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1. INTRODUCTION

The problem of determining the pure states of the algebra B(H) of all
bounded operators on a separable Hilbert space H can be reduced to deter-
mining all pure states of a maximal abelian *-subalgebra (masa) N of B(H)
provided every pure state of N has a unigue extension to a state of B(H). It
is known that the only candidate for the extension property is an atomic
masa N [18], which can be considered as the algebra of diagonal operators
in an infinite matrix algebra. The extension property is equivalent to the
property that given any x in B(H), the norm closure of the convex hull of
the set {vxv* | v unitary in N}(notation: K(x)=Co{vxr* |ve U(N)}) hasa
nonvoid intersection with the commutant & (cf. [ 35, 2.4]).

There is a more general formulation for the question concerming the
intersection of the convex hull with A", For this, let M be a von Neumann
algebra; then Dixmier [9] showed that the intersection of
o {vxv* | ve U(M)} and M’ is nonvoid for every x in M, ie. the closed
convex hull contains an element of the center. Several authors [1-5, 8, 9,
11-13, 15, 16, 20, 227 have studied this or other similar intersections under
various hypotheses. For example, for a von Neumann algebra, the intersec-
tion can be viewed as a type of essential spectrum for x in a setting
appropriate to von Neumann algebras (cf. [§, 12, 13, 24]). On the other
hand, when M is a C*-algebra, it is not always true that the intersection of
To{vxe* | ve U(M)} with the center of M is nonvoid. Algebras in which all
such intersections are nonvoid are said to possess the Dixmier property.
Several algebras have been shown to have the Dixmier property; others do
not have the property.

In this paper, we study a more general property which we call the
relative Dixmier property. We fix a certain subalgebra N of the von
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Neumann algebra M and consider for xe M the intersection of K(x)=
to{vxv* | ve U(N)} with the commutant N' of N. This formulation is a
general setting for the extension problem for B(H)= M [18] as well as for
some recent work on compact operators on type III; (0= 4 <1) factors
[14, 15]. Here the algebra N will be a von Neumann algebra and M will be
the crossed product of N by the action of an automorphism #. In Section 3
we prove that Kiau) has a nonvoid intersection with N' for every @ in N
and every unitary operator w in M such that adux induces an
automorphism of N. In particular, if ad « is properly outer K(au) contains
0. In Section 4 we assume that N is identified with its canonical image in
the crossed product M = Nx ;Z of N by the action 8 of Z on N, where 8 i3
an automorphism of N. We show that K{x) has a nonvoid intersection with
N' for every x in the C*-algebra generated by the group U(M:N) of
unitaries u in M with uNu* = N. In particular, we show that K(x) will have
a nonvoid intersection with N' whenever x is continuous under the dual
automorphism # of # In Section5 we study two special cases: (1)
M= B(H) and N is the atomic masa of diagonal operators with respect to
some fixed orthonormal basis, and (2) M is a type III; factor (0=1<1)
and N a type II, algebra. We identify the set U(M;N) and study its
relationship to the elements continuous under the dual automorphism #. In
case (1) we show the relationship of U(M; N) to the work of Kadison and
Singer [18].

2. Tue RELATIVE DIXMIER PROPERTY

Let H be a Hilbert space, let M and N be von Neumann algebras on H,
and let & be a subalgebra of M. Let F be the set of all functions of finite
support of the set U(N) of unitary operators of N into [0, 1] such that
X{fle)jvelU(N)}=1 For x in M, let f-x=3 {f(v) vxv* | ve U(N}}
and let K(x) be the closed convex set @ {vxv* | v U(N)}; then

Kix)=norm closure {f x| fe F}.
We note that || /- x| < x| for every fin F. Also the relation
S8 x)=(f+g) x
holds, where f=g is the usual convolution
feg(w)=3 {f(v) g(wo*)| ve UN)}
of the functions f and g on the discrete group U/(N). We note that

I K(x) = K(x),
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and hence, il ye K{x), then A{y) < K{x). We remark that f leaves N n M
pointwise invariant. Also in the sequel we use the fact that Kiu) = Nu for
every ueU(M) with uNu*=N; indeed wma*=v{wr*u*)u for every
ve U(N).

DeFNITION 2.1, An element x in M is said to possess the relative
Dixmier property (RDP) with regard to N if K{x)n N' = K'(x) is nonvoid.
Let N, be the set of all elements with the relative Dixmier property.

It is easy to see that the set N;is a norm closed set. If N = M, then K'(x)
15 always nonvoid. This is the theorem of Dixmier [9]. In this case K'(x)
acts as a numerical range. For example, if M is semifinite, then
K'(x)={x,} if and only if x — x; is in the strong radical of M [§, 12, 24].

Lemma 22 [5]. Let M and N be von Neumann algebras with N = M, let
xbein M, and let p,, p,,..., p. be orthogonal projections in N of sum 1; then
¥ Pexp is in Ki(x).

Proof. By induction we may assume that
F=PiXP1 4+ PpaXPu—z H (Paey + 2a) X(Ppo 1 + Pa)
isin Kix). Butv=p, + - 4+ p,_,; —p, is selfadjoint unitary in N and
2. Pexpy =27"(y +vyv*),

is contained in K{») and hence in Kix). Q.ED.

Remark. We have actually shown that ¥ p.xp, 15 in
cofvxr* | v=0v*c U(N)}.

If N is abelian, several types of convex sets coincide as the next
proposition demonstrates,

ProrosiTion 2.3, Let N be an abelian von Neumann subafgfbrﬁ of M
and let x be in M. Let

K (x)=To{vawv* | v=0*e U(N)},
and let
K (x)=clos {Z Pexby | Poses P, Orthogonal projections in N of sum I},

then
Kx)n N =K (x)n N =K(x)n N =K'(x).
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Proof. By Lemma 2.2 and the following remark, we have that

K, (x)= K (x) = K(x).

