1 \\ 1 & 1 & -1 & 0 & -1 & -1 & 1 \\ 1 & 1 & 1 & -1 & 0 & 1 & 1 \\ 1 & -1 & -1 & -1 & 1 & 0 & 1 \\ 1 & -1 & -1 & 1 & 1 & 1 & 0 \end{bmatrix} \in \mathbb{M}_{7,sa}^{0}.$$

Then $\tilde{\alpha}_3(A) = \frac{2}{3}$ ($\alpha_3(A) = 2$ and ||A|| = 3). Thus, $\tilde{\alpha}_3(\mathbb{M}_{7,sa}) \geq \frac{2}{3}$. Now let $A \in \mathbb{M}^0_{7,sa}$, with $\alpha_3(A) = 1$.

If every 3-compression B of selfadjoint A has norm ≥ 1 , then $||B||_2^2 \geq \frac{3}{2}||B||^2$ by selfadjointness using Proposition 7.5 $(p=2,\,n=3)$.

General identity: $\sum_{B} ||B||_{HS}^2 = 5||A||_{HS}^2$ by a counting argument.

From general selfadjoint trace zero inequality for odd rank: $||A||_{HS}^2 \le 6||A||^2$ by Corollary 7.4 (n=7). Thus

$$35 \leq \sum_{B} \|B\|^2 \leq \frac{2}{3} \sum_{B} \|B\|_{HS}^2 = \frac{10}{3} \|A\|_{HS}^2 \leq 20 \|A\|^2$$

and hence $||A|| \ge \frac{\sqrt{7}}{2} \Rightarrow \tilde{\alpha}_3(A) \le \frac{2}{\sqrt{7}}$.

That $||A|| \ge \frac{\sqrt{7}}{2}$ is a special case of Corollary 7.6 (n = 7, k = 3), so the above internal proof of this can alternatively be referenced.

If, on the other hand, some 3-compression of A has norm < 1, then the complementary 4-compression B satisfies $\alpha_2(B) \ge 1$. Since $\tilde{\alpha}_2(\mathbb{M}_{4,sa}^0) = \frac{1}{\sqrt{3}}, \|B\| \ge \sqrt{3}$ $\Rightarrow \|A\| \ge \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \le \frac{1}{\sqrt{3}} < \frac{2}{\sqrt{7}}$.

Now assume $\alpha_3(A)=1$ and $\|A\|=\frac{\sqrt{7}}{2}$. By the previous discussion, every 3-compression B of A has norm ≥ 1 . Thus

$$35 \leq \sum_{B} \|B\|^2 \leq \frac{2}{3} \sum_{B} \|B\|_{HS}^2 = \frac{10}{3} \|A\|_{HS}^2 \leq 20 \|A\|^2 = 35.$$

It follows that $||B||^2 = \frac{2}{3}||B||_{HS}^2$ for all 3-compressions B of A. By Lemma \ref{MS} , there exists a diagonal unitary $U \in \mathbb{D}_n$ and an $\alpha > 0$ such that $U^*AU = \alpha S$, where all the off-diagonal entries of $S \in \mathbb{M}_{n,sa}^0$ are ± 1 . Searching exhaustively among all such S, we see that $\tilde{\alpha}_3(A) \leq \frac{2}{3} < \frac{2}{\sqrt{7}}$, a contradiction.

PROPOSITION 3.14 (8 × 8 selfadjoint). $\tilde{\alpha}_3(\mathbb{M}^0_{8,sa}) \in \left[\frac{2}{3}, \frac{2}{\sqrt{5}}\right] \approx [0.6667, 0.8944].$

PROOF. Clearly,

$$\tilde{\alpha}_3(\mathbb{M}^0_{8,sa}) \ge \tilde{\alpha}_3(\mathbb{M}^0_{7,sa}) \ge \frac{2}{3}.$$

Now let $A \in \mathbb{M}^0_{8,sa}$, with $\alpha_3(A) = 1$. If every 3-compression of A has norm ≥ 1 , then $\|A\| \geq \frac{\sqrt{7}}{2}$ (by proof of 3.13 every 7-compression has norm $\geq \frac{\sqrt{7}}{2}$) $\Rightarrow \tilde{\alpha}_3(A) \leq \frac{2}{\sqrt{7}} < \frac{2}{\sqrt{5}}$. If, on the other hand, some 3-compression of A has norm < 1, then the complementary 5-compression B satisfies $\alpha_2(B) \geq 1$. Since $\tilde{\alpha}_2(\mathbb{M}^0_{5,sa}) = \frac{2}{\sqrt{5}}$, $\|B\| \geq \frac{\sqrt{5}}{2} \Rightarrow \|A\| \geq \frac{\sqrt{5}}{2} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{2}{\sqrt{5}}$.

PROPOSITION 3.15 (10 × 10 selfadjoint). $\tilde{\alpha}_3(\mathbb{M}_{10,sa}^0) \in \left[\frac{\sqrt{5}}{3},1\right] \approx [0.7454,1].$

Proof. Let

Then $\tilde{\alpha}_3(A) = \frac{\sqrt{5}}{3} (\alpha_3(A) = \sqrt{5} \text{ and } A^*A = 9I).$

Remark: A is a conference matrix.

3. Nonnegative

LEMMA 3.16. Let $A \in \mathbb{M}^0_{4,++}$. If $\alpha_3(A) = 1$ and a row or column of A has three entries ≥ 1 , then $||A|| \geq 2$. This inequality is sharp.

PROOF. We may assume the first row of A has three entries ≥ 1 . Then

$$||A|| \ge \left\| \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & b_{23} & b_{24} \\ 0 & b_{32} & 0 & b_{34} \\ 0 & b_{42} & b_{43} & 0 \end{bmatrix} \right\|,$$

where $\max\{b_{ij}, b_{ji}\} \geq 1$ for all $i \neq j$. Since

$$\min \left\{ \left\| \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & \delta_{23} & \delta_{24} \\ 0 & 1 - \delta_{23} & 0 & \delta_{34} \\ 0 & 1 - \delta_{24} & 1 - \delta_{34} & 0 \end{bmatrix} \right\| : \delta_{23}, \delta_{24}, \delta_{34} \in \{0, 1\} \right\} = 2,$$

we have that $||A|| \geq 2$. A sharp example is furnished by the matrix

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

PROPOSITION 3.17 (4 × 4 nonnegative). $\tilde{\alpha}_3(\mathbb{M}_{4,++}^0) = \kappa \approx 0.5550$.

