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Introduction.

The study of the two—sided ideals of the algebra, B(H), of bounded operators on separable,
infinite dimensional, complex Hilbert space, H, was initiated by von Neumann and Calkin [6].
Calkin showed that the smallest nonzero ideal is the set of finite rank operators, denoted &,
that the largest proper ideal is the set of compact operators, denoted K, and that every ideal,

Z, of B(H) is characterized by its characteristic set, which is
s(I) = {(An(1)p2i [ T €Z, T > 0},

where Ay (T) > A2(T) > --- is the sequence of nonzero eigenvalues of T, listed according to
multiplicity. (If there are only finitely many nonzero eigenvalues, then (A, (7))52, is allowed
to have a tail of zeros.) Moreover, by [6], every suitable set of nonincreasing, non—negative
sequences is the characteristic set of some ideal of B(H); (this characterization is repeated
as Theorem 1.1 below). Note that the characteristic set of J is the set of all eventually
zero, nonincreasing, non—negative sequences and the characteristic set of XK is the set of all
nonincreasing, non—negative sequences tending to zero. Thus, loosely speaking, ideals are
classified in terms of the rates of fall-off of the spectra of their positive elements.

Proper, nonzero, two—sided ideals of B(H) are also called operator ideals, and have been
widely studied. We seek to understand properties of additive commutators, [A, B] = AB— BA,
of elements from ideals of B(H). More particularly, this paper is about commutators and

commutator spaces. If Z and J are ideals of B(H), then denote

C(T,T) = {[A,B] | A€ T, BeJ)
Cn(Z,j):C(Z,j)+---—|—C(I,j)

~
n times

1Z,7]= | Cu(Z, 7).

n>1

We call [Z, J] the (Z, J)-commutator space. There are some known results about these classes,
especially for the Schatten ideals, C,, (whose characteristic set consists of the p-summable,
non-negative, nonincreasing sequences). A proof in Pearcy and Topping [11] (cf. [4]) shows
that, for 1 < p < oo,

[Cp, B(H)] = [Cap, Cap] = Cp.

As is well known, there is a trace on Cy, denoted Tr : C; — C and given by Tr(A) =
E;Oa(Afj,fj), where (£;)%2, is any orthonormal basis for J. J.H. Anderson showed [2]
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that for 0 < p < 1,
[va B(J{)] = [C2pvc2p] = Cga

where Cg is the kernel of the trace on C,. The case of the trace—class operators, i.e. when
p = 1, exhibits remarkable behavior. The first sign of this was [16], (see also [17]): while it is
clear that [C1, B(H)] C [C2,C2] C CY, Weiss proved a result implying that

e
[62762]

has uncountable dimension. Kalton [10] later showed that [Cy, B(H)] = [C3,C2] and found
a characterization of this set in terms of eigenvalues. More precisely, if T € C; has (A;)32,
for nonzero eigenvalues, listed according to algebraic multiplicity and arranged in order of

nonincreasing absolute value, then T € [Cy, B(H)] if and only if the arithmetic mean sequence
A+ AN
n n=1

In §2, we show for every pair, Z, J, of proper ideals of B(H), that

is summable. (See also 5.1.)

[Z,7]=[17, B(H)],

where Z.J is the ideal ZJ = span{AB | A € Z, B € J}; (note that ZJ = JZ). We
also completely characterize [Z, B(H)] with a criterion analogous to Kalton’s as follows: if
T =T*¢€Zthen T €[Z, B(H)] if and only if
(|/\1 + -+ /\n|)oo
n n=1
belongs to the characteristic set of 7, where Ay, Aq, ... are the eigenvalues of T listed according
to multiplicity and such that [A{| > |As| > ---. To see that this characterizes [Z, B(H)], note
that A € [Z, B(H)] if and only if A* € [Z, B(H)], so that

A4+ A A— A*
2 7%

A € [Z,B(H)] € [Z, B(H)];

thus A is a finite sum of (Z, B(H))-commutators if and only if the arithmetic mean sequence
of the eigenvalues (listed according to multiplicity and in order of decreasing absolute value)
of each of its real and imaginary parts is in the characteristic set of I.

It is a natural question, for a particular operator ideal Z or for general such: how many

commutators are needed? More precisely, what is the least n € N, if any, such that [Z, B(H)] =
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Cn(Z,B(H))? Kalton [10] showed [Cy, B(H)] = Cg(Cy, B(H)). In §3, in addition to several

more specialized results, we show for a general operator ideal 7 that
[Z, B(})] = C3(Z, B(H))

and in §4 we exhibit examples where [Z, B(H)] # C1(Z, B(X)).
It is also interesting to study the set, C'(Z, B(H)), of single commutators. Here, much

less is known. Anderson [1] showed that
Vp>1  C(Cyp, B(H)) 2C,

and, letting C, @ 0, denote the set of elements of C,, having an infinite dimensional reducing

subspace on which it is zero, that for p > 0, if ¢, > 2p and if % + % < % then
C(Cq,Cr) 2Cp B 0.

Brown [5] showed that this is sharp by proving if ¢, > 0 and if % + % > % then
C(CyrC)NT=9°

where F° denotes the finite rank operators having zero trace.

In §4, we obtain additional results about single commutators. For example, we show that
C(Cqy B(F)) =C,y

whenever 2 < ¢ < oo, but that
C(Cq, B(F)) # €y

whenever 0 < ¢ < 2.
81. Sequences and characteristic sets.

In this section, we recall Calkin’s classification of operator ideals in terms of characteristic
sets, and we prove a few results about sequences. While the ideas of Calkin’s classification
underly the whole of this paper, the results about sequences will not be needed until §4.

By i we denote the set of all sequences, A = (X,)

> 1, of non—negative, real numbers

such that Vn A, > A,41 and lim, o Ay, = 0.
For an operator A € B(H), the s—numbers (cf. [9]) of A are denoted

s1(A) > s2(A) > -+,
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and are defined by
5,(A) = min{||AE*|| | E is a projection in K of rank n — 1},

where F+ = 1— F is the projection onto the orthogonal complement of FH. (Throughout this
paper, “projection” always means a self-adjoint idempotent.) Thus s;(A) = ||A||; moreover
A is compact if and only if its s—numbers tend to zero. For a compact operator A, we write
5(A) = (5,(A)%%, € ¢f™. The s—numbers of a positive, compact operator, A, are just the
nonzero eigenvalues of A listed in nonincreasing order; (but if rank(A) < oo then s,(A4) =0
for n > rank(A)). Hence, using the polar decomposition, it is seen that the characteristic set

of an operator ideal 7 is just
S(T) = {s(A) | A € T} C ™.
If A, p € it where A = (X)), and p = (,,)2, then we define

n=1

Aean:(/\l,...,Al,AQ,---a/\Za"')

-~

n times n times

A p= (A4 pa, A+ pa, - 0)

w< Xif Vo p, < A,.

