The Relative Dixmier Property in Discrete Crossed Products

HERBERT HALPERN, VICTOR KAFTAL, AND GARY WEISS*

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025

Communicated by C. Foias

Received February 1, 1986; revised February 26, 1986

1. Introduction

The problem of determining the pure states of the algebra B(H) of all bounded operators on a separable Hilbert space H can be reduced to determining all pure states of a maximal abelian *-subalgebra (masa) N of B(H) provided every pure state of N has a unique extension to a state of B(H). It is known that the only candidate for the extension property is an atomic masa N [18], which can be considered as the algebra of diagonal operators in an infinite matrix algebra. The extension property is equivalent to the property that given any x in B(H), the norm closure of the convex hull of the set $\{vxv^* \mid v \text{ unitary in } N\}$ (notation: $K(x) = \overline{co}\{vxv^* \mid v \in U(N)\}$) has a nonvoid intersection with the commutant N' (cf. [5, 2.4]).

There is a more general formulation for the question concerning the intersection of the convex hull with N'. For this, let M be a von Neumann algebra; then Dixmier [9] showed that the intersection of $\overline{co}\{vxv^* \mid v \in U(M)\}$ and M' is nonvoid for every x in M, i.e., the closed convex hull contains an element of the center. Several authors [1-5, 8, 9, 11-13, 15, 16, 20, 22] have studied this or other similar intersections under various hypotheses. For example, for a von Neumann algebra, the intersection can be viewed as a type of essential spectrum for x in a setting appropriate to von Neumann algebras (cf. [8, 12, 13, 24]). On the other hand, when M is a C^* -algebra, it is not always true that the intersection of $\overline{co}\{vxv^* \mid v \in U(M)\}$ with the center of M is nonvoid. Algebras in which all such intersections are nonvoid are said to possess the $Dixmier\ property$. Several algebras have been shown to have the Dixmier property; others do not have the property.

In this paper, we study a more general property which we call the relative Dixmier property. We fix a certain subalgebra N of the von

^{*} Research partially supported by NSF Grant DMS 8503390.

Neumann algebra M and consider for $x \in M$ the intersection of K(x) = $\overline{co}\{vxv^* \mid v \in U(N)\}$ with the commutant N' of N. This formulation is a general setting for the extension problem for $B(H) = M \lceil 18 \rceil$ as well as for some recent work on compact operators on type III, $(0 \le \lambda < 1)$ factors [14, 15]. Here the algebra N will be a von Neumann algebra and M will be the crossed product of N by the action of an automorphism θ . In Section 3 we prove that K(au) has a nonvoid intersection with N' for every a in N and every unitary operator u in M such that ad u induces an automorphism of N. In particular, if ad u is properly outer K(au) contains 0. In Section 4 we assume that N is identified with its canonical image in the crossed product $M = N \times_{\theta} Z$ of N by the action θ of Z on N, where θ is an automorphism of N. We show that K(x) has a nonvoid intersection with N' for every x in the C^* -algebra generated by the group U(M; N) of unitaries u in M with $uNu^* = N$. In particular, we show that K(x) will have a nonvoid intersection with N' whenever x is continuous under the dual automorphism θ of θ . In Section 5 we study two special cases: (1) M = B(H) and N is the atomic masa of diagonal operators with respect to some fixed orthonormal basis, and (2) M is a type III, factor $(0 \le \lambda < 1)$ and N a type II_{∞} algebra. We identify the set U(M; N) and study its relationship to the elements continuous under the dual automorphism θ . In case (1) we show the relationship of U(M; N) to the work of Kadison and Singer [18].

2. The Relative Dixmer Property

Let H be a Hilbert space, let M and N be von Neumann algebras on H, and let N be a subalgebra of M. Let F be the set of all functions of finite support of the set U(N) of unitary operators of N into [0,1] such that $\sum \{f(v) \mid v \in U(N)\} = 1$. For x in M, let $f \cdot x = \sum \{f(v) vxv^* \mid v \in U(N)\}$ and let K(x) be the closed convex set $\overline{co}\{vxv^* \mid v \in U(N)\}$; then

