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ABSTRACT. We investigate the codimension of commutator spaces [I, B(H)]
of operator ideals on a separable Hilbert space, i.e., “How many traces can
an ideal support?” We conjecture that the codimension can be only zero, one,
or infinity. The conjecture is proven for all ideals not contained in the largest
arithmetic mean at infinity stable ideal and not containing the smallest am-
stable ideal, for all soft-edged ideals (i.e., I = se(I) = IK(H)) and all soft-
complemented ideals (i.e., I = scI = I/K(H)), which include most classical
operator ideals. We apply some of the methods developed to two problems
on elementary operators studied by V. Shulman.
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1. INTRODUCTION

The study of operator ideals, two-sided ideals of the algebra B(H) of the
bounded linear operators on a complex separable infinite dimensional Hilbert
space H, started with J. Calkin [7] in 1941. From early on (e.g., [17], [6], [28]
and [3]), central in this area was the notion of commutator space and the related
notion of trace. The commutator space (or commutator ideal) [I, B(H)] of an ideal
I is the linear span of the commutators of operators in I with operators in B(H).
A trace on an operator ideal is a linear functional (not necessarily positive) that
vanishes on its commutator space or, equivalently, that is unitarily invariant.

The introduction of cyclic cohomology in the early 1980’s by A. Connes and
its linkage to algebraic K-theory by M. Wodzicki in the 1990’s provided additional
motivation for the complete determination of the structure of commutator spaces.
(Cf. [8], [9], [10] and [38].)

This was achieved by K. Dykema, T. Figiel, G. Weiss and M. Wodzicki [13]
and [14] who fully characterized commutator spaces in terms of arithmetic (Ce-
saro) means of monotone sequences ([13], Theorem 5.6) thus concluding a line of
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research introduced in G. Weiss’ Ph.D. Dissertation [34] (see also [35] and [37])
and developed significantly by N. Kalton in [26].

The introduction of arithmetic mean operations on ideals and the results in
[13] in particular, opened up a new area of investigation in the study of operator
ideals and have become an intrinsic part of the theory. To explore this area is
the goal of our program outlined in [19], of which this paper and [20] are the
beginning. In this paper we focus mainly on the question: “How many nonzero
traces can an ideal support?” and on developing tools to investigate it.

From [13] we know that an ideal supports “no nonzero traces” precisely
when the ideal is stable under the arithmetic mean (am-stable).

In Section 6 we prove that an ideal that does not contain the diagonal op-
erator diag〈1, 1

2 , 1
3 , . . .〉 supports “one” nonzero trace precisely when the ideal is

stable under the arithmetic mean at infinity (am-∞ stable). Here, what is meant
by “one” is that the ideal supports a trace that is unique up to scalar multiples.

In Section 7 we prove that “infinitely many” traces are supported by ideals
whose soft-interior or soft-complement are not am-stable or not am-∞ stable and
by other classes of ideals as well. This motivates our conjecture that the num-
ber of traces that an ideal can support must always be either “none”, “one”, or
“infinitely many”.

In the first part of this paper we develop the above mentioned notions of
arithmetic mean, arithmetic mean at infinity, soft interior and soft complement of
ideals as their interplay provides the tools for this study.

The arithmetic mean of operator ideals was introduced and played an im-
portant role in [13]; we review some if its properties in Section 2.

While the soft-interior and soft-complement of ideals have appeared im-
plicitly in numerous situations in the literature, to the best of our knowledge they
have never been formally studied before. We introduce them briefly in Section 3
and study their interplay with the am operations; we leave to [20] a more com-
plete development of these notions and of the ensuing ideal classes.

The arithmetic mean at infinity was used among others in [1], [13], and [39]
as an operation on sequences. In Section 4 we develop the properties of the am-∞
operations on ideals which parallel only in part those of the am operations and
we study their interplay with the soft-interior and soft-complement operations.
The notion of regularity for sequences, which figured prominently in the study of
principal ideals in [16] and was essential for the study of positive traces on princi-
pal ideals in [32], has a dual form for summable sequences that we call regularity
at infinity (Definition 4.11). In Theorem 4.12 we link regularity at infinity to other
sequence properties, including a Potter type inequality used by Kalton in [25] and
Varga type properties (cf. [32]) and to the Matuszewska index introduced in this
context in [13].

In Section 5, we study trace extensions from one ideal to another and in
the process we obtain hereditariness (solidity) of the cone of positive operators
(L1 + [I, B(H)])+ where L1 is the trace class. (The hereditariness of the cone (F +
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[I, B(H)])+, where F is the finite rank ideal, is obtained in Corollary 6.2.) These
results are applied in Propositions 5.7 and 5.8 to two problems on elementary
operators studied by V. Shulman (private communications related to [31]).

We do not know for which ideals, if not all, the cones (J + [I, B(H)])+ are
hereditary beyond the cases J = {0}, F, L1, I ⊂ J or J ⊂ [I, B(H)].

In Section 6 we characterize those ideals of trace class operators that support
a unique trace (up to scalar multiples): they are precisely the am-∞ stable ideals
(Theorem 6.6).

In Section 7 we bring the previously developed tools to bear on the question
of how many traces an ideal can support.

Ideals divide naturally into three classes from the perspective developed
here:

• the “small” ideals, i.e., the ideals contained in the largest am-∞ stable ideal
sta∞(L1) ⊂ L1, (see Definition 4.14);

• the “large” ideals, i.e., the ideals containing the smallest am-stable ideal
sta(L1), (see ibid);

• the “intermediate” ideals, i.e., all remaining ideals.

Intermediate ideals always support infinitely many traces, or more pre-
cisely, [I, B(H)] has uncountable codimension in I (Theorem 7.2(iii)).

We conjecture that the codimension of [I, B(H)] in I can be only one or in-
finity for small ideals and zero or infinity for large ideals.

The conjecture is proven for soft-edged ideals (I = seI) and soft comple-
mented ideals (I = scI) (Corollary 7.5). These include all the classical ideals we
examined including all those investigated in [13].

A stronger result (Theorem 7.2) is that if seI (or, equivalently, scI) is not
am-∞ stable (for small ideals) or am-stable (for large ideals), then [I, B(H)] has
uncountable codimension in I.

This leaves the conjecture open for small ideals that are not am-∞ stable and
for large ideals that are not am-stable but have am-stable soft interiors.

The key technical tool for these results is Theorem 7.1 which states that
[I, B(H)] has uncountable codimension in I whenever seI is not contained in
F + [I, B(H)].

In Theorem 7.8 and Corollary 7.9 a different technique shows that I supports
infinitely many traces for a class of ideals that include some cases where seI is am-
stable.

Following this paper (the first of the program outlined in [19]) is [20] where
we study the soft-interior and soft-complement operations on ideals and their
interplay with the am and am-∞ operations. In forthcoming papers we will in-
vestigate:

(1) Connections between (infinite) majorization theory, stochastic matrices,
infinite convexity notions for ideals, diagonal invariance, and the am and am-∞
operations [24].
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(2) Lattice structure for B(H) and for some distinguished classes of ideals
and their density properties. Example: between two distinct principal ideals, at
least one of which is am-stable (respectively, am-∞ stable), lies a third am-stable
(respectively, am-∞ stable) principal ideal [23].

(3) First and second order arithmetic mean cancellation and inclusion prop-
erties [23]. Example: for which ideals I does Ia = Ja (respectively, Ia ⊂ Ja, Ia ⊃ Ja)
imply I = J (respectively, I ⊂ J, I ⊃ J)? Are there “optimal” ideals J for the
inclusions Ia ⊂ Ja and Ia ⊃ Ja? In the principal ideal case concrete answers are
obtained. For instance, (ξ)a = (η)a implies (ξ) = (η) for every η if and only if ξ
is regular.

(4) In [21] conditions on ξ are given which guarantee that (ξ)a2 = (η)a2

implies (ξ)a = (η)a and a counterexample to this implication for the general case
is provided, which settles a question of Wodzicki.

2. PRELIMINARIES AND THE ARITHMETIC MEAN

The natural domain of the usual trace Tr on B(H) (with H a separable
infinite-dimensional complex Hilbert space) is the trace class ideal L1. However,
ideals of B(H) can support other traces.

DEFINITION 2.1. A trace τ on an ideal I is a unitarily invariant linear func-
tional on I.

In this paper, traces are neither assumed to be positive nor faithful. All ideals
are assumed to be proper.

Since UXU∗ − X ∈ [I, B(H)] for every X ∈ I and every unitary operator U
and since unitary operators span B(H), unitarily invariant linear functionals on
an ideal I are precisely the linear functionals on I that vanish on the commutator
space [I, B(H)]. Also known as the commutator ideal it is defined as the linear span
of commutators of operators in I with operators in B(H). Thus traces can be
identified with the elements of the linear dual of the quotient space I

[I,B(H)] and

hence to I
[I,B(H)] itself.

A constant theme in the theory of operator ideals has been its connection to
the theory of sequence spaces.

Calkin [7] established a correspondence between the two-sided ideals of
B(H) and the characteristic sets, i.e., the positive cones of c∗o (the collection of se-
quences decreasing to 0) that are hereditary and invariant under ampliations

c∗o 3 ξ → Dmξ := 〈ξ1, . . . , ξ1, ξ2, . . . , ξ2, ξ3, . . . , ξ3, . . . 〉
where each entry ξi of ξ is repeated m-times. The order-preserving lattice isomor-
phism I → Σ(I) maps each ideal to its characteristic set Σ(I) := {s(X) : X ∈ I}
where s(X) denotes the sequence of s-numbers of X, i.e., all the eigenvalues of
|X| = (X∗X)1/2 repeated according to multiplicity, arranged in decreasing order,
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and completed by adding infinitely many zeroes if X has finite rank. Conversely,
for every characteristic set Σ ⊂ c∗o, if I is the ideal generated by {diagξ : ξ ∈ Σ}
where diagξ is the diagonal matrix with entries ξ1, ξ2, . . . , then we have that
Σ = Σ(I). We shall also need the sequence space S(I) := {ξ ∈ co : |ξ|∗ ∈ Σ(I)}
where |ξ|∗ denotes the monotonization (in decreasing order) of |ξ|. Equivalently,
S(I) = {ξ ∈ co : diagξ ∈ I}.

More recently Dykema, Figiel, Weiss, and Wodzicki [13] characterized the
normal operators in the commutator spaces [I, B(H)] in terms of spectral se-
quences. An important feature is that membership in commutator spaces (non-
commutative objects) is reduced to certain conditions on associated sequences
(commutative ones).

When X ∈ K(H), the ideal of compact operators on H, denote an ordered
spectral sequence for X by λ(X) := 〈λ(X)1, λ(X)2, . . . 〉, i.e., a sequence of all
the eigenvalues of X (if any), repeated according to algebraic multiplicity, com-
pleted by adding infinitely many zeroes when only finitely many eigenvalues
are nonzero, and arranged in any order so that |λ(X)| is nonincreasing. For any
sequence λ = 〈λn〉, denote by λa the sequence of its arithmetic (Cesaro) mean,
i.e.,

λa :=
〈 1

n

n

∑
j=1

λj

〉∞

n=1
.

A special case of Theorem 5.6 in [13] (see also Introduction of [13]) is:

THEOREM 2.2. Let I be a proper ideal, let X ∈ I be a normal operator, and let
λ(X) be any ordered spectral sequence for X. Then X ∈ [I, B(H)] if and only if λ(X)a ∈
S(I) if and only if |λ(X)a| 6 ξ for some ξ ∈ Σ(I).

In fact, the conclusion holds under the less restrictive condition that λ(X) is
ordered so that |λ(X)| 6 η for some η ∈ Σ(I) (see Theorem 5.6 of [13]).

Arithmetic means first entered the analysis of [L1, B(H)] for a special case
in [34] and [35] and for its full characterization in [26]. As the main result in [13]
(Theorem 5.6) conclusively shows, arithmetic means are essential for the study
of traces and commutator spaces in operator ideals. [13] also initiated a system-
atic study of ideals derived via arithmetic mean operations (am ideals for short).
For the reader’s convenience we list the definitions and first properties from Sec-
tions 2.8 and 4.3 of [13].

If I is an ideal, then the arithmetic mean ideals a I and Ia, called respectively
the pre-arithmetic mean and arithmetic mean of I, are the ideals with characteristic
sets

Σ(a I) :={ξ ∈ c∗o : ξa ∈ Σ(I)}, Σ(Ia) :={ξ ∈ c∗o : ξ =O(ηa) for some η ∈ Σ(I)}.

The arithmetic mean-closure I− and the arithmetic mean-interior Io of an ideal (am-
closure and am-interior for short) are defined as

I− :=a (Ia) and Io := (a I)a
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and for any ideal I, the following 5-chain of inclusions holds:

a I ⊂ Io ⊂ I ⊂ I− ⊂ Ia.

A restriction of Theorem 2.2 to positive operators can be reformulated in
terms of pre-arithmetic means as:

[I, B(H)]+ = (a I)+

where (a I)+ denotes the cone of positive operators in a I. As a consequence,
[I, B(H)]+ is always hereditary, i.e., solid, a I ⊂ [I, B(H)] ⊂ I, and a I and I are,
respectively, the largest ideal contained in [I, B(H)], and the smallest ideal con-
taining [I, B(H)] (for the latter see Remark 6.3(iii)). Also, I = [I, B(H)] if and only
if I =a I. An ideal with the latter property is called arithmetically mean stable (am-
stable for short) and it is easy to see, using the 5-chain mentioned above, that a
necessary and sufficient condition for am-stability is that I = Ia. Am-stability for
many classical ideals and powers of ideals was studied extensively in 5.13–5.27
of [13].

For ξ ∈ c∗o, denote by (ξ) the principal ideal generated by diagξ. Notice
that if ξ, η ∈ c∗o, then (ξ) ⊂ (η) if and only if ξ = O(Dmη) for some m ∈ N;
so (ξ) = (η) if and only if both ξ = O(Dmη) and η = O(Dkξ) hold for some
m, k ∈ N. Thus (ξ) = (η) implies ξ ³ η (i.e., ξ = O(η) and η = O(ξ)) if and only
if ξ (and hence η) satisfies the ∆1/2-condition, i.e., ξ ³ D2ξ (which is equivalent
to ξ ³ Dmξ for all m ∈ N). In this context recall the well-known ∆2-condition for
nondecreasing sequences sup

n

g2n
gn

< ∞, i.e., g ³ D1/2 g where (D1/mg)n := gmn.

The arithmetic mean ξa of a sequence ξ ∈ c∗o always satisfies the elementary
inequality D2ξa 6 2ξa and hence also the ∆1/2-condition. From this it follows
easily that (ξa) = (ξ)a and hence that the principal ideal (ξ) is am-stable if and
only if ξ ³ ξa, i.e., ξ is regular (cf. p. 143 (14.12) of [16]). The notion of regularity
plays a crucial role in Varga’s study of positive traces on principal ideals [32].

Of special importance in [13] and in this paper is the principal ideal (ω),
where ω denotes the harmonic sequence 〈 1

n 〉. Elementary computations show
that Fa = (L1)a = (ω) and that a(ω) = L1. Hence a I 6= {0} if and only if
ω ∈ Σ(I). An immediate but important consequence of Theorem 2.2 which will
be used often throughout this paper is that ω ∈ Σ(I) if and only if L1 ⊂ [I, B(H)]
if and only if F ⊂ [I, B(H)].