PROOF. Suppose $A \in \mathbb{M}^0_{4,++}$, with $\alpha_3(A) = 1$. Create a digraph D = (V, E) as follows: $V = \{1, 2, 3, 4\}$ and $(i, j) \in E$ if $a_{ij} \geq 1$. We may assume the following axioms:

- (1) For all $i \neq j$, either $(i, j) \in E$ or $(j, i) \in E$. Otherwise, A admits a 1-1-2 paving of norm < 1, violating the assumption $\alpha_3(A) = 1$.
- (2) For all vertices i, the in-degree of i and the out-degree of i are less than 3. Otherwise, row i or column i of A has three entries $\geq 1 \Rightarrow \|A\| \geq 2$ (Lemma 3.16) $\Rightarrow \tilde{\alpha}_3(A) \leq \frac{1}{2} < \kappa$.

This leaves digraphs D149, D185, D186, and D218, which all have D149 as a subgraph. Thus,

$$||A|| \ge \left\| \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right\| = \frac{1}{\kappa} \Rightarrow \tilde{\alpha}_3(A) \le \kappa.$$

Now let

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

Then $\tilde{\alpha}_3(A) = \kappa \Rightarrow \tilde{\alpha}_3(\mathbb{M}_{4,++}^0) \geq \kappa$.

Proposition 3.18 (6×6 nonnegative). $\tilde{\alpha}_3(\mathbb{M}_{6,++}^0) \in \left[\kappa, \frac{2}{1+\sqrt{5}}\right] \approx [0.5550, 0.6180].$

PROOF. Suppose $A \in \mathbb{M}_{6,++}^0$, with $\alpha_3(A) = 1$. Create a graph G = (V, E) as follows: $V = \{1, 2, 3, 4, 5, 6\}$ and $(i, j) \in E$ if $a_{ij}, a_{ji} < 1$. We may assume the following axioms:

- (1) G61 is not a subgraph of G. Otherwise, A has a 2-2-2 paving of norm < 1, violating the assumption $\alpha_3(A) = 1$.
- (2) By removing vertices, one cannot arrive at G8. Otherwise, A has a 4-compression B with α₃(B) ≥ 1 ⇒ ||B|| ≥ ½ ⇒ ||A|| ≥ ½ ⇒ ᾶ₃(A) ≤ κ.
 (3) G has no isolated vertices. Otherwise, if vertex i is isolated, then either
- (3) G has no isolated vertices. Otherwise, if vertex i is isolated, then either row i or column i of A has at least three entries $\geq 1 \Rightarrow ||A|| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{1}{\sqrt{3}}$.
- (4) There does not exist a partition $V = \{i, j, k\} \bigsqcup \{i', j', k'\}$ such that $(r, s') \notin E$, $r, s \in \{i, j, k\}$. Otherwise, some 3×3 submatrix of A has at least five entries $\geq 1 \Rightarrow \|A\| \geq \frac{1}{\kappa} \Rightarrow \tilde{\alpha}_3(A) \leq \kappa$ (by exhaustive search of 0-1 3×3 matrices with five 1's).

This leaves G114 and G133, both of which have a 5-compression of the form

$$\begin{bmatrix} 0 & * & * & * & * \\ * & 0 & * & * & * \\ * & * & 0 & \cdot & \cdot \\ * & * & \cdot & 0 & \cdot \\ * & * & \cdot & \cdot & 0 \end{bmatrix},$$

where a "*" in the (i,j) position indicates that $a_{ij} \geq 1$ or $a_{ji} \geq 1$, and a "." in the (i,j) position indicates that $a_{ij} < 1$. Searching exhaustively over all 0-1 5×5 matrices satisfying this pattern yields $||A|| \geq \frac{1+\sqrt{5}}{2} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{2}{1+\sqrt{5}}$.

CHAPTER 4

2,3-Pavings Summary Table

n	$\alpha_2(\mathbb{M}_n^0)$	$\alpha_2(\mathbb{M}_{n,sa}^0)$	$\alpha_2(\mathbb{M}_{n,sym}^0)$	$\alpha_3(\mathbb{M}_n^0)$	$\alpha_3(\mathbb{M}_{n,sa}^0)$	$\alpha_3(\mathbb{M}_{n,++}^0)$
3	1	$\frac{1}{\sqrt{3}}$.5773	$\frac{1}{2}$	0	0	0
		.5773	.5000			
4	"	<i>''</i>	$[?, \frac{1}{\sqrt{3}}]$ [.5493, .5773]	$rac{2}{1+\sqrt{5}}$. 6180	$\frac{\frac{1}{\sqrt{3}}}{.5773}$	κ .5550
5	//	$\frac{\frac{2}{\sqrt{5}}}{.8944}$	$\frac{\frac{2}{\sqrt{5}}}{.8944}$	//	"	$ [\kappa, \frac{2}{1+\sqrt{5}}] $ [.5550, .6180]
6	"	$\left[\frac{2}{\sqrt{5}}, 1\right]$	$\left[\frac{2}{\sqrt{5}}, 1\right]$	$rac{rac{1}{\sqrt{2}}}{.7071}$	"	"
7	//	<i>''</i>	"	[?,1) [. 8231 ,1)	$[rac{2}{3},rac{2}{\sqrt{7}}) \ [.6667,.7559)$	$[\kappa, \frac{2}{3}]$ [.5550, .6667]
8	"	"	"	[?,1] $[.8231,1]$	$\frac{[\frac{2}{3}, \frac{2}{\sqrt{5}}]}{[.6667, .8944]}$	"
10	"	"	"	"	$[\frac{\sqrt{5}}{3}, 1] \\ [.7454, 1]$	"

$$\operatorname{Part} 2$$ Supplementary Material and Tools

CHAPTER 5

Supplementary Material: 2-Pavings

CHAPTER 6

Supplementary Material: 3-Pavings

1. 4×4 General

LEMMA 6.1. Let $A \in \mathbb{M}_4^0$. If $\alpha_3(A) = 1$ and $||A|| < \sqrt{3}$, then there exists a permutation matrix $U \in \mathbb{M}_4$ such that

$$U^*AU = \begin{bmatrix} 0 & \hat{a} & \hat{b} & \tilde{c} \\ \tilde{a} & 0 & \hat{d} & \hat{e} \\ \tilde{b} & \tilde{d} & 0 & \hat{f} \\ \hat{c} & \tilde{e} & \tilde{f} & 0 \end{bmatrix},$$

where $|\tilde{x}| \leq |\hat{x}|$ for all $x \in \{a, b, c, d, e, f\}$. The result remains true if $A \gg 0$ and ||A|| < 2.