Hence, it is sufficient to show that K'(x) is contained in K (x). If & is 1n
K'(x), then 0 is in K'(x —a); and if 0 is in K (x —a) for ain M n N', then a
is in K,(x). Thus, there is no loss of generality in showing that 0 is in K,(x)
whenever 0 is in K{x). Given & >0, there are positive numbers a,,..., %, of
sum 1 and corresponding unitary operators v,,.., 0, in N such that
IS a;v;xv* | <& Since N is abelian, the v, have a joint spectral resolution.
Hence, there is no loss in generality in the assumption that each v, is of the
form v,=% {#;p,|1<j<m}, where p, are mutually orthogonal
projections in N of sum 1 and «; are numbers of modulus 1. Then for
all i, j, we have that puxvfp,=pxp;, and hence, |X pxp;l
=3, A%, ot x0F) p; | <& Since e 0 is arbitrary, 0 is in K (x).

Q.ED.

The von Neumann algebra N =7/"(Z) is a maximal abelian subalgebra of
the algebra M of bounded operators on F(Z). The algebra N is identified
with the algebra of diagonal infinite (in two directions) matrices in the
space of (bounded) infinite (in two directions) matrices. An element x in M
is said to be paveable if given £ >0, there are orthogonal projections p, ...,
P, in N of sum 1 with | ¥ p,xp, — E(x) || <& Here E(x) is the diagonal of x.
By Proposition 2.3 an element x in M is paveable if and only if x has the
RDP relative to N.

Anderson has shown that every element x in M is paveable if and only if
every pure state on N has a unique extension to a (pure) state on M [1, 2].

When N is abelian, the Markov—Kakutani theorem implies that the
g-weak closure of K{x) has a nonvoid intersection with N”. Hence, there is
a conditional expectation E of M onto N'n M such that, for all x in M,
E(x) is in the o-weak closure of K(x) due to the result of Schwartz [23]. If
E is any conditional expectation of M onto N'n M, and if N'n M =N,
then the set K'(x) is either void or equal to the singleton set { E{x}}. Thus,
if NNn M =N, there exists a unique conditional expectation of M onto
N' - M whenever every x in M has the RDP with respect to N. We state a
nonabelian version of this in Proposition 4.8.

We now study a subset N of the set N, of all elements with the relative
Dixmier property.

ProposiTion 2.4, Lei N and M be von Newmann algebras with N< M
and let

No=1xeM| f-xe N, forevery fF}.
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Then N, iz a norm closed self-adjoint subspace of M, which contains N, and
is a two-sided module over N' v M.

Proof. Given x|, x, in Ny, fin F, and & > 0, there are functions g,, g-
in F and elements a,, a, in N~ M such that [ g, -/ x;,—a, || <& and
Il &2 & fx2—a; [ <e whence

|l gz & F(x; +x3)—(a, +a5)l
Slgz g frxi—a)l+lg g fx-all<s

Here we used the fact that g, - @, = a,. This means that K'(J - (x; + x,)) is
nonvoid because the distance of K(f - {x; + x;)) to N’ is arbitrarily small.
Consequently, we see that x; + x, is in M. The other algebraic properties
are clear. Finally, N, is norm closed as is easy to verify using the fact that
| f-x| < || =} for every x in A and fin F. Q.ED.

CoroLLARY 2.5, If N is abelian, then N, = N ,.

Proof. We have that N, =N, in general Conversely, let xe N, let
aeK'(x) and let feF. There is a sequence {f,} in F such that
lim f, -x=a However, we have that f,+f=f+f, and lim f,-{f-x)
=lim f(f, x)=f-a=a Thus K'(f x)=£K'(x) is nonvoid, whence
xe Ny QED.

3. ALGEBRAS WITH SPATIAL AUTOMORPHISMS

Let N be a von Neumann algebra with center C on the separable Hilbert
space H and let £ be an automorphism of N. There is a largest projection
p(8) in the fixed point algebra N® of N such that the restriction of 6 to N,
is inner. The projection p(#) actually is in C [7]. The automorphism & is
said to be properly outer if p(8) =0 and it is said to be aperiodic if p(6")=0
for all n# 0. Connes [7] has shown that the automorphism £ is properly
outer if and only if, given a nonzero projection p in N and given >0,
there is a nonzero projection ¢ in N, ¢<p, with |gf(g)| <e (cf [25,
17.9])

For a propetly outer automorphism # on N implemented by a unitary
operator « on M, we show that K{au) contains 0 for every a in N. We break
the proof into several steps, each of which uses some form of the following
proposition, which can be viewed as a generalization of the previously
mentioned result of Connes [7].

ProposiTion 3.1, Let N be a von Neumann algebra and let 8 be a
properly outer automorphism on N; then, for every a in N, every nonzero pro-
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Jjection p in N, and every &>, there is a nonzero projection g < p in N such
that || gab(q)| <e.

Proof. By passing to a nonzero subprojection of p if necessary, there is
no loss of generality in the assumption that pa can be written as pa= bw,
where beN* and weU(N). The polar decomposition plus some
manipulations with finite and purely infinite projections will produce this.
There is also no loss of generality in the assumption that the range support
of b is p; otherwise, there is a nonzero projection majorized by p that left
annihilates pa and consequently trivially satisfies the conclusion of our
proposition. There is a scalar 0<x < || 5| and a nonzero spectral projection
g’ of b majorized by p such that

lg'(b—a)l <&/2.

MNotice that ad w- @ is still a properly outer automorphism of N. So there is
a nonzero projection g majorized by g such that

lgadw-Blg)ll <&20b].

Then we have that

I gab(q) || = || gbw(q) |
<|lglb—a)ad w-B(g)l +a [ gadw-8(q)l
=E QED.