The next theorem follows directly from Calkin’s characterization [6] and was formulated

in [8].

Theorem 1.1. A subset & of ¢t is the characteristic set of an operator ideal if and only if
the following conditions are satisfied:
(i) A€ & implies A& X € &;
(i) A\, p € & implies A+ u € &;
(iii) A€ &, pecdt and u < X implies p € S.

For A = (1,)%2, € ¢t and ¢ > 0 we also define cA = (c),)32,. Hence, for a compact

operator A, the principal ideal, (A), of B(H) generated by A has characteristic set equal to
s((A)) ={pectt | p<es(A)®", neN,e>0}).
++

We now turn to results about sequences. For A\, u € ¢g ™,

Axp
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is defined to mean that there is ¢ > 0 such that A < cpand p < A If A= (A,)02, € cg'+

and g = (1,)%, € ¢fT then A® p denotes the element of ¢ft obtained by putting the terms

ALphty Aiphzy A3, - -
Agfiry Azflz, Agfiz, - - -

A1, A3fla, A3z, - - -

in nonincreasing order and throwing away zeros if necessary. If & and ¥ are characteristic sets

of some ideal, then using Theorem 1.1 we easily see that
{Aop|red, ned}

is the characteristic set of an ideal. This allows us to make the following definition.

Definition 1.2. Let Z and J be proper ideals in B(H), and denote their characterstic sets
by s(Z) and s(J), respectively. Then Z& 7 is the operator ideal whose characteristic set is

Aoplres®), pes(J)}

For t > 0 we define

AN= ()t et
We will consider the specific sequence
def
w=(1,1/2,1/3,1/4,...).

For A\ € c(']" *, the arithmetic mean sequence of X is

A(a)d:ef (Al‘l‘AQ‘l—...An)oo ++_

€ ¢y
n n=1

Theorem 1.3. let ) € C('|)'+. Then
A@w< A <2000 w), (1)

and consequently A ® w =< \®),

Proof. Let k — (ik,jix) denote the injective map from N into N x N such that A @ w =
(Xi, /jn)oy, i-e. the nonincreasing ordering of {\;/j | ¢,7 € N}. (If every A; > 0 then this

map is onto.)
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Let us show that A ® w < A® . Suppose for contradiction that
Mo | Mt A
In n
for some n > 1. Let
Sp=A(ik,Jr) | 1 <k <}
If (i,7) € S, then (¢',j") € S, for every ¢/ < i and j' < j. Let m,, = max(i,...,7,) and for

1 € N let
j(i) = max({j | (,7) € Sn} U{0}).

We then have

Vi<i<m,

Multiplying by j(7) and summing we get

Z:A . (ij(i))—M';“n.

i=1

Clearly Y% j(i) = |Su| = n. Thus we have Y- A; > Ay +++-+ A,. Since m,, < n, this is a

contradiction.

Now we show that A(®) < 2(A ® w). The bound with this constant, and this particularly

nice proof, was first obtained by C. Vaqui [14]. Fix n € N and let S,, and j(7) be as above.

Then for every « € N we have

which implies that

(2)
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This shows that for every n, the inequality (3) can be improved to give

At Aot A A,
<@-HF=2- LA ew. (4)

n In

This improved result was also first obtained by C. Vaqui [14]. The inequality (4) is, in general,
the best possible. Indeed, for arbitrary fixed n» € N, a sequence beginning with

-

ifj<n

= =

ifj=mn
gives equality in (4).
Proposition 1.5. Let 0 <t < s. Then w' @ w® =< w'.

Proof. Clearly w! < w! ® w®. We will find a constant, ¢, such that

W@ w® < cwh (5)

Taking the 1/s power of both sides of (5) and letting r = /s, it will be enough to find a

constant, ¢/, such that

WRw < dw. (6)

From Theorem 1.3 we know that w” @ w < (w”)®). But

1< 1 ; 1 r
r(a)__§ —r - n,—r _ -r
(@) _nk=1k Sn(1+f1t dt)_l—r<n n)

Hence we get (6) with ¢/ = s/(s —t) and thus (5) with

=(=)

O

The remainder of this section, while not used later in the paper, may be of interest.
Indeed, the following proposition shows that the constants in the bounds in (1) are the best
possible, even asymptotically, and there is a single A which shows both constants to be optimal.
For A € Ca'+ and p € N let ,\;a) denote the pth term of the arithmetic mean sequence of A, i.e.
/\é,a) =(M4+---4+X,)/p, and let (A ®w), be the pth term of A ® w.
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Proposition 1.6. There is a sequence A € c§ ™ for which

AR
limsup ——— =2 7
p—>oop (A@w)p @
and
/\(a)
liminf —2—— =1. (8)
p=oo (A@w),y
Proof. Let
A=(1,...,1,27 .o 27 72 007 L omR L oTR ), (9)
N, e’ -~ 4
no ny no Nk

with each ny > 0. The arithmetic mean sequence of X is thus

, -1, -1 -2
A& =g, g, 02T mo k2T m A 27
~—— motJ = notmnity]
" 1<j<n 1<j<ns
(10)
ng+2"ng 4427 ENp 427k )
- no+mni+-tnp_1+
1<j<ng
and
A@Qw=(1,...,1,27" .o,27t 37t 03T a4t om T L m T L),
N —’ ~ N—— —
o no+mni no no+ni1+nz no+--+ng(m)

where for each m € N, m™! appears ng + -+ + Nj(m) times, where m = 2k(m) j with j odd.