3. SOFT INTERIOR AND SOFT COVER OF IDEALS

As mentioned in the Introduction, Theorem 7.1, which is one of our main
results, is formulated in terms of the notion of the soft interior of an ideal.
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DEFINITION 3.1. Given an ideal I, the soft interior of I is the ideal seI :=
IK(H) with characteristic set

Σ(seI) := { ξ ∈ c∗o : ξ 6 αη for some α ∈ c∗o, η ∈ Σ(I)}.

The soft cover of I is the ideal scI with characteristic set

Σ(scI) := { ξ ∈ c∗o : αξ ∈ Σ(I) for all α ∈ c∗o}.

An ideal I is called soft-edged if seI = I and it is called soft-complemented if
scI = I. A pair of ideals I ⊂ J is called a soft pair if I = seJ and scI = J.

It is immediate to verify that the sets Σ(seI) and Σ(scI) are indeed charac-
teristic sets and that in the notations of Section 2.8 of [13], scI := I/K(H). Notice
that seI is the largest soft-edged ideal contained in I and scI is the smallest soft-
complemented ideal containing I. Also needed in this paper and easy to show is
that, for every ideal I, scseI = scI, sescI = seI, seI ⊂ I ⊂ scI, and seI ⊂ scI is a
soft pair. (cf. [19], [20]).

REMARK 3.2. This terminology is motivated by the fact that I is soft-edged
if and only if for every η ∈ Σ(I) there is some ξ ∈ Σ(I) such that η = o(ξ).
Similarly, I is soft-complemented if and only if, for every ξ ∈ c∗o \ Σ(I), there is
some η ∈ c∗o \ Σ(I) such that η = o(ξ).

Soft-edged and soft-complemented ideals and soft pairs are common among
the classical operator ideals, that is, ideals I whose S(I)-sequence spaces are clas-
sical sequence spaces. In [20] we show that the following are soft-complemented:
countably generated ideals, the normed ideals Sφ induced by a symmetric norm-
ing function φ, Orlicz ideals LM, Lorentz ideals generated by a nondecreasing
∆2-function and, more generally, ideals whose characteristic set is a quotient of
the characteristic set of a soft-complemented ideal by an arbitrary set of sequences
X ⊂ [0, ∞)Z

+
and hence, in particular, Köthe duals L1/X and quotients I/J of a

soft-complemented ideal by an arbitrary ideal (see Section 2.8 of [13] for a discus-

sion on quotients). Also the following are soft-edged: the ideals S
(o)
φ (the closure

of F under the norm of Sφ), small Orlicz ideals L
(o)
M , and Lorentz ideals gen-

erated by a nondecreasing ∆2-function. Moreover, S
(o)
φ ⊂ Sφ and L

(o)
M ⊂ LM

are natural examples of soft pairs. (See [13] for a convenient reference for these
classical ideals.)

The condition seI 6⊂ F + [I, B(H)] in Theorem 7.1 will need to be reformu-
lated in terms of arithmetic means and arithmetic means at infinity. The first step
is established by the following commutation relations between the arithmetic and
pre-arithmetic mean ideal operations and the soft interior and soft complement
operations.

LEMMA 3.3. Let I be an ideal. Then:
(i) sc(a I) ⊂a (scI).
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(i’) sc(a I) =a (scI) if and only if ω /∈ Σ(scI) \ Σ(I).
(ii) se(Ia) ⊂ (seI)a.

(ii’) se(Ia) = (seI)a if and only if either I 6⊂ L1 or I = {0}.

Proof. (i) For ξ ∈ Σ(sc(a I)) and all α ∈ c∗o, by the definition of soft com-
plement, αξ ∈ Σ(a I), that is, (αξ)a ∈ Σ(I). But clearly αξa 6 (αξ)a and hence
αξa ∈ Σ(I). Thus ξa ∈ Σ(scI) and ξ ∈ Σ(a(scI)).

(i’) Recall from the end of Section 2 that for any ideal J, a J = {0} if and only
if ω /∈ Σ(J). Consider separately the three cases: ω /∈ Σ(scI), ω ∈ Σ(scI) \ Σ(I),
and ω ∈ Σ(I). If ω /∈ Σ(scI), then a(scI) = {0} and equality holds. If ω ∈
Σ(scI) \ Σ(I), then a(scI) 6= {0} but a I = {0}, so sc(a I) = {0} and equality
fails. Finally assume that ω ∈ Σ(I) and let ξ ∈ Σ(a(scI)) and α ∈ c∗o. In case
ξ ∈ `1 then αξ ∈ `1, hence (αξ)a = O(ω), αξ ∈ Σ(a I) and thus ξ ∈ Σ(sc(a I)), so

equality holds. In case ξ /∈ `1, it is easy to verify that α̃n :=
(

(αξ)a
ξa

)
n

= ∑n
1 αjξ j

∑n
1 ξ j

↓ 0

and hence (αξ)a = α̃ξa ∈ Σ(I). Thus αξ ∈ Σ(a I) and hence ξ ∈ Σ(sc(a I)) and
equality holds.

(ii) If ξ ∈ Σ(se(Ia)) then ξ 6 αηa for some η ∈ Σ(I) and α ∈ c∗o. Then from
the inequality in the proof of (i), ξ 6 (αη)a ∈ Σ((seI)a).

(ii’) Consider separately the three cases: I = {0}, {0} 6= I ⊂ L1 and I 6⊂ L1.
In the case I = {0} the equality is trivial, and if {0} 6= I ⊂ L1, it fails trivially
since (seI)a = Ia = (ω) (recalling that Fa = (L1)a = (ω)) and since (ω) is not
soft-edged. In the case that I 6⊂ L1, for each ξ ∈ Σ((seI)a), ξ 6 ρa for some
ρ ∈ Σ(seI), i.e., ρ 6 αη for some η ∈ Σ(I) and α ∈ c∗o. By adding to η if necessary
an element of Σ(I) \ `1, one can insure that η /∈ `1, in which case, from the proof of
(i′), again there is an α̃ ∈ c∗o for which (αη)a = α̃ηa. But then ξ 6 α̃ηa ∈ Σ((se(Ia)).
By (ii) equality holds.

PROPOSITION 3.4. Let I be an ideal. Then the following are equivalent:
(i) seI is am-stable;

(ii) scI is am-stable;
(iii) seI ⊂ a I;

(iii’) seI ⊂ [I, B(H)];
(iv) scI ⊃ Ia.

Proof. Assume first that I 6⊂ L1.
(i) ⇒ (iii) Since seI ⊂ I and the pre-arithmetic mean is inclusion preserving,

it follows that seI = a(seI) ⊂ a I.
(iii) ⇔ (iii′) Obvious since [I, B(H)]+ = a I+ by Theorem 2.2.
(iii) ⇒ (ii) Condition (ii) is immediate from the chain of relations

scI = scseI ⊂ sc(a I) ⊂ a(scI) ⊂ scI

which implies equality. For the first equality, recall the paragraph following Def-
inition 3.1; sc being inclusion preserving implies the first inclusion; Lemma 3.3(i)
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implies the second inclusion; and the 5-chain of inclusions implies the last inclu-
sion.

(ii) ⇒ (iv) From I ⊂ scI it follows that Ia ⊂ (scI)a = scI.
(iv) ⇒ (i) In case I 6⊂ L1, (seI)a = se(Ia) ⊂ sescI = seI ⊂ (seI)a,

where the first equality follows from Lemma 3.3(ii′), the first inclusion holds since
se is inclusion preserving, the second equality holds for all ideals (recall again
the paragraph following Definition 3.1) and the last inclusion follows from the
5-chain.

In case I ⊂ L1, if I = {0} then all four conditions are trivially true and if
I 6= {0} then all four are false. Indeed the arithmetic mean of any nonzero ideal,
and hence every nonzero am-stable ideal, must contain (ω) while I ⊂ L1 implies
that seI ⊂ scI ⊂ L1 ( (ω), which shows that (i), (ii), and (iv) are false. And since
a I ⊂ a(L1) = {0} (recall the last paragraph of Section 2) but seI 6= {0}, (iii) too
is false.

REMARK 3.5. The se and sc operations preserve am-stability by Lemma 3.3(i)
and Proposition 3.4. But am-stability of seI (or scI) does not imply am-stability of
I as shown by the construction in Theorem 7.8.

4. ARITHMETIC MEAN AT INFINITY

Since ξa ³ ω for every 0 6= ξ ∈ (`1)∗ := `1 ∩ c∗o, nonzero ideals I ⊂ L1
all have arithmetic mean Ia = (ω). Thus the (Cesaro) arithmetic mean is not
adequate for distinguishing between ideals contained in L1. For such ideals, one
needs to employ instead the arithmetic mean at infinity

ξa∞ :=
〈 1

n

∞

∑
n+1

ξ j

〉

(see Section 2.1 (16) of [13], and [25], [39]).
In this section we develop properties of the am-∞ operation on sequences

including a characterization of ∞-regular sequences which is dual to the known
characterization of regular sequences and we introduce and investigate the am-∞
operations on ideals. This will lead us to Proposition 4.20, which we find essential
for Section 7.

The following lemma analyzes the relations between the am-∞ operation
and the Dm operations on sequences. Recall that if j = mn− p with n, p integers,
n > 1, and 0 6 p 6 m− 1, then (Dmξ)j = ξn.

LEMMA 4.1. Let ξ ∈ (`1)∗. Then for m = 2, 3, . . . one has:
(i) Dmξa∞ 6 (Dmξ)a∞ ;

(ii) (Dmξa∞)j > ((Dm−1ξ)a∞)j when j > (m− 1)(m− 2);
(iii) (Dmξa∞)j > 1

2(m−1) (Dm−1ξ)j when j > 2m(m− 1);
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(iv) (D1/mξ)j := ξmj 6 1
m−1 (ξa∞)j for all j.

Proof. (i) Let j = mn− p with n, p integers , n > 1, and 0 6 p 6 m− 1. Then

((Dmξ)a∞)j =
1

mn− p

∞

∑
mn−p+1

(Dmξ)i =
1

mn− p

(
pξn + m

∞

∑
n+1

ξi

)

=
p

mn−p
ξn+

mn
mn−p

(ξa∞)n =
p

mn−p
ξn+

mn
mn−p

(Dmξa∞)j > (Dmξa∞)j.

(ii) Let j = mn− p as above. Then

(Dmξa∞)j = (ξa∞)n = (Dm−1ξa∞)(m−1)n = ((Dm−1ξ)a∞)(m−1)n > ((Dm−1ξ)a∞)j.

The third equality follows from the proof of (i) for the case p = 0, and the in-
equality holds since (Dm−1ξ)a∞ is nonincreasing and j > (m− 1)(m− 2) implies
j > (m− 1)n by elementary calculation.

(iii) Let 2m(m− 1) 6 j = mn− p = (m− 1)(n + k)− p′ where 0 6 p 6 m− 1
and 0 6 p′ 6 m− 2, and hence k > 1. Then

(Dmξa∞)j =(ξa∞)n =
1
n

∞

∑
n+1

ξ j >
1
n

n+k

∑
n+1

ξ j >
k
n

ξn+k =
k
n

(Dm−1ξ)j >
1

2(m− 1)
(Dm−1ξ)j

where the latter inequality holds since mn > j > 2m(m− 1) and hence

k
n

=
1

m− 1

(
1 +

p′ − p
n

)
> 1

m− 1

(
1− m− 1

n

)
> 1

2(m− 1)
.

(iv) Immediate by the monotonicity of ξ since then

(m− 1)jξmj 6
mj

∑
i=j+1

ξi 6 j(ξa∞)j.

REMARK 4.2. It is easy to see that the bounds in (i), (ii), and (iv) are sharp.
In lieu of the bound 1

2(m−1) in (iii) we can obtain 1−ε
m−1 for any ε > 0, but not for

ε = 0, i.e., Dmξa∞ does not majorize 1
m−1 Dm−1ξ, even for j large enough. Indeed,

for any j, set ξi = 1 for 1 6 i 6 2j− 1 and 0 elsewhere. Then

(D2ξa∞)2j−1 = (ξa∞)j =
j− 1

j
< 1 = ξ2j−1.

COROLLARY 4.3. If ξ ∈ (`1)∗ then (ξ) ⊂ (ξa∞).

Proof. By Lemma 4.1(iii) for m = 2 we have ξ j 6 2(D2ξa∞)j for j > 4, and
thus ξ ∈ Σ((ξa∞)).

In contrast to the arithmetic mean case where the sequence ξa always satis-
fies the ∆1/2-condition, Example 4.5(ii) below shows that this is not always true
for ξa∞ . Moreover, Example 4.5(iii) shows that ξa∞ may satisfy the ∆1/2-condition
while ξ does not. Corollary 4.4(ii) provides a necessary and sufficient condition
for ξa∞ to satisfy the ∆1/2-condition.
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COROLLARY 4.4. Let ξ ∈ (`1)∗.
(i) If ξ satisfies the ∆1/2-condition, so does ξa∞ .

(ii) ξa∞ satisfies the ∆1/2-condition if and only if ξ = O(ξa∞).

Proof. (i) If D2ξ 6 Mξ for some M > 0, then D2ξa∞ 6 (D2ξ)a∞ 6 Mξa∞ by
Lemma 4.1(i).

(ii) If ξa∞ satisfies the ∆1/2-condition then ξ = O(D2ξa∞) = O(ξa∞) by

Lemma 4.1(iii). Conversely, assume that 0 6= ξ = O(ξa∞), i.e., ξk 6 M
k

∞
∑

j=k+1
ξ j

for some M > 0 and all k. Then ξk > 0 for all k and

∑∞
j=n+1 ξ j

∑∞
j=2n+1 ξ j

=
2n

∏
k=n+1

(
1+

ξk

∑∞
j=k+1 ξ j

)
6

2n

∏
k=n+1

(
1+

M
k

)
=e∑2n

k=n+1 log(1+M
k )6eM ∑2n

k=n+1
1
k 62M.

Hence (ξa∞ )n
(ξa∞ )2n

6 2M+1 for all n, i.e., ξa∞ satisfies the ∆1/2-condition.

EXAMPLE 4.5. (i) Let ξ = ωp where p > 1. Then ξa∞ ³ ξ satisfies the
∆1/2-condition.

(ii) Let ξ = 〈qn〉 where 0 < q < 1. Then ξa∞ = o(ξ) and neither sequence
satisfies the ∆1/2-condition.

(iii) Let nk be an increasing sequence of integers for which nk > knk−1 (with

n1 = 1 and k > 2), let 〈εk〉 ∈ c∗o where
∞
∑

k=1
εknk < ∞, and for nk−1 < n 6 nk, define

ξn := εk. Then ξ := 〈ξn〉 ∈ (`1)∗, ξ does not satisfy the ∆1/2-condition and (ξ) 6=
(ξa∞), but ξa∞ satisfies the ∆1/2-condition if and only if εknk = O(∑∞

j=k+1 ε jnj).
(iv) ξ = o(ξa∞) and ξ satisfies the ∆1/2-condition for ξ any of the sequences

ω
logp , ω

log(log log)p , ω
log (log log)(log log log)p , . . . (p > 1).