Consideration of a properly outer automorphism # on an algebra N with
center C can be split into three cases: (1) p(f | C)=0; (2) p(f | C)=1 and
N is finite; and (3) p(f| C)=1 and N is properly infinite. We consider
these three cases separately using a maximality argument based on
Proposition 3.1.

ProrosiTiON 3.2. If the automorphism @ of N is properly outer on the
center C of N, then 0 K{au) jor every ae N.

Proof. Let {p,} be a maximal set of nonzero orthogonal projections in
C such that p_8(p,)=0 for all m, n Setting p=3 p,, we have that
pO(p)=0. We show that p, =lub{p, 8(p), 8 '(p)} = 1. On the contrary,
suppose that p, # 1. Then there is a nonzero projection g<1—p, in C

such that [|gf(g)| < 1. Since gf{q) is a projection, we have gf(g)=0. But
we have that

Bg)<b(1—po)<l—p
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and hence pf(g)=0. Likewise, we have that (p)g = 0. Thus, the existence
of g contradicts the maximality of {p,]. So we must have that
lub{p, 8(p), 6~ '(p)} = 1.

We have that pf(p)= pf~'(p)=0. Consequently, the four projections
given by r, =8 (p)8(p), r,=8p)—r,, r;=0"'(p)—r,, and ry, = p are
orthogonal central projections of sum 1. We have that

Pl g =T 01, Ju=0

for 1 =m =<4, whence
Y, rmaur,, =0.

However, the sum ¥ r,aur,, is in K{au) (Lemma 2.2) and so 0 is in K{au).
QED.

We now assume that p(6 | C)= 1. This means that @ is the identity on C.

Proposmion 3.3, I N is finite and p(6 | C) = 1, then 0 K{au) for every
aeN.

Proof. Let £>0, let p be a nonzero projection of N and let {g,} be a
maximal set of mutually orthogonal nonzero projections of N majorized by
p such that (1) |g.af(q,)| <e and (2) g,af(q,.)=0 for n#m. Let
g=3Y g,; then g < p and | gaf(g)ll <& Let r be any central projection and
let

g' =lub{l(rpabd(q)), rpf—'(a*q)), rg},

where /(x) denotes the left support of the operator x, ie., the range projec-
tion of x. Then we have g" =rp. Indeed otherwise g" =rp — g" # 0. But then

g" < p,
g"ablg)=q"rpablg)=q"q'rpabig)=0,

and likewise gaf(g")=0 and ¢qq" =0. If ¢" is replaced by a smaller projec-
tion, the preceding relations also hold. But by Proposition 3.1 there is a
nonzero projection s=g", such that |saf(s)|| <& This contradicts the
maximality of {g,}. Therefore g'=rp.

Let now ¢ be the canonical center valued trace on N [10, IIL.5]. Since
{#(x)} =K(x)nC for all xeN and since it is easy to verify that
B(K(x)) = K(B(x)), we have ¢(8(x)) = 0(¢(x)) = ¢(x). From

Hrpab(q)) ~Ur(q) a*p) <rflg) = 0(rg)
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and
l(rpf="(a*q))~1l(r8~(g) 0~ (a) p) < rf~'(q)=0""(rg),

we have ¢(rp) = d(g’) = 3¢(rg). Since this inequality holds for every central
projection r, we conclude that ¢(g) =3 ~'¢(p). Therefore, by induction we
can construct a sequence {p,} of mutually orthogonal projections in N
such that (1) || p.af(p,)l<e (2) #(p.)237'(1-¢(Z {p.|0<sm<
n—1})), where we choose p,=0. Then we have ¢(1—-F {p,.|0=
m=n})=(3)". Choose integers n, k so that (3)"<1/k <z and set p'=1-
S {pn|0<m=<n). Since ¢(p')<é(1—p'), p' is unitarily equivalent to a
subprojection of 1 — p’. By iteration we can find & unitary operators w, e N
such that the projections w,p'w® are mutually orthogonal. Then by
Lemma 22 the operator ¥ k™ '‘w(paup, + -~ + p,aup, + p'aup’)w}
belongs to K{au) and has norm not larger than

Yk~ wlp aupy + - + poaup,)wi |
x H 2w pw wsauw ) wy p'w

<l praup, + -+ + paaup, | +k7" lub [ wauw |
<lub | pab(p)i+k~" | a|
<&(1+ |aff).

Since e is arbitrary, we conclude that 0 & K{au). QED.

Prorosmion 34. If N is properly infinite and if p(8|C)=1, then
Oe Kiau) for every ac N,

Proof. Let >0 and let {g,} be a maximal set of mutually orthogonal
nonzero projections of N such that (1) | g,aflg,)| <& for all » and (2)
g,a8(g,,) =0 for all nm. Then the projection g=7¥ g, is properly infinite
and has central support ¢(g)=1. On the contrary, there would be a non-
zero central projection r such that gr is finite or zero. Setting

g' = lub{l(ra(q)), [(r(6~"(a*q))), ra}.

we would have that ¢ is finite or zero because rg, rfl(g), and rf ~'(g) are all
finite or zero. As in the proofl of Proposition 3.3, we could find a nonzero
projection g" with ¢" < r— ¢’ that satisfies relations (1) and (2). However,
this would contradict the maximality of the set {g,}. Therefore, the projec-
tion g is properly infinite of central support 1. This means that g~1
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because N acts on a separable Hilbert space. We also have that
I gaf(q) || <e.

By passing if necessary to a subprojection of g, we may assume that g is
unitarily equivalent to 1—g. Now by recursion we can find &k unitary
operators w; in N such that the projections w/{l —g)w® are mutually
orthogonal. Here & is chosen so that 1/k <& Then the operator

2k~ wilgaug + (1 —g) au(l — g))w}
15 in K{au) (Lemma 2.2) and has norm not exceeding
I gab(g) || + &~ " lub| wl —q) au(l —q)w}* | <e(l+llal).

