THE FUGLEDE COMMUTATIVITY THEOREM MODULO OPERATOR IDEALS

GARY WEISS

Abstract

Let \boldsymbol{H} denote a separable, infinite-dimensional complex Hilbert space. A two-sided ideal I of operators on H possesses the generalized Fuglede property (GFP) if, for every normal operator N and every $X \in L(H), N X-X N \in I$ implies $N^{*} X-X N^{*} \in I$. Fuglede's Theorem says that $I=\{0\}$ has the GFP. It is known that the class of compact operators and the class of Hilbert-Schmidt operators have the GFP.

We prove that the class of finite rank operators and the Schatten p-classes for $0<p<1$ fail to have the GFP. The operator we use as an example in the case of the Schatten p-classes is multiplication by $z+w$ on L^{2} of the torus.

Introduction. Let H denote a separable, infinite-dimensional complex Hilbert space. Let $L(H) \supset K(H) \supset C_{p} \supset F(H)(0<p<\infty)$ denote, respectively, the class of all bounded linear operators, the class of compact operators, the Schatten p-class, and the class of finite rank operators on H. All operators herein are assumed to be linear and bounded. Let $\|\cdot\|_{p}$ denote the C_{p}-norm.

Let I be any two-sided ideal in $L(H)$ (every ideal herein is assumed to be two-sided). It is well known that if $I \neq\{0\}$ or $L(H)$, then $K(H) \supset I \supset F(H)$.

Definition. The ideal I is said to possess the generalized Fuglede property (GFP) if, for every normal operator N and every bounded operator X, we have $N X-X N$ $\in I$ implies $N^{*} X-X N^{*} \in I$ (i.e., $N X=X N$ modulo I implies $N^{*} X=X N^{*}$ modulo I).

Fuglede's Theorem essentially states that $I=\{0\}$ has the GFP [1].
There is a connection between the GFP for C_{1} (which is not known to hold true) and a possible generalization of the trace result [5, Question 3]. Namely, if N is a normal operator and X is a compact operator such that $N X-X N \in C_{1}$, must $\operatorname{trace}(N X-X N)=0$?

If C_{1} possessed the GFP, then the answer to this question would be yes. The proof is the same as the proof for the well-known fact that if S is a selfadjoint operator and X is a compact operator then $S X-X S \in C_{1}$ implies $\operatorname{trace}(S X-X S)=0$ (cf. [8, p. 279, Lemma 1.3]). Say $T=N X-X N \in C_{1}$. If C_{1} possessed the GFP, then $S=N^{*} X-X N^{*} \in C_{1}$. Hence $-S^{*}=N X^{*}-X^{*} N \in$ C_{1} and $T-S^{*}=N\left(X+X^{*}\right)-\left(X+X^{*}\right) N$ and $T+S^{*}=N\left(X-X^{*}\right)-$ $\left(X-X^{*}\right) N$. But $X+X^{*}$ and $X-X^{*}$ are scalar multiples of compact, selfadjoint

[^0]Key words and phrases. Commutator, normal operator, normal derivation, operator ideal, Fuglede property, Schatten p-norms.
operators. By the spectral theorem they are diagonalizable. By a computation the above commutators must have trace 0 . Therefore

$$
\operatorname{trace}\left(T-S^{*}\right)=\operatorname{trace}\left(T+S^{*}\right)=0
$$

Hence trace $T=0$.
With these remarks, we pose the following questions:

1. Does C_{1} possess the GFP?
2. If N is normal and X is compact, does $N X-X N \in C_{1}$ imply $\operatorname{trace}(N X-X N)=0$?
3. Are there any ideals in $L(H)$ other than $\{0\}, C_{2}$ and $K(H)$ that possess the GFP?

Some positive results. Let $|T|$ denote $\sqrt{T^{*} T}$.
The first interesting observation is that if I is any ideal and N is normal and $X \in L(H)$, then $|N X|=\left|N^{*} X\right|$. This is a trivial computation. In fact, if N is hyponormal, then $|N X| \geqslant\left|N^{*} X\right|$. From this we get N hyponormal implies $N X \in I$ $\Rightarrow N^{*} X \in I$. Furthermore if N is normal and I is a normed ideal where $\|T\|_{I}=$ $\||T|\|_{I}$ for all $T \in I$, then $\|N X\|_{I}=\left\|N^{*} X\right\|_{I}$. The same holds for $X N$ and $X N^{*}$.