Proof. The verification of (i), (ii) and (iv) is left to the reader. For (iii) let
us note that if εk−1

εk
6 M for some constant M and all k > 1, then εknk >

k!
Mk−1 ε1n1 which is impossible because εknk is summable. Thus the ratios εk−1

εk
are unbounded and hence ξ does not satisfy the ∆1/2-condition. Moreover, for
every m we have ξa∞ 6= O(Dmξ). Indeed for every pair of integers m, p > 1,
choose k = m2 p2. Since nk > knk−1 > pnk−1 > nk−1, then

( ξa∞

Dmξ

)
mpnk−1

=
(ξa∞)mpnk−1

ξpnk−1

=
1

εkmpnk−1

∞

∑
mpnk−1+1

ξ j

> 1
εkmpnk−1

knk−1

∑
mpnk−1+1

ξ j =
m2 p2nk−1 −mpnk−1

mpnk−1
= mp− 1.

Thus ξa∞ 6= O(Dmξ) and hence ξa∞ /∈ Σ((ξ)). Finally, it is straightforward to
verify that the given condition, εk = O( 1

nk
∑∞

j=k+1 ε jnj), is equivalent to the con-
dition ξ = O(ξa∞), and hence by Corollary 4.4(ii), is equivalent to ξa∞ satisfying
the ∆1/2-condition.
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Examples (i) and (ii) are sequences regular at infinity while (iii) and (iv) are
not (see Definition 4.11 and Theorem 4.12).

An immediate consequence of Lemma 4.1(i) and (ii) is that the following
definition yields characteristic sets.

DEFINITION 4.6. Let I be an ideal. Then a∞ I when I 6= {0} and Ia∞ when I
is arbitrary are the ideals with characteristic sets

Σ(a∞ I) := {ξ ∈ (`1)∗ : ξa∞ ∈ Σ(I)},

Σ(Ia∞) := {ξ ∈ c∗o : ξ = O(ηa∞) for some η ∈ Σ(I ∩L1)}.

Notice that a∞ I ⊂ L1 and Ia∞ = (I ∩ L1)a∞ by definition and that for all
ξ ∈ (`1)∗ one has ξa∞ = o(ω), i.e., Ia∞ ⊂ se(ω) for every ideal I and therefore
it follows that a∞ I = a∞(I ∩ se(ω)). In particular, L1 ⊂ a∞(se(ω)) and hence
L1 = a∞(se(ω)). And like the arithmetic and pre-arithmetic mean, the arithmetic
mean and pre-arithmetic mean at ∞ are inclusion preserving.

LEMMA 4.7. For ξ ∈ c∗o ,

(ξ)a∞ =

{
(ξa∞) if ξ ∈ `1,
se(ω) if ξ /∈ `1.

In particular, if an ideal I 6⊂ L1 then Ia∞ = se(ω), and moreover (L1)a∞ = se(ω).

Proof. Assume first that ξ ∈ `1. By definition ξa∞ ∈ Σ((ξ)a∞) and hence
(ξa∞) ⊂ (ξ)a∞ . For the reverse inclusion, if η ∈ Σ((ξ)a∞) then η 6 ζa∞ for a
summable ζ ∈ Σ((ξ)). Since ζ 6 MDmξ for some M > 0 and m ∈ N, by Lem-
ma 4.1(ii),

(ζa∞)j 6 M((Dmξ)a∞)j 6 M(Dm+1ξa∞)j

for j > m(m− 1). Since Dm+1ξa∞ ∈ Σ((ξa∞)), η ∈ Σ((ξa∞)) and so (ξ)a∞ ⊂ (ξa∞).
Assume now that ξ /∈ `1. It is not hard to show that min(ξ, ω) /∈ `1, so

by passing if necessary to a sequence (`1)∗ 63 ξ ′ = o(min(ξ, ω)), one can assume
without loss of generality that ξ = o(ω). For each ζ ∈ Σ(se(ω)), by passing if nec-
essary to ζ ′ := ωuni( ζ

ω ) > ζ where uniγ is the smallest monotone nonincreasing
sequence majorizing γ and is given by (uniγ)n := sup

j>n
γj, one can assume with-

out loss of generality that ζ = αω for some α ∈ c∗o and that α1 > 1. To prove that
ζ ∈ Σ((ξ)a∞), set mo = 0 and choose n1 > 1 so that n1ξn1 6 1

2 and αn1 6 1
2 . Since

ξ is not summable, choose the first integer m1 > n1 for which
m1
∑

j=n1

ξ j > α1, and

since ξn1 6 1
2 one also has

m1
∑

j=n1

ξ j 6 α1 + 1
2 . Now choose n2 > m1 and m2 > n2

so that n2ξn2 6 1
22 , αn2 6 1

22 and 1
2 6

m2
∑

j=n2

ξ j 6 1. Iterating obtains the sequences,
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mk > nk > mk−1 so that, for k > 2, nkξnk 6 1
2k , αnk 6 1

2k and 1
2k−1 6

mk
∑

j=nk

ξ j 6 1
2k−2 .

Define ηn =

{
ξnk for mk−1 < n 6 nk,
ξn for nk 6 n 6 mk,

and η := 〈ηn〉 Then η ∈ c∗o and η 6 ξ.

Since
nk−1

∑
j=mk−1+1

ηj = (nk −mk−1 − 1)ξnk < nkξnk 6 1
2k and

mk
∑

j=nk

ηj =
mk
∑

j=nk

ξ j 6 1
2k−2 ,

one has η ∈ `1. Moreover, for k > 2 and nk−1 6 n < nk one has

∞

∑
n+1

ηj >
mk

∑
nk

ξ j > 1
2k−1 > αnk−1 > αn;

for 1 6 n < n1 one has
∞
∑

n+1
ηj >

m1
∑
n1

ξ j > α1 > αn. Thus η ∈ (`1)∗, η 6 ξ

and α 6
〈 ∞

∑
n+1

ηj

〉
. Therefore ζ = αω 6 ηa∞ and hence ζ ∈ Σ((ξ)a∞). Since

ζ ∈ Σ(se(ω)) was arbitrary, (ξ)a∞ ⊃ se(ω). But Ia∞ ⊂ se(ω) for every ideal I, so
one has equality. Thus Ia∞ = se(ω) when I 6⊂ L1. Moreover,

(L1)a∞ = (L1 ∩ (ω))a∞ = (ω)a∞ = se(ω).

Notice that to prove directly that se(ω) ⊂ (L1)a∞ , it would only be nec-

essary to show that for all α ∈ c∗o, α 6
〈 ∞

∑
n+1

ηj

〉
for some η ∈ (`1)∗. This is

equivalent to the well-known fact that α has a convex majorant in c∗o (see p. 203
of [4]). But for the proof that se(ω) ⊂ (ξ)a∞ we needed to prove that the convex

majorant,
〈 ∞

∑
n+1

ηj

〉
, of α can be chosen so that additionally η 6 ξ.

Recall from Section 2 (see the paragraph following Theorem 2.2) that the am-
ideals satisfy the 5-chain of inclusions. The situation is slightly more complicated
for the am-∞ case since the inclusion I ⊂ Ia∞ holds if and only if I ⊂ se(ω), as
we shall see in the next proposition. We shall also see there that the 5-chain of
inclusions remains valid for all ideals I contained in L1:

a∞ I ⊂ (a∞ I)a∞ ⊂ I ⊂ a∞(Ia∞) ⊂ Ia∞ .

More generally,

PROPOSITION 4.8. Let I 6= {0} be an ideal.
(i) {0} 6= a∞ I ⊂ (a∞ I)a∞ ⊂ I.

(i’) I ∩L1 ⊂ a∞(Ia∞) ⊂ Ia∞ .
(ii) a∞ I = a∞((a∞ I)a∞) and the map I → (a∞ I)a∞ is idempotent.

(ii’) Ia∞ = (a∞(Ia∞))a∞ and the map I → a∞(Ia∞) is idempotent.
(iii) If J is an ideal, then Ja∞ ⊂ I if and only if J ∩L1 ⊂ a∞ I.
(iv) I ⊂ Ia∞ if and only if I ⊂ se(ω).
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Proof. (i) and (i′) The inclusions a∞ I ⊂ I and I ∩ L1 ⊂ Ia∞ follow from
Definition 4.6 and Corollary 4.3. Applying the first inclusion to Ia∞ and the second
to a∞ I obtains a∞(Ia∞) ⊂ Ia∞ and a∞ I = a∞ I ∩ L1 ⊂ (a∞ I)a∞ . The remaining
two inclusions follow directly from Definition 4.6. And since 〈1, 0, . . .〉a∞ = 0,
a∞ I 6= {0} for all I 6= {0}.

(ii) By (i) and (i′), a∞((a∞ I)a∞) ⊂ a∞ I = a∞ I ∩L1 ⊂ a∞((a∞ I)a∞).
(ii’) Again by (i′) and (i), Ia∞ = (I ∩L1)a∞ ⊂ (a∞(Ia∞))a∞ ⊂ Ia∞ .
(iii) If Ja∞ ⊂ I then, by (i′), one has J ∩L1 ⊂ a∞(Ja∞) ⊂ a∞ I. Conversely, if

J ∩ L1 ⊂ a∞ I then, by (i) and the paragraph preceding Lemma 4.7, one has that
Ja∞ = (J ∩L1)a∞ ⊂ (a∞ I)a∞ ⊂ I.

(iv) That I ∩ se(ω) ⊂ Ia∞ is a simple consequence of Corollary 4.3 and
Lemma 4.7. In particular, I ⊂ se(ω) implies I ⊂ Ia∞ . The converse implication is
automatic since, by definition, Ia∞ ⊂ se(ω).

Immediate consequences of Proposition 4.8(iii), Lemma 4.7, and the identi-
ties scse(ω) = sc(ω) = (ω) and sescI = seI ⊂ I are:

COROLLARY 4.9. Let I 6= {0} be an ideal.
(i) a∞ I = L1 if and only if se(ω) ⊂ I if and only if ω ∈ Σ(scI).

(ii) Ia∞ = se(ω) if and only if L1 = a∞(Ia∞).

Am-∞ stability, the analog of am-stability, is defined for nonzero ideals by
any of the following equivalent conditions.

COROLLARY 4.10. Let I 6= {0} be an ideal. The following are equivalent:
(i) I = a∞ I.

(ii) I ∩L1 = Ia∞ .
(iii) I ⊂ L1 and I = Ia∞ .

Proof. (i) ⇒ (ii) Since I = a∞ I ⊂ L1, I = I ∩L1 ⊂ Ia∞ by Proposition 4.8(i′)
and the reverse inclusion follows by Proposition 4.8(i).

(ii) ⇒ (iii) If I 6⊂ L1, by Lemma 4.7, Ia∞ = se(ω) 6⊂ L1, against (ii).
(iii) ⇒ (i) One has I = I ∩ L1 ⊂ a∞(Ia∞) = a∞ I ⊂ I by Proposition 4.8(i′)

and hence (i) follows.

DEFINITION 4.11. An ideal I 6= {0} is called am-stable at infinity (or am-∞
stable) if I = a∞ I. A sequence ξ ∈ (`1)∗ is called regular at infinity (∞-regular for
short) if (ξ) = a∞(ξ).

Therefore, (ξ) is ∞-regular if and only if (ξ) = (ξa∞) by Corollary 4.10 and
Lemma 4.7, if and only if ξa∞ = O(Dmξ) for some m ∈ N by Corollary 4.3
(cf. Corollary 5.6(c) of [39]), and surprisingly and more simply, if and only if
ξa∞ = O(ξ) (see Theorem 4.12 below). The notion of regularity at infinity for sum-
mable sequences is an analog of the usual notion of regularity of nonsummable
sequences that was used extensively in [16] and that plays a key role also in
Varga’s construction of positive traces on principal ideals [32].
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Several characterizations of regular sequences in the am-case have analogs
in the am-∞ case (Theorem 4.12 below), although the proofs have to contend
with the problem that ξa∞ may not satisfy the ∆1/2 condition or, equivalently
(Corollary 4.4), that ξ may not be O(ξa∞).

For convenience we recall the definition of the Matuszewska indices α(ξ)
and β(ξ) for a monotonic sequence ξ ([13], Section 2.4):

α(ξ) := lim
n

log ξn
log n

= inf
n>2

log ξn
log n

and β(ξ) := lim
n

log ξn
log n

= sup
n>2

log ξn
log n

where ξn := sup
k

ξkn
ξk

and ξn := inf
k

ξkn
ξk

. It can be shown that

α(ξ) = inf
{

γ : ∃C > 0 such that ξn 6 C
( n

m

)γ
ξm for all n > m

}
,

β(ξ) = sup
{

γ : ∃C > 0 such that ξn > C
( n

m

)γ
ξm for all n > m

}
.

The above inequalities characterizing the Matuszeswka indices are the discrete
analog of the Potter type inequalities in the theory of functions of regular and
O-regular variation (cf. Proposition 2.2.1 of [5]), and were linked to regularity of
c∗o-sequences in Theorem 3.10 of [13], where it was proven that a sequence ξ ∈ c∗o
is regular if and only if β(ξ) > −1 if and only if ξa is regular. As indicated
in Remark 3.11 of [13], the equivalence of ξ regularity and ξa regularity is also
implicit in the work of Varga ([32], Theorem IRR).

THEOREM 4.12. If ξ ∈ (`1)∗, the following conditions are equivalent:
(i) ξ is ∞-regular.

(ii) ξa∞ = O(ξ).
(iii) α(ξ) < −1, i.e., there are constants C > 0 and p > 1 for which ξn 6 C( m

n )pξm
for all integers n > m.

(iv) ξa∞ is ∞-regular.
(v) inf

n
(ξa∞ )n
(ξa∞ )kn

> k for some integer k > 1.

(v’) inf
n

(ξa∞ )n
(ξa∞ )kn

> k for all integers k > 1.

(v”) inf
n

ξn
(ξa∞ )kn

> 0 for all integers k > 1.

(v”’) inf
n

ξn
(ξa∞ )kn

> 0 for some integer k > 1.

(vi) sup
k

inf
n

(ξa∞ )n
k((ξa∞ )kn

= ∞.

Proof. (i) ⇒ (ii) Assume that ξ is regular at infinity, that is, (ξ) = a∞(ξ).
Then (ξ) = (ξ)a∞ = (ξa∞) by Corollary 4.10 and Lemma 4.7 and therefore ξa∞ 6
MDmξ for some m ∈ N and M > 0. In particular, (ξa∞)mn 6 Mξn for all n. The
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case m = 1 is (ii). If m > 1 then

(ξa∞)mn =
1

mn

∞

∑
mn+1

ξi =
1

mn

{ m2n

∑
mn+1

ξi +
m3n

∑
m2n+1

ξi +
m4n

∑
m3n+1

ξi + · · ·
}

> 1
mn

{(m− 1)mnξm2n + (m− 1)m2nξm3n + (m− 1)m3nξm4n + · · · }

=
m− 1

m2

∞

∑
k=2

mkξmkn.

Thus m−1
m2

∞
∑

k=2
mkξmkn 6 Mξn for all n and hence, by substituting here mn for n,

m− 1
m3

∞

∑
k=3

mkξmkn 6 Mξmn.

On the other hand, the same formula for (ξa∞)mn yields

(ξa∞)mn 6 1
mn

{(m− 1)mn ξmn + (m− 1)m2n ξm2n + (m− 1)m3n ξm3n + · · · }

=
m− 1

m
(m ξmn + m2 ξm2n) +

m− 1
m

∞

∑
k=3

mk ξmkn

6 m− 1
m

(m + m2) ξmn + m2Mξmn = M′ξmn.