$$K(x) = \text{norm closure } \{ f \cdot x \mid f \in F \}.$$

We note that $||f \cdot x|| \le ||x||$ for every f in F. Also the relation

$$f \cdot (g \cdot x) = (f * g) \cdot x$$

holds, where f*g is the usual convolution

$$f*g(w) = \sum \{f(v) \ g(wv^*) \mid v \in U(N)\}$$

of the functions f and g on the discrete group U(N). We note that

$$f \cdot K(x) \subset K(x)$$
,

and hence, if $y \in K(x)$, then $K(y) \subset K(x)$. We remark that f leaves $N' \cap M$ pointwise invariant. Also in the sequel we use the fact that $K(u) \subset Nu$ for every $u \in U(M)$ with $uNu^* = N$; indeed $vuv^* = v(uv^*u^*)u$ for every $v \in U(N)$.

DEFINITION 2.1. An element x in M is said to possess the *relative Dixmier property* (RDP) with regard to N if $K(x) \cap N' = K'(x)$ is nonvoid. Let N_d be the set of all elements with the relative Dixmier property.

It is easy to see that the set N_d is a norm closed set. If N = M, then K'(x) is always nonvoid. This is the theorem of Dixmier [9]. In this case K'(x) acts as a numerical range. For example, if M is semifinite, then $K'(x) = \{x_0\}$ if and only if $x - x_0$ is in the strong radical of M [8, 12, 24].

LEMMA 2.2 [5]. Let M and N be von Neumann algebras with $N \subset M$, let x be in M, and let $p_1, p_2,..., p_n$ be orthogonal projections in N of sum 1; then $\sum p_k x p_k$ is in K(x).

Proof. By induction we may assume that

$$y = p_1 x p_1 + \dots + p_{n-2} x p_{n-2} + (p_{n-1} + p_n) x (p_{n-1} + p_n)$$

is in K(x). But $v = p_1 + \cdots + p_{n-1} - p_n$ is selfadjoint unitary in N and

$$\sum p_k x p_k = 2^{-1} (y + v y v^*),$$

is contained in K(y) and hence in K(x).

Q.E.D.

Remark. We have actually shown that $\sum p_k x p_k$ is in $co\{vxv^* \mid v=v^* \in U(N)\}$.

If N is abelian, several types of convex sets coincide as the next proposition demonstrates.

PROPOSITION 2.3. Let N be an abelian von Neumann subalgebra of M and let x be in M. Let

$$K_s(x) = \overline{\operatorname{co}}\{vxv^* \mid v = v^* \in U(N)\},\$$

and let

$$K_p(x) = \operatorname{clos} \left\{ \sum p_k x p_k \mid p_1, ..., p_n \text{ orthogonal projections in } N \text{ of sum } 1 \right\},$$

then

$$K_p(x) \cap N' = K_s(x) \cap N' = K(x) \cap N' = K'(x).$$

Proof. By Lemma 2.2 and the following remark, we have that

$$K_p(x) \subset K_s(x) \subset K(x)$$
.

Hence, it is sufficient to show that K'(x) is contained in $K_p(x)$. If a is in K'(x), then 0 is in K'(x-a); and if 0 is in $K_p(x-a)$ for a in $M \cap N'$, then a is in $K_p(x)$. Thus, there is no loss of generality in showing that 0 is in $K_p(x)$ whenever 0 is in K(x). Given $\varepsilon > 0$, there are positive numbers $\alpha_1, ..., \alpha_n$ of sum 1 and corresponding unitary operators $v_1, ..., v_n$ in N such that $\|\sum \alpha_i v_i x v_i^*\| < \varepsilon$. Since N is abelian, the v_i have a joint spectral resolution. Hence, there is no loss in generality in the assumption that each v_i is of the form $v_i = \sum \{\alpha_{ij} p_j \mid 1 \le j \le m\}$, where p_j are mutually orthogonal projections in N of sum 1 and α_{ij} are numbers of modulus 1. Then for all i, j, we have that $p_j v_i x v_i^* p_j = p_j x p_j$, and hence, $\|\sum p_j x p_j\| = \|\sum_j p_j (\sum_i \alpha_i v_i x v_i^*) p_j\| < \varepsilon$. Since $\varepsilon > 0$ is arbitrary, 0 is in $K_p(x)$.

Q.E.D.