Hence the first term of A @ w that is equal to 2% is the pyth, where

ng > 14 (2877 — 2)n; (11)
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then pr < ng +---+ ng. But then the pipth term of A falls in the block in (10) associated
with 1 < j < ng. Thus

)\(a)
Pk _ QkA(a)
(A®w)p, o
_ gk Mo +27 g o427 27K (py — (no + -+ )
Pk
Yise 2 in A 1+ XS (2F T — 2)my  14 230052 — 1)my
= E—1 « = E—1 ,
1‘|‘ij0 (2F=7 — 1)n; 1‘|‘ij0 (287 = 1)n;
1
=2- —.
Pk
Hence any choice of ng,n1,... growing fast enough to ensure that (11) holds gives A such
that (7) holds.
Now we show that ng,n1, ... can be chosen so that A simultaneously satisfies (8). The idea
of the proof is as follows. If ng,...,ni_1 have been chosen, then by choosing nj arbitrarily

large, ASv,aO)+---+nk can be made arbitarily close to 2k, Moreover, if ny is large enough then
(A®@W)ngttn, = 27%. Hence /\g,a)/(/\(XJw)p for p = nog+-- -+ n; can be made arbitarily close
to 1. So for certain choices of ng,ny,..., (8) will hold. Let us now make this discussion more
quantitative. Since 2=k is repeated ng + nq + -+ -+ ny times in A ® w, in order to ensure that
(A® W)ngtopn, = 277 it is enough that py < ng + -+++ ny, i.e. that (11) is satisfied. If we

n

want /\(ao)_{_.,_{_nk < 2_1“(1 + %), then using

A(@) _ Mo NI TR (G P I L2
ror ng + -+ ng

we see it is enough that

ne > Y (k25 — k= 1)n;. (12)

Now choosing, for example, n; = 47(j!) makes both (11) and (12) hold, hence both (7) and (8)
hold.
O

Proposition 1.7. Let A be the sequence found in Proposition 1.6. Then for every 1 < x < 2

there is a subsequence of /\%a)/()\ ® w), converging to x.

Proof. Let A be as in (9) with ng,ny,... as found in the proof of Proposition 1.6. Then for
each k, as ¢ increases from pj to ng + --- + ng, ,\ff) decreases from 27%(2 — p%) to a value

not greater than 27%(1 4 1) in steps of size no greater than 27%/p;, while (A ® w), remains
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constant at 27%. Because p; increases without bound, we can find pr < ¢z < ng + -+ - + nx

such that

§2. Sums of Commutators.

In this section, we characterize, for Z and J arbitrary two-sided ideals of B(H) at least
one of which is proper, the self-adjoint operators, 7', that are sums of (Z, J)-commutators.

This characterization is in terms of the rate of fall-off of the arithmetic means of the eigenvalues

of T.

Notation 2.1. For a sequence of complex numbers (a,)22, and an operator ideal Z, we will
often write (a,)52; € Z to mean that the diagonal operator diag(ay, as, ..., a,,...) belongs to
Z. Clearly, this happens if and only if the nonincreasing re-arrangement of (|a,|)52, belongs

to the characteristic set of Z.

Lemma 2.2. Let T and J be ideals of B(H) and let T € [Z,J]. Suppose P, (n € N) are
projections in H with rank(P,) = n and (||PrTP||)22, € ZJ. Then

(Tr(PnTPn)

n

):; €1J. (13)

Proof. Write

T =S"[A,, B,

Mz

=1
with A, € Z and B, € J. Using the definition of s—=numbers, for each positive integer n there
is a projection, F,, with rank(£,) < (4N 4 1)n, F,, > P, and such that V1 <. < N,

[Ez AN < s0(A), JAEL|] < sn(A)
BB < 50 (B, |IBE < su(B).
Then, since Tr([E, A, Fp, £, B, F,]) = 0, we have

N
Tr(E,TE,) =Y Tr(EnA,B,E, — E,B,A,Ey,) ZTr (A,EXB, — B.EXA)E,),

=1
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and since |Tr(F,A)| < (rankFE,)||A|| for every A € B(H),

I Tr(E,TE,)| < 2(4N + 1)n Y s, (A,)s0(B,).

=1

But
Tr(F,TE,) =Tr(P,TP,) + Tr((E, — P,)T(F, — P,))
and
|Tr((En — Po)T(E, — Po))| < 4Nn||PT P ],
S0

<AN||IPITPY|| 4 (8N 42) ) su(A)sa(B,).

=1

Tr(P,TP,)
n

Hence (13) holds.
O

Lemma 2.3. Let Z and J be ideals of B(H), at least one of them proper, let T =T* € [Z,J]
and let Ay, Az, ... be the nonzero eigenvalues of T listed according to multiplicity (with zeros
added if T has only finitely many nonzero eigenvalues) and such that (max;>n |A;|)p2, € ZJ,

(which holds, for example, if the eigenvalues are arranged in order of nonincreasing absolute

value). Then

n

M40\
(—1 LEALE . ) €1J. (14)
n=1

Proof. Let &,&,... be an orthonormal sequence in H consisting of eigenvectors of I" such
that T¢, = X, &,. Let P, be the projection in B(H) with range space span{{,...,&,}-
Then ||PETPL|| = maxj>nt1 |Aj| and Tr(P,TP,) = A1 + -+ + A,. Hence the hypotheses of
Lemma 2.2 hold and (14) follows from (13).

O

The proof of the following lemma is a straightforward generalization of Kalton’s proof [10,

Theorem 7.1] for the case T = C;.

Lemma 2.4. Let T be a proper ideal of B(H), let T = T* € T and let A\, Ay, ... be the
eigenvalues of T listed according to multiplicity (with zeros added if T has only finitely many
nonzero eigenvalues) and such that (max;>, |Aj|)o2, € Z, (which holds, for example, if the
eigenvalues are arranged in order of nonincreasing absolute value). Suppose

M40\
(u) cT.
n=1

n
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Then T € [Z, B(H)] and T is the sum of three (I, B(H))-commutators.