Since & = 0 is arbitrary, we conclude that 0 is in K{au). Q.ED.

Now we combine the previous propositions and obtain one of our main
results.

TueoreM 3.5. Let N be g von Neumann algebra on a separable Hilbert
space H and let u be a unitary operator on H such that ad u induces an
automorphism of N. Then, for every ac N, the element au is in Ny=
{xe B(H)|f- xe N, for every fe F} and in particular 0 K(au) if ad u is
properly outer.

Proof. Let # be the restriction of ad « to N, let C be the center of ¥,
and let p, = p(f)and p=1—p,. Then p, e C and 8(p,)= p, [6, 1.5.1]. Let
p=p—p(0|C,). We also have that p,eC and 6(p,)=p, Let
p(0 | C,)=p; + ps be the canonical decomposition of p(f | C,) into the
sum of a finite central projection p, and a properly infinite central projec-
tion p, for N. Since 8(p;) is finite, we have that #(p,;)= p, and con-
sequently that &(p,)= p,. Thus, we have the decomposition N=Z @ N,,
C=X@C, 0=XP0, where N,=N,, C,=C,=N,nN,, 6,=0|N;=
adup, |N,for 1 i< 4

Let F, be the set of nonnegative functions f with finite support on U(N,)
such that ¥ { f(v) | ve U(N;)} = 1. Embed F, in F by setting

Jdv)= fivp,)

if o(1— p,)=1-— p, and f{v) =0 otherwise. For every a in N and [ € F, let
a(f) be the element in N given by a(f)=Y {f(v) vab(v*) | ve U(N)}.
Then f-(au)=alf)}u. As a consequence of this, it is sufficient to show
aue N, for all ae N in order to show au is in N,.

MNow let aeN and let £>0. Since 6, is an inner automorphism on
N,, there is a unitary operator w in Nj such that wuwp, is in N,. There
is an f, in F; and a ¢ in C, such that | f,-(auwwp,)—c| <&/4
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by the Dixmier property. Thus, we get | f; - (aup,)—cw*| =
I f; - (auwp,)—c| < &/4 due to the fact that multiplication by w commutes
with the action of f,. Since {N,, 8,} (i=2, 3, 4) satisfy Propositions 3.2, 3.3,
and 3.4, respectively, we can find f, e F, = F such that

| f2-alfi)up; || <e/4,

I f3-alfaxfi)ups | <e/4,
and
I fa-alfsefanfi)ups | <e/4.
Then, for f= fefs*f,2f,, we have
If-au—cw*| <] fo alfs=f22f ) up, |
+ 1 fa - (s alf2xfi)ups)ll
I faxfs (fz alfi)ups)l
+ I faxf3%f - [y - aup, —ew?}|
=&

Since ¢ is arbitrary and since cw* is in N}, we have that K'(au) is nonvoid.
If u is properly outer, then p; =0 and thus 0 is in K'(au). Q.ED.

We conclude with the following characterization of those xe N, with
K'(x)={0}. In particular, this applies to x=au for ae¥N, and adu
properly outer.

ProrosimioN 3.6. If 0eK(f-x) for all f € F, then K'(x)= {0}.

Proof. Let zeK'(x) and let £é>0. Then there is an fe F such that
Nf-x—z||<&2 and a ge F such that || g- (/- x) [l <&2. Thus

Izl<lg-(f-x—2)I+lg (f x)<e
Since ¢ is arbitrary we conclude that z=0. QED.

4. Crossep ProDUCTS

Let N be a von Neuman algebra with center C on the separable Hilbert
space K and let 8 be an automorphism of N. Let H be the separable Hilbert
space H = L*(K, Z) of square summable functions of Z into K and let the
crossed product M = N x, Z of N by the action # of Z be represented on H.
Let nm=m, be the canonical embedding of N into M and let u=u, be the
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unitary operator on H given by (u{)(n)={(n—1). In the sequel, we identify
N with its image n(¥). Let E be the canonical expectation of M onto N.
Each element x in M is uniguely determined by the totality of the values
E(xu~") and can be represented as a generalized Fourier series
¥ E(xu~")u". The series converges in the Bures topology which is weaker
than the weak convergence of the finite partial sums [19]. Let U(M; N} be
the group of all unitary operators v in M with oNv*=N. We note that
N AM=N nnN=Cif 8 is aperiodic [25; 22.3]. The normalizer of E is the
group of all unitary operators v in M such that E(uxe*)=eE(x)v* for
every x in M. If N'~ M = C, the normalizer of E coincides with the group
M NY 25, 10.17]. We note that U{N) = U(M; N).
We can now state one of our main results.

THEOREM 4.1. Let N be a von Neumann algebra on the separable Hilbert
space H, let 8 be an automorphism of N, and let M=Nx,Z Then the
C*-algebra A generated by the normalizer U(M; N) is contained in Ny. In
particular, every element x€ A has the relative Dixmier property and if 8 is
aperiodic, K(x) has a nonveid intersection with the center C of N.

Proof. The set of linear combinations of elements of U(M; N) is dense
in A because U(M;N) is a group. Since N, is a Banach space
{Proposition 2.4), it is sufficient to show U(M; N)<= N;. This has already
been shown in a more abstract setting in Theorem 3.5. Finally, if 6 is
aperiodic, we have that K'(x)=K{x)n N nM=K(x)n C. Q.ED.

For every  in the torus 7, identified with the dual group of Z, there is an
automorphism @, on M uniquely determined by f(x})=x (xeN) and
6 (u) =1~ 'u. This so-called dual action t —f, on M is strongly continuous.
The canonical expectation E is then given by integration with respect to the
normalized Haar measure on T as E(x)= [ §,(x) dt.