The von Neumann algebra $N=l^{\infty}(Z)$ is a maximal abelian subalgebra of the algebra M of bounded operators on $l^2(Z)$. The algebra N is identified with the algebra of diagonal infinite (in two directions) matrices in the space of (bounded) infinite (in two directions) matrices. An element x in M is said to be paveable if given $\varepsilon > 0$, there are orthogonal projections $p_1,...,p_n$ in N of sum 1 with $\|\sum p_i x p_i - E(x)\| < \varepsilon$. Here E(x) is the diagonal of x. By Proposition 2.3 an element x in M is paveable if and only if x has the RDP relative to N.

Anderson has shown that every element x in M is paveable if and only if every pure state on N has a unique extension to a (pure) state on M [1, 2].

When N is abelian, the Markov-Kakutani theorem implies that the σ -weak closure of K(x) has a nonvoid intersection with N'. Hence, there is a conditional expectation E of M onto $N' \cap M$ such that, for all x in M, E(x) is in the σ -weak closure of K(x) due to the result of Schwartz [23]. If E is any conditional expectation of M onto $N' \cap M$, and if $N' \cap M = N$, then the set K'(x) is either void or equal to the singleton set $\{E(x)\}$. Thus, if $N' \cap M = N$, there exists a unique conditional expectation of M onto $N' \cap M$ whenever every x in M has the RDP with respect to N. We state a nonabelian version of this in Proposition 4.8.

We now study a subset N_0 of the set N_d of all elements with the relative Dixmier property.

Proposition 2.4. Let N and M be von Neumann algebras with $N \subset M$ and let

$$N_0 = \{ x \in M \mid f \cdot x \in N_d \text{ for every } f \in F \}.$$

Then N_0 is a norm closed self-adjoint subspace of M, which contains N, and is a two-sided module over $N' \cap M$.

Proof. Given x_1 , x_2 in N_0 , f in F, and $\varepsilon > 0$, there are functions g_1 , g_2 in F and elements a_1 , a_2 in $N' \cap M$ such that $\parallel g_1 \cdot f \cdot x_1 - a_1 \parallel < \varepsilon$ and $\parallel g_2 \cdot g_1 \cdot f \cdot x_2 - a_2 \parallel < \varepsilon$, whence

$$\begin{split} \parallel g_2 \cdot g_1 \cdot f \cdot (x_1 + x_2) - (a_1 + a_2) \parallel \\ & \leq \parallel g_2 \cdot (g_1 \cdot f \cdot x_1 - a_1) \parallel + \parallel g_2 \cdot g_1 \cdot f \cdot x_2 - a_2 \parallel < 2\varepsilon. \end{split}$$

Here we used the fact that $g_2 \cdot a_1 = a_1$. This means that $K'(f \cdot (x_1 + x_2))$ is nonvoid because the distance of $K(f \cdot (x_1 + x_2))$ to N' is arbitrarily small. Consequently, we see that $x_1 + x_2$ is in N_0 . The other algebraic properties are clear. Finally, N_0 is norm closed as is easy to verify using the fact that $\|f \cdot x\| \le \|x\|$ for every x in M and f in F.

Q.E.D.

COROLLARY 2.5. If N is abelian, then $N_0 = N_d$.

Proof. We have that $N_0 \subset N_d$ in general. Conversely, let $x \in N_d$, let $a \in K'(x)$ and let $f \in F$. There is a sequence $\{f_n\}$ in F such that $\lim f_n \cdot x = a$. However, we have that $f_n * f = f * f_n$ and $\lim f_n \cdot (f \cdot x) = \lim f \cdot (f_n \cdot x) = f \cdot a = a$. Thus $K'(f \cdot x) = K'(x)$ is nonvoid, whence $x \in N_0$. Q.E.D.

3. Algebras with Spatial Automorphisms

Let N be a von Neumann algebra with center C on the separable Hilbert space H and let θ be an automorphism of N. There is a largest projection $p(\theta)$ in the fixed point algebra N^{θ} of N such that the restriction of θ to $N_{p(\theta)}$ is inner. The projection $p(\theta)$ actually is in C [7]. The automorphism θ is said to be properly outer if $p(\theta) = 0$ and it is said to be aperiodic if $p(\theta^n) = 0$ for all $n \neq 0$. Connes [7] has shown that the automorphism θ is properly outer if and only if, given a nonzero projection p in N and given $\epsilon > 0$, there is a nonzero projection q in N, $q \leq p$, with $||q\theta(q)|| < \epsilon$ (cf. [25, 17.9]).