From this, since for each j ∈ N, j = mn− p for some n ∈ N and 0 6 p 6 m− 1,
one obtains

(ξa∞)j =
1

mn− p

{
ξmn−p+1 + ξmn−p+2 + · · ·+ ξmn +

∞

∑
i=mn+1

ξi

}

6 p
mn− p

ξmn−p +
mn

mn− p
(ξa∞)mn 6 p

mn− p
ξmn−p +

mn
mn− p

M′ξmn

6
( p

mn− p
+

mn
mn− p

M′
)

ξmn−p 6 (m− 1 + mM′)ξ j,

which concludes the proof.
(ii) ⇒ (i) Obvious from remarks following Definition 4.11.
(ii) ⇒ (iii) Let ξa∞ 6 Mξ for some M > 0 and without loss of generality

assume that ξn > 0 for all n. From the basic identity (n − 1)(ξa∞)n−1 = ξn +
n(ξa∞)n follows the recurrence

(ξa∞)n =
n−1

n

1 + 1
n
( ξ

ξa∞

)
n

(ξa∞)n−1

and hence for all n > m > 1,

(ξa∞)n =
m
n

∏n
j=m+1

(
1 + 1

j
( ξ

ξa∞

)
j

) (ξa∞)m 6
m
n

∏n
j=m+1

(
1 + 1

Mj
) (ξa∞)m
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=
m
n

e−∑n
j=m+1 log

(
1+ 1

Mj

)
(ξa∞)m.

Let N be the smallest integer larger than or equal to 1
M , p := 1 + 1

M and set

K := Npe
(

log 2
M + 1

2M2

)
. If m > N, then Mj > 1 for all j > m + 1 and hence

log
(

1 +
1

Mj

)
>

1
Mj

− 1
2M2 j2

.

Thus if n > m > N,

(ξa∞)n 6 m
n

e
−∑n

j=m+1

(
1

Mj− 1
2M2 j2

)
(ξa∞)m 6 m

n
e
(
− 1

M log n+1
m+1 + 1

2M2

)
(ξa∞)m

6 e
(

log2
M + 1

2M2

)(m
n

)p
(ξa∞)m.

If n > N > m, the above inequality implies

(ξa∞)n 6 e
(

log2
M + 1

2M2

)( N
n

)p
(ξa∞)N 6 K

(m
n

)p
(ξa∞)m.

If N > n > m then K > Np >
( n

m
)p and hence

(ξa∞)n 6 (ξa∞)m 6 K
(m

n

)p
(ξa∞)m.

Thus (ξa∞)n 6 K
( m

n
)p(ξa∞)m for all n > m, hence (ξa∞)n 6 MK

( m
n
)p

ξm.
From Lemma 4.1(iv), ξ2n 6 (ξa∞)n so

ξ2n 6 MK
( m

n

)p
ξm

for all n > m. Set C = 3p MK and let k > 2m. If k is even, then

ξk 6 MK
(m

k
2

)p
ξm 6 C

(m
k

)p
ξm,

while if k is odd then

ξk 6 ξn−1 6 MK
( m

k−1
2

)p
ξm 6 3p MK

(m
k

)p
ξm = C

(m
k

)p
ξm.

Finally, if m 6 k < 2m, then since MK > M21/M > 1 it follows that

ξk 6 ξm < 2p
(m

k

)p
ξm 6 C

(m
k

)p
ξm.

(iii) ⇒ (ii) A direct computation shows that (ξa∞)n 6 C
p−1 ξn.

(ii) ⇒ (iv) If ξa∞ 6 Mξ, then ξa2
∞

6 Mξa∞ , hence by the equivalence of (i)
and (ii), ξa∞ is ∞-regular.

(iv) ⇒ (ii) Since (i) and (iii) are equivalent, there exists p > 1, C > 0 so
(ξa∞)n 6 C

( m
n
)p(ξa∞)m for all n > m. Thus (ξa∞)km 6

( 1
k
)q(ξa∞)m for some
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q > 1 and integer k > 1, and hence
∞
∑

km+1
ξi 6

( 1
k
)q−1 ∞

∑
m+1

ξi for all m. But then

(
1− ( 1

k )q−1) ∞
∑

m+1
ξi 6

km
∑

m+1
ξi 6 (k− 1)mξm and hence (ii) holds.

(ii) ⇒ (v’) ⇒ (v”) ⇒ (v”’) For every k > 1,

(k− 1)nξkn 6
kn

∑
j=n+1

ξ j 6 (k− 1)nξn for all n,

hence

1 +
(k− 1)ξkn
k(ξa∞)kn

6 ∑∞
n+1 ξ j

∑∞
kn+1 ξ j

6 1 +
(k− 1)ξn

k(ξa∞)kn

or, equivalently,

(k− 1)
ξkn

(ξa∞)kn
6 (ξa∞)n

(ξa∞)kn
− k 6 (k− 1)

ξn

(ξa∞)kn
.

Thus, for every k > 1,

ξa∞ = O(ξ) ⇒ inf
n

ξkn
(ξa∞)kn

> 0 ⇒ inf
n

(ξa∞)n

(ξa∞)kn
> k ⇒ inf

n

ξn

(ξa∞)kn
> 0.

(v’) ⇒ (v) ⇒ (v”’) ⇒ (i) The first implication is obvious and the second
follows from the same double inequality we used above. If (iv′′′) holds, i.e., for
some M > 0 and k > 1, (ξa∞)kn 6 Mξn for all n, then for j ∈ N, j = kn− p with
0 6 p 6 k− 1 and

(ξa∞)j =
1

kn− p
(ξkn−p+1 + · · ·+ ξkn + kn(ξa∞)kn)

6 1
kn− p

(pξn + knMξn) 6 (k− 1 + kM)ξn = (k− 1 + kM)(Dkξ)j.

Thus ξa∞ = O(Dkξ), that is, ξ is ∞-regular.
(v’)⇒ (vi) sup

k
inf

n
(ξa∞ )n

k(ξa∞ )kn
> 1 since n(ξa∞)n > kn(ξa∞)kn for all n, k. Suppose

sup
k

inf
n

(ξa∞ )n
k(ξa∞ )kn

= M < ∞. Then M = 1 since otherwise, we would have for some

k that, inf
n

(ξa∞ )n
k(ξa∞ )kn

>
√

M and hence inf
n

(ξa∞ )n
k2(ξa∞ )k2n

> inf
n

(ξa∞ )n
k(ξa∞ )kn

inf
n

(ξa∞ )kn
k(ξa∞ )k2n

> M

against the definition of M. But M = 1 contradicts (v’).
(vi) ⇒ (v) Obvious.

REMARK 4.13. (i) The Potter type inequality in (iii) (cf. Proposition 2.2.1 of
[5], and see also [2] and Theorem 3.10, Remark 3.11 of [13]) was shown by Kalton
in Corollary 7 of [25] to be necessary and sufficient for (ξ) to support a unique
separately continuous trace. By Theorem 4.12 and Theorem 6.6 below this con-
dition is also necessary and sufficient for (ξ) to support a unique trace, which in
this case coincides with Tr and hence is separately continuous.
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(ii) In the course of the proof of (ii) ⇒ (iii) we have obtained that if ξ is ∞-
regular and if ξa∞ 6 Mξ, then α(ξ) 6 −(

1 + 1
M

)
. Hence α(ξ) 6 −1− inf ξ

ξa∞
.

(iii) The proof of (iv) ⇒ (ii) is an adaptation of the proof in the am-case in The-
orem 3.10: (c)’ ⇒ (a) of [13]. Conditions (v)–(v”’) and their proofs are am-∞ ana-
logues of the characterizations of regular sequences given by Varga in Lemma 1
of [32]. Albeverio et al. in [1] used conditions equivalent to the negation of (v)
and (vi) to define “generalized eccentric” operators (for the trace class case) for
which their main result showed the existence of positive singular traces.

(iv) Condition (ii) strengthens Corollary 5.19 of [13] and Corollary 5.6 of [39] by
eliminating the need for ampliations, i.e., replacing the condition ξa∞ = O(Dmξ)
for some m by the condition ξa∞ = O(ξ).

(v) Whereas regular sequences are those for which ξ ³ ξa, this is not true for
the am-∞ case. In fact, by Corollary 4.4(ii), ξ ³ ξa∞ if and only if ξ is ∞-regular
(i.e., (ξ) = (ξa∞)) and satisfies the ∆1/2-condition. And as Example 4.5(ii) shows,
ξ can be regular at infinity while ξ 6³ ξa∞ .

The equivalence of (ii) and (iii) is the am-∞ analog of the am-result obtained
in Theorem 3.10(a),(b),(b)′ of [13]. We give a direct proof of the am-case that
provides also a lower bound for β(ξ).

PROPOSITION 4.14. A sequence ξ ∈ c∗o is regular, i.e., ξa = O(ξ), if and only if
there are constants C > 0 and 0 < p < 1 for which ξn > C( m

n )p ξm for all n > m, and
then β(ξ) > −1 + inf ξ

ξa
.

Proof. A simple computation shows that if ξn > C( m
n )p ξm for all n > m,

then ξa 6 1
(1−p)C ξ.

Conversely, assume ξ 6= 0 and ξa = O(ξ), i.e., ξa 6 Mξ for some M > 1.
The identity n(ξa)n = ξn + (n− 1)(ξa)n−1 implies the recurrence

(ξa)n =
n−1

n

1− 1
n
( ξ

ξa

)
n

(ξa)n−1

and hence

(ξa)n =
m
n

∏n
j=m+1

(
1− 1

j
( ξ

ξa

)
j

) (ξa)m

for all n > m. Then

ξn =
m
n
( ξ

ξa

)
n

∏n
j=m+1

(
1− 1

j
( ξ

ξa

)
j

) (ξa)m >
m

Mn

∏n
j=m+1

(
1− 1

Mj
) ξm

=
m

Mn
e−∑n

j=m+1 log (1− 1
Mj )ξm > m

Mn
e∑n

j=m+1
1

Mj ξm

> m
Mn

e
1
M (log n

m−log 2)ξm =
1

M2
1
M

(m
n

)1− 1
M

ξm.
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But then β(ξ) > −1 + 1
M from the inequality characterizing the Matuszewska

index β(ξ) mentioned prior to Theorem 4.12 and hence β(ξ) > −1 + inf ξ
ξa

.

For the readers’ convenience, we summarize the known relations between
the basic sequence properties used in this paper, the Matuszewska index β, and
the new relations to the analogous properties for Matuszewska’s index α devel-
oped here.

COROLLARY 4.15. Let ξ ∈ c∗o . Then −∞ 6 β(ξ) 6 α(ξ) 6 0 and
(i) ξ satisfies the ∆1/2-condition if and only if β(ξ) > −∞, i.e., if and only if there

are constants C > 0 and p > 0 for which ξn > C( m
n )pξm for all n > m, if and only if ξe

is regular for some e > 0 ([13], 2.4(22), 2.23, Theorem 3.5).
(ii) If ξ ³ ηa for some η ∈ c∗o , then β(ξ) > −1 (since for n > m, (ξa)n

(ξa)m
> m

n ).
(iii) ξ is regular if and only if β(ξ) > −1 ([13], Theorem 3.10).
(iv) ξs is regular for every s > 0 if and only if β(ξ) = 0 ([13], Corollary 5.16).
(i’) ξ satisfies the condition sup ξ2n

ξn
< 1 if and only if α(ξ) < 0, i.e., if and only if

there are constants C > 0 and p > 0 for which ξn 6 C( m
n )pξm for all n > m, if and

only if ξe is ∞-regular for some e > 0. (Elementary from the definition and (iii’).
(ii’) If ξ ³ ηa∞ for some η ∈ c∗o , then α(ξ) 6 −1 (since for n > m, (ξa∞ )n

(ξa∞ )m
6 m

n ).
(iii’) ξ is ∞-regular if and only if α(ξ) < −1 (Theorem 4.12).
(iv’) ξs is ∞-regular for every s > 0 if and only if α(ξ) = −∞ (by (iii’)).

In another paper we study lattice properties of am-∞ stable ideals. Among
other results there we show that every principal ideal with the exception of the
finite rank ideal F contains a am-∞ stable principal ideal strictly larger than F
and is contained in an am-stable principal ideal. F is the smallest nonzero am-∞
stable ideal, K(H) is the largest am-stable ideal and there is a largest am-∞ stable
ideal sta∞(L1) and a smallest am-stable ideal sta(L1) (see below). These naturally
divide all ideals into the three classes described in the Introduction, namely, the
“small ideals” contained in sta∞(L1), the “large ideals” containing sta(L1), and
the “intermediate ideals” that are neither.

DEFINITION 4.16. The lower and upper am-stabilizers (respectively, am-∞
stabilizers) for an ideal I are:

sta(I) :=
∞⋂

m=0
am I, sta(I) :=

∞⋃

m=0
Iam , sta∞(I) :=

∞⋂

m=0
am

∞ I for I 6= {0},

sta∞(I) :=
∞⋃

m=0
Iam

∞ for I ⊂ sta∞(L1).

It is easy to verify that sta(I) (respectively, sta(I)) is the largest am-stable
ideal contained in I (respectively, the smallest am-stable ideal containing I).

It follows similarly from Proposition 4.8(i) that sta∞(I) is well-defined and
is the largest am-∞ stable ideal contained in I.
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If I ⊂ se(ω), then {Iam
∞} is an increasing nest of ideals by Proposition 4.8(iv)

and hence its union is an ideal and I ⊂
( ∞⋃

m=0
Iam

∞

)
a∞

=
∞⋃

m=0
Iam

∞ . If furthermore

I ⊂ sta∞(L1), then also Im
a∞ ⊂ sta∞(L1) ⊂ L1 for all m, hence

∞⋃
m=0

Iam
∞ ⊂ L1

and by Corollary 4.10, sta∞(L1) is am-∞ stable. Notice that if I ⊂ se(ω) but
I 6⊂ sta∞(L1), i.e., Iam

∞ 6⊂ L1 for some m > 0, then, by Lemma 4.7, Iam+1
∞

= se(ω)

and so
∞⋃

m=0
Iam

∞ = se(ω) which is not am-∞ stable.

Thus, in particular, sta(L1) = sta(F) = sta((ω)) is the smallest am-stable
ideal and sta∞(L1) = sta∞(K(H)) = sta∞((ω)) is the largest am-∞ stable ideal.

REMARK 4.17. (i) If I is a principal ideal which is not am-stable, then sta(I)
is a strictly increasing nested union of principal ideals. Indeed, if I = (ξ), then it
follows that (ξan) = Ian = Ian+1 = (ξan+1) implying that ξan is regular and hence
as recalled before Theorem 4.12, ξ is regular, i.e., (ξ) is am-stable.

(ii) Similarly, if I ⊂ sta∞(L1) is principal and not am-∞ stable, by Theorem 4.12
(the equivalence of (i) and (iv)) and Lemma 4.7, sta∞(I) is also a strictly increas-
ing nested union of principal ideals. This phenomenon does not even extend to
countably generated ideals as Example 5.5 of [23] shows by constructing a count-
ably generated ideal L ( La = La2 .

The next proposition shows that sta(L1) is the union of principal ideals and
that sta∞(L1) is the intersection of Lorentz ideals. Recall from Sections 2.25, 2.27,
4.7 of [13] that if π is a positive nondecreasing ∆2-sequence, then L(σ(π)) is the

Lorentz ideal with characteristic set Σ(L(σ(π))) :=
{

ξ ∈ c∗o : ∑
n

ξnπn < ∞
}

.