PROOF. Let

$$A = \begin{bmatrix} 0 & a_{12} & a_{13} & a_{14} \\ a_{21} & 0 & a_{23} & a_{24} \\ a_{31} & a_{32} & 0 & a_{34} \\ a_{41} & a_{42} & a_{43} & 0 \end{bmatrix}.$$

The condition $\alpha_3(A) = 1$ implies that $\max\{|a_{ij}|, |a_{ji}|\} \ge 1$ for all i < j. The condition $||A|| < \sqrt{3}$ (resp. $A \gg 0$ and ||A|| < 2) ensures that each row and each column has at most two entries of magnitude greater than or equal to 1 (see Lemma 6.1). Conjugating by $U_{(12)}$, if necessary, we may assume that $|a_{12}| \ge |a_{21}|$, which we indicate as follows:

$$A = \begin{bmatrix} 0 & \hat{a}_{12} & a_{13} & a_{14} \\ \tilde{a}_{21} & 0 & a_{23} & a_{24} \\ a_{31} & a_{32} & 0 & a_{34} \\ a_{41} & a_{42} & a_{43} & 0 \end{bmatrix}.$$

Case 1: Suppose $|a_{13}| \ge |a_{31}|$. Then

$$A = \begin{bmatrix} 0 & \hat{a}_{12} & \hat{a}_{13} & \tilde{a}_{14} \\ \tilde{a}_{21} & 0 & a_{23} & a_{24} \\ \tilde{a}_{31} & a_{32} & 0 & a_{34} \\ \hat{a}_{41} & a_{42} & a_{43} & 0 \end{bmatrix}.$$

Conjugating by $U_{(23)}$, if necessary, we may assume that $|a_{23}| \geq |a_{32}|$. Then

$$A = \begin{bmatrix} 0 & \hat{a}_{12} & \hat{a}_{13} & \tilde{a}_{14} \\ \tilde{a}_{21} & 0 & \hat{a}_{23} & a_{24} \\ \tilde{a}_{31} & \tilde{a}_{32} & 0 & \hat{a}_{34} \\ \hat{a}_{41} & a_{42} & \tilde{a}_{43} & 0 \end{bmatrix}.$$

If $|a_{24}| \geq |a_{42}|$, then we are done. Thus, we may assume the opposite. That is,

$$A = \begin{bmatrix} 0 & \hat{a}_{12} & \hat{a}_{13} & \tilde{a}_{14} \\ \tilde{a}_{21} & 0 & \hat{a}_{23} & \tilde{a}_{24} \\ \tilde{a}_{31} & \tilde{a}_{32} & 0 & \hat{a}_{34} \\ \hat{a}_{41} & \hat{a}_{42} & \tilde{a}_{43} & 0 \end{bmatrix}.$$

Conjugating by $U = U_{(1432)}$ yields

$$U^*AU = \begin{bmatrix} 0 & \hat{a}_{41} & \hat{a}_{42} & \tilde{a}_{43} \\ \tilde{a}_{14} & 0 & \hat{a}_{12} & \hat{a}_{13} \\ \tilde{a}_{24} & \tilde{a}_{21} & 0 & \hat{a}_{23} \\ \hat{a}_{34} & \tilde{a}_{31} & \tilde{a}_{32} & 0 \end{bmatrix}.$$

Case 2: Suppose $|a_{13}| < |a_{31}|$. Then

$$A = \begin{bmatrix} 0 & \hat{a}_{12} & \tilde{a}_{13} & a_{14} \\ \tilde{a}_{21} & 0 & a_{23} & a_{24} \\ \hat{a}_{31} & a_{32} & 0 & a_{34} \\ a_{41} & a_{42} & a_{43} & 0 \end{bmatrix}.$$

Case 2.1: If $|a_{14}| \ge |a_{41}|$, then

$$A = \begin{bmatrix} 0 & \hat{a}_{12} & \tilde{a}_{13} & \hat{a}_{14} \\ \tilde{a}_{21} & 0 & a_{23} & a_{24} \\ \hat{a}_{31} & a_{32} & 0 & a_{34} \\ \tilde{a}_{41} & a_{42} & a_{43} & 0 \end{bmatrix}.$$

Conjugating by $U_{(34)}$ yields

$$U_{(34)}^*AU_{(34)} = \begin{bmatrix} 0 & \hat{a}_{12} & \hat{a}_{14} & \tilde{a}_{13} \\ \tilde{a}_{21} & 0 & a_{24} & a_{23} \\ \tilde{a}_{41} & a_{42} & 0 & a_{43} \\ \hat{a}_{31} & a_{32} & a_{34} & 0 \end{bmatrix},$$

and we may proceed as in Case 1.

Case 2.2: If $|a_{14}| < |a_{41}|$, then

$$A = \begin{bmatrix} 0 & \hat{a}_{12} & \tilde{a}_{13} & \tilde{a}_{14} \\ \tilde{a}_{21} & 0 & a_{23} & a_{24} \\ \hat{a}_{31} & a_{32} & 0 & a_{34} \\ \hat{a}_{41} & a_{42} & a_{43} & 0 \end{bmatrix}.$$

Conjugating by $U_{(34)}$ if necessary, we may assume that $|a_{34}| \ge |a_{43}|$. Then

$$A = \begin{bmatrix} 0 & \hat{a}_{12} & \tilde{a}_{13} & \tilde{a}_{14} \\ \tilde{a}_{21} & 0 & \hat{a}_{23} & a_{24} \\ \hat{a}_{31} & \tilde{a}_{32} & 0 & \hat{a}_{34} \\ \hat{a}_{41} & a_{42} & \tilde{a}_{43} & 0 \end{bmatrix}.$$

Case 2.2.1: If $|a_{24}| \ge |a_{42}|$, then

$$A = \begin{bmatrix} 0 & \hat{a}_{12} & \tilde{a}_{13} & \tilde{a}_{14} \\ \tilde{a}_{21} & 0 & \hat{a}_{23} & \hat{a}_{24} \\ \hat{a}_{31} & \tilde{a}_{32} & 0 & \hat{a}_{34} \\ \hat{a}_{41} & \tilde{a}_{42} & \tilde{a}_{43} & 0 \end{bmatrix}.$$

Conjugating by $U = U_{(1234)}$ yields

$$U^*AU = \begin{bmatrix} 0 & \hat{a}_{23} & \hat{a}_{24} & \tilde{a}_{21} \\ \tilde{a}_{32} & 0 & \hat{a}_{34} & \hat{a}_{31} \\ \tilde{a}_{42} & \tilde{a}_{43} & 0 & \hat{a}_{41} \\ \hat{a}_{12} & \tilde{a}_{13} & \tilde{a}_{14} & 0 \end{bmatrix}.$$