For a properly outer automorphism θ on N implemented by a unitary operator u on H, we show that K(au) contains 0 for every a in N. We break the proof into several steps, each of which uses some form of the following proposition, which can be viewed as a generalization of the previously mentioned result of Connes [7].

Proposition 3.1. Let N be a von Neumann algebra and let θ be a properly outer automorphism on N; then, for every a in N, every nonzero pro-

jection p in N, and every $\varepsilon > 0$, there is a nonzero projection $q \leq p$ in N such that $||qa\theta(q)|| < \varepsilon$.

Proof. By passing to a nonzero subprojection of p if necessary, there is no loss of generality in the assumption that pa can be written as pa = bw, where $b \in N^+$ and $w \in U(N)$. The polar decomposition plus some manipulations with finite and purely infinite projections will produce this. There is also no loss of generality in the assumption that the range support of b is p; otherwise, there is a nonzero projection majorized by p that left annihilates pa and consequently trivially satisfies the conclusion of our proposition. There is a scalar $0 < \alpha < \|b\|$ and a nonzero spectral projection q' of b majorized by p such that

$$\|q'(b-\alpha)\| < \varepsilon/2.$$

Notice that ad $w \cdot \theta$ is still a properly outer automorphism of N. So there is a nonzero projection q majorized by q' such that

$$\|q \text{ ad } w \cdot \theta(q)\| < \varepsilon/2 \|b\|.$$

Then we have that

$$\begin{split} \|\,qa\theta(q)\,\| &= \|\,qbw\theta(q)\,\| \\ &\leqslant \|\,q(b-\alpha)\text{ ad }w\cdot\theta(q)\,\| + \alpha\,\|\,q\text{ ad }w\cdot\theta(q)\,\| \\ &\leqslant \varepsilon. \end{split} \tag{O.E.D.}$$

Consideration of a properly outer automorphism θ on an algebra N with center C can be split into three cases: (1) $p(\theta \mid C) = 0$; (2) $p(\theta \mid C) = 1$ and N is finite; and (3) $p(\theta \mid C) = 1$ and N is properly infinite. We consider these three cases separately using a maximality argument based on Proposition 3.1.

Proposition 3.2. If the automorphism θ of N is properly outer on the center C of N, then $0 \in K(au)$ for every $a \in N$.

Proof. Let $\{p_n\}$ be a maximal set of nonzero orthogonal projections in C such that $p_m\theta(p_n)=0$ for all m,n. Setting $p=\sum p_n$, we have that $p\theta(p)=0$. We show that $p_0=\mathrm{lub}\{p,\theta(p),\theta^{-1}(p)\}=1$. On the contrary, suppose that $p_0\neq 1$. Then there is a nonzero projection $q\leqslant 1-p_0$ in C such that $\|q\theta(q)\|<1$. Since $q\theta(q)$ is a projection, we have $q\theta(q)=0$. But we have that

$$\theta(q) \leqslant \theta(1-p_0) \leqslant 1-p$$

and hence $p\theta(q) = 0$. Likewise, we have that $\theta(p)q = 0$. Thus, the existence of q contradicts the maximality of $\{p_n\}$. So we must have that $\text{lub}\{p, \theta(p), \theta^{-1}(p)\} = 1$.

We have that $p\theta(p) = p\theta^{-1}(p) = 0$. Consequently, the four projections given by $r_1 = \theta^{-1}(p) \theta(p)$, $r_2 = \theta(p) - r_1$, $r_3 = \theta^{-1}(p) - r_1$, and $r_4 = p$ are orthogonal central projections of sum 1. We have that

$$r_m u r_m = r_m \theta(r_m) u = 0$$

for $1 \le m \le 4$, whence

$$\sum r_m a u r_m = 0.$$

However, the sum $\sum r_m aur_m$ is in K(au) (Lemma 2.2) and so 0 is in K(au). Q.E.D.

We now assume that $p(\theta \mid C) = 1$. This means that θ is the identity on C.

Proposition 3.3. If N is finite and $p(\theta \mid C) = 1$, then $0 \in K(au)$ for every $a \in N$.