PROPOSITION 4.18. (i) sta(L1) =
∞⋃

m=0
(ωlogm).

(ii) sta∞(L1) =
∞⋂

m=0
L(σ(logm)).

Proof. (i) This is clear since or every m ∈ N,

sta(L1) = sta((L1)a) = sta((ω)) and (ω)am = (ωam) = (ωlogm).

(ii) ξ ∈ Σ(a∞L(σ(logm))) if and only if ξ ∈ (`1)∗ and
∞

∑
n=1

( ∞

∑
j=n+1

ξ j

) logmn
n

< ∞ if and only if
∞

∑
n=1

ξnlogm+1n < ∞,

i.e., ξ ∈ Σ(L(σ(logm+1))). Therefore a∞L(σ(logm)) = L(σ(logm+1)) and hence
am

∞(L1) = L(σ(logm)).

Thus, if ξ ∈ c∗o is ∞-regular, then ξ ∈ Σ(sta∞(L1)) and hence for every m,
∞
∑

n=1
ξn logmn < ∞ (cf. Example 4.5(iv)). Notice also that the proof of (ii) shows in
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particular that a∞(L1) = L(σ(log)). In [20] we prove that sta(L1) and sta∞(L1)
are both soft-edged and soft-complemented.

In Section 7 we will need the following analogues of Lemma 3.3 and Propo-
sition 3.4.

LEMMA 4.19. Let I be an ideal.
(i) sc(a∞ I) =a∞ (scI) when I 6= {0}.

(ii) (seI)a∞ = se(Ia∞).

Proof. (i) Let η ∈ Σ(sc(a∞ I)). Since a∞ I ⊂ L1, sc(a∞ I) ⊂ scL1 = L1 and
hence η ∈ (`1)∗. Choose a strictly increasing sequence of positive integers nk

with n−1 = n0 = 0 for which
nk+1

∑
nk+1

ηj > 1
2

∞
∑

nk+1
ηj for k > 0.

For each α ∈ c∗o set α0 = α1 and define

α̃j := 2αnk−1 for nk < j 6 nk+1 and k > 0.

Then α̃ = 〈α̃j〉 ∈ c∗o and for all nk < p 6 nk+1 and k > 0,

∞

∑
p

α̃jηj >
nk+2

∑
p

α̃jηj = 2αnk−1

nk+1

∑
p

ηj + 2αnk

nk+2

∑
nk+1+1

ηj

> αnk−1

nk+1

∑
p

ηj + αnk

∞

∑
nk+1+1

ηj > αnk

∞

∑
p

ηj > αp

∞

∑
p

ηj.

Thus αηa∞ 6 (α̃η)a∞ . Since α̃η ∈ Σ(a∞ I) from the definition of sc it follows
that (α̃η)a∞ ∈ Σ(I) and hence that ηa∞ ∈ Σ(scI), i.e., η ∈ Σ(a∞(scI)). Hence
sc(a∞ I)) ⊂ a∞(scI).

Now let η ∈ Σ(a∞(scI)) and α ∈ c∗o. Then ηa∞ ∈ Σ(scI) and therefore
αηa∞ ∈ Σ(I). Since (αη)a∞ 6 αηa∞ , also (αη)a∞ ∈ Σ(I), i.e., αη ∈ Σ(a∞ I) so
η ∈ Σ(sc(a∞ I)), which yields the set equality.

(ii) Assume first that I 6⊂ L1. Since L1 is soft-complemented, also seI 6⊂ L1 since
otherwise I ⊂ scI = scseI ⊂ scL1 = L1. But then, from Lemma 4.7, it follows
that (seI)a∞ = se(ω) and Ia∞ = se(ω), hence se(Ia∞) = se(ω) = (seI)a∞ .

Assume now that I ⊂ L1. If ξ ∈ Σ((seI)a∞) then ξ 6 ρa∞ for some ρ ∈
Σ(seI), i.e., ρ 6 αη for some α ∈ c∗o and η ∈ Σ(I). But then ξ 6 (αη)a∞ 6 αηa∞ . By
definition, αηa∞ ∈ Σ(se(Ia∞)), hence (seI)a∞ ⊂ se(Ia∞). For the reverse inclusion,
let ξ ∈ Σ(se(Ia∞)) and hence ξ 6 αρ for some α ∈ c∗o and ρ ∈ Σ(Ia∞), that is,
ρ 6 ηa∞ for some η ∈ Σ(I). As in the proof of part (i), ξ 6 αηa∞ 6 (α̃η)a∞ for
some α̃ ∈ c∗o. But α̃η ∈ Σ(seI) and therefore ξ ∈ Σ((seI)a∞), which yields the set
equality.

PROPOSITION 4.20. The following are equivalent for ideals I 6= {0}:
(i) seI is am-∞ stable.

(ii) scI is am-∞ stable.
(iii) seI ⊂ a∞ I.
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(iii’) ω /∈ Σ(I) and seI ⊂ F + [I, B(H)].
(iv) ω /∈ Σ(scI) and scI ⊃ Ia∞

Proof. (i) ⇒ (iii) Since seI ⊂ I and the pre-arithmetic mean at infinity is
inclusion preserving, seI = a∞(seI) ⊂ a∞ I.

(iii) ⇒ (ii) scI = scseI ⊂ sc(a∞ I) = a∞(scI) ⊂ scI where the first equality
is true for all ideals (recall comment preceding Remark 3.2), the second equality
follows from Lemma 4.19(i) and the last inclusion from Proposition 4.8(i).

(ii)⇒ (iv) By Corollary 4.10, scI⊂L1 so ω /∈Σ(scI). Also scI =(scI)a∞ ⊃ Ia∞ .
(iv) ⇒ (i) I ⊂ L1 because otherwise se(ω) = Ia∞ ⊂ scI by Lemma 4.7

and thus (ω) = sc(se(ω)) ⊂ scI, against the hypothesis. But then seI ⊂ L1
and hence seI ⊂ (seI)a∞ from Proposition 4.8(i′). For the reverse inclusion, by
Lemma 4.19(ii), (seI)a∞ = se(Ia∞) ⊂ se(scI) = seI, and so (seI)a∞ = seI. The
conclusion now follows from Corollary 4.10.

(iii) ⇒ (iii’) Since (iii) implies (iv), ω /∈ Σ(I) and by Corollary 6.2(i)

seI ⊂ a∞ I = span(a∞ I)+ = span (F + [I, B(H)])+ ⊂ F + [I, B(H)].

(iii’) ⇒ (iii) Again by Corollary 6.2(i), (seI)+ ⊂ (F + [I, B(H)])+ = (a∞ I)+,
hence seI ⊂ a∞ I.

REMARK 4.21. Analogous to Remark 3.5, the se and sc operations preserve
am-∞ stability by Lemma 4.19(i) and Proposition 4.20. However, Example 4.22
below shows that seI and scI can be am-∞ stable while I is not.

EXAMPLE 4.22. We construct an ideal I such that seI = se(ω2) and hence
scI = (ω2) are am-∞ stable but I is not am-∞ stable.

Indeed, let mk = (k!)2 and define ηj = 1
m2

k
for mk−1 < j 6 mk. Then η ∈ c∗o,

η 6 ω2 but η 6= o(ω2). Set I = se(ω2) + (η). Then seI = se(ω2) and hence
scI = (ω2). By Example 4.5(i), ω2 is ∞-regular, i.e., (ω2) is am-∞ stable and thus
so are seI and scI. However I is not am-∞ stable. To prove this by contradiction,
assume that it is. Then ηa∞ ∈ Σ(I), i.e., there is an α ∈ c∗o, M > 0, and p ∈ N
such that ηa∞ 6 αω2 + MDpη. Without loss of generality assume that αj = εk for
mk−1 < j 6 mk. For every mk−1 < n 6 mk,

(ηa∞)n >
1
n

mk

∑
j=n+1

1
m2

k
=

mk − n
nm2

k
.

In particular, for k > p by choosing n = kmk−1 = mk
k we have k−1

m2
k

<

εk
k2

m2
k
+ M(Dpη)kmk−1

= εk
k2

m2
k
+ M 1

m2
k
. This implies εk > k−M−1

k2 > 1
2k for k large

enough, in which case 2εkmk > kmk−1. Now by choosing n = [2εkmk] and k large
enough to insure that εk 6 1

2 , we have kmk−1 6 n 6 mk and hence

mk − n
nm2

k
< (ηa∞)n 6 εk

n2 + (Dpη)n =
εk
n2 +

M
m2

k
.
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Then we have the following which is a contradiction since εkmk → ∞ and εk → 0:

M + 1 > mk
n
− εkm2

k
n2 > 1

2εk
− εkm2

k
(2εkmk − 1)2 =

1
εk

(1
2
− 1

(
2− 1

εkmk

)2

)
.

5. NONSINGULAR TRACES AND APPLICATIONS TO ELEMENTARY OPERATORS

It is well-known that the restriction of a trace on an ideal I to the ideal F
of finite rank operators must be a (possibly zero) scalar multiple of the standard
trace Tr.

DEFINITION 5.1. A trace on an ideal that vanishes on F is called singular,
and nonsingular otherwise.

Dixmier [11] provided the first example of a (positive) singular trace. Its
domain is the am-closure, (η)− = a(ηa), of a principal ideal (η) ⊂ se(η)a.

Theorem 2.2 yields a complete characterization of ideals that support a non-
singular trace, namely, those ideals that do not contain diagω (cf. Introduction,
Application 3 of Theorem 5.6 of [13] and also [14]). For the reader’s convenience
this argument is presented and generalized in Proposition 5.3 below. To prove it
we first need another simple consequence of Theorem 2.2.

LEMMA 5.2. Let I 6= {0} be an ideal for which ω /∈ Σ(I).
(i) L1 ∩ [I, B(H)] ⊂ {X ∈ L1 : TrX = 0}.

(ii) dim F+[I,B(H)]
[I,B(H)] = 1.

Proof. (i) Since the subspace L1 ∩ [I, B(H)] is the span of its selfadjoint ele-
ments, consider X = X∗ ∈ L1 ∩ [I, B(H)]. Then λ(X)a ∈ S(I) by Theorem 2.2.

Then if
∞
∑
1

λ(X)j = TrX 6= 0, it would follow that |λ(X)a| ³ ω and hence, by the

hereditariness of I+, ω ∈ Σ(I), against the hypothesis.
(ii) Fix a rank one projection P. Then λ(P)a = ω and so P /∈ [I, B(H)]

by Theorem 2.2. For each X ∈ F + [I, B(H)] choose T ∈ F for which X − T ∈
[I, B(H)]. As T− (TrT)P ∈ [F, B(H)] ⊂ [I, B(H)] from the well-known fact that a
finite complex matrix is a commutator if and only if it has zero trace (cf. Discus-
sion of Problem 230 of [18]), one obtains X− (TrT)P ∈ [I, B(H)]. Thus

F + [I, B(H)] = {λP + [I, B(H)] : λ ∈ C}.

PROPOSITION 5.3. Let I and J be ideals and let τ be a trace on J. Then τ has a
trace extension to I + J if and only if

J ∩ [I, B(H)] ⊂ {X ∈ J : τ(X) = 0 }.

Moreover, the extension is unique if and only if I ⊂ J + [I, B(H)].
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In particular, ω /∈ Σ(I) if and only if Tr extends from L1 to L1 + I if and only if
Tr extends from F to I.

Proof. Assume that a trace τ on J has a trace extension τ̃ to I + J and that
X ∈ J ∩ [I, B(H)]. Then X ∈ [I + J, B(H)] and hence τ(X) = τ̃(X) = 0 since
every trace on I + J must vanish on the commutator space of I + J.

Conversely, assume that J ∩ [I, B(H)] ⊂ {X ∈ J : τ(X) = 0 }. For X ∈ J +
[I, B(H)] choose Y ∈ J for which X−Y ∈ [I, B(H)] and define τ′(X) := τ(Y). As
is easy to verify, τ′ is a well-defined linear functional on J + [I, B(H)], it extends
τ, it vanishes on [I, B(H)] and hence also on [I + J, B(H)] = [I, B(H)] + [J, B(H)],
and it is the unique linear extension of τ to J +[I, B(H)] that vanishes on [I, B(H)].
If I + J 6= J + [I, B(H)], use a Hamel basis argument to further extend τ′ to a linear
functional τ′′ on I + J, and this extension is never unique. Since τ′′ vanishes on
[I + J, B(H)] it is a trace on I + J.

The case for extending Tr from L1 or F, when ω /∈ Σ(I), follows from
Lemma 5.2(i). Conversely, if ω ∈ Σ(I), then L1 ⊂ I and L+

1 ⊂ [I, B(H)] by
Theorem 2.2, whence L1 ⊂ [I, B(H)]. Thus all traces on I vanish on L1, i.e., Tr
cannot extend from F or L1 to I.

A simple consequence of this is that all traces on J extend to I + J if and only
if J ∩ [I, B(H)] ⊂ [J, B(H)] since, as is elementary to show,

[J, B(H)] =
⋂{{X ∈ J : τ(X) = 0 } : τ is a trace on J}.

REMARK 5.4. (i) A routine argument shows that for any ideal J and trace τ
on J, the collection of the ideals to which τ can be extended, i.e. the ideals I ⊃ J
for which

J ∩ [I, B(H)] ⊂ {X ∈ J : τ(X) = 0},
is closed under directed unions and hence it always has maximal elements. Be-
cause this collection is hereditary with respect to inclusion, it is closed under
addition if and only if it has a unique maximal element. That this may not be the
case is easy to show for τ = Tr and J = F by constructing two principal ideals I1
and I2 with I1 6= I2, I1 + I2 = (ω), but Ii 6= (ω) for i = 1, 2.

(ii) If a trace τ on an ideal J has extensions τi to the ideals I1 ⊂ I2, there is no
reason for τ1 to have an extension to I2. For instance, again in the case of τ = Tr,
J = F, and ω /∈ Σ(I), there is a unique trace on I if and only if I is am-∞ stable
(see Theorem 6.6 below). Thus if I1 is not am-∞ stable but is contained in an
am-∞ stable ideal I2, then all but one of the traces on I1 do not further extend
to I2.

(iii) By Lemma 5.2(i), the set equality holds always in

J ∩ [I, B(H)] ⊂ {X ∈ J : τ(X) = 0}
for τ = Tr, J = F and any ideal I 6⊃ (ω). By Proposition 6.4 below (see also the
remark following it), equality holds for τ = Tr, J = L1 and an ideal I ⊃ L1 to
which Tr can be extended (i.e., ω /∈ Σ(I)) if and only if se(ω) ⊂ I. Notice that if
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Tr is extendable to I, then Tr is extendable also to se(ω) + I as ω /∈ Σ(se(ω) + I).
So every maximal ideal I for the extension must contain se(ω) and satisfies the
set equality.

(iv) Although Tr is positive on L1 and it has extensions to any ideal I properly
containing L1 but not containing (ω) (uncountably many according to Corol-
lary 7.6(iii)), none of these extensions can be positive. Indeed, as is well known
(e.g., see the proof of Lemma 2.15 in [39] or Remark 2.5 in [1]), τ > τ(diag(1, 0, 0,
. . .))Tr, for any positive trace τ. Thus if I properly contains L1, then τ(diag(1, 0, 0,
. . .)) = 0, so τ is singular, i.e., τ does not extend Tr.

The following result will also be useful.

PROPOSITION 5.5. Let I be an ideal for which ω /∈ Σ(seI). Then

(L1 + [I, B(H)])+ = L+
1 .