Case 2.2.2: If $|a_{24}| < |a_{42}|$, then

$$A = \begin{bmatrix} 0 & \hat{a}_{12} & \tilde{a}_{13} & \tilde{a}_{14} \\ \tilde{a}_{21} & 0 & \hat{a}_{23} & \tilde{a}_{24} \\ \hat{a}_{31} & \tilde{a}_{32} & 0 & \hat{a}_{34} \\ \hat{a}_{41} & \hat{a}_{42} & \tilde{a}_{43} & 0 \end{bmatrix}.$$

Conjugating by $U = U_{(13)(24)}$ yields

$$U^*AU = \begin{bmatrix} 0 & \hat{a}_{34} & \hat{a}_{31} & \tilde{a}_{32} \\ \tilde{a}_{43} & 0 & \hat{a}_{41} & \hat{a}_{42} \\ \tilde{a}_{13} & \tilde{a}_{14} & 0 & \hat{a}_{12} \\ \hat{a}_{23} & \tilde{a}_{24} & \tilde{a}_{21} & 0 \end{bmatrix}.$$

D149: breadth-first labeling 2134

$$\inf \left\{ \left\| \begin{bmatrix} 0 & \frac{1}{1} & \frac{1}{1} & \cdot \\ \cdot & 0 & * & * \\ \cdot & \cdot & 0 & * \\ * & \cdot & \cdot & 0 \end{bmatrix} \right\| \right\} = \left\| \begin{bmatrix} 0 & 1 & 1 & -\frac{2}{1+\sqrt{5}} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right\| = \frac{1+\sqrt{5}}{2} \approx 1.6180$$

D185: breadth-first labeling 2341

$$\begin{bmatrix} 0 & * & * & \cdot \\ \cdot & 0 & * & * \\ \cdot & * & 0 & * \\ * & \cdot & \cdot & 0 \end{bmatrix}$$

$$\inf \left\{ \left\| \begin{bmatrix} 0 & \boxed{1} & \boxed{1} & \cdot \\ \cdot & \boxed{1} & \boxed{1} & 1 \\ 0 & \boxed{1} & 1 & 0 \\ 1 & \cdot & \cdot & 0 \end{bmatrix} \right\| \right\} = \left\| \begin{bmatrix} 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right\| = \sqrt{3} \approx 1.7321$$

Remark 6.2. Although this example doesn't satisfy the hypotheses of Lemma 6.1, it satisfies the conclusion. Also, the extreme example doesn't satisfy the graph theory, since $|\cdot| < 1$.

D186: breadth-first labeling 3124

$$\begin{bmatrix} 0 & * & * & \cdot \\ \cdot & 0 & * & * \\ * & \cdot & 0 & * \\ * & \cdot & \cdot & 0 \end{bmatrix}$$

$$\inf \left\{ \left\| \begin{bmatrix} 0 & 1 & 1 & \cdot \\ \cdot & 0 & 1 & 1 \\ 1 & \cdot & 0 & 1 \\ 1 & \cdot & \cdot & 0 \end{bmatrix} \right\| \right\} = \left\| \begin{bmatrix} 0 & 1 & 1 & -1/2 \\ -1/2 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1/2 & 0 & 0 \end{bmatrix} \right\| = \frac{\sqrt{11}}{2} \approx 1.6583$$

D218: breadth-first labeling 3124

$$\begin{bmatrix} 0 & * & * & \cdot \\ \cdot & 0 & * & * \\ * & \cdot & 0 & * \\ * & * & \cdot & 0 \end{bmatrix}$$

$$\inf \left\{ \left\| \begin{bmatrix} 0 & 1 & 1 & \cdot \\ \cdot & 0 & 1 & 1 \\ 1 & \cdot & 0 & 1 \\ 1 & 1 & \cdot & 0 \end{bmatrix} \right\| \right\} = \left\| \begin{bmatrix} 0 & 1 & 1 & -1/3 \\ -1/3 & 0 & 1 & 1 \\ 1 & -1/3 & 0 & 1 \\ 1 & 1 & -1/3 & 0 \end{bmatrix} \right\| = \frac{5}{3} \approx 1.6667$$

Remark 6.3. Notice that this is a circulant. Best among circulants?

CHAPTER 7

Tools

1. Universal Selfadjoint 3-Identity and consequences

LEMMA 7.1 (Universal Selfadjoint 3-Identity). Arbitrary 3×3 selfadjoint trace zero matrices S satisfy:

$$\frac{||S||_2^2}{2||S||^2} + \frac{|Det S|}{||S||^3} = 1$$

PROOF. Since all trace zero finite (or trace class) matrices have a basis in which their representation has zero diagonal, without loss of generality we can assume S has the form:

$$S = \begin{pmatrix} 0 & a & b \\ \overline{a} & 0 & c \\ \overline{b} & \overline{c} & 0 \end{pmatrix}$$

and by computation, the characteristic polynomial:

$$c_{\lambda}(S) = \det(\lambda - S) = \lambda^3 - 2\operatorname{Re} \overline{a}b\overline{c} - \lambda(|a|^2 + |b|^2 + |c|^2)$$
$$= \lambda^3 - (|a|^2 + |b|^2 + |c|^2)\lambda - 2\operatorname{Re} a\overline{b}c$$
$$= \lambda^3 - \frac{||S||_2^2}{2}\lambda - \operatorname{Det} S.$$

An alternative way to see this is that the characteristic polynomial has the form $\lambda^3 + p\lambda^2 + q\lambda + r$, with p = 0 because the sum of the roots is the trace of S, the latter also implying

$$q = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3 = \frac{1}{2} \left((\lambda_1 + \lambda_2 + \lambda_3)^2 - (\lambda_1^2 + \lambda_2^2 + \lambda_3^2) \right) = \frac{-||S||_2^2}{2}$$

where λ_j , j = 1, 2, 3 denotes its roots, and $r = -\lambda_1 \lambda_2 \lambda_3 = -\det S$.

Since S is selfadjoint, $\lambda = \pm ||S||$ is an eigenvalue of S. Also, because this is the largest eigenvalue in modulus and S has trace zero, the other two real eigenvalues are opposite this in sign making their product, Det S, the same sign as λ . Hence $(\pm ||S||)^3 = \frac{||S||_2^2}{2} (\pm ||S||) + (\pm |Det S|)$, whence the Universal Selfadjoint 3-Identity in either case.

COROLLARY 7.2 (Universal Selfadjoint 3-Identity consequences). For arbitrary 3×3 selfadjoint trace zero matrices S,

$$||S|| = 1 \Leftrightarrow \frac{||S||_2^2}{2} + |Det S| = 1.$$

For greater or less than 1, the respective conditions are equivalent. A necessary condition for equality is $3/2 \le ||S||_2^2 \le 2$.