DEFNITION 4.2. Let M be the crossed product of N by the action of the
automorphism #. An element x in M is said to be continuous if t — f.(x) is
continuous in the norm topology. The set of all continuous elements will be
denoted by M.

The set M is a weakly dense norm closed *-subalgebra of M [21, 7.5.1].
We now describe M. We state this in a more general context.

ProrosiTioN 4.3, Let o be the action of a locally compact abelian group
G on the von Neumann algebra A; then the C*-algebra A, of all x in A such
that t —= a,(x) is continuous in the norm is the set {o(@) x| L'(G), xe A}.
Here a(¢)x is given by o(¢)x = [ ¢(t)o,(x) dt.

Proof. It is known that the norm closure of L'(G) A= {a(¢)x|¢ e L'(G),



132 HALPERN, KAFTAL, AND WEISS

xeAd)} is equal to the set A, of continuous elements (cf. [21, 7.5.1]).
However, the set 4. forms a left Banach module over L'(G), since
lle(@)x) <], | x| for ¢ in L'(G). The approximate identity of L'(G) is
an approximate identity for the Banach module 4_. Therefore, Cohen’s fac-
torization theorem is applicable (cf. [17, 32.22]) so that L'(G) A, 1s already
closed and the three spaces L'(G)4, L'(G)A,, and 4, thus coincide.

Q.ED.

In our setting, we have M, = {f(¢)x | L (T), xes M}.

Lemma 44. Let el (T) and x=3 a,u"eM, then fig)x=
¥ (d(n)a,)u", where the series are the generalized Fourier expansions of x
and 0($)x, respectively.

Proof. Letx=7% a,u", ie., a, = E({xu"). Recall that E is s-weakly con-
tinuous and that E<f, =, E=E for all re T. Then

B(6@)x)u) = E( [ t0) 6, w )
=E (I $(1) 1" (xu™") a‘f)
= [ @()e=" BB (xu=")) dt

- (J’ He)e—" m) E(xu—")

=g(n)a,. QED.

Using this lemma on Cesaro summability, we have a simple proof of the
fact that M, coincides with the C*-crossed product of N by #, i.e,, with the
C*-algebra generated by N and wu, which is the norm closure of
span{au” [aeN, ne Z} (cf. [20]).

ProPOSITION 4.5. span{au”|ac N, ne Z} is norm dense in M.

Proof. For every aeN, neZ we have that au"eM_, since
f.(au”) = 1~"au". Conversely, let ¢ € L'(T), xe M, and &= 0, then there is a
¥ € L'(T) such that ||y=¢ — @], <& and such that the support of / is finite
[17, 33.12]. Since

160k = $)(x)—O(g)x | <+ d—ll, I x| <elx]
fi¢)x is approximated by the finite sum

b0y » )x =3 di(n) $(n) a,u" QED.
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THEOREM 4.6. Let N be a von Neumann algebra on a separable Hilbert
space, let § be an automorphism of N, let M= Nx, Z, and let M be the set
of elements of M continuous under the dual automorphism f; then M. = N,.
In particular, every continuous element of M has the relative Dixmier

Droperry.

Proof. By Proposition 4.5, the algebra M, is the C*-algebra generated
by N and u, and is thus contained in the C*-algebra generated by U{M; N).
By Theorem 4.1, the algebra M, is contained in N,,. QED.

—We assume henceforth that M, ¢ are as in Theorem 4.6 and that & is
aperiodic. We shall see in Section 5 that there are elements with the RDP
that are not in M_, however, the continuous elements have a connection
with the relative Dixmier property. We state this in the following form:

ProrosiTion 4.7, The element x € M has the relative Dixmier property if
and only if K({x)n M, is nonvoid,

Progf.  x has the RDP, there is a zeK'(x); but then
zeMn N =NnN is fixed under f,, hence is in M,. Conversely, if
ye K{x)r M, then by Theorem 4.6, K'(y)= K'(x) is nonvoid and thus x
has the RDP. Q.ED.

If xe M_, or more generally if xe Ny, then K'(x) coincides with the
essential central range K'{E(x)) of E{x) [8; 12; 13].

ProrosiTion 4.8, (a) Kix)c=K'(E(x)) jfor every xeM; and (b)
K'(x)= K'(E(x)) for every x € Ny,

Proof. (a) let zeK'(x), let >0, and let feF be such that
|f-x—zll<e Then JE(f-x—z)|=8f E{x)—z]<e Since e is
arbitrary, = e K{E(x)).

{b) Let zeK(E(x)), let £>0, and let feF be such that
| F- E{x)—z| <& Then there is a z'€ K'(f - x) and hence a g e F such that
| g%f - x—z'|| <& Therefore,

lz—z'sllz—gef Elx)|+ || g+ Elx)=2"|
=lg-(z—F Ex)lI+ | E(gxf-x—2'}|
< 2&.

This shows that K'(x) is dense in K'(E(x)) and hence coincides with it.
Q.ED.
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If N is a properly infinite algebra we can strengthen Theorem 4.6: we
show that if xe M has a *large piece” in M _ then x has the RDP.

Prorosiion 4.9. Let N be properly infinite and let xe M. If there is a
projection pe N, p~ I such that pxpe M, then x has the relative Dixmier
property.