Proof. We will show that A, the operator obtained from 7" by averaging the “2"-blocks” (see
below), is the sum of two commutators and that 7' — A is a commutator. For n > 1 let

t, =—27" Z?i}l Aj, and consider the sequence

X = (t1,ta, to, ta, ta,ta,tay oo s by ees by,
N——_——

27—1 times
We will show that X € Z. If 2~1 < k < 2™ then

2" -1

tal =27 D N
i=1

k 27 —1
2T N[ 2T DN
=1 J=k+1
1 k
< ZIAJ' +max |\
J:

so X € Z. Let ey, e3,... be an orthonormal sequence in H such that Te; = Aje; Vi, and let

Ho = H o spanier,ez,...}. Let Uy, Uy € Z, V1, Vy € B(H) be such that

Uier = tyeq 2"l <k<2"and n > 1

User = theapqn "l <k<2andn>1

Vieagr1 =0 k>0
Vieop = €r kE>1
Vaesgpr = ex k>1
Vaeor =0 k>1
Vaer =0

and Uy, Uy, Vi, Vs, vanish on Hy. We have Uy, Uy € 7 because X € Z. For 27! < k < 2™ we

have
—2t1€1 k=1

([Uh, Vi] + [Us, Va] ey = { (tn_1 — 2tn)ex k> 1.

For n > 1 let a,, = 2=(n=1) Z?lgi_l A;j. Then =2ty = oq and ¢,y — 2t, = a,, for n > 2. Let
A € B(H) be such that Aey = e, if 2771 < k < 2" and A|g{0 = 0. Then [Uy, Vi]4+[U2, V2] =
A.
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Now we show that 7" — A is a commutator. Let 8, = |Ayn—1| for each n > 1. Since

[Ak| > 6,41 whenever k < 2" we have that

(017027027037937037037"' 70717"' 70717"') S
N —

27—1 times

Now since Z?::;,ln_l (a, — Ax) = 0 and |a, — Ag| < 26, for every 2771 <k < 27 there is a re—
arrangement (fon—1,...,Han_1) Of (Agn—1,...,A2n_1) such that |3, .1 (o — px)| < 26,
for every 2771 < r < 2" Let v, = Y p_gn1 (@ — pg) for 2771 < pr < 27, Then ()2, € Z.
Let o be the permutation of N:

%(k—l—l) ifk+1=2" somen >1
o(k) = .
E+1 otherwise.
Let Us € 7, Va3 € B(H) be
U3€k = 'ykea(k) E>1
Vser = es-1(x) k>1

Us|y., = 0 =Va|,. . Then [Us, Valex = (v5-1(k) — 7)ex and

V=1 — Yk = Mk — Qp if 271 <« k< 27

’Ya—lk—’Yk:{ . e
" Vor_1 — Ve = —Vk = pk — @ if k=2""1,

so [Us, V3] =T — A and thus

T =Y [U;Vi] € [T, B(3)].

i=1

Theorem 2.5. Let Z be a proper ideal of B(JH).

(i) Suppose T'=T* € I. Let A1, Aq,... be the nonzero eigenvalues of T listed according
to multiplicity (with zeros added if T has only finitely many nonzero eigenvalues) and

such that |\1| > |Ag| > +--. Then T € [Z, B(H)] if and only if

A RS W
(u) cT.

n n=1

(ii) The same as (i), but with the condition |\i| > |X2| > --- replaced by the weaker

condition (max;>, |A;])nz; € Z.
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Proof. Clearly (ii) = (i). Part (ii) is true as a consequence of Lemma 2.3 (with J = B(H))
and Lemma 2.4.

O

In the next Corollary, we consider the sequence w = (1,1/2,1/3,...) and the principal
ideal, Q2 = (diag(w)), where diag(w) is the diagonal operator with 1,1/2,1/3,... for diagonal

entries. See Definition 1.2 for the tensor products used below.

Corollary 2.6. Let I be a proper ideal of B(H).

(i) If R is a positive, compact operator whose sequence of s—numbers is s(R), then R €
[Z, B(H)] if and only if the sequence s(R) ® w is in the characteristic set of T.
(i) If L is a proper ideal of B(H) then L C [Z, B(H)] if and only if LOQ C T

Proof. Use Theorem 2.5 and Theorem 1.3.

Theorem 2.7. If7 and J are proper ideals of B(H) then [Z,J] = [ZJ, B(H)].

Proof. We easily see that [Z, 7] 2 [ZJ, B(H)], because if A € Z, B € J and X € B(H), then
[X,AB] = XAB — ABX = [X A, B] + [BX, A]. (15)

To see the reverse inclusion, let T"=T* € [Z, 7] and let Ay, Az, - -+ be the nonzero eigenvalues
of T arranged so that |[A;| > [A2| > ---. Then (14) holds by Lemma 2.3, hence T' € [Z.7, B(H)]
by Lemma 2.4.

O

Of course, commutators are intimately connected with traces. A trace on an operator
ideal, Z, is a linear mapping 7 : Z — C satisfying 7(XY) = 7(Y X)) for every X € Z and
Y € B(H). Now a linear functional is a trace if and only if it vanishes on the commutator
space [Z, B(H)]. Thus, the set of traces is canonically the same as the linear space dual to the
quotient Z/[Z, B(H)]. A trace is said to be positive if A € Z and A > 0 implies 7(A) > 0.

We give three applications of Theorem 2.5 involving traces. The first relates to extending

the trace from the finite rank operators to larger ideals.

Proposition 2.8. Let 7 be a nonzero proper ideal of B(H). There is a trace T on T which is

nonvanishing on the ideal of finite rank operators if and only if

diag(1,1/2,1/3,...,1/n,...) € T,
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i.e. if and only if the sequence w = (1,1/2,1/3,...) is not in the characteristic set of T.

Moreover, if such a trace T is positive, then T C Cy.

Proof. Theorem 2.5 and the fact that [F, B(H)] = F° give immediately that
[Z,B(H)]NF =3° (16)

if and only if w is not in the characteristic set of Z. Since traces on JF are unique up to scalar
multiples, if 7 is a trace on Z which is nonvanishing on &, then clearly (16) must hold. But
if (16) holds then, using a Hamel basis argument, one can construct a linear map 7 : Z — C
that vanishes on [Z, B(H)] but not on a given rank one projection P. Thus, the condition
involving w is necessary and sufficient for the existence of 7 nonvanishing on J.

Now suppose there is a positive trace 7 on Z which is nonvanishing on the finite rank
operators. Multiplying by a constant, we may suppose 7 restricts to the usual trace on the

finite rank operators. Let T' € Z, T > 0 and let Ay > Ay > --- be the s—numbers of T'. Then
7(T) > 7(diag(A1, Az, -, Ay 0,0,...)) = Y Aj
=1

Thus, Y2 ,°X; < 7(T) < 0o, so T € Cy. Hence I C (;.
O

Our second application of Theorem 2.5, in combination with a result of Varga [15], is the

following.