7. TOOLS 36

PROOF. The Universal Selfadjoint 3-Identity, $\frac{||S||_2^2}{2||S||^2} + \frac{|Det S|}{||S||^3} = 1$, implies that if ||S|| > 1 then $\frac{||S||_2^2}{2} + |Det S| > 1$, and likewise, if ||S|| < 1 then $\frac{||S||_2^2}{2} + |Det S| < 1$. Therefore ||S|| = 1 if and only if $\frac{||S||_2^2}{2} + |Det S| = 1$.

Moreover, if $\frac{||S||_2^2}{2} + |Det S| = 1$, then $||S||_2^2 \le 2$. Also in this case when ||S|| = 1, $||S||_2^2 \ge \frac{3}{2}||S||^2 = \frac{3}{2}$ is the n = 3, p = 2 case of Proposition 7.5.

2. Universal Selfadjoint 4-Identity and consequences

Universal Selfadjoint 4-Identity (for 4×4 selfadjoint zero-trace):

$$\frac{||S||_2^2}{2||S||^2} + \frac{|Tr S^3|}{3||S||^3} - \frac{Det S}{||S||^4} = 1$$

Unpolished and unverified work (for proofs see file UniversalIdentities.Tex):

Consequence: Since $\frac{|Det S|}{||S||^4} \le 1$

$$\frac{||S||_2^2}{2||S||^2} + \frac{|Tr S^3|}{3||S||^3} \le 2$$

Separate Fact $(||S||_2^2 \ge \frac{n}{n-1}||S||^2)$: $||S||_2^2 \ge \frac{4}{3}||S||^2$ so $\frac{||S||_2^2}{2||S||^2} \ge \frac{2}{3}$

Implying: $\frac{|Tr S^3|}{3||S||^3} \leq \frac{4}{3}$

(Trivially also follows generally from Hölder: $|Tr S^3|^{1/3} \le ||S||_3 \le 4^{1/3}||S||$)

Development of Universal Selfadjoint 4-Identity:

Let S denote a 4×4 selfadjoint zero-trace matrix with eigenvalues

$$1 = \lambda_1 \ge |\lambda_2| \ge |\lambda_3| \ge |\lambda_4|.$$

$$c_{\lambda}(S) = (\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)(\lambda - \lambda_4)$$

$$= \lambda^4 - (\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4)\lambda^3 + (\sum_{i < j} \lambda_i \lambda_j)\lambda^2 - (\sum_{i < j < k} \lambda_i \lambda_j \lambda_j)\lambda + \lambda_1 \lambda_2 \lambda_3 \lambda_4$$

$$= \lambda^4 + p\lambda^2 - q\lambda + r$$

SUMMARY: NASC for ||S|| = 1 (unverified)

1.
$$p \ge \frac{2}{3}$$
 2. $p + |q| + r = 1$
3. $0 \le p + |q| \le 2$ (equivalent to |product of roots| ≤ 1)
4. When $p < 1$, $\frac{20}{27} - \frac{2}{3}p - \frac{2}{27}(3p - 2)^{3/2}) \le q \le \frac{20}{27} - \frac{2}{3}p + \frac{2}{27}(3p - 2)^{3/2}$.
5. When $p \ge 1$, $0 \le q \le \frac{20}{27} - \frac{2}{3}p + \frac{2}{27}(3p - 2)^{3/2}$.
(4-5: $max (0, \frac{20}{27} - \frac{2}{3}p - \frac{2}{27}(3p - 2)^{3/2}) \le q \le \frac{20}{27} - \frac{2}{3}p + \frac{2}{27}(3p - 2)^{3/2})$

3. Operator Norm/p-Norm Comparisons

Proposition 7.3 (Operator Norm/p-Norm). If A is a finite rank selfadjoint trace 0 matrix and

k = |# strictly positive eigenvalues - # strictly negative eigenvalues|,

then for $p \geq 1$,

$$||A||_p \le (rank |A-k|)^{1/p} ||A||$$

(Sharp example: diag(-1,1))

(Sharp asymptotically: diag $(\pm 1, \ldots, \pm 1(\frac{rank \ A-k-2}{2} \ pairs \ of \ them), 1, -\frac{k}{k+1}, -\frac{1}{k(k+1)}, \ldots, -\frac{1}{k(k+1)});$ note: $rank \ A-k \ must \ be \ even$)

PROOF. Easy proof for $p \ge 2$ based on the p = 2 case:

If $\langle \lambda_i \rangle$ are the (real) eigenvalues of A, then

$$\sum_{1}^{n} |\lambda_{j}|^{p} = \sum_{1}^{n} |\lambda_{j}|^{p-2} |\lambda_{j}|^{2} \le |\lambda_{1}|^{p-2} \sum_{1}^{n} |\lambda_{j}|^{2} \le |\lambda_{1}|^{p-2} (n-k) |\lambda_{1}|^{2} = (n-k) |\lambda_{1}|^{p}.$$

For all $p \geq 1$, we describe informally the following variational approach:

Maximize $\sum |\lambda_i|^p$ subject to $\lambda_1 + \cdots + \lambda_n = 0$.

Without loss of generality, $A \neq 0$, $||A|| \leq 1$ and $tr A \neq 0$ implies that for some $n > m \geq 1$ the eigenvalues of A have the [-1, 1] distribution:

$$-1 \le \lambda_n \le \dots \le \lambda_{m+1} < 0 < \lambda_m \le \dots \le \lambda_1 \le 1,$$

We induct on n-k. Since $A \neq 0$, n-k > 0 and is even and so n-k > 2.

Increase λ_1 and decrease λ_n equally so to preserve the trace, until one of them reaches 1 or -1, respectively. (Increasing both moduli increases the sum $\sum |\lambda_j|^p$ and so permits reduction of the proof to this case.) If they both reach 1 or -1, then dropping them leaves k invariant and reduces to the n-k-2 case.

If now $\lambda_1=1$ and $\lambda_n>-1$ (handle the reverse case the same), decrease λ_n and increase λ_{n-1} equally to preserve their sum. Elementary calculus shows that this will increase $|\lambda_n|^p+|\lambda_{n-1}|^p$. Continue this until either λ_n reaches -1 or λ_{n-1} reaches λ_{n-2} . If the former, then drop λ_n and λ_1 , and again apply the induction hypothesis. If the latter, then decrease both until λ_n reaches -1 or both λ_{n-1} and λ_{n-2} reaches λ_{n-3} , and so on. This process will increase $\sum |\lambda_j|^p$ and unless m=1, one has m>1 or equivalently, $\lambda_n+\cdots+\lambda_{m+1}<-1$ implying that eventually in this process λ_n will reach -1 so we can apply again the induction hypothesis while preserving k. If m=1, then this process ends in one pair of ± 1 with sum 2 so $\sum_1^n |\lambda_j|^p \le 2 \le n-k$.