The compacts $K(H)$ have the GFP. This is clear by applying Fuglede's Theorem to the Calkin algebra.

The Class C_{2} has the GFP [6, Theorem 1]. (For another proof use Voiculescu's Theorem [3].)

The Putnam generalization of Fuglede's Theorem [2] applies to the GFP. That is any ideal I has the GFP if and only if for every two normal operators N_{1}, N_{2} and $X \in L(H), N_{1} X-X N_{2} \in I$ implies $N_{1} X-X N_{2} \in I$. This is proved in an analogous way to the well-known proof of Putnam's generalization [2] using a 2×2 matrix trick due to S. K. Berberian [7].

The counterexamples.

Theorem 1. The class of finite rank operators $F(H)$ does not possess the GFP.
Proof. By the previous remark, it suffices to produce two trace class diagonal operators D_{1}, D_{2} and a Hilbert-Schmidt operator X such that the rank of $D_{1} X-$ $X D_{2}$ is 1 , but the rank of $D_{1}^{*} X-X D_{2}^{*}$ is infinite.

Let D_{1} denote the diagonal matrix with diagonal entries $1 / 2,1 / 4,1 / 8, \ldots$ Clearly, $D_{1} \in C_{1}$. Formally let D_{2} denote the diagonal matrix with diagonal entries z_{1}, z_{2}, \ldots and $X_{1}=\left(x_{i j}\right)$ where $x_{i j}=4^{-(i+j)}\left(2^{-i}-z_{j}\right)^{-1}$. We shall choose the sequence $\left(z_{n}\right)$ inductively to satisfy several conditions. First of all, we want to be sure that $\left|2^{-i}-z_{j}\right|$ is large enough to insure that $X_{1} \in C_{2}$, that is, $x_{i j}$ is square summable. Secondly, we need to be sure that $\left|z_{n}\right|$ is small enough to insure that $D_{2} \in C_{1}$.

In the first place, if we can choose $\left(z_{n}\right)$ to be in the closed, left half-plane, then $\left|2^{-i}-z_{j}\right| \geqslant 2^{-i}$, and so $\left|x_{i j}\right| \leqslant 4^{-(i+j)} 2^{i}=2^{-i} 4^{-j}$ which is square summable.

In the second place, we can insure that $D_{2} \in C_{1}$ if we can choose (z_{n}) such that $\left|z_{n}\right| \leqslant 2^{-n}$.

In regard to the rank requirements on $D_{1} X_{1}-X_{1} D_{2}$ and $D_{1}^{*} X_{1}-X_{1} D_{2}^{*}$, note that

$$
\left(D_{1} X_{1}-X_{1} D_{2}\right)(i, j)=\left(2^{-i}-z_{j}\right) 4^{-(i+j)}\left(2^{-i}-z_{j}\right)^{-1}=4^{-(i+j)}
$$

and so the range of $D_{1} X_{1}-X_{1} D_{2}$ is the 1-dimensional subspace spanned by the vector $(1,1 / 4,1 / 16, \ldots)$. Therefore, since

$$
\left(D_{1}^{*} X_{1}-X_{1} D_{2}^{*}\right)(i, j)=4^{-(i+j)}\left(\left(2^{-i}-\bar{z}_{j}\right) /\left(2^{-i}-z_{j}\right)\right),
$$

it is clear that $D_{1}^{*} X_{1}-X_{1} D_{2}^{*}$ has an infinite-dimensional range provided that we choose the sequence (z_{n}) with one additional property. That is, for each positive integer N, the N vectors given by $4^{-(i+j)}\left(\left(2^{-i}-\bar{z}_{j}\right) /\left(2^{-i}-z_{j}\right)\right)_{i=1}^{\infty}$ for $1 \leqslant j \leqslant N$ form a linearly independent set. Clearly, for this to hold, it is sufficient that these N vectors be linearly independent in the first N coordinates. Equivalently, it is sufficient to show that the determinant of the corresponding $N \times N$ matrix be nonzero; that is, it suffices to prove that there exists a sequence $\left(z_{n}\right)$ in the closed left half-plane for which $\left|z_{n}\right|<2^{-n}$ for every n and for which

$$
\operatorname{det}\left(4^{-(i+j)}\left(\left(2^{-i}-\bar{z}_{j}\right) /\left(2^{-i}-z_{j}\right)\right)\right)_{i, j=1}^{N} \neq 0
$$

for every N. We prove this by induction.
Let $z_{1}=0$. Then the case $N=1$ is trivial. (Observe that $N=2$ means $\operatorname{dim} H=$ 4; it is curious to note and easy to prove that if $\operatorname{dim} H=3$ then $\operatorname{rank}(D X-X D)$ $=\operatorname{rank}\left(D^{*} X-X D^{*}\right)$.)