Theorem 2.9. Let Z = (A) be a principal ideal of B(H) generated by a compact operator A.

Then T has a nonzero trace if and only if it has a nonzero positive trace.

Proof. 1If 7 has a nonzero trace then necessarily [Z, B(H)] # Z. Since A and |A| generate the
same ideal, we may assume A > 0, hence the eigenvalues of A arranged in nonincreasing order

are also its s—=numbers. From Theorem 2.5 we must have that

(51(44)+---+sn(A))°°

n

¢I7

n=1
hence sy + - -5, # O(ns, ), namely, the sequence (s,(A))7° is irregular. This is precisely the
property that Varga [15] proved is necessary and sufficient for Z to have a nonzero positive

trace.

O

One can easily see, as in the following example, that this kind of result does not hold for

general operator ideals.
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Proposition 2.10. The ideal T,(1/,), consisting of all operators T' such that s,(T) = o(1/n),

has nonzero traces but no positive traces.

Proof. By Proposition 2.8, Z,(1/,) has nonzero traces. But suppose to obtain a contradiction
that

T :Io(l/n) — C

is a nonzero positive trace. Then since Z,1,,) € C1, by Proposition 2.8, 7 must vanish on
the finite rank operators. Then there is T" € Z,(1/n) such that 7" > 0 and m(T) > 0. Let
A1 > Ay > --- be the s—numbers of T. There are 1 = t; < t3 < t3 < ... such that
lim, 00 t, = 00 and p, d_eft An = o(1/n). Let Ty = diag(u1, p2,...). Since T vanishes on
finite rank operators, we easily see that for every n, 7(T1) > t,7(T). Hence 7(T}) = oo, which

is impossible.

O

Our third application of Theorem 2.5 is to the interpolation ideals £("? and related
ideals considered by A. Connes in [7,IV.2.a]. For 1 < p < co and 1 < ¢ < oo, these ideals are

defined as follows:

s(LPD) = {Xectt | z:,ft—f;!—1+(q/20)(,\1 + A4+ A% < o0}

n=1

(LP)y =X e et [ A+ X+ 4+ X = O ~(1/P)}
( ) et [ M4+ d+-+ A, =on'~0/P)
sy = {heeft [ M+ A+ 4+, =O0(logn)}
( )

L8N = e [ A+ A+ -+ Ay = o(logn)}
s(LD) = A eeft| Z ;” < oo}
n=1

The ideal £{1*) has lots of nonzero, positive traces, namely the Dixmier traces (see [7,

v.2.4)).

Proposition 2.11. Let1 < p < oo and 1 < q < co. Then the ideals £P9) Eép’oo) and £(°)
(1,00)

have no nonzero traces. The ideal L has nonzero traces, but no nonzero positive traces.

Proof. By Theorem 2.5, for an ideal 7 to be without nonzero traces, it is necessary and
sufficient that A € s(Z) imply A®) € s(Z), where AR = M+ 4 ) /n.

We first examine £ when ¢ < co. We have

s(LPDy = {Ne ¢t | i(n ris %(M)) < oo}
n=1

n
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It is well-known that

implies

i(n—s+% (bt M))q < oo,

n=1

(see [12, 2.1.7] for a short and direct argument) and the reverse implication is clear. Hence

s(L p’Q))—{/\ec++|Z “t32,)? < oo}

and A € s(£(P9) implies A(®) € s(£{P9). Thus £{79) has no nonzero traces.

The proof of lack of traces on £ and ﬁép’oo) is similar, using that

M4t A,
s(LPo)) = {/\ €ctt At A O(n—l/p)}

n

={red* =01}

and the analogous statement for Eép’oo) and o(n~1/7).

Suppose A € s(£(>"). Then

o0 ’(na o] 1 n o] 0 1
P YD DD B B
=1 =

n=1 n=1 k=1

But 3°°7, 5 < £ for some constant ¢, which shows that A € s(£(>)). Hence £{>!) has
no nonzero traces.

We now show that Cgl’oo) has traces by exhibiting A € s(ﬁgl’oo)) for which A ¢
s(ﬁ(()l’oo)). Let A € ¢t be such that A, = o(1/n) and A; # 0. Then clearly X € S(E(()l’oo)).
But Al > A1/n, so M) & s(ﬁgl’oo)). Thus, E(()l’oo) has nonzero traces. (In fact, it is easy to
see that if 327° A\, = oo then even A2 ¢ s(£1:%)))

To see that £§]1’°O) has no nonzero positive traces, we will use an argument similar to that

(1,00)

of Proposition 2.10. Suppose for contradiction that 7 is a nonzero positive trace on L

(1,00)

Let T'e Ly, T > 0 be such that 7(T) > 0, and let A, = 5,(T) be its s—numbers. By

Proposition 2.8, 7 vanishes on the finite rank operators. Hence, to obtain a contradiction it

will suffice to find

I=c1<ecp<ez<---
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such that
7}1_{20 ¢, = 00, (17)
ClAL > €Ay > €3A3 > -+, (18)

n

Z cpAk = o(logn), (19)

k=1

since this would imply that 7(7y) > ¢,7(T) for every n, where Ty = diag(ci A1, a2, ...). Let

1 1/2
! = inf (7ogm )
Tn m2n Z’lel Ak

and let v, = max(1,7/). Then 7, is increasing in n and tends to co as n — co. Define ¢,

recursively by ¢4 = 1 and

. A
Cny1 = mm(icn,'yn_,_l).
n

Then ¢,41 > min(c,, vn) = ¢,. To see that (17) holds, let M > 0 and let N € N be such that

vn > M. Then Vk > 1
AN

cNyk > min(ey , M)

N+k

80 cn+r > M for large enough k. Moreover, (18) holds because ¢,4+1 < A, ¢, /Ant1. Finally,
(19) holds because, if n is large enough so that 4, > 1 then

n n

S e < cnzn:Ak < vgiAk < (logm)"/2(3- n)

k=1 k=1 k=1 k=1

and because >_;_, A\x = o(logn).

§3. How many commutators.