COROLLARY 7.4. If A is an $n \times n$ selfadjoint trace 0 matrix with n odd, then $||A||_2 \leq \sqrt{n-1} ||A||$.

38 7. TOOLS

PROPOSITION 7.5. If A is an $n \times n$ selfadjoint trace 0 matrix and $p \geq 1$ (or more generally rank A = n), then

$$||A||_p \ge \left[1 + \frac{1}{(n-1)^{p-1}}\right]^{1/p} ||A||$$

with equality iff $A = c \operatorname{diag}(-1, \frac{1}{n-1}, \dots, \frac{1}{n-1})$.

PROOF. Suffices to show the sequence analog for $\lambda_1 + \cdots + \lambda_n = 0$, all λ_j real. Since the inequality is obvious for p = 1, needing selfadjoint with trace 0 to see it, we can assume without loss of generality that p > 1. Then

$$|\lambda_1| = |-\sum_{j=1}^{n} \lambda_j| \le ||\mathbf{1}||_{p'}||\lambda||_p$$

where $\lambda := \langle \lambda_j \rangle_{2 \leq j \leq n}$, $\mathbf{1} := \langle 1 \rangle_{2 \leq j \leq n}$, and $\frac{1}{p} + \frac{1}{p'} = 1$, i.e., $\frac{p}{p'} = p - 1$. Equality holds if and only if λ is a constant multiple of $\mathbf{1}$. (This is the p-case for Cauchy-Schwartz equality which I presume holds true for $p \neq 2$ like it does for p = 2-except I don't know a reference.) So

$$|\lambda_1|^p \le (n-1)^{p/p'} \sum_{j=1}^n |\lambda_j|^p = (n-1)^{p-1} \sum_{j=1}^n |\lambda_j|^p.$$

Adding $(n-1)^{p-1}|\lambda_1|^p$ to both sides yields: $[1+(n-1)^{p-1}]||A||^p \le (n-1)^{p-1}||A||_p^p$, from which (iii) follows. The case for equality also follows from the previous comment about equality.

COROLLARY 7.6. If every k-compression of $A \in \mathbb{M}_{n,sa}^0$ has norm ≥ 1 , then

$$\|A\| \geq \begin{cases} \frac{\sqrt{n-1}}{k-1} & n \ even \\ \frac{\sqrt{n}}{k-1} & n \ odd \end{cases}.$$

PROOF. Denote by Π_k the set of all k-compressions of A. Then $||B||^2 \le \frac{k-1}{k} ||B||_2^2$ for all $B \in \Pi_k$ by Proposition 7.5 (p=2 & take n to be k).

$$\binom{n}{k} \leq \sum_{B \in \Pi_k} \|B\|^2 \leq \frac{k-1}{k} \sum_{B \in \Pi_k} \|B\|_{HS}^2 = \frac{k-1}{k} \binom{n-2}{k-2} \|A\|_{HS}^2 \leq (n \text{ or } n-1) \frac{k-1}{k} \binom{n-2}{k-2} \|A\|^2.$$

Thus,

$$||A||^2 \ge \frac{\binom{n}{k}}{(n \text{ or } n-1)\frac{k-1}{k}\binom{n-2}{k-2}} = \frac{\sqrt{n-1}}{k-1} \text{ or } \frac{\sqrt{n}}{k-1}.$$

COROLLARY 7.7. If $\widetilde{\alpha}_2(\mathbb{M}_{n-k,sa}^0) < \widetilde{\alpha}_3(\mathbb{M}_{n,sa}^0)$ and

 $\widetilde{\alpha}_3(\mathbb{M}^0_{n,sa} \cap \{all\ zero-diagonals\ with\ \pm 1\ off\ diagonal\ entries\}) < \begin{cases} \frac{k-1}{\sqrt{n-1}} & n\ even \\ \frac{k-1}{\sqrt{n}} & n\ odd \end{cases}$

then

$$\widetilde{\alpha}_3(\mathbb{M}_{n,sa}^0) < \begin{cases} \frac{k-1}{\sqrt{n-1}} & n \ even \\ \frac{k-1}{\sqrt{n}} & n \ odd \end{cases}.$$

PROOF. Fix an extremal $A = A_n$, that is, $\widetilde{\alpha}_3(\mathbb{M}_{n,sa}^0) = \frac{\alpha_3(A)}{\|A\|}$ and without loss of generality assume $\alpha_3(A) = 1$ and $||A|| = \frac{1}{\tilde{\alpha}_3(\mathbb{M}_{n,sa}^0)}$.

Either ||B|| < 1 for some k-compression or every k-compression B of A has norm > 1.

Assume first ||B|| < 1 for some k-compression B = PAP. Because $\alpha_3(A) = 1$, every 3-paving has norm ≥ 1 and by definition, $\widetilde{\alpha}_2(\mathbb{M}_{n-k,sa}^0) \geq \frac{\alpha_2((I-P)A(I-P))}{||(I-P)A(I-P)||}$ so $||(I-P)A(I-P)|| \geq \frac{\alpha_2((I-P)A(I-P))}{\widetilde{\alpha}_2(\mathbb{M}_{n-k,sa}^0)}$. So if additionally ||B|| < 1 and $\alpha_3(A) = 1$, then $\alpha_2((I-P)A(I-P)) = 1$ so all 2-pavings of (I-P)A(I-P) have norm ≥ 1 , in which case

$$||A|| \ge ||(I-P)A(I-P)|| \ge \frac{1}{\widetilde{\alpha}_2(\mathbb{M}_{n-k,sq}^0)} > \frac{1}{\widetilde{\alpha}_3(\mathbb{M}_{n,sq}^0)}$$

(the last > by hypothesis), contradicting $\widetilde{\alpha}_3(\mathbb{M}_{n,sa}^0) = \frac{\alpha_3(A)}{\|A\|} = \frac{1}{\|A\|}$. On the other hand, if every k-compression B of A has norm ≥ 1 , then the

displayed inequality in Corollary 7.6 becomes equality throughout:

$$\binom{n}{k} = \sum_{B \in \Pi_k} \|B\|^2 \le \frac{k-1}{k} \sum_{B \in \Pi_k} \|B\|_{HS}^2 = \frac{k-1}{k} \binom{n-2}{k-2} \|A\|_{HS}^2 = (n \text{ or } n-1) \frac{k-1}{k} \binom{n-2}{k-2} \|A\|^2.$$

So each $||B||^2 = \frac{k-1}{k} ||B||_{HS}^2$. Now apply Lemma 3.12 so that

 $A \cong S \in \mathbb{M}_{n,sq}^0 \cap \{\text{all zero-diagonals with } \pm 1 \text{ off diagonal entries} \}$

and apply the hypothesis to S to contradict the extremality of A.