Proof. Let $\varepsilon > 0$, let p be a nonzero projection of N and let $\{q_n\}$ be a maximal set of mutually orthogonal nonzero projections of N majorized by p such that $(1) \|q_n a\theta(q_n)\| < \varepsilon$ and $(2) q_n a\theta(q_m) = 0$ for $n \neq m$. Let $q = \sum q_n$; then $q \leqslant p$ and $\|qa\theta(q)\| < \varepsilon$. Let r be any central projection and let

$$q' = \text{lub}\{l(rpa\theta(q)), l(rp\theta^{-1}(a^*q)), rq\},\$$

where l(x) denotes the left support of the operator x, i.e., the range projection of x. Then we have q' = rp. Indeed otherwise $q'' = rp - q' \neq 0$. But then $q'' \leq p$,

$$q''a\theta(q) = q''rpa\theta(q) = q''q'rpa\theta(q) = 0,$$

and likewise $qa\theta(q'') = 0$ and qq'' = 0. If q'' is replaced by a smaller projection, the preceding relations also hold. But by Proposition 3.1 there is a nonzero projection $s \le q''$, such that $||sa\theta(s)|| < \varepsilon$. This contradicts the maximality of $\{q_n\}$. Therefore q' = rp.

Let now ϕ be the canonical center valued trace on N [10, III.5]. Since $\{\phi(x)\} = K(x) \cap C$ for all $x \in N$ and since it is easy to verify that $\theta(K(x)) = K(\theta(x))$, we have $\phi(\theta(x)) = \theta(\phi(x)) = \phi(x)$. From

$$l(rpa\theta(q)) \sim l(r\theta(q) \; a^*p) \leqslant r\theta(q) = \theta(rq)$$

and

$$l(rp\theta^{-1}(a^*q)) \sim l(r\theta^{-1}(q)\theta^{-1}(a)p) \leq r\theta^{-1}(q) = \theta^{-1}(rq),$$

we have $\phi(rp) = \phi(q') \leq 3\phi(rq)$. Since this inequality holds for every central projection r, we conclude that $\phi(q) \geq 3^{-1}\phi(p)$. Therefore, by induction we can construct a sequence $\{p_n\}$ of mutually orthogonal projections in N such that $(1) \|p_n a\theta(p_n)\| < \varepsilon$, $(2) \phi(p_n) \geq 3^{-1}(1-\phi(\sum \{p_m \mid 0 \leq m \leq n-1\}))$, where we choose $p_0 = 0$. Then we have $\phi(1-\sum \{p_m \mid 0 \leq m \leq n\}) \leq (\frac{2}{3})^n$. Choose integers n, k so that $(\frac{2}{3})^n < 1/k < \varepsilon$ and set $p' = 1 - \sum \{p_m \mid 0 \leq m \leq n\}$. Since $\phi(p') \leq \phi(1-p')$, p' is unitarily equivalent to a subprojection of 1-p'. By iteration we can find k unitary operators $w_j \in N$ such that the projections $w_j p' w_j^*$ are mutually orthogonal. Then by Lemma 2.2 the operator $\sum k^{-1} w_j (p_1 aup_1 + \cdots + p_n aup_n + p'aup') w_j^*$ belongs to K(au) and has norm not larger than

$$\begin{split} \sum k^{-1} & \| w_j(p_1 a u p_1 + \dots + p_n a u p_n) w_j^* \| \\ & + \left\| \sum k^{-1} w_j p' w_j^* (w_j a u w_j^*) w_j p' w_j^* \right\| \\ & \leq \| p_1 a u p_1 + \dots + p_n a u p_n \| + k^{-1} \text{ lub } \| w_j a u w_j^* \| \\ & \leq \text{lub } \| p_j a \theta(p_j) \| + k^{-1} \| a \| \\ & \leq \varepsilon (1 + \| a \|). \end{split}$$

Since ε is arbitrary, we conclude that $0 \in K(au)$.

Q.E.D.

PROPOSITION 3.4. If N is properly infinite and if $p(\theta \mid C) = 1$, then $0 \in K(au)$ for every $a \in N$.