In this section we give results related to the question of, given T' € [Z, J], how many com-
mutators are needed to write T" as a sum of commutators. One sees directly from Lemma 2.4
that [Z, B(H)] C Cs(Z, B(H)). Moreover, using the characterization in Theorem 2.5 and by
considering the real and imaginary parts of 7' € [Z, B(H)] simultaneously, in a proof analogous
to that of Lemma 2.4, one can show [Z, B(K)] C Cy4(Z, B(¥H)). In a similar way, one can show
[Z,J] C C4(Z,T). We will use other techniques to prove and to improve upon these results,
showing that [Z, B(H)] C C5(Z, B(H)).

Our convention will be that all entries of matrices are zero, except as otherwise indicated.
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Lemma 3.1. In any unital ring, if Ay 4+ ---4+ A, = 0 then in the n X n matrices over the
ring,

0 B 0

1

0 B A
412

where B; = Ay +---+ Aj.

Lemma 3.2. Let Z and J be proper ideals of B(H). If A € ZJ then A = XY for some
XeZandY € J.

Proof. We have A = XYy 4 ---4+ X,,,Y,, for X; € 7 and Y; € J. Choose an isomorphism
S H — K™, let Y be the composition

and let X be the composition

where

Av) = <> c KO  and E( ) =vi 4+ Uy

Then X € Z,Y € J and A = XY
O

Lemma 3.3. Let Z and J be ideals of B(H) and suppose A € [Z,J] and has an infinite

dimensional reducing subspace on which it is zero. Then

AeCZ,TJ)+C(IZT,B(%H)). (20)
More particularly,
A=[X,Y]+[B,7] (21)
000
with X € Z,Y € J, B€ZJ and with 7 € B(H) of the form 7 = 75 = (1 0 0) with respect
010

to some decomposition H = HT>.

Proof. Let n € N and A = Z?=1[Xjayj] for X; e Zand Y; € J. If n =1 we are done, so

assume n > 2. Let H = H®” be an identification. Writing elements of B(J() as n x n matrices
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with respect to this identification, we may assume

A z?[X] 7YJ’]
0 0
A = . =
0 ' 0
and we have from Lemma 3.1 that

A [X11Y1]
0 [X2,Y2]
_ . — B, 7]

0 [Xn,Ya]

with B € Z.7 and

€ B(30),

0
1 0

an n X n matrix with respect to the above identification. But

[X1,71] X1 Y,
X Y] [( Xn> ( Yn>:|

so (21) holds as required but with Z = Z,,. However, by using (20), Lemma 3.2 and (15) we

can repeat the proof but with n = 3.

Theorem 3.4. Let T and J be ideals of B(H). Then

[Z,7] € C2(Z,7) + C(1T, B(H)).

Proof. Let A € [Z,J]. By Lemma 3.2, A = XY, for some Xy € Z and Yy € J. Let V be an
isometry from H onto a subspace VH such that (VH)' is infinite dimensional. Then

A=[XoV*, VY] + VYo XoV™.

But VYo XoV™* = V(A—[Xo, Yo])V* and writing A = 3775 [X;, Y;] forsome n € N, X; € Z and
Y; € J, we have VYo XoV* = —[VXoV*, VYo V] + 370 [V X;V*, VY;V*] so by Lemma 3.3

VYoXoV* € C(Z,7) + C(ZT, B(K)).

Now using (15) we immediately see
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Corollary 3.5. For ideals T and J of B(H),

We do not know if (22) and (23) are the best possible, but we shall see from Corollary 4.9

that it is not always possible to replace C3 with C in (22).

Lemma 3.6. Let R be a unital ring, let n € N and let 7 be nilpotent in M, (R). Then for
every proper ideal I C R and every invertible element r € R satisfying rZ = Zr, the map
b Mo (1) = Mo (1) given by

b (A) = 1A+ 1[4, 7]
is one—to—one and onto M, (I).

Proof. Let m € N be such that Z™ = 0. Denote by p, L, and R the endomorphisms of the
additive group M, (I) defined by left multiplication by r, left multiplication by Z and right
multiplication by Z, respectively. These three endomorphisms are mutually commuting, and
¢nr=p— L+ R. Since L™ = R™ = 0 we have (L. — R)>™ = 0 and hence qb;}r is given by

2m—1

Y pTHIL - R)

=0

O

Lemma 3.7. Let T and J be ideals of B(H) and let A € Z.J. Suppose there is an identifi-
cation of H with H®" for some n € N such that, writing A = (Aij)i<ij<n as a matric with
respect to this identification, we have for every 1 < i < n that A;; € [Z,J] and that A;; has an
infinite dimensional reducing subspace on which it is zero. Then A € C(Z,J)+C(ZJ, B(H)).

Proof. From Lemma 3.3, A;; = [X,, Y|+ [B;, Z]for X; € Z,Y, € J, B; € ZJ and Z € B(H;),
where we can take the same Z for each i and Z* = 0. Let Al, = B;. Of course, A;; € ZJ for
each 4,j. By Lemma 3.6, for each i # j there is A}; € 77 such that A;; = (i —j) Al +[A};, Z].
Letting A" = (A};)1<i j<n, We have
1+Z X1 Y1
247 X2 Y2
A=| A, . + . :

n+7Z X, Y,
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Theorem 3.8. Let 7,7 and L be ideals of B(H). If L C [Z,J] then

LCCIZ,T)+C(ZT,B(H)).

Proof. Let A € L. By Theorem 2 in [3] and the proof of Theorem 3 in [3], A is similar to
Ap € L such that, with respect to an identification of H with H®*, writing Ao = (Aij)1<i,j<4,
each A;; has an infinite dimensional reducing subspace on which it is zero and A;; € L. Now

apply Lemma 3.7.
O

Corrollary 3.9. Let Z, J and L be ideals of B(H).
(i) If £ C [Z, B(H)] then L C C2(Z, B(H))
(i) If £ C [T, T] then £ C C(Z, T).

It will follow from Corollary 4.9 that C is, in general, the best possible in (i).

Corollary 3.10. IfZ and J are ideals of B(H) and if T is an operator such that |T| € [Z, J],
then

TeCZ,J)+C(IZT,B(H)).

Proof. Let L be the principal ideal generated by T'. Since |T| € [Z, J] it follows from Theo-
rem 2.5 that £ C [Z, J].
O

84. Single Commutators

In this section, we give some results about the class C'(Z, J) of commutators of elements
of operator ideals.