40 7. TOOLS

For what $n,\ k=\frac{n}{3}$ is this good for? Solve for $n\equiv 3mod0,\ \frac{\frac{n}{3}-1}{\sqrt{n-1}}<1$ $(n\ \text{odd})$ and $\frac{\frac{n}{3}-1}{\sqrt{n}}<1$ $(n\ \text{even}).$ Answer: n=12,9,6.

4. Operator Norm/Hilbert-Schmidt Norm Comparisons

Lemma 7.8. Let $A \in \mathbb{M}_n$. Then

$$||A|| \le ||A||_{HS} \le \sqrt{n}||A||.$$

Furthermore,

- i. $||A|| = ||A||_{HS}$ if and only if $\operatorname{rank}(A) \leq 1$.
- ii. $||A||_{HS} = \sqrt{n}||A||$ if and only if A is a scalar multiple of a unitary.

PROOF. The inequalities are well-known and easy to prove. Now let

$$A = U\Sigma V^*$$

be a singular value decomposition of A (i.e. U, V are unitary and $\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, ..., \sigma_n)$, where $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_n \geq 0$). Assume $||A|| = ||A||_{HS}$. Then

$$\sigma_1^2 = ||A||^2 = ||A||_{HS}^2 = \sum_{i=1}^n \sigma_i^2 \Rightarrow \sigma_2 = \sigma_3 = \dots = \sigma_n = 0.$$

Thus, $A = \sigma_1 u_1 v_1^*$, where u_1 and v_1 are the first columns of U and V, respectively. Hence, rank $(A) \leq 1$. Conversely, if rank $(A) \leq 1$, then

$$\sigma_2 = \sigma_3 = \dots = \sigma_n = 0 \Rightarrow ||A|| = ||A||_{HS}.$$

Now assume $||A||_{HS} = \sqrt{n}||A||$. Then

$$\sum_{i=1}^{n} \sigma_i^2 = ||A||_{HS}^2 = n||A||^2 = n\sigma_1^2 \Rightarrow \sigma_1 = \sigma_2 = \dots = \sigma_n.$$

Thus, $A = \sigma_1 UV^*$, which is a scalar multiple of a unitary. Conversely, if $A = \alpha W$, where $\alpha \in \mathbb{C}$ and W is a unitary, then

$$||A||_{HS}^2 = \text{Tr}(A^*A) = |\alpha|^2 \text{Tr}(W^*W) = |\alpha|^2 \text{Tr}(I) = n|\alpha|^2 = n||A||^2.$$

COROLLARY 7.9. If every 3-compression of $A \in \mathbb{M}_7^0$ has norm ≥ 1 , then

$$||A|| \ge \sqrt{\frac{n-1}{k(k-1)}}.$$

Equality occurs if and only if A is a multiple of a unitary and every k-compression of A has rank one.

PROOF. Denote by Π_k the set of all k-compressions of A. Then

$$\binom{n}{k} \leq \sum_{B \in \Pi_k} \|B\|^2 \leq \sum_{B \in \Pi_k} \|B\|_{HS}^2 = \binom{n-2}{k-2} \|A\|_{HS}^2 \leq n \binom{n-2}{k-2} \|A\|^2.$$

Thus.

$$||A||^2 \ge \frac{\binom{n}{k}}{n\binom{n-2}{k-2}} = \frac{n-1}{k(k-1)}.$$

The stated equality condition follows immediately from Lemma 7.8.

Corollary 7.10. If every 3-compression of $A \in \mathbb{M}_7^0$ has norm ≥ 1 , then $\|A\| > 1$.

42 7. TOOLS

Proof. By Lemma 7.9,

$$||A||^2 \ge \frac{7-1}{3(3-1)} = 1.$$

Suppose ||A|| = 1. Again by Lemma 7.9, A is unitary and every 3-compression of A has rank one. It follows that every 3-compression of A has exactly two zero columns or exactly two zero rows. Consider A_{123} , the $\{1,2,3\}$ -compression of A. Without loss of generality, we may assume that the second and third columns of A_{123} are zero. It follows that the first column of A_{123} has norm 1. Thus,

$$A = \begin{bmatrix} 0 & 0 & 0 & * & * & * & * \\ a_{21} & 0 & 0 & * & * & * & * \\ a_{31} & 0 & 0 & * & * & * & * \\ 0 & * & * & 0 & * & * & * \\ 0 & * & * & * & 0 & * & * \\ 0 & * & * & * & * & 0 & * \\ 0 & * & * & * & * & * & 0 \end{bmatrix},$$

where $|a_{21}|^2 + |a_{31}|^2 = 1$. Conjugating by $U_{(23)}$, if necessary, we may assume that $a_{21} \neq 0$. Case 1: Suppose $|a_{21}| = 1$. By considering, in order, A_{123} , A_{124} , A_{125} , A_{126} , and A_{127} , we have that

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ a_{21} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & * & * & * & * \\ 0 & 0 & * & 0 & * & * & * \\ 0 & 0 & * & * & 0 & * & * \\ 0 & 0 & * & * & * & 0 & * \\ 0 & 0 & * & * & * & * & 0 \end{bmatrix}.$$

Considering A_{234} , we have that either $|a_{34}| = 1$ or $|a_{43}| = 1$. Conjugating by $U_{(34)}$, if necessary, we may assume the former. Considering, in order, A_{234} , A_{345} , A_{346} , and A_{347} , we have that

But then $||A_{235}|| = 0$, a contradiction.

Case 2: Suppose $|a_{21}| < 1$. By considering, in order, A_{124} , A_{234} , and A_{345} , we have that

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & * & * & * \\ a_{21} & 0 & 0 & a_{24} & 0 & 0 & 0 \\ a_{31} & 0 & 0 & a_{34} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & * & 0 & 0 & 0 & * & * \\ 0 & * & * & 0 & * & 0 & * \\ 0 & * & * & 0 & * & * & 0 \end{bmatrix},$$

where $|a_{21}|^2 + |a_{24}|^2 = 1$ and $|a_{24}|^2 + |a_{34}|^2 = 1$. But then $||A_{345}|| < 1$, a contradiction.

LEMMA 7.11. Let $A \in \mathbb{M}_4^0$. If every 2-2 paving of A has norm ≥ 1 , then either ||A|| > 1 or, up to permutation,

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & b \\ 0 & c & 0 & 0 \end{bmatrix},$$

where |a| = |b| = |c| = 1.

PROOF. Assume ||A|| = 1. Create a graph G = (V, E) as follows: $V = \{1, 2, 3, 4\}$ and $(i, j) \in E$ if $|a_{ij}|, |a_{ji}| < 1$. We may assume the following axioms:

- (1) G11 is not a subgraph of G. Otherwise, A has a 2-2 paving of norm < 1.
- (2) For all i, deg(i) > 0. Otherwise, either row i or column i of A has at least two entries of modulus $\geq 1 \Rightarrow ||A|| \geq \sqrt{2}$.