Proof. Let $\varepsilon > 0$ and let $\{q_n\}$ be a maximal set of mutually orthogonal nonzero projections of N such that $(1) \|q_n a\theta(q_n)\| < \varepsilon$ for all n and $(2) q_n a\theta(q_m) = 0$ for all $n \neq m$. Then the projection $q = \sum q_n$ is properly infinite and has central support c(q) = 1. On the contrary, there would be a nonzero central projection r such that qr is finite or zero. Setting

$$q' = \text{lub}\{l(ra\theta(q)), l(r(\theta^{-1}(a*q))), rq\},\$$

we would have that q' is finite or zero because rq, $r\theta(q)$, and $r\theta^{-1}(q)$ are all finite or zero. As in the proof of Proposition 3.3, we could find a nonzero projection q'' with $q'' \le r - q'$ that satisfies relations (1) and (2). However, this would contradict the maximality of the set $\{q_n\}$. Therefore, the projection q is properly infinite of central support 1. This means that $q \sim 1$

because N acts on a separable Hilbert space. We also have that $\|qa\theta(q)\| < \varepsilon$.

By passing if necessary to a subprojection of q, we may assume that q is unitarily equivalent to 1-q. Now by recursion we can find k unitary operators w_j in N such that the projections $w_j(1-q)w_j^*$ are mutually orthogonal. Here k is chosen so that $1/k < \varepsilon$. Then the operator

$$\sum k^{-1}w_j(qauq+(1-q)\ au(1-q))w_j^*$$

is in K(au) (Lemma 2.2) and has norm not exceeding

$$||qa\theta(q)|| + k^{-1} \text{lub} ||w_i(1-q)au(1-q)w_i^*|| < \varepsilon(1+||a||).$$

Since $\varepsilon > 0$ is arbitrary, we conclude that 0 is in K(au).

Q.E.D.

Now we combine the previous propositions and obtain one of our main results.

Theorem 3.5. Let N be a von Neumann algebra on a separable Hilbert space H and let u be a unitary operator on H such that ad u induces an automorphism of N. Then, for every $a \in N$, the element au is in $N_0 = \{x \in B(H) | f \cdot x \in N_d \text{ for every } f \in F\}$ and in particular $0 \in K(au)$ if ad u is properly outer.

Proof. Let θ be the restriction of ad u to N, let C be the center of N, and let $p_1 = p(\theta)$ and $p = 1 - p_1$. Then $p_1 \in C$ and $\theta(p_1) = p_1$ [6, 1.5.1]. Let $p_2 = p - p(\theta \mid C_p)$. We also have that $p_2 \in C$ and $\theta(p_2) = p_2$. Let $p(\theta \mid C_p) = p_3 + p_4$ be the canonical decomposition of $p(\theta \mid C_p)$ into the sum of a finite central projection p_3 and a properly infinite central projection p_4 for N. Since $\theta(p_3)$ is finite, we have that $\theta(p_3) = p_3$ and consequently that $\theta(p_4) = p_4$. Thus, we have the decomposition $N = \Sigma \oplus N_i$, $C = \Sigma \oplus C_i$, $\theta = \Sigma \oplus \theta_i$, where $N_i = N_{p_i}$, $C_i = C_{p_i} = N_i \cap N_i'$, $\theta_i = \theta \mid N_i = ad up_i \mid N_i$ for $1 \le i \le 4$.

Let F_i be the set of nonnegative functions f with finite support on $U(N_i)$ such that $\sum \{f(v) \mid v \in U(N_i)\} = 1$. Embed F_i in F by setting

$$f_i(v) = f_i(vp_i)$$

if $v(1-p_i)=1-p_i$ and $f_i(v)=0$ otherwise. For every a in N and $f \in F$, let a(f) be the element in N given by $a(f)=\sum \{f(v)\,va\theta(v^*)\mid v\in U(N)\}$. Then $f\cdot(au)=a(f)u$. As a consequence of this, it is sufficient to show $au\in N_d$ for all $a\in N$ in order to show au is in N_0 .