Proof. For every projection p'<p in N we have that
t—=f,(p'xp')= p'd,(pxp) p’ is norm continuous and hence p'xp’ e M. Thus
we can assume without loss of generality that 1 — p~ p~ 1. Then reason-
ing as in [13, Theorem 4.12], for every ¢ >0 and k> ¢~ x|| we can find k
unitary operators w, such that wy{l'— p)w}* are mutually orthogonal. Let
foy=k=' for v=w, j=1,2.,k and zero otherwise; then
If-(1=p)x(1=p)| =k~ |Zwil—p)x(1—p)w¥l<e Since pxpe
M, = N,, f-pxpe N, and hence there is a ze Nn N’ and a ge F such that
|g+f pxp—z| <& But then guf-(pxp+(1—p)x(1—p)) belongs to
K{x) by Lemma 2.2 and has distance from z and hence N’ not greater than
2¢, Therefore x has the RDP. Q.ED.

5. B(H) anp Type III; (04 < 1) FACTORS

Let {{,|neZ} be the canonical basis of the Hilbert space I’ =I(Z)
given by {,(m) =4, (Kronecker delta) and let u,,, be the partial isometries
on * given by () = ({, {,){. The von Neumann algebra N of diagonal
operators with respect to the basis {{,} is isomorphic to /**(Z) under the
identification ¢ — ¥ ¢{n)u,,. If u denotes the bilateral shift on [(Z) given
by u(¥ a,l,)=% .0, , then ad u=40 is a properly outer automorphism
on N. In fact, given any nonzero projection p in N, any l-dimensional sub-
projection g of p satisfies gf(g)=0. Similarly, each automorphism #"
{(n#0) is properly outer and so 8 is aperiodic.

The algebra N and the bilateral shift generate the algebra B([*) of all
bounded linear operators on /. On the other hand, the bilateral shift
generates the (von Neumann) algebra L(Z) of Laurent operators. The
algebra L(Z) is isomorphic to L™(T) under the map ¢ — ¥ ¢(n)u"= L, so
that L,{=¢+( for { in /. The function ¢ is called the symbol of the
Laurent operator L.

For t in T, let w, be the unitary operator on I* given by (w [}(n)=
t~"{(n). The map ¢ — w, is a strongly continuous unitary representation of
T on PA(Z) with generator & (ie., w, =exp(log td)) with d equal to an
unbounded selfadjoint operator affiliated with N. If the algebra B(F°) is
identified with the crossed product N x,Z under the isomorphism that
sends x in N into m,(x) and u into u,, then ad w, is the action #, dual to 8.
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The algebra B, = B([?), is precisely the C*-algebra generated by N and u
{cf. Proposition 4.5). The algebra B, n L{Z) is by Proposition 4.5 the C*-
algebra generated by w, ie., the algebra of all Laurent operators with con-
tinupus symbol. By Theorem 4.6 all the elements of B, have the relative
Dixmier property. In another place [16,4.2] we show that the Laurent
operators with Riemann integrable symbol have the RDP. It is an open
question [2; 18] whether all operators in B(H) or even in L{Z) have the
relative Dixmier property.

The compact operators on [ are also in B,. In fact, we have a more
general result. Let T be the compact group T= =X {T, |ne Z}, where
T,=T. We embed T in T by identifying ¢ in T with {¢"} in 7. The map
w of T™ into N given by (w.{)(n)=a(n) {(n) for xe T™ is a strongly con-
tinuous unitary representation of T on I* since

2= (w0, &)=Y aln) {(n) E(n)

is continuous if {, £ have finite support and thus is continuous for any {, ¢
in /. We note that w, for 7 in T has the meaning originally assigned to it.
Motice that the range of w is actually U(N) and that T™ and U{N) with its
strong (equivalently, weak) topology are algebraically and topologically
isomorphic. Let @ be the action of T™ on B(F®) given by w, =ad w,.

ProprosITioN 5.1, An operator x in B(I) is continuous under @ — w_(x)
in the norm topology if and only if x — E(x) is compact.

Proof. Let x, be the character of T™ given by y.(a)= {¥.. 2> =aln).
For the previously defined matrix units u_,, we have that

m#{um]=5|[m_} el 7 ) 8

Then, for any ¢ in L'(T™) and x e B(I?) let the operator w(¢)x be given by

a($)x= [ $(a) 0,(x) dx
Thus,

O(B) U = P X Ui

However, linear combinations of the u,, are dense in B(®) in the o-weak
topology. Thus, the formula

(¢)x =Y Sl WXL s L)t

holds for all x in B(F). The sum is the limit of the net of the finite partial
sums in the o-weak topology.
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Now let & —+ w,(x) be continuous on 7™ in the norm topology. Then
& — @,(x — E(x)) = w,(x) — E(x)

is also continuous. We have already used the fact that for preassigned >0
there is a function ¢ in L'(T™), whose Fourier transform ¢ has finite sup-
port, such that

| o(¢)(x— E(x))— (x— E(x))| <&

However, the operator x—E(x) has zero diagonal, whence
af@)(x— E(x)) =X {@(Xmits ' Wxln () Upme |m #n} is a finite sum. Indeed,
we note that y,x7'=y,x,"' implies either i=j and m=n or i=m and
Jj=n. Thus x— E(x) is approximated in norm by the finite rank operator
w(g)(x— E(x)), and consequently, x — E{(x) is a compact operator.

Conversely, suppose that x — E{x) is compact. Then, given £ >0, there is
a finite linear combination ¥ ¥,.U.. approximating x — E{x) within &
Because

®— o, (Z Tm.um.,) =5 Y 2(10) 0(71) 1

i5 continuous in norm and because

@y (E Vit — = E{x}})! <s,

for all e I™, the function & —+ w.(x — E(x)) is the uniform limit of con-

tinuous functions and hence continuous. Finally, the function

w,(E(x))= E(x) for all « and thus, the function & — w,(x) is continuous.
QED.

CoroLLaRY 52. If x— E(x) is compact, then xe B_.
The normalizer U{B(*); N) is easy to describe.
Prorosimion 5.3, Let P(Z) be the set of all permutations of Z; then, for

every o€ P(Z), the equation (u,{)(n)="{(c~'(n)) defines a unitary operator
on F(Z) and U(B(FF); N)={w,u, |ee P(Z), xe T™}.