Proof. Let 0 6 X ∈ L1 + [I, B(H)] and so X − T ∈ [I, B(H)] for some T ∈
L1. Since X = X∗ and [I, B(H)] = [I, B(H)]∗, assume without loss of generality
that T = T∗. Let f j be an orthonormal basis for N(X − T), the null space of
X− T, and let ej be an orthonormal basis of eigenvectors of X− T for N(X− T)⊥
arranged so that |((X − T)ej, ej)| is monotone nonincreasing. Since ∑(X f j, f j) =
∑(T f j, f j) < ∞, to prove that X ∈ L1 it suffices to show that ∑(Xej, ej) < ∞.

But if otherwise
∞
∑
1
(Xej, ej) = ∞, then

∞
∑
1
((X − T)ej, ej) = ∞ since T ∈ L1, and so

ω = o(
∑n

j=1((X−T)ej,ej)
n ). By Theorem 2.2, it follows that

〈∣∣∣ ∑n
j=1((X−T)ej,ej)

n

∣∣∣
〉

6 ξ for

some ξ ∈ Σ(I) and hence ω = o(ξ), against the hypothesis.

REMARK 5.6. (i) The condition ω /∈ Σ(seI) is also necessary since in Lem-
ma 6.2(iv) of [20] we show that if ω ∈ Σ(seI), then a I ) L1 and therefore
[I, B(H)]+ = (a I)+ ) L+

1 .
(ii) If ω /∈ Σ(I) and I ⊃ L1, then the extension of Tr to I is unique only in

the trivial case I = L1. Indeed, from Proposition 5.3, uniqueness implies I ⊂
L1 + [I, B(H)], which implies I+ ⊂ L+

1 by Proposition 5.5. Corollary 7.6(iii) will
show that, but for the I = L1 case, there are always uncountably many linearly
independent extensions of Tr to I.

Trace extensions find natural applications to questions on elementary opera-
tors. If Ai, Bi ∈ B(H), then the B(H)-map

B(H) 3 T → ∆(T) :=
n

∑
i=1

AiTBi

is called an elementary operator and ∆∗(T) :=
n
∑

i=1
A∗i TB∗i is its adjoint B(H)-map.

Elementary operators include commutators and intertwiners and hence their the-
ory is connected to the structure of commutator spaces. The Fuglede–Putnam
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Theorem [15], [29] states that for the case ∆(T) = AT− TB where A, B are normal
operators, ∆(T) = 0 implies that ∆∗(T) = 0. Also for n = 2, Weiss [36] general-
ized this further to the case where {Ai} and {Bi}, i = 1, 2, are separately commut-
ing families of normal operators by proving that ∆(T) ∈ L2 implies ∆∗(T) ∈ L2
and ‖∆(T)‖2 = ‖∆∗(T)‖2. (This is also a consequence of Voiculescu’s Theorem 4.2
and Introduction to Section 4 in [33] but neither Weiss’ nor Voiculescu’s methods
seem to apply to the case n > 2.) In [31] Shulman showed that for n = 6, ∆(T) = 0
does not imply ∆∗(T) ∈ L2.

If we impose some additional conditions involving ideals on the families
{Ai}, {Bi} and T, we can extend these implications to arbitrary n past the ob-
struction found by Shulman.

Assume that {Ai}, {Bi}, i = 1, . . . , n, are separately commuting families of
normal operators and let T ∈ B(H).

Define the following ideals:

L :=
( n

∑
i=1

(AiT)(Bi)
)2

, L∗ :=
( n

∑
i=1

(A∗i T)(Bi)
)2

,

R :=
( n

∑
i=1

(Ai)(TBi)
)2

, R∗ :=
( n

∑
i=1

(Ai)(TB∗i )
)2

, and

I∆,T := L ∩ L∗ ∩ R ∩ R∗, S =
( n

∑
i=1

(AiTBi)
)
∩ L1/2 ∩ R1/2,

where (X) denotes the principal ideal generated by the operator X and MN (re-
spectively, M + N) denotes the product (respectively, sum) of the ideals M, N.
Then I∆,T and S are either {0}, B(H), or a principal ideal.

PROPOSITION 5.7. If ω /∈ Σ(I∆,T), then ∆(T) ∈ L2 implies

∆∗(T) ∈ L2 and ‖∆(T)‖2 = ‖∆∗(T)‖2.

Proof. Define I1 = L ∩ L∗ ∩ (R + R∗) and I2 = R ∩ R∗ ∩ (L + L∗). Then
I∆,T = I1 ∩ I2. Assume first that ω /∈ Σ(I1). We start by showing that |∆∗(T)|2 −
|∆(T)|2 ∈ [L, B(H)]. Observe that

|∆(T)|2 =
n

∑
i,j=1

B∗j T∗A∗j AiTBi and |∆∗(T)|2 =
n

∑
i,j=1

BiT∗Ai A∗j TB∗j .

Then for each i, j,

B∗j T∗A∗j AiTBi−T∗A∗j AiTBiB∗j∈[(B∗j ), (T∗A∗j )(AiT)(Bi)]=[(Bj), (AjT)(AiT)(Bi)]

= [(AjT)(Bj)(AiT)(Bi), B(H)] ⊂ [L, B(H)].

Here use the elementary facts that (X)=(X∗) for every operator X, that the prod-
uct of ideals is a commutative operation, and use the deep identity [M, N] =
[MN, B(H)] ([13], Theorem 5.10) for ideals M, N. By the Fuglede–Putnam Theo-
rem [29] and the assumption that {Bi} are normal and commuting we get that,
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for all i, j:
T∗A∗j AiTBiB∗j = T∗A∗j AiTB∗j Bi.

Then, as above,

T∗A∗j AiTB∗j Bi − BiT∗A∗j AiTB∗j ∈ [L, B(H)].

Again by the Fuglede–Putnam Theorem, BiT∗A∗j AiTB∗j = BiT∗Ai A∗j TB∗j , which
proves the claim. By interchanging the role of ∆ and ∆∗ we obtain also that
|∆∗(T)|2 − |∆(T)|2 ∈ [L∗, B(H)]. On the other hand, by the same argument, for
all i, j one has

B∗j T∗A∗j AiTBi − A∗j AiTBiB∗j T∗ ∈ [R, B(H)]

and by applying twice the Fuglede–Putnam Theorem,

A∗j AiTBiB∗j T∗ = Ai A∗j TB∗j BiT∗.

Similarly, Ai A∗j TB∗j BiT∗ − BiT∗Ai A∗j TB∗j ∈ [R∗, B(H)] and hence

|∆∗(T)|2 − |∆(T)|2 ∈ [R, B(H)] + [R∗, B(H)] = [R + R∗, B(H)].

A simple consequence of Theorem 2.2 is that for ideals M, N,

[M, B(H)] ∩ [N, B(H)] = [M ∩ N, B(H)].

Therefore |∆∗(T)|2 − |∆(T)|2 ∈ [I1, B(H)].
If ∆(T) ∈ L2 and hence |∆(T)|2 ∈ L1, then by Proposition 5.5,

|∆∗(T)|2 ∈ (L1 + [I1, B(H)])+ = L+
1 .

Moreover, by Proposition 5.3, there is a trace extension τ of Tr from L1 to L1 + I1.
Since τ vanishes on [I1, B(H)] ⊂ L1 + [I1, B(H)], so τ(|∆(T)|2) = τ(|∆∗(T)|2)
and hence Tr(|∆(T)|2) = Tr(|∆∗(T)|2).

If ω ∈ Σ(I1), then ω /∈ Σ(I2) and then we apply the same arguments to
show that ∆∗(T)(∆∗(T))∗ −∆(T)(∆(T))∗ ∈ [I2, B(H)] and to draw the same con-
clusions.

A sufficient condition that insures that ω /∈ Σ(I∆,T) and is independent
of T is that ω1/4 6= O(∑n

i=1(s(Ai) + s(Bi))). So also is the condition ω1/2 6=
O(∑n

i=1 s(Ai)) or the condition ω1/2 6= O(∑n
i=1 s(Bi)).

Propositions 5.3 and 5.5 can also be applied to a problem of Shulman. Let

∆(T) =
n

∑
i=1

AiTBi

be an elementary operator where the operators Ai and Bi are not assumed to
be commuting or normal. Shulman showed that the composition ∆∗(∆(T)) = 0
does not imply ∆(T) = 0 and conjectured that this implication holds under the
additional assumption that ∆(T) ∈ L1. In the case that the ideal S is “not too
large” we can prove the implication without making this assumption.
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PROPOSITION 5.8. If ω /∈ Σ(S), then ∆∗(∆(T)) ∈ L1 implies that ∆(T) ∈ L2
and ‖∆(T)‖2 = TrT∗∆∗(∆(T)).

In particular, if ∆∗(∆(T)) = 0 then ∆(T) = 0.

Proof. Let SL =
( n

∑
i=1

(AiTBi)
)
∩ L1/2 and SR =

( n
∑

i=1
(AiTBi)

)
∩ R1/2, so

that S = SL ∩ SR. Assume that ω /∈ Σ(SL). Using the first step in the proof of
Proposition 5.7 one has

|∆(T)|2 − T∗∆∗(∆(T)) =
n

∑
i,j=1

(B∗j T∗A∗j AiTBi − T∗A∗j AiTBiB∗j ) ∈ [SL, B(H)].

So if ∆∗(∆(T)) ∈ L1 then |∆(T)|2 ∈ (L1 + [SL, B(H)])+ = L+
1 by Proposition 5.5.

The required equality then follows by the same reasoning as in the conclusion of
the proof of Proposition 5.7.

If ω ∈ Σ(SL), then ω /∈ Σ(SR) and we reach the same conclusions by con-
sidering |∆(T)∗|2 −∆∗(∆(T))T∗ ∈ [SR, B(H)].

6. UNIQUENESS OF TRACES

An ideal I supports a unique nonzero trace (up to scalar multiplication) pre-
cisely when dim I

[I,B(H)] = 1. In this section we characterize in terms of arithmetic
means at infinity when this occurs for those ideals where ω /∈ Σ(I).

The next proposition is based on Theorem 2.2 which Kalton [27] extended
to non-normal operators for the class of geometrically stable ideals. These are the
ideals I for which Σ(I) is invariant under geometric means, that is,

ξ ∈ Σ(I) implies ξg := 〈(ξ1 · · · ξn)1/n〉 ∈ Σ(I).

Notice that if X ∈ I and λ(X) and λ̃(X) are two different orderings of the
sequence of all the eigenvalues (if any) of X, repeated according to algebraic mul-
tiplicity, augmented by adding infinitely many zeros when there are only a finite
number of nonzero eigenvalues, and arranged so that both |λ(X)| and |λ̃(X)| are
monotone nonincreasing, then |λ(X)| and |λ̃(X)| ∈ Σ(I) and it is elementary to
show that |λ̃(X)a| 6 |λ(X)a| + 2|λ(X)|. Similarly, when X ∈ L1 ∩ I it follows
that |λ̃(X)a∞ | 6 |λ(X)a∞ |+ 2|λ(X)| . For this, notice that there is an increasing
sequence of indices nk with n1 = 1 for which |λ(X)|j = |λ̃(X)|j = |λ(X)|nk for

nk 6 j < nk+1. Then
nk+1−1

∑
nk

λ(X)j =
nk+1−1

∑
nk

λ̃(X)j for all k and hence
∞
∑
nk

λ(X)j =

∞
∑
nk

λ̃(X)j. If nk 6 n < nk+1 then

|(λ̃(X)a∞)n|−|(λ(X)a∞)n|6 |(λ̃(X)a∞)n−(λ(X)a∞)n|= 1
n

∣∣∣
∞

∑
n+1

λ̃(X)j−
∞

∑
n+1

λ(X)j

∣∣∣
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=
1
n

∣∣∣
n

∑
nk

λ̃(X)j −
n

∑
nk

λ(X)j

∣∣∣ 6 2|λ(X)n|.

Thus λ(X)a ∈ S(I) (respectively, λ(X)a∞ ∈ S(I)) if and only if λ̃(X)a ∈ S(I) (re-
spectively, λ̃(X)a∞ ∈ S(I)). This illustrates in an elementary way why the choice
of the ordering for λ(X) does not matter in Theorem 2.2 and in Proposition 6.1
below. (See also Theorem 5.6 of [13].)

PROPOSITION 6.1. Let I be an ideal, let X ∈ L1 ∩ I, and assume that either X is
normal or I is geometrically stable. Then we have the following if and only if λ(X)a∞ ∈
S(I):

X ∈ F + [I, B(H)].

Proof. Assume first ω ∈ Σ(I) and so, by Theorem 2.2, F ⊂ [I, B(H)]. Be-
cause λ(X)a + λ(X)a∞ = (TrX)ω, one sees that λ(X)a∞ ∈ S(I) if and only if
λ(X)a ∈ S(I), which, by Theorem 2.2 if X is normal or by [27] if I is geometri-
cally stable, is then equivalent to the condition X ∈ [I, B(H)] = F + [I, B(H)].

Assume now that ω /∈ Σ(I). In case X is quasinilpotent, i.e., λ(X) = 0, then
λ(X)a∞ = λ(X)a = 0 are in S(I) and so, by Theorem 2.2, if X is normal or, by
[27], if I is geometrically stable, one has that X ∈ [I, B(H)]. On the other hand, if
λ(X) 6= 0, let P be a rank one projection on an eigenvector of X corresponding to
the eigenvalue λ(X)1. From the proof of Lemma 5.2(ii) and by Lemma 5.2(i), X ∈
F + [I, B(H)] if and only if Y := X− (TrX)P ∈ [I, B(H)]. Now, by Theorem 2.2, if
X and hence Y are normal or, by [27], if I is geometrically stable, Y ∈ [I, B(H)] if
and only if λ(Y)a ∈ S(I). X can be represented as a 2× 2 block matrix where the
upper left block is upper triangular (and λ(X)1 lies in its (1, 1) position) and the
lower right block is quasinilpotent ([12], Proposition 2.1). Also it is known that
for compact upper triangular operators, the diagonal sequence is precisely the
eigenvalue sequence repeated by algebraic multiplicity. Therefore an eigenvalue
sequence of Y counting multiplicity is

〈λ(X)1 − TrX, λ(X)2, λ(X)3, . . .〉.
Thus a monotonization in modulus of this sequence is given by

λ(Y) =





〈λ(X)2, λ(X)3, . . . , λ(X)p, λ(X)1 − TrX, λ(X)p+1, . . .〉 for some p>1
if λ(X)1 6= TrX,

〈λ(X)2, λ(X)3, . . .〉 if λ(X)1 = TrX,

where for p = 1 we mean λ(Y) = 〈λ(X)1 − TrX, λ(X)2, λ(X)3, . . .〉. Then

n

∑
1

λ(Y)j =





n
∑
1

λ(X)j − TrX = −
∞
∑

n+1
λ(X)j if λ(X)1 6= TrX for n > p,

n+1
∑
2

λ(X)j = −
∞
∑

n+2
λ(X)j if λ(X)1 = TrX for n = 1, 2, . . ..

So, in either case, λ(Y)a ∈ S(I) if and only if λ(X)a∞ ∈ S(I).
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Now we can link the cones of positive operators (a∞ I)+ and (a I)+ to the
cone (F + [I, B(H)])+.

COROLLARY 6.2. Let I 6= {0} be an ideal.
(i) If ω /∈ Σ(I), then (F + [I, B(H)])+ = (a∞ I)+.