Assume $\left\langle z_{n}\right\rangle_{n=1}^{N}$ has been chosen to satisfy the induction hypothesis. Let z_{N+1} denote the free complex variable which ranges over the intersection of the open, left half-plane and the open disc $\left[|z|<2^{-(N+1)}\right]$. Then

$$
\begin{aligned}
f\left(z_{N+1}, \bar{z}_{N+1}\right) & =\operatorname{det}\left(4^{-(i+j)}\left(\left(2^{-i}-\bar{z}_{j}\right) /\left(2^{-i}-z_{j}\right)\right)\right)_{i, j=1}^{N+1} \\
& =\sum_{i=1}^{N+1}(-1)^{N+1-i} D_{i} 4^{-(i+N+1)}\left(\left(2^{-i}-\bar{z}_{N+1}\right) /\left(2^{-i}-z_{N+1}\right)\right)
\end{aligned}
$$

where D_{i} is the subdeterminant of the $(i, N+1)$ entry which is

$$
4^{-(i+N+1)}\left(\left(2^{-i}-\bar{z}_{N+1}\right) /\left(2^{-i}-z_{N+1}\right)\right)
$$

Clearly, by inspection and the induction hypothesis,

$$
D_{N+1}=\operatorname{det}\left(4^{-(i+j)}\left(\left(2^{-i}-\bar{z}_{j}\right) /\left(2^{-i}-z_{j}\right)\right)\right)_{i, j=1}^{N} \neq 0,
$$

and we will use this fact presently. If we let $a_{i}=(-1)^{N+1-i} D_{i} 4^{-(i+N+1)}$ and $z=z_{N+1}$, then it suffices to show that there exists a z contained in the intersection of the open, left half-plane and the open disc $\left[|z|<2^{-(N+1)}\right]$ such that

$$
f(z, \bar{z})=\sum_{i=1}^{N+1} a_{i}\left(\left(2^{-i}-\bar{z}\right) /\left(2^{-i}-z\right)\right) \neq 0
$$

To see that such a complex number z exists, suppose to the contrary that $f(z, \bar{z})=0$ in this region. Taking the \bar{z} derivative of both sides of this equation, we obtain $0=f_{\bar{z}}(z, \bar{z})=\sum_{i=1}^{N+1}-a_{i} /\left(2^{-i}-z\right)$, for every z in this region. However,
$a_{N+1}=D_{N+1} 4^{-2(N+1)} \neq 0$ and so $f_{\bar{z}}(z, \bar{z})=\sum_{i=1}^{N+1}-a_{i} /\left(2^{-i}-z\right)$ becomes unbounded in the open disc $\left[|z|<2^{-(N+1)}\right]$ near the point $z=2^{-(N+1)}$. Therefore, $f_{\bar{z}}(z, \bar{z})$ is not identically 0 in this open disc. But since $f_{\bar{z}}(z, \bar{z})=0$ throughout the intersection of the open, left half-plane and the open disc, we must have that $f_{\bar{z}}(z, \bar{z})$ is identically 0 in this open disc, which is a contradiction. Q.E.D.

We now present the result of the Schatten p-classes. Let T^{2} denote the torus.
Theorem 2. The classes C_{p}, for $0<p<1$, do not possess the GFP. In fact, if $N=M_{z+w}$ acting on $L^{2}\left(T^{2}\right)$, then for each $0<p<1$, there exists $X \in C_{p}$ such that $N X-X N \in C_{p}$ and yet $N^{*} X-X N^{*} \notin C_{p}$.