Proof. We clearly have that u¥ =u__, and that
luad 1= 3 15(e~ (m)) P =3 [Em) 2= 1L0?
for every [ e I*(Z), whence u, is unitary. Furthermore, we have that

(ugw,C)n) = x(a(n)) {(a(n))
= (wy.oug{)(n)
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so that u*w_u, =w,.,. Thus, we get ad u, maps U(¥) into U(N) and thus
u, is in the normalizer. Conversely, let v be in the normalizer; then each
projection ad v(u,,) is a 1-dimensional projection in N. Hence, there is a ¢
in P(Z) such that ado(u,)=u,nem. and consequently, the
automorphism ad{vu¥) is the identity on N. Because N is maximal abelian,
the unitary operator vu? isin N and vu? =w, forsome xin 7. Q.ED.

The bilateral shift u is represented as u, for that ¢ in P{Z) with
gin)=n+ 1. Now we show the C*-alpebra 4 generated by the normalizer
1s strictly larger than B..

.Pm:rmsmcm 54. The unitary operator u, is in B, if and only if
Z,={a(n)—n|neZ} is a finite set.

Progf. For every o in T*° we have that
Wyld, W: - wmw,ﬁuo’:
where f in T™ is given by Bi(n)=u(e~'(n))~. Thus, we have that

lwau wt —u, || = | (wowg — L)u, | = [ wowy — 1]
=lub{|x(n)aloc " n))"—1||neZ].
In particular, we have that
lweu,w¥ —u, | =lub{|F—1|| pe Z,}.

Since
limn (lub{|F—1|| peZ,, |t—1|<e})=0

if and only if Z_ is a finite set, we see that «, € B, il and only if Z_ is a finite
set. Q.ED.

We can now state the extension property of Kadison and Singer [18,
Theorem 31].

Proposimion 5.5. Every pure state of the algebra N of diagonal
aperators in B(?) has a unigue extension to a pure state on the C*-algebra A
generated by the normalizer U(B(I*); N).

Proof. The set K'(x) is nonvoid for every x in 4. So Theorem 2.4 [5]
may be applied. Q.ED.

We note that Proposition 3.2 gives directly that 0ecKlau) since N
is abelian. Also we see that E{x)e K{x) whenever xe B, follows directly
from the fact that there are Riemann sums for [ #,(x)dt=E(x) that
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lie in CG{w,(x)|1eT} and converge uniformly to E(x). Also {w,|te T}
is a compact subgroup of U(N) that generates N, moreover
w,(x)=ad wix)e N for all ¢t in T implies xe N.

We now treat a second example. Let N be a type II_, von Neumann
algebra with center C on a separable Hilbert space, let t be a faithful nor-
mal semifinite trace on N, and let # be an automorphism of N such that
1-8< At for some 0 <4< 1. Then the automorphism ¢ is aperiodic on N.
In fact, given any nonzero projection p in N, there is a nonzero #-wander-
ing projection g (i.e., gf"(g) =0 for all n+ 0) majorized by p [15, 3.3]. The
construction of type III; factors (0= i<1) is based on the existence of
such automorphisms # on certain type Il factors, and the construction of
type 111, factors is based on the existence of such automorphisms on cer-
tain type Il algebras with diffuse center on which 6 acts ergodically.

The elements v of the normalizer U(M; N) of N in M have a specific
description [6, 1.5.5] because M is generated by N and the subgroup
{u" | neZ} of the normalizer. If v is in U(M; N), then there is a doubly
infinite sequence {p,} of projections in C of sum 1 and a doubly infinite
sequence {u,} of partial isometries in N with w*u, =u,u* = p, such that
u "vp,xp, v*u" =u,_ xu* for every x in N. Because N' n M = C, the unitary
v can be written as v=% {u"w,p, | ne Z}, where {w,} is a doubly infinite
sequence of unitaries in N with u*w, € Cp,. Conversely, if {p,} is a doubly
infinite sequence of orthogonal projections in C of sum 1 and {w,} is a
doubly infinite sequence of unitary operators in N such that
u"w, p,w*y~"=p, for all n, then =% u"w,_p, is in U(N; M). In terms of
the preceding sum decomposition of elements of U'{M; N), we can describe
the continuous elements.

ProprosITioN 5.6. Let {p,|neZ} be a sequence of orthogonal projec-
tions in C of sum 1 and let {w,} be a corresponding sequence of unitary
operators in N such that u"w, p (u"w,)*=p, for all n. Then the unitary
operator v=2. uw,p, in UM;N) is in M, if and only if the set
Z,={neZ|p,#0} is a finite set.

Proof. We have that
8 (v)=Y t™"u"W, p,,
and consequently, that
I8, (v)—vll =lub, | "= 1| [|u"w, p, |

As in Proposition 5.4, lim, _, ||§,(v)—v| =0 if and only if Z, is a finite set.
Q.ED.
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Thus, if N is a factor, the C*-algebra 4 generated by U{M; N) is equal to
M_. If N has a diffuse center C and 8 acts ergodically on C, then A4 is
strictly larger than M. In fact, there is a sequence {p,} of orthogonal pro-
jections of sum 1 in C such that {#"(p,)} are also orthogonal of sum 1 and
such that {n | p, #0} is infinite (cf. [25, 29.2]). The operator ¥ u"p,, is in
U(M; N) by direct calculation and is not in M, by Proposition 5.6.

We now state some results of an earlier paper in the context of the RDP.