(ii) If ω ∈ Σ(I), then (F + [I, B(H)])+ = (a I)+.
(iii) (F + [I, B(H)])+ is hereditary (i.e., solid).

Proof. (i) By Proposition 5.5, (F+[I, B(H)])+⊂L+
1 and so by Proposition 6.1,

X ∈ (F + [I, B(H)])+ if and only if X ∈ (L1 ∩ I)+ and λ(X)a∞ ∈ Σ(I),

i.e., X ∈ (a∞ I)+.
(ii) That ω ∈ Σ(I) implies F ⊂ [I, B(H)] and [I, B(H)]+ = (a I)+ both follow

from Theorem 2.2 (see also its succeeding reformulation for positive operators).
(iii) This is immediate from (i) and (ii) since the positive cone of an ideal is

hereditary.

So, for instance, by combining (i) with the proof of Proposition 4.18(ii) one
obtains (F + [L1, B(H)])+ = (a∞(L1))+ = L(σ(log))+ (the positive cone of a
Lorentz ideal).

REMARK 6.3. (i) In Theorem 5.11(i) of [13] it is shown that |X :∈ [I, B(H)]
if and only if (X) ⊂ [I, B(H)]. The proof depends on [I, B(H)]+ = (a I)+ being
hereditary. By the same argument combined with Corollary 6.2(iii), it follows that

|X| ∈ F + [I, B(H)] if and only if (X) ⊂ F + [I, B(H)].

(ii) X ∈ [I, B(H)] implies |X| ∈ [I, B(H)] (respectively, if ω /∈ Σ(I), X ∈
F +[I, B(H)] implies |X| ∈ F +[I, B(H)]) if and only if I is am-stable (respectively,
I is am-∞ stable). The condition is sufficent: if I is am-stable (respectively, am-∞
stable), then [I, B(H)] = I (respectively, F + [I, B(H)] = I) is an ideal and for
ideals, containment of X and |X| are equivalent. The condition is necessary: for
every Y ∈ I and in particular for every Y ∈ I+,

Y⊕ (−Y) =
(

0 Y
0 0

) (
0 0
I 0

)
−

(
0 0
I 0

) (
0 Y
0 0

)
∈ [I, B(H)]

where H is identified with H ⊕ H and I is identified with M2(I), the set of 2× 2
matrices with entries in I. Thus by assumption |Y ⊕ (−Y)| = Y ⊕ Y ∈ [I, B(H)],
and Y ⊕ 0 ∈ [I, B(H)] for every Y ∈ I+ by hereditariness. Since every positive
X ∈ I is unitarily equivalent to Y ⊕ 0 + 0⊕ Z for some Y, Z ∈ I+, it follows that
I+ ⊂ [I, B(H)]+ = (a I)+. Thus I = Ia, i.e., I is am-stable. The same argument
shows that when ω /∈ Σ(I), if X ∈ F + [I, B(H)] implies |X| ∈ F + [I, B(H)], then
I+ ⊂ (F + [I, B(H)])+ = (a∞ I)+ by Corollary 6.2(i) and hence I is am-∞ stable.

(iii) Notice that the same 2× 2 matrix argument shows that I is the smallest
ideal containing [I, B(H)].



132 VICTOR KAFTAL AND GARY WEISS

PROPOSITION 6.4. For ideals I and J 6= {0} and arbitrary J, if ω /∈ Σ(I), then
the following are equivalent:

(i) dim J+[I,B(H)]
[I,B(H)] = 1.

(ii) J ⊂ F + [I, B(H)].
(iii) J ⊂ L1 and J ∩ [I, B(H)] = {X ∈ J : TrX = 0}.
(iv) J ⊂ a∞ I.

(iv’) J ⊂ L1 and Ja∞ ⊂ I.

Proof. (i) ⇔ (ii) Immediate from Lemma 5.2(ii) and the identity:

dim
J + [I, B(H)]

[I, B(H)]
= dim

J + [I, B(H)]
F + [I, B(H)]

+ dim
F + [I, B(H)]

[I, B(H)]
.

(ii)⇔ (iv) This follows from the equivalences J ⊂ F + [I, B(H)] if and only if
J+ ⊂ (F + [I, B(H)])+ = (a∞ I)+ by Corollary 6.2(i), if and only if J ⊂ a∞ I.

(iv) ⇔ (iv′) See Corollary 4.8(iii).
(ii) ⇒ (iii) J ⊂ L1 since (ii) implies (iv’), hence

J ∩ [I, B(H)] ⊂ {X ∈ J : TrX = 0}
follows from Lemma 5.2(i) without needing to invoke hypothesis (ii). For the
reverse inclusion, let X ∈ J and TrX = 0. By (ii), X − T ∈ [I, B(H)] for some
T ∈ F, hence Tr(X − T) = 0 by the previous inclusion, and therefore TrT = 0.
Then T ∈ [F, B(H)] ⊂ [I, B(H)] as seen in the proof of Lemma 5.2(ii), hence
X ∈ [I, B(H)] and thus (iii) holds.

(iii) ⇒ (ii) Let X ∈ J and let P be a rank one projection. But then Tr(X −
(TrX)P) = 0, hence X− (TrX)P ∈ [I, B(H)], and thus X ∈ F + [I, B(H)].

The equivalence of (iii) and (iv’) also follows from Theorem 5.11(iii) of [13].
A special case is when I = J is a principal ideal, and then Proposition 6.4

subsumes Corollary 5.19 of [13]. Another special case is when J = L1, i.e.,

L1 ∩ [I, B(H)] = {X ∈ L1 : TrX = 0} if and only if L1 =a∞ I (since a∞ I ⊂ L1),

which by Corollary 4.9(i) is equivalent to the condition se(ω) ⊂ I.
The analog below of Proposition 6.4 for the case when ω ∈ Σ(I) is simpler

and its proof is left to the reader. The equivalence of (iii) and (iii’) is a simple
consequence of the five chain of inclusions presented in Section 2.

PROPOSITION 6.5. For ideals I and J, if ω ∈ Σ(I), then the following conditions
are equivalent:

(i) dim J+[I,B(H)]
[I,B(H)] = 0.

(ii) J ⊂ [I, B(H)].
(iii) J ⊂ a I.

(iii’) Ja ⊂ I.

Proposition 6.1 and Corollary 6.2 allow us to characterize the ideals with
ω /∈ Σ(I) that support a unique trace up to scalar multiples.
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THEOREM 6.6. If I 6= {0} is an ideal where ω /∈ Σ(I), then the following are
equivalent:

(i) I supports a nonzero trace unique up to scalar multiples.
(ii) I ⊂ L1 and every trace on I is a scalar multiple of Tr.

(iii) dim I
[I,B(H)] = 1.

(iv) I = F + [I, B(H)].
(v) I ⊂ L1 and [I, B(H)] = {X ∈ I : Tr X = 0}.

(vi) I is am-∞ stable, i.e., I = a∞ I.

Proof. The equivalence of (iii)–(vi) is the case J = I in Proposition 6.4. The
equivalence of (i) and (iv) follows from the case J = F and τ = Tr in Propo-
sition 5.3 which provides both the existence of a nonsingular trace on I and the
condition for its uniqueness. Since a∞ I ⊂ L1, (i) and (vi) imply (ii) and (ii) trivially
implies (i).

REMARK 6.7. By the remarks following Definition 4.16, the largest am-∞
stable ideal is sta∞(L1), so by Theorem 6.6, it is the largest ideal not containing
(ω) that has a nonzero trace unique up to scalar multiples. We do not know
whether or not an ideal I containing (ω) can have a nonzero trace unique up to
scalar multiples. However, nonuniqueness for large classes of ideals containing
(ω) follows from Theorems 7.1, 7.2, Corollary 7.5, and Theorem 7.8.

As mentioned in the introduction, a principal ideal (ξ) supports no nonzero
trace precisely when ξ is regular. A similar characterization of the principal ideals
supporting a unique nonzero trace in terms of regularity at infinity was obtained in
Corollary 5.6 of [39]. It is also an immediate consequence of Theorem 6.6.

COROLLARY 6.8. Let ξ ∈ c∗o and ω /∈ Σ((ξ)). Then (ξ) supports a nonzero trace
unique up to scalar multiples if and only if ξ is ∞-regular.

As remarked after Definition 4.11, a sequence ξ ∈ (`1)∗ is ∞-regular pre-
cisely when (ξ) = (ξa∞) or, equivalently, ξa∞ = O(ξ) (see Theorem 4.12). More-
over, by Remark 6.7 such a sequence must be contained in Σ(sta∞(L1)) and hence

∞
∑

n=1
ξn logmn < ∞ for every m (see remarks succeeding Proposition 4.18).

7. INFINITE CODIMENSION

In this section we present some conditions under which [I, B(H)] has infi-
nite codimension in I. First notice that by setting I = J in the identity in the proof
of (i) ⇔ (ii) in Proposition 6.4, [I, B(H)] has minimal codimension in I precisely
when I = F + [I, B(H)].
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Thus if ω ∈ Σ(I), the codimension is zero precisely when I is am-stable
(Theorem 2.2), and if ω /∈ Σ(I), the codimension is one precisely when I is am-
∞ stable (Theorem 6.6). We conjecture that in all other cases, i.e., whenever I 6=
F + [I, B(H)], the codimension of [I, B(H)] in I is infinite, i.e., that

dim
I

[I, B(H)]
∈

{
{1, ∞} when ω /∈ Σ(I),
{0, ∞} when ω ∈ Σ(I).

In order to verify this conjecture for various classes of ideals, we depend on
the following result.

THEOREM 7.1. If I and J are ideals and seJ 6⊂ F + [I, B(H)] then J+[I,B(H)]
F+[I,B(H)] has

uncountable dimension.
In particular, if seI 6⊂ F + [I, B(H)] then I

[I,B(H)] has uncountable dimension.

Proof. Since seJ = span (seJ)+ and F + [I, B(H)] is a linear space, it follows
that (seJ)+ 6⊂ F + [I, B(H)]. Thus, let X ∈ (seJ)+ \ (F + [I, B(H)]) and let η =
s(X) be the sequence of s-numbers of X. Since X −UXU∗ ∈ [I, B(H)] for every
unitary U, diagη ∈ (seJ)+ \ (F + [I, B(H)]). By definition, η = o(ξ) for some
ξ ∈ Σ(J) and without loss of generality assume that η 6 ξ. Also, ηn > 0 for all
n since diagη /∈ F. Define ζ(t) := ξtη1−t for t ∈ [0, 1]. Then since ζ(t) ∈ c∗o and
ζ(t) 6 ξ, also ζ(t) ∈ Σ(J). We claim that for any choice of

0 = t0 < t1 < · · · < tN = 1

the cosets {diagζ(tj) + F + [I, B(H)]}N
j=0 are linearly independent in J+[I,B(H)]

F+[I,B(H)] .

Indeed, assuming otherwise, diag
(

ζ(tj) +
j−1
∑

i=0
λiζ(ti)

)
∈ F + [I, B(H)] for some

0 < j 6 N and some constants λi, i = 0, 1, . . . , j − 1. Since F + [I, B(H)] is
a selfadjoint linear space and ζ(ti) are real-valued sequences, one can choose

all λi to be real. Define ρ = ζ(tj) +
j−1
∑

i=0
λiζ(ti) and set χ = max(ρ, η). Since

ζ(ti) = o(ζ(tj)) for i = 0, 1, . . . , j − 1 and η = o(ζ(tj)), one has η = o(ρ), so
that χn = ρn for n large enough. Thus diag(ρ − χ) ∈ F and hence diagχ ∈
F + [I, B(H)]. Since χ > η and since (F + [I, B(H)])+ is hereditary by Corol-
lary 6.2(iii), it follows that diagη ∈ F + [I, B(H)], against the hypothesis. Thus the
cosets {diagζ(tj) + F + [I, B(H)]}N

j=0 are linearly independent and so J+[I,B(H)]
F+[I,B(H)]

has uncountable dimension. This implies of course that in case I = J, J+[I,B(H)]
[I,B(H)]

also has uncountable dimension.

Notice that the condition seJ 6⊂ F + [I, B(H)] is equivalent to

seJ 6⊂
{

a∞ I if ω /∈ Σ(I),

a I if ω ∈ Σ(I).
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Notice also that if L ⊂ J is any ideal for which (L + [I, B(H)])+ is hereditary,
Theorem 7.1 with the same proof remains valid if we substitute L + [I, B(H)] for
F + [I, B(H)].

In the following theorem, conditions (i) and (ii) are expressed in terms of
the am-stability (respectively, am-∞ stability) of seI. Recall from Propositions 3.4
and 4.20 that this is equivalent to the am-stability (respectively, am-∞ stability)
of scI. Recall also that sta(L1) is the smallest am-stable ideal and that sta∞(L1) is
the largest am-∞ stable ideal (Definition 4.16 and succeeding remarks).

THEOREM 7.2. Let I 6= {0} be an ideal. Then I
[I,B(H)] has uncountable dimension

if any of the following conditions hold:
(i) I ⊂ sta∞(L1) and seI is not am-∞ stable.

(ii) I ⊃ sta(L1) and seI is not am-stable.
(iii) I 6⊂ sta∞(L1) and I 6⊃ sta(L1).

Proof. (i) Since ω /∈ Σ(I) because sta∞(L1) ⊂ L1 by Proposition 4.20, seI 6⊂
F + [I, B(H)] and the conclusion follows from Theorem 7.1.

(ii) F ⊂ [I, B(H)] since ω ∈ Σ(I), and thus seI 6⊂ F + [I, B(H)], by Proposi-
tion 3.4, and the conclusion follows again from Theorem 7.1.

(iii) Assume first that ω /∈ Σ(I). As I 6⊂ sta∞(L1), one has scI 6⊂ sta∞(L1).
Since sta∞(L1) is the largest am-∞ ideal, scI is not am-∞ stable, hence by Propo-
sition 4.20, seI 6⊂ a∞ I, and so by Corollary 6.2(i), seI 6⊂ F + [I, B(H)].

Assume now that ω ∈ Σ(I). Since I 6⊃ sta(L1), one has seI 6⊃ sta(L1).
As sta(L1) is the smallest am-stable ideal, seI is not am-stable, hence by Proposi-
tion 3.4, seI 6⊂ [I, B(H)] = F + [I, B(H)].

In either case the result follows now from Theorem 7.1.

Theorem 7.2(ii),(iii) were motivated by an analysis of ideals of the form
I = se(ξa) + (ξ) when ξ is irregular and nonsummable.

We can extend the method of Theorem 7.2 in two directions.

COROLLARY 7.3. Let I 6= {0} be an ideal. Then I
[I,B(H)] has uncountable dimen-

sion if any of the following conditions hold:
(i) I 6⊃ sta(L1) and I ⊂ J but I 6⊂ sta∞(J) for some soft-complemented ideal J.

(ii) I 6⊂ sta∞(L1) and J ⊂ I but sta(J) 6⊂ I for some soft-edged ideal J.

Proof. (i) By Theorem 7.2(iii) it remains to consider the case that I⊂sta∞(L1).
Since I 6⊂ sta∞(J), then for some n > 0, I ⊂ an

∞ J but I 6⊂ an+1
∞

J. And since an
∞ J is

soft-complemented as well by Lemma 4.19(i), assume without loss of generality
that n = 0, i.e., I 6⊂ a∞ J. But then scI 6⊂ a∞ J while scI ⊂ J, hence a∞(scI) ⊂ a∞ J,
so scI is not am-∞ stable. Hence the conclusion follows from Theorem 7.2(i) and
Proposition 4.20.