First, some notation. Let Z and J be operator ideals. Then

T+T X {A+B|AcT, BeJ}

is the operator ideal generated by ZU J. For t > 0, Z' is the ideal whose characteristic
set is the set of all sequences (s%)22; such that (s;)%2, is in the characteristic set of Z. See
Definition 1.2 for the tensor product ideal, Z&J. As usual, we will let w denote the sequence
(1,1/2,1/3,...,1/n,...) and Q denote the principal ideal generated by the diagonal operator
whose diagonal entries form the sequence w. Thus, for t > 0, Q' is the principal ideal generated

by diag(1,1/2%,1/3%, ... ,1/n",...).
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Lemma 4.1. Let T be a proper ideal of B(H) and suppose R € T has an infinite dimensional

reducing subspace on which it is zero. Then

R e C(I6Q'V?, B(H)). (24)

Proof. Let P denote a projection of rank one. If C'and Z are as in [1, p. 129], but with ¢ = 0,
then P = [C, 7] with C' € Q"% and Z € B(H). Indeed, these are

0 Al 0 Xl
B1 0 A2 Yl 0 X2
C = . and 7 = )

By 0 T Yo 0

where the nth diagonal in C' and 7 is the n X n zero matrix, so that A, and X, are n x (n+1)

matrices and B,, and Y,, are (n+ 1) x n matrices, and where these are given by

L0 0 0 1 0
0 0 00 2
Ap = ) Xn = . ’
Lo 0 z
0 0 0 50
1 n—1
ey 01 0 oF
0 P
B, = ntl , Y, =
1
L n+1
eS| 0 0 0

Clearly Z € B(H), and since (1,1, 2 1 11 ) <w!/2 also C € Q'/2. Taking an appropri-

ate identification H 2 H@ H gives REXR® P. But R@ P=[R®C,1® Z], so (24) holds.
[l

Theorem 4.2. Let T be a proper ideal of B(H) and let R be a compact operator. If s(R)@w'/?
is in the characteristic set of T, then R € C(Z, B(K)).

Proof. By Theorem 2 in [3] and the proof of Theorem 3 in [3], R is similar to an operator,
A, having the property that, for some identification H & FHH, writing A = (Aij)1<i,j<4 With
respect to this identification, for each ¢+ = 1,2,3,4, A;; has an infinite dimensional reducing
subspace on which it is zero. It will suffice to show that A € C(Z, B(H)). Clearly each
A;; € (A) = (R). Thus, by hypothesis, s(A;) ® w!/? is in the characteristic set of Z. Hence,
by Lemma 4.1, there are C;; € Z and B; € B(H) such that A;; = [Cy, Bil.
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Now we show that there is an operator ideal, 7, with a complete norm and such that
A€ J CZI. Consider the sequence p = s(A) ® w'/?. By hypothesis, x is in the characteristic
set of Z. Let J be the principal ideal generated by the diagonal operator whose diagonal
sequence is the sequence u. Then A € J C Z. We claim that g ® w < p. Indeed, applying

Proposition 1.5 gives
p@w=(s(A)@w’?) @w==3(A) @ W’ @w) =< s(4) @w!/? = L.

Then by Theorem 1.3, u{® < u. This implies that for some ¢ > 0

VnenN bt
n

hence that Y i ; = O(npu,). This latter condition is the definition [9, IT[.§14] that p is
reqular. Varga [15] showed that the principal ideal, J, is a symmetrically normed ideal if and
only if u is regular. (In fact, for our purposes it is enough to see that p regular implies that
J is a symmetrically normed ideal. However, this follows by considering the characteristic set
of the principal ideal J and Theorems I11.14.2 and I11.14.1 of [9].) Hence [J is a complete,
normed ideal.

By adding scalars, if necessary, we may assume that the spectra, o(B), 0(Bs), o(Bs) and
o(By), of By,..., By (as Hilbert space operators) are pairwise disjoint. Since the norm makes
J a Banach space, since B; acting by left or right multiplication on J is a bounded operator
whose spectrum is contained o(B;) and since left multiplication by B; commutes with right
multiplication by B;, an application of the spectral mapping theorem (see [13, Lemma 0.11])
implies that for ¢ # j the operator on J given by

J 3 Dws DB; — B;D

is invertible. Hence, for ¢« # j let C; € J be such that C;;B; — B;C;; = Ay, let C =

(Cij)i<ij<a and let B = diag(Bi, By, B3, By). Then C € J CZ, B € B(¥) and [C, B] = A.
|

Corollary 4.3. Let T and J be proper ideals of B(H). IfT C J&Q? thenT C C(J, B(H)).

Compare the above result to Corollary 2.6(ii).

Corollary 4.4. The previous corollary immediately implies the following.
(a) K =C(K,B(H)). (This was proved in [1]).
(b) If p> 2 then C, = C'(Cp, B(H)).
(c) If T is an ideal of B(H) and if ©'/* € J then Co C C(J, B(X)).
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We now begin proving a partial converse to Corollary 4.4(c).

Lemma 4.5. Let A be a compact operator on H. Let P, Ps,... be finite rank, mutually
orthogonal projections in B(H) and let k € N U{0}. Then there is a partial isometry, V €
B(H), such that

VYn €N P,VAP, = |P,11AP,|.
Proof. The polar decomposition yields P, AP, = V,,| P+ AP, |, where V,, is a partial isom-
etry on H such that V,, = P, V,P,. Let V € B(H) be a partial isometry such that

vr fm=n+k

0 otherwise.

Vn,m € N P, VP, = {

Then
P,VAP, =V P, AP, =V V,| Py AP,| = | Poyr AP,|.

O

Theorem 4.6. Let IY be a finite rank operator having nonzero trace and suppose F = [A, B]
for A a compact operator and B € B(H). Let s(A) denote the s—number sequence of A. Then

5(A) @ w > cw'/? for some ¢ > 0.