ProrosiTioN 5.7. Let N be a type 11, factor (resp. type 11, algebra with
diffuse center) on a separable Hilbert space, let v be a faithful normal
semifinite trace on N, and let 6 be an automorphism of N such that -6 =it
Jor some 0 < A < 1 (resp. such that - 8< it for some 0 <4 <1 and such that
B is ergodic on the center of N). Let x be in (Nxz,Z) =M™, If E(x) is
compact in N, i.e., is in the strong radical of N, then there is a cofinite projec-
tion p in N such that pxpe M, and K'(x)= {0}.

Proof. In [14, 6.1] we have proved the existence of a cofinite projection
p such that the generalized Fourier expansion of pxp converges uniformly.
This means that pxp is in M_.. The second statement follows from
Proposition 4.8(a) and 4.9 together with the fact that K'(E(x))= {0} if
E(x)1s compact [13, 4.12]. Q.ED.

Let us consider now 1x, Zc M which we can identify with 1 ® L{Z),
where L(Z) is the previously mentioned class of Laurent operators in %

While we do not know whether the elements of L(Z) have the RDP in
B(F), we have the following:

PropOSITION 58, Let xel@L(Z) =M, where M is a type 111, factor
with 0 <4 <1. Then x has the RDP and K'(x)= {E(x)}.

Proof. Let x=¥ a,u” be the generalized Fourier expansion of x.
Then all the g, are scalar multiples of 1 and E(x)=a, Thus
K(x)=K'(E(x))={E(x)} by Proposition4.8(a). Without loss of
generality assume that E(x)=0. By [15, 3.6(b)] we can find an infinite
wandering projection pe N. Thus

pxp=Y a,pu"p=" a,pd"(p)u"=0.

Since p~ 1, by Proposition 4.9 we see that 0 K(x). Then K'(x)={0}.
QED.

R.EFERENCES

1. 1. AnpErson, Extensions, restrictions and representations of states on C*-glgebras, Trans.
Amer. Math. Soc. 249 (1979), 303-329.



140 HALPERN, KAFTAL, AND WEISS

2. J. ANDERSON, A conjecture comceming pure states of B(H) and a related theorem, in
“Proceedings, Vth International Conference Operator Algebras,” Timisoara and Her-
culane, Romania, Pitman, New York/London, 1984,

3. R. I. ArcupoLn, Extensions of states of C*-algebras, J. London Math. Soc. 21 (1380),
351-354.

4. R. J. ArcisoLp, On the Dixmier property of certain algebras, Marh. Proc. Cambridge
Philes. Soc. 86 (1979), 251-259.

5. R. 1. ArcapoLD, J. Buwce, anp K. D. Gregses, Extensions of states of C*-algebras, IT,
Proc. Royal Soc. Edinburgh Sect. A 92 (1982), 113-122,

6. A. Cowmes, Une classification des facteurs de type III, Ann. Ecole Norm. Sup. 6 (1973),
133252,

7. A. Cowmes, Outer conjugacy classes of automorphisms, Ann. Ecole Norm. Sup. 8 (1975),
e

8. J. Covway, The numerical range and a certain convex set in an infinite factor, J. Funce,
Anal. § [1970), 428435,

9. J. Duxmier, Applications i dans les anneaux d’ opérateurs, Compos. Marh. 10 (1952), 1-55.

100 J. Duxmer, “Les Algdbres d'Opératears dans 'Espace Hilbertien,” Gauthier-Villars,
Paris, 1972,

11. U. Haagerur anp L. Zsipo, Sur la propriété de Dixmier pour C*-algébres, C. R. Acad
Sei, Paris Sér. T Mark, 298 (1984), 173-176.

12 H. Havpern, Essential central spectrum and range for elements in a von Neumann
algebra, Pacific J. Math. (1972), 349-380.

13. H. Havrern, Essential central ranges and self-adjoint commutators in properly infinite
von Neumann algebras, Trans. Amer. Marh. Soc. 238 (1977), 117-146.

14. H. Havrern anD V. Karrar, Compact operators in type III; and type 11, factors, Marh.
Ann. 273 (1986), 251-270.

15. H. Havrern anp ¥, Karrar, Compact operators in type III; and tvpe III, factors, I,
Tohdku Math. 1., to appear.

16. H. HaLPerN, V. KaFTAL, AKD G. WEISs, Matrix pavings and Laurent operators, J. Oper.
Theory, to appear.

17. E. Hewrrt asp K. Ross, “Harmonic Analysis,” Vols. I, 11, Springer-Verlag, New York,
1963, 1970,

18, R, V. Kapisom anp 1. M, SivGer, Extensions of pure states, Amer. J. Marh. 81 (1959),
547-564.

19. E. Mercer, Convergence of Fourier series in discrete crossed products of von Neumann
algebras, Proc. Amer. Math. Soc. 94 (1985), 254258,

20. D. Ousen anp G. K. Penersen, On a certain C*-crossed prodoct inside a2 W ™-crossed
product, Proc. Amer. Math. Soc. 79 (1980), 587-590.

21. G. K. PEpERsEN, “C*-Algebras and their Automorphism Groups,” Academic Press, New
York, 1979,

22 N. Rieper, On the Dixmier property of simple C*-algebras, Math. Proc, Cambridge
Philos. Soc. 91 (1982), 75-T8.

23. 1. ScawartZz, Two finite non-hyperfinite, non-isomorphic factors, Comm. Pure Appl
Math. 16 (1963), 19-26.

24, 5. STRATILA AND L. Zsipo, An algebraic reduction theory for HW*-algebras II, Rev
Roumaine Math. Pures Appl. 18 (1973), 407-460.

25, 5. STRATILA, “Modular Theory in Operator Algebras,” Abaca Books, Normal, 111, 1981,

26, M. Takesaxi, Duality for crossed products and the structure of von Neumann algebras of
type 11, Acta Marh. 131 (1973), 249-310.

Printed by the St Catherine Press Lid., Tempelhof 41, Bruges, Belgium