Proof. It is well known that $\left\{z^{i} w^{j}\right\}_{i, j--\infty}^{\infty}$ is an orthonormal basis for $L^{2}\left(T^{2}\right)$. In this basis, the matrix of M_{z+w} is $N=U \otimes I+I \otimes U$, where U denotes the bilateral shift. Therefore the matrix of M_{z+w} has nonzero blocks on the diagonal and lower diagonal, with all other blocks 0 . The diagonal blocks are bilateral shifts and the lower diagonal blocks are the identity I.

We choose X to look exactly the same as M_{z+w} except that the diagonal blocks will be weighted shifts and the lower diagonal blocks will be diagonal matrices. Let $y_{i j}$ denote the entries of the j th diagonal block weighted shift, where $y_{i j}$ is the i th weight on its lower diagonal (i.e. in the $(i, i-1)$ position). In the j th lower diagonal block (in the j th block row) let $x_{i j}$ denote the i th diagonal entry (i.e. in the (i, i) position).

By computing the matrix entries of the commutators $N X-X N$ and $N^{*} X-$ $X N^{*}$ we obtain

$$
\begin{aligned}
\|N X-X N\|_{p}^{p} \leqslant & \sum_{i, j}\left|x_{i j}-x_{i j-1}\right|^{p}+\left|y_{i j}-y_{i-1 j}\right|^{p} \\
& +\left|\left(x_{i j}-x_{i-1 j}\right)-\left(y_{i j}-y_{i j-1}\right)\right|^{p}
\end{aligned}
$$

and

$$
\left\|N^{*} X-X N^{*}\right\|_{p}^{p} \geqslant \sum_{i, j}\left|x_{i j}-x_{i-1 j}\right|^{p} .
$$

To accomplish that $\|N X-X N\|_{p}<\infty$ and $\left\|N^{*} X-X N^{*}\right\|_{p}=\infty$, it clearly suffices to obtain $x_{i j}, y_{i j}$ uniformly bounded, doubly indexed sequences (which insures that $X \in L(H \otimes H)$) such that
(1) $\Sigma_{i, j}\left|x_{i j}-x_{i j-1}\right|^{p}<\infty$,
(2) $\sum_{i, j}\left|y_{i j}-y_{i-1 j}\right|^{p}<\infty$,
(3) $\sum_{i, j}\left|\left(x_{i j}-x_{i-1 j}\right)-\left(y_{i j}-y_{i j-1}\right)\right|^{p}<\infty$,
(4) $\sum_{i, j}\left|x_{i j}-x_{i-1}\right|^{p}=\infty$.

We shall construct matrix arrays for $\left(x_{i j}\right)$ and $\left(y_{i j}\right)$ by taking the direct sums of finite arrays. Let $a_{n} A_{n}$ and $b_{n} B_{n}$ denote the square finite matrix arrays to be constructed. The scalars a_{n}, b_{n} represent positive numbers we shall choose in order to guarantee that the entires of $\Sigma \oplus a_{n} A_{n}$ and $\Sigma \oplus b_{n} B_{n}$ remain uniformly bounded (to insure that X be a bounded operator) and also to guarantee that they
satisfy conditions (1)-(4). Choose A_{n} and B_{n} to be the matrix arrays

A_{n}			B_{n}	
0000	00	000	0	00
011	10	012	-	$n 0$
0222	20	012		$n \quad 0$
0333		012		$n \quad 0$
- . -	- .	-••	-	. . .
- . - .	- .	-••
- . . .	- .	- . \cdot		
$0 \times n n$	$n 0$	012		$n 0$
0000	00	000		00

For convenience, let (1)-(4) also denote the corresponding sums in conditions (1)-(4). Let us investigate how (1)-(4) act on A_{n}, B_{n} where $\left(x_{i j}\right)$ is A_{n} and ($y_{i j}$) is B_{n} (considering them as two-way infinite arrays by extending them to have all other entries 0). By computing quantities (1)-(4) we see that

$$
\begin{aligned}
& (1)=(2)=2 \sum_{k=1}^{n} k^{p}<2 n \cdot n^{p}=2 n^{p+1}, \\
& (3)=2 \cdot n \cdot n^{p}=2 n^{p+1}, \\
& (4)=\sum_{n^{2} \text { times }} 1+n \cdot n^{p} \geqslant n^{2} .
\end{aligned}
$$