This leaves G13, which proves the result.

44 7. TOOLS

5. Averaging and Constrained Averaging

Let $A^* = A = (a_{ij})$, E(A) = 0, with the reduction assumption for $\mathbb{M}^0_{7,sa}$ that the B's range over all the 3×3 zero-diagonal matrices with norm at least 1 (in which case each Hilbert-Schmidt norm is at least $\frac{3}{2}$) or in the case of constrained averaging, all the B's with diagonal projection not containing prescribed i, j pairs.

The following weighted formulas for the Hilbert-Schmidt norm of a 7×7 zerodiagonal selfadjoint matrix in terms of the Hilbert-Schmidt norms of some or all of its 3-diagonal compressions PAP for averaging and constrained averaging are obtained by careful groupings of triplet integer subsets of [1,7] to compensate for overcounting due to multiple occurrences, analogous to the elementary counting formula for finite sets: $|A \cup B| = |A| + |B| - |A \cap B|$.

0)
$$6||A||^2 \ge ||A||_{HS}^2 = \frac{1}{5} \sum_{all}^{35} ||B||_{HS}^2 \qquad \text{(Averaging)}$$

(12)

$$6||A||^2 \ge ||A||_{HS}^2 = 2|a_{12}|^2 + \left(\frac{1}{4}\sum_{134-267}^{20} + \frac{1}{6}\sum_{345-567}^{10}\right)||B||_{HS}^2 \qquad \text{(Constrained Averaging here and below)}$$

(row)

$$6||A||^2 \ge ||A||_{HS}^2 = 2||Ae_1||^2 + \frac{1}{4} \sum_{1 \notin B}^{20} ||B||_{HS}^2$$

(12,23)

$$6||A||^{2} \ge ||A||_{HS}^{2} = 2|a_{12}|^{2} + 2|a_{23}|^{2} + \left(\frac{1}{4} \sum_{1 \in B, 2 \notin B}^{10} + \frac{1}{3} \sum_{1 \notin B, 2 \in B}^{6} + \frac{1}{4} \sum_{1, 2 \notin B, 3 \in B}^{6} + \frac{1}{12} \sum_{1, 2, 3 \notin B}^{4}\right) ||B||_{HS}^{2}$$

$$(12.13)$$

$$6||A||^2 \ge ||A||_{HS}^2 = 2|a_{12}|^2 + 2|a_{13}|^2 + \left(\frac{1}{3}\sum_{1 \in B, 2, 3 \notin B}^6 + \frac{1}{4}\sum_{1 \notin B, 2 \in B}^{10} + \frac{1}{6}\sum_{1, 2 \notin B}^{10}\right)||B||_{HS}^2$$

(12,23,34)

$$6||A||^2 \ge ||A||_{HS}^2 = 2|a_{12}|^2 + 2|a_{23}|^2 + 2|a_{34}|^2 + \left(\frac{1}{3} \sum_{135-147, all2's, 356-367}^{15} + \frac{1}{6} \sum_{156-167, 456-467}^{6} + (0) \sum_{567}^{1}\right) ||B||_{HS}^2$$

Application of constrained averaging:

If $|a_{ij}| \ge 1$ (wlog i, j = 1, 2) and A satisfies the 3-compression reduction given above, then by (12),

$$6||A||^{2} \ge ||A||_{HS}^{2} = 2|a_{12}|^{2} + \left(\frac{1}{4} \sum_{134-267}^{20} + \frac{1}{6} \sum_{345-567}^{10}\right) ||B||_{HS}^{2}$$

$$\ge 2 + \left(\frac{1}{4} \sum_{134-267}^{20} + \frac{1}{6} \sum_{345-567}^{10}\right) \frac{3}{2} ||B||$$

$$\ge 2 + \left(\frac{20}{4} + \frac{10}{6}\right) \frac{3}{2} = 2 + \left(5 + \frac{5}{3}\right) \frac{3}{2} = 12$$

So $6||A||^2 \ge 12$, $||A|| \ge \sqrt{2}$, $\widetilde{\alpha}_3(A) \le \frac{1}{\sqrt{2}} \approx .7071$, smaller than the $\widetilde{\alpha}_3(\mathbb{M}^0_{7,sa})$ -table upper range in $[\frac{2}{3}, \frac{2}{\sqrt{7}}) = [.6667, .7559)$. This then rules out entries with larger than 1 modulus for an extremal bad paver in case one succeeds in proving $\widetilde{\alpha}_3(\mathbb{M}^0_{7,sa}) \in (\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{7}})$.

 $\widetilde{\alpha}_{3}(\mathbb{M}_{7,sa}^{0}) \in (\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{7}}).$ Moreover, since $\frac{1}{||A||} = \widetilde{\alpha}_{3}(\mathbb{M}_{7,sa}^{0})$, if A were extremal, and wlog $|a_{12}| = \max_{i,j} |a_{ij}|$, then $||A||^{2} = \frac{1}{\widetilde{\alpha}_{3}(\mathbb{M}_{7,sa}^{0})^{2}} \in (\frac{7}{4}, \frac{9}{4}]$ and

$$||A||^{2} \ge \frac{1}{6}||A||_{HS}^{2} = \frac{1}{3}|a_{12}|^{2} + \frac{1}{6}\left(\frac{1}{4}\sum_{134-267}^{20} + \frac{1}{6}\sum_{345-567}^{10}\right)||B||_{HS}^{2}$$

$$\ge \frac{|a_{12}|^{2}}{3} + \left(\frac{1}{4}\sum_{134-267}^{20} + \frac{1}{6}\sum_{345-567}^{10}\right)\frac{3}{2}||B||$$

$$\ge \frac{|a_{12}|^{2}}{3} + \frac{1}{6}\left(\frac{20}{4} + \frac{10}{6}\right)\frac{3}{2} = \frac{|a_{12}|^{2}}{3} + \frac{5}{3} > \frac{9}{4}$$

leads to the contradiction: $\widetilde{\alpha}_3(\mathbb{M}^0_{7,sa}) = \frac{1}{\|A\|} < \frac{2}{3}.$ Hence

$$|a_{12}|^2 \le \frac{27}{4} - 5 = \frac{7}{4}$$
, i.e., $\max_{i,j} |a_{ij}| \le \frac{\sqrt{7}}{2} < ||A||$.

Bibliography

 $\left[1\right]$ Read and Wilson, An~Atlas~of~Graphs, Clarendon Press, Oxford, 1998.