(ii) By Theorem 7.2(iii) it remains to consider the case that I ⊃ sta(L1) and
that for some n > 0, Jan ⊂ I but Jan+1 6⊂ I. In particular, this implies that Jan 6⊂ L1
since otherwise sta(J) ⊂ sta(L1) ⊂ I against the hypothesis. Hence, since J is
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soft-edged, Jan too is soft-edged by Lemma 3.3(ii′). Thus Jan ⊂ seI, and hence
Jan+1 ⊂ (seI)a while Jan+1 6⊂ seI. This shows that seI is not am-stable and hence
the conclusion follows from Theorem 7.2(ii).

Using a method similar to the one employed in Theorem 7.2 and building
on Propositions 6.4 and 6.5 we obtain:

PROPOSITION 7.4. If I and J are nonzero ideals and if I is soft complemented or J
is soft-edged, then

dim
J + [I, B(H)]

[I, B(H)]
is

{
1 or uncountable if ω /∈ Σ(I),
0 or uncountable if ω ∈ Σ(I).

Proof. Assume that ω /∈ Σ(I). If dim J+[I,B(H)]
[I,B(H)] 6= 1, then by Proposition 6.4,

J 6⊂ a∞ I. If J is soft-edged, then seJ 6⊂ a∞ I. If I is soft-complemented, then
seJ ⊂ a∞ I would imply that J ⊂ scJ = sc(se(J)) ⊂ sc(a∞ I) = a∞(scI) = a∞ I
(see Lemma 4.19(i)). Thus, in either case seJ 6⊂ a∞ I, which by Proposition 6.4
is equivalent to seJ 6⊂ F + [I, B(H)]. Uncountable dimension then follows from
Theorem 7.1.

The case when ω ∈ Σ(I) (i.e., F ⊂ [I, B(H)]) follows similarly from Propo-
sition 6.5 and Lemma 3.3(i′).

A case of special interest is when I = J which, for soft-edged and soft-
complemented ideals, proves the codimension conjecture stated in the introduc-
tion.

COROLLARY 7.5. If I is a soft-edged or soft-complemented ideal, then

dim
I

[I, B(H)]
is

{
1 or uncountable if ω /∈ Σ(I),
0 or uncountable if ω ∈ Σ(I).

In particular, dim (ω)
[(ω),B(H)] is uncountable since ω is not regular.

Another case of interest is when I or J are the trace class L1, which is both
soft-edged and soft-complemented.

COROLLARY 7.6. Let I be a nonzero ideal. Then

(i) dim I+[L1,B(H)]
[L1,B(H)] is

{
1 if I ⊂ a∞(L1),
uncountable if I 6⊂ a∞(L1);

(ii) dim L1+[I,B(H)]
[I,B(H)] is





0 if ω ∈ Σ(I),
1 if ω ∈ Σ(scI) \ Σ(I),
uncountable if ω /∈ Σ(scI);

(iii) If ω /∈ Σ(I) then dim I
I∩L1+[I,B(H)] is

{
0 if I ⊂ L1,
uncountable if I 6⊂ L1.

In particular, if L1 6⊂ I, then there are uncountably many linearly independent
extensions of Tr from L1 to I.
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Proof. (i) Immediate from Propositions 7.4 and 6.4 (the equivalence of (i)
and (iv)) since ω /∈ Σ(L1).

(ii) Recall that L1 ⊂ [I, B(H)] if and only if ω ∈ Σ(I). If ω /∈ Σ(I), by
Proposition 6.4, dim L1+[I,B(H)]

[I,B(H)] = 1 when L1 ⊂ a∞ I, which by Corollary 4.9(i) is

equivalent to ω ∈ Σ(scI), and dim L1+[I,B(H)]
[I,B(H)] is uncountable otherwise.

(iii) First notice that if seI ⊂ I ∩L1 + [I, B(H)], then

(seI)+ ⊂ (I ∩L1 + [I, B(H)])+ = (I ∩L1)+ ⊂ L+
1

and hence seI ⊂ L1, where the equality follows from Proposition 5.5. Since L1
is soft-complemented, I ⊂ scI = sc(seI) ⊂ L1. Thus, if I 6⊂ L1, then it fol-
lows that seI 6⊂ I ∩L1 + [I, B(H)]. By the second remark following Theorem 7.1,
dim I

I∩L1+[I,B(H)] is uncountable. The particular case is then clear.

REMARK 7.7. Dixmier proved in [11] that the am-closure (η)− = a(ηa) of a
principal ideal (η) for which (η) ⊂ se(η)a (i.e., η = o(ηa), which is equivalent to
(ηa)2n
(ηa)n

→ 1
2 ) supports a positive singular trace. In Section 5.27 Remark 1 of [13] it

was noted that Dixmier’s construction can be used to show that dim (η)−
cl[(η)−,B(H)] =

∞ where cl denotes the closure in the principal ideal norm. Corollary 7.5 shows

that dim (η)−
[(η)−,B(H)] is uncountable follows from the weaker hypothesis ηa 6= O(η),

i.e., η is not regular. Indeed, by Theorem 5.20 of [13] (see also [19]), the principal

ideal (η) is not am-stable precisely when (η)− is not am-stable, i.e., dim (η)−
[(η)− ,B(H)]

> 0. In [20] we show that (η)− is always soft-complemented and so by Corol-

lary 7.5, dim (η)−
[(η)−,B(H)] is uncountable.

The condition in Theorem 7.2(ii) for [I, B(H)] to have infinite codimension
in I, namely that seI be not am-stable, is only sufficient. The next theorem presents
a class of ideals I with seI am-stable but dim I

[I,B(H)] = ∞. The technique used
does not depend on Theorem 7.1 nor on the method of its proof but is more com-
binatoric in nature. As indicated in Corollary 7.9, this technique can be used to
prove infinite codimension for a wider class of ideals.

THEOREM 7.8. For every am-stable principal ideal J 6= {0} there is an ideal I
with seJ ⊂ I ⊂ J for which dim I

[I,B(H)] = ∞, yet seI and hence scI are am-stable.

Proof. Choose a generator µ for Σ(J). Then µ is regular, i.e., µ ³ µa, and
hence nonsummable. Now construct a sequence ξ ∈ c∗o together with a strictly
increasing sequence of indices 〈pl〉l∈N for which: (i) ξ 6 µ, (ii) ξpl = 1

l µpl and
(iii) (ξa)pl > 1

2 (µa)pl . Set p1 = 1, ξ1 = µ1 and assume that p1 < · · · < pl and ξi
for 1 6 i 6 pl have been chosen so that (i)–(iii) hold. Define ξi := min{ξpl , µi}
for pl < i 6 pl+1 − 1 where pl+1 > pl , pl+1 > 3 is chosen large enough so that
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pl+1−1
∑

i=1
ξi > 3

4

pl+1−1
∑

i=1
µi, which is possible due to the nonsummability of µ. Define

ξpl+1 := 1
l+1 µpl+1 . Then

pl+1

∑
i=1

ξi > 3
4

pl+1−1

∑
i=1

µi > 1
2

pl+1

∑
i=1

µi,

the inequality following from
pl+1−1

∑
i=1

µi > 2µpl+1 . Therefore (i)–(iii) hold. Notice

that (ii), (iii) imply ξ 6³ ξa, i.e., ξ is irregular.
Define now I := seJ + (ξ). Since ξ 6 µ, one has (ξ) ⊂ (µ) = J and hence

seJ ⊂ I ⊂ J. Since J = scJ because principal ideals are soft-complemented [20],
seJ and J form a soft pair and hence scI = J and seI = seJ. Since J is am-stable,
so are seI and scI (see Remark 3.5).

Notice that µ /∈ `1 implies ω = o(µa) and hence ω ∈ Σ(seJ) ⊂ Σ(I). Condi-
tion (iii) implies that ξ /∈ `1.

The pair ξ, I has the following property which as we will show does imply
that dim I

[I,B(H)] = ∞: there is a strictly increasing sequence of indices 〈pl〉l∈N
such that for every χ ∈ Σ(I), ( χ

ξa
)mpl → 0 for some integer m ∈ N.

Indeed, for every χ ∈ Σ(I) there are α ∈ c∗o, M > 0 and m ∈ N for which
χ 6 αµ + MDmξ and so

(χ

ξa

)
mpl

6 (αµ)mpl + M(Dmξ)mpl

(ξa)mpl

6 αpl µpl +Mξpl

(ξa)mpl

by the monotonicity of α and µ and the definition of Dm

6m
αpl µpl + Mξpl

(ξa)pl

since (ξa)mpl > 1
m

(ξa)pl

62m
αpl µpl + M

l µpl

(µa)pl

by (ii) and (iii)

62m
(

αpl +
M
l

)
→ 0 since µa > µ.

We proceed now to prove that the codimension of [I, B(H)] is infinite. For
each positive integer N > 1 and 1 6 j 6 N, choose strictly increasing sequences
of indices m(j)

k < n(j)
k where for all k ∈ N:

(a) n(j)
k ∈ {pl} and when n(j)

k = pl then l > k.

(b)
n(j)

k
∑

i=m(j)
k

ξi > 3
m(j)

k
∑

i=1
ξi.

(c) m(j−1)
k = kn(j)

k + 1 for 2 6 j 6 N.
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(d) m(N)
k+1 = min{i : ξ

kn(1)
k

> Nξi}.

To construct the sequences m(j)
k and n(j)

k , start with m(N)
1 = 1 and choose

some integer n(N)
1 ∈ {pl} satisfying (b), which is possible since ξ /∈ `1. Then

set m(N−1)
1 = n(N)

1 + 1 according to (c). Alternating between (b) and (c), obtain

m(j)
1 , n(j)

1 for 1 6 j 6 N. Then choose m(N)
2 > n(1)

1 so to satisfy (d), which is
possible since ξ ∈ c∗o. Continue then the construction for k = 2 and so on. So for
each k,

m(N)
k < kn(N)

k < m(N−1)
k < kn(N−1)

k < · · · < m(1)
k < kn(1)

k < m(N)
k+1.

Then define N sequences η(j) ∈ c∗o by setting

(η(j))i :=





min(j, p)ξi if m(p)
k 6 i 6 kn(p)

k for 1 6 p 6 N,

min(ξ
kn(1)

k
, jξi) if kn(1)

k < i < m(N)
k+1.

Thus ξ = η(1) 6 η(2) 6 · · · 6 η(N) and η(j) 6 jξ so that η(j) ∈ Σ(I) for every
1 6 j 6 N.

To illustrate this construction, the following figure provides a continuous
analog of the sequences η(1), η(2) and η(3) for the case N = 3.

FIGURE 1. Continuous analog of the sequences for the case N = 3
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To prove that the cosets diag(η(j)) + [I, B(H)] are linearly independent, sup-

pose diag
N
∑

j=1
λjη

(j) ∈ [I, B(H)] for some 〈λj〉 ∈ CN . Since [I, B(H)] is selfadjoint

and the sequences η(j) are real-valued, one can assume without loss of gener-

ality that 〈λj〉 ∈ RN . Define ζ :=
N
∑

j=1
λjη

(j), βp :=
N
∑

j=p
λj for 1 6 p 6 N,

γ1 := 0, and γp :=
p−1
∑

j=1
jλj for 2 6 p 6 N. A direct computation shows that

ζ1 = (γN + NβN)ξ1 and that

ζi =





(γp+pβp)ξi if m(p)
k 6 i 6 kn(p)

k for 1 6 p 6 N,

γpξi+βpξ
kn(1)

k
if kn(1)

k < i<m(N)
k+1 and (p− 1)ξi 6ξ

kn(1)
k

< pξi for 26 p6 N.

Setting γ = max |γp + pβp|, we claim that |ζi| 6 γξi for every i. When m(p)
k 6

i 6 km(p)
k for some k > 1 and some 1 6 p 6 N, then it follows that |ζi| =

|γp + pβp|ξi 6 γξi. And if kn(1)
k < i < m(N)

k+1 and (p − 1)ξi 6 ξ
kn(1)

k
< pξi for

some k > 1 and some 2 6 p 6 N, then ζi = γpξi + βpξ
kn(1)

k
. Assuming that

ζi > 0, one has

0 6 ζi 6
{

(γp + pβp)ξi if βp > 0,
(γp + (p− 1)βp)ξi = (γp−1 + (p− 1)βp−1)ξi if βp < 0.

In either case, ζi 6 γξi. In the case that ζi < 0, the same argument can be applied
to −ζi to obtain the claim.

The crux of the proof is to show that γ = 0, whence an elementary compu-
tation will show that the linear system of the N equations γp + pβp = 0 has only
the trivial solution λ1 = λ2 = · · · = λN = 0, i.e., the N cosets are linear indepen-
dent. To prove that γ = 0, first choose 1 6 r 6 N for which γ = |γr + rβr|. Then
for every m(r)

k 6 n 6 kn(r)
k and every n′ > n, one has |ζn′ | 6 γξn′ 6 γξn = |ζn|.

This implies that if π : N → N is an injection for which |ζπ | is monotone non-
increasing, then {ζi : i = m(r)

k , . . . , n} ⊂ {ζπ(i) : i = 1, 2, . . . , n}. Define the
set

Λn := {π(i) : i = 1, 2, . . . , n} \ {m(r)
k , . . . , n}.

Then cardΛn = m(r)
k − 1 and, from the monotonicity of ξ and since |ζi| 6 γξi for

every i,

∣∣∣
n

∑
i=1

ζπ(i)

∣∣∣ =
∣∣∣

n

∑
i=m(r)

k

ζi + ∑
i∈Λn

ζi

∣∣∣ >
∣∣∣

n

∑
i=m(r)

k

ζi

∣∣∣− ∑
i∈Λn

|ζi|
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= γ
n

∑
i=m(r)

k

ξi− ∑
i∈Λn

|ζi|>γ
( n

∑
i=m(r)

k

ξi− ∑
i∈Λn

ξi

)
>γ

( n

∑
i=m(r)

k

ξi−
m(r)

k −1

∑
i=1

ξi

)
.

If additionally n(r)
k 6 n 6 kn(r)

k , then combining this with the inequality in (b)

yields that
∣∣∣

n
∑
1

ζπ(i)

∣∣∣ > γ
2

n
∑
1

ξi, that is, |((ζπ)a)n| > γ
2 (ξa)n. The assumption that

diagζ ∈ [I, B(H)] implies, by Theorem 2.2, that |(ζπ)a| 6 ρ for some ρ ∈ Σ(I).
But then, by the first part of this proof, there exists an m ∈ N for which

( ρ
ξa

)
mpl

→
0. As

( ρ
ξa

)
mn(r)

k
> γ

2 for all k > m and as n(r)
k ∈ {pl}, it follows that γ = 0, which

concludes the proof.

In contrast to the other results on codimension in this paper, the proof of
Theorem 7.8 does not seem to yield uncountable codimension.

COROLLARY 7.9. The second part of the proof of Theorem 7.8 shows that its con-
clusion holds for a larger class: if I is an ideal for which there exists a nonsummable
sequence ξ ∈ Σ(I) and a monotone sequence of indices {pl} so that for every χ ∈ Σ(I)
there is an associated m ∈ N for which

( χ
ξa

)
mpl

→ 0, then dim I
[I,B(H)] = ∞.
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