In other words, (1), (2) and (3) applied to A_{n}, B_{n} have orders of magnitude of n^{p+1}, whereas (3) grows with an order of magnitude of n^{2}. The clincher is that $p+1<2$ (since $p<1$). Set $a_{n}=1 / n^{3 / 2}=b_{n}$. Clearly $a_{n}, b_{n} \leqslant 1 / n$ and so the entries of $a_{n} A_{n}$ and $b_{n} B_{n}$ are all less than or equal to 1 . Furthermore, applying (1)-(4) to $a_{n} A_{n}$ and $b_{n} B_{n}$ we obtain
(1) $<\left(1 / n^{3 / 2}\right)^{2} \cdot 2 n^{p+1}=2 / n^{2-p}$ and similarly,
(2) $\leqslant 2 / n^{2-p}$,
(3) $\leqslant 2 / n^{2-p}$,
(4) $\geqslant n^{2} / n^{3} \geqslant 1 / n$.

Now take ($x_{i j}$) to be the two-way infinite matrix array $\Sigma \oplus a_{n} A_{n}$ and ($y_{i j}$) to be $\Sigma \oplus b_{n} B_{n}$. However here we must just consider $a_{n} A_{n}$ and $b_{n} B_{n}$ as finite blocks surrounded by enough zeros so that when "pasted" together in the matrix they do not overlap and so (1)-(4) remain as before. The quantities (1)-(4) applied to $\Sigma \oplus a_{n} A_{n}$ and $\Sigma \oplus b_{n} B_{n}$ are simply the sum of the corresponding quantities (1)-(4) respectively, applied to $a_{n} A_{n}, b_{n} B_{n}$. This is because the sums (1)-(4) act independently on each finite block array in $\Sigma \bigoplus a_{n} A_{n}$ and $\Sigma \bigoplus b_{n} B_{n}$. Hence since
$2-p>1$, we have

$$
\begin{gathered}
(1) \leqslant \Sigma \frac{2}{n^{2-p}}<\infty, \quad(2) \leqslant \Sigma \frac{2}{n^{2-p}}<\infty, \\
(3) \leqslant \Sigma \frac{2}{n^{2-p}}<\infty, \quad(4) \geqslant \Sigma \frac{1}{n}=\infty . \quad \text { Q.E.D. }
\end{gathered}
$$

Remark. These investigations have led to another kind of possible generalization of Fuglede's Theorem. Namely, let $\left\langle M_{k}\right\rangle$ and $\left\langle N_{k}\right\rangle$ be commuting sequences of normal operators (i.e., $M_{k} M_{j}=M_{j} M_{k}$ and $N_{k} N_{j}=N_{j} N_{k}$). Let $X \in L(H)$. The question is: Does $\sum_{k=1}^{N} M_{k} X N_{k}=0$ imply $\sum_{k=1}^{N} M_{k}^{*} X N_{k}^{*}=0$? Also if $\Sigma\left\|M_{k}\right\|\left\|N_{k}\right\|<\infty$, does $\Sigma_{1}^{\infty} M_{k} X N_{k}=0$ imply $\Sigma_{1}^{\infty} M_{k}^{*} X N_{k}^{*}=0$? Also are the corresponding statements true modulo the Hilbert-Schmidt class?

Thus far we know easily that all answers are yes when all normal operators are diagonalizable, and C . Apostol settled the questions in the affirmative in the case $N=2$ using [6].

References

1. B. A. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 35-40.
2. C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Math. und ihrer Grenzgebiete, Band 36, Springer-Verlag, New York, 1967.
3. D. Voiculescu, Some results on norm ideal perturbations of Hilbert space operators, J. Operator Theory 2 (1979), 3-37.
4. G. Weiss, Commutators and operator ideals, Chapter 2, Dissertation, Univ. of Michigan, 1975.
5. \qquad , The Fuglede Commutativity Theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. I, Trans. Amer. Math. Soc. 246 (1978), 193-209.
6. \qquad , The Fuglede Commutativity Theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. II, J. Operator Theory (to appear).
7. S. K. Berberian, Note on a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc. 10 (1959), 175-182.
8. B. Helton and R. Howe, Traces of commutators of integral operators, Acta Math. 135 (1975), 279.

Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221

[^0]: Received by the editors February 13, 1980 and, in revised form, May 19, 1980 and August 27, 1980. 1980 Mathematics Subject Classification. Primary 47A30, 47B05, 47B10, 47B15, 47B47; Secondary 47A55, 47A05, 47D25.