Proof. By the lemma in [5], there are mutually orthogonal, nonzero projections, Py, P, Ps, ...,

such that I’ = P, F Py, there is C' > 0 such that, for every k, rank(Py) < Ck and
P,AP, =0= P,BP,, whenever n > m + 1.
Writing

F = P[A B]P,=(PAP)(PIBP) — (PLBP)(PLAP))

+ (PLAP)(P2BP) — (PLBPy) (P2 AP)
and for every k > 2 writing

0= Py[A, B|Py = (PeAPy—1)(Pi—1 BPy) — (PuBPy—1)(Pr—1AP)
+ (PkAPk)(PkBPk) — (PkBPk)(Pk4Pk)

+ (Pk4Pk+1)(Pk+1BPk) — (PkBPk+1)(Pk+14Pk),
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we have Vn € N,

Tr(F) = Tr(Pi[A, BIP:) = Tr(P, AP, BP,) — Tr(P,BP, 11 AP,),
k=1
hence

ITr(F)] < (1PaAPpgr |1 + [Prgr AP D] B, (25)

where |D|y ef Tr((D*D)'/?) = Tr((DD*)'/?). By Lemma 4.5 there are partial isometries
V,W € B(H) such that

V€N P.VAP, = |Papi APy and  PaW APy = [Py APl
Let T = ||B|[(VA+ WA*)|Tr(F)|~'. Then for some ¢; > 0, s(T) < ¢;s(A) and ¥n € N
PyT Py = ||BI|(| Pt APo| + [ Pags A Po )| To(F)| 7

so P,TP, > 0 and, from (25), Tr(P,TP,) > 1. Hence by diagonalizing each P,TP, we
can find an orthonormal set ey, es,... in H such that, letting Ny = E?:l rank(P;), we have

Eﬁl (Tei,e;) > k. Thus, by a theorem of Fan, [9, Lemma I1.4.1],
Nk Nk

D si(T) 2 (Teiyes) > k.

i=1 i=1
But N < Z§:1 Cj = M < Ck%. Letting m = [C]+ 1 we then get 2;”5 s;(T) > k.
Hence if mk? < n < m(k+ 1)? then

Sz S smz ke (L)

Therefore there is ¢, > 0 such that Vn € N, 377 s;(T) > ea/n, hence 377, s;(A) > ereay/n.
Dividing both sides by n we get for the arithmetic mean sequence, s(*)(A), of s(A) that
sla) (A), > cicon~1/2. Now using Theorem 1.3 finishes the proof.

O

Corollary 4.7. If J is one of the Gohberg—Krein ideals, &g [9, 111.§4], generated by a sym-
metric norming function ®, and if F € C(J, B(K)) for F a finite rank operator having nonzero
trace, then w2 e 7.

Proof. From the proof of Theorem 4.6 there is T' € J such that
n k23 1
Vn € N s;(T) > —.
The corollary then follows immediately from the definition of &4 and the dominance property

of @, [9, 111.§4].
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Corollary 4.8. Let 0 < p < 2. Then C(C,, B(H)) contains no finite rank operator of nonzero
trace; hence
C(Cp, BEH)NT =3°.
Consequently C), # C'(C)p, B(H)) whenever 0 < p < 2 and hence Corollary 4.4(b) is sharp.

Proof. It 0 < p < 1 then this follows because all elements of C'(C,, B(3)) must have zero
trace. Assume 1 < p < 2. By Theorem 4.6, if C'(Cy, B(H)) contains a finite rank operator of
nonzero trace, then there is a p-summable sequence, A € ¢f*, such that A ® w > w'/2. But

2

A @ w is p-summable, while w'/? is not p-summable, which is a contradiction.

O

Corollary 4.9. If ® is a symmetric norming function such that ®(1,1/2,1/3,...) < oo, but
®(1,1/v/2,1/V/3,...) = oo then for the operator ideal G,

gj g 02(6‘:1)7 B(g{))
but whenever F is a finite rank operator of nonzero trace,

F ¢ Ci (8, B(H)).

Proof. Combine Theorem 3.8 and Theorem 2.5(i) for the inclusion and then use Corollary 4.7.
O

An example of a symmetric norming function satisfying the properties of the above corol-

lary is

€]+ -+ -+ [€al
D(&,&,...) =su .
(&1,& ) n;;l-l-%‘l'“'*‘%

The following analogue of Lemma 4.1 for single commutators of two proper ideals follows

readily from the techniques of [1].

Proposition 4.10. LetZ and J be proper ideals of B(H) and suppose R € Z.J has an infinite

dimensional reducing subspace on which it is zero. Then for every 0 < t < 1,
ReC(Lya, Lii—py)2)
where Lo, = (T + J)oN°.

Proof. By Lemma 3.2, R = ST forsome S € Zand T € J. Let 0 <t < 1. If K; and L; are
as in the proof of [1, Theorem 1] then R = [K, L] and

Kie (ZT+T)0P:
Lie (T+T)0Pi-s,
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where P; is the ideal generated by an operator whose sequence of s—numbers is the nonin-

creasing re-arrangement of
1t 1t 1t 2t 2t 2t 3t 3t 3! Etk? Kk

j7§757";7\573717";7571737"'7 7?7m7m7";7""

By elementary arguments, this nonincreasing re-arrangement is equivalent to w(*=%/2 and
hence P, = QU-1/2,
O

85. Open Questions.

5.1. Our characterization of [Z, B(H)] is in terms of self-adjoint operators. Kalton’s theo-
rem [10], on the other hand, characterizes all T € [Cq1, B(H)] in terms of the eigenvalues of
T, where Cy is the ideal of trace—class operators. Does this hold for general operator ideals,
Z?7 More specifically, for every T € 7, writing the nonzero points of its spectrum repeated
according to algebraic multiplicity as A1, Az, ..., ordered so |A;| > |A2| > -+, is it true that a
necessary and sufficient condition for T € [Z, B(H)] is that

A AN\
(L) T »

n n=1

By algebraic multiplicity of a nonzero point A of the spectrum of I" we mean
max dim ker(T — AI)".
n>1
Of course, if T has finite spectrum then we allow the list Ay, Ao, ... to have a tail of zeros.
5.2. We have in general
[Z, B3] = C3(Z, B(H))
and examples where
[Z, B(F)] £ Ci(Z, B(H)).

Is it true in general that

[Z, B(3)] = C(Z, B())?

5.3. Is it true in general that F' € C(J, B(H)) implies w!/? € J, where F is a finite rank
operator having nonzero trace? (See Corollary 4.4(c) and Theorem 4.6.) More generally,
what is a characterization of C'(J, B(H))? For an operator ideal 7, is the sufficient condition
of Theorem 4.2 for R to be in C(J, B(H)) also necessary when R > 07 For T a compact
operator, does |T'| € C(J, B(H)) imply T € C(J, B(H))?
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5.4. Is there a strictly positive operator in C'(X,X), i.e. without any reducing subspace on

which it is zero? (Compare [1, Theorem 1].)
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