Now let $a \in N$ and let $\varepsilon > 0$. Since θ_1 is an inner automorphism on N_1 , there is a unitary operator w in N_1' such that uwp_1 is in N_1 . There is an f_1 in F_1 and a c in C_1 such that $||f_1| \cdot (auwp_1) - c|| < \varepsilon/4$

by the Dixmier property. Thus, we get $||f_1 \cdot (aup_1) - cw^*|| = ||f_1 \cdot (auwp_1) - c|| < \varepsilon/4$ due to the fact that multiplication by w commutes with the action of f_1 . Since $\{N_i, \theta_i\}$ (i = 2, 3, 4) satisfy Propositions 3.2, 3.3, and 3.4, respectively, we can find $f_i \in F_i \subset F$ such that

$$||f_2 \cdot a(f_1) u p_2|| < \varepsilon/4,$$

 $||f_3 \cdot a(f_2 * f_1) u p_3|| < \varepsilon/4,$

and

$$|| f_4 \cdot a(f_3 * f_2 * f_1) u p_4 || < \varepsilon/4.$$

Then, for $f = f_4 * f_3 * f_2 * f_1$, we have

$$\begin{split} \| \, f \cdot au - cw^* \, \| &\leqslant \| \, f_4 \cdot a(f_3 \! * \! f_2 \! * \! f_1) \, up_4 \, \| \\ &+ \| \, f_4 \cdot (f_3 \cdot a(f_2 \! * \! f_1) \, up_3) \, \| \\ &+ \| \, f_4 \! * \! f_3 \cdot (f_2 \cdot a(f_1) \, up_2) \, \| \\ &+ \| \, f_4 \! * \! f_3 \! * \! f_2 \cdot (f_1 \cdot aup_1 - cw^*) \, \| \\ &\leqslant \varepsilon. \end{split}$$

Since ε is arbitrary and since cw^* is in N_1 , we have that K'(au) is nonvoid. If u is properly outer, then $p_1 = 0$ and thus 0 is in K'(au). Q.E.D.

We conclude with the following characterization of those $x \in N_0$ with $K'(x) = \{0\}$. In particular, this applies to x = au for $a \in N$, and ad u properly outer.

PROPOSITION 3.6. If $0 \in K(f \cdot x)$ for all $f \in F$, then $K'(x) = \{0\}$.

Proof. Let $z \in K'(x)$ and let $\varepsilon > 0$. Then there is an $f \in F$ such that $\| f \cdot x - z \| < \varepsilon/2$ and a $g \in F$ such that $\| g \cdot (f \cdot x) \| < \varepsilon/2$. Thus

$$||z|| \le ||g \cdot (f \cdot x - z)|| + ||g \cdot (f \cdot x)|| < \varepsilon.$$

Since ε is arbitrary we conclude that z = 0.

Q.E.D.

4. CROSSED PRODUCTS

Let N be a von Neuman algebra with center C on the separable Hilbert space K and let θ be an automorphism of N. Let H be the separable Hilbert space $H = L^2(K, Z)$ of square summable functions of Z into K and let the crossed product $M = N \times_{\theta} Z$ of N by the action θ of Z be represented on H. Let $\pi = \pi_{\theta}$ be the canonical embedding of N into M and let $u = u_{\theta}$ be the

unitary operator on H given by $(u\zeta)(n) = \zeta(n-1)$. In the sequel, we identify N with its image $\pi(N)$. Let E be the canonical expectation of M onto N. Each element x in M is uniquely determined by the totality of the values $E(xu^{-n})$ and can be represented as a generalized Fourier series $\sum E(xu^{-n})u^n$. The series converges in the Bures topology which is weaker than the weak convergence of the finite partial sums [19]. Let U(M; N) be the group of all unitary operators v in M with $vNv^* = N$. We note that $N' \cap M = N' \cap N = C$ if θ is aperiodic [25; 22.3]. The normalizer of E is the group of all unitary operators v in M such that $E(vxv^*) = vE(x)v^*$ for every x in M. If $N' \cap M = C$, the normalizer of E coincides with the group U(M; N) [25, 10.17]. We note that $U(N) \subset U(M; N)$.

We can now state one of our main results.

Theorem 4.1. Let N be a von Neumann algebra on the separable Hilbert space H, let θ be an automorphism of N, and let $M = N \times_{\theta} Z$. Then the C*-algebra A generated by the normalizer U(M; N) is contained in N_0 . In particular, every element $x \in A$ has the relative Dixmier property and if θ is aperiodic, K(x) has a nonvoid intersection with the center C of N.

Proof. The set of linear combinations of elements of U(M; N) is dense in A because U(M; N) is a group. Since N_0 is a Banach space (Proposition 2.4), it is sufficient to show $U(M; N) \subset N_0$. This has already been shown in a more abstract setting in Theorem 3.5. Finally, if θ is aperiodic, we have that $K'(x) = K(x) \cap N' \cap M = K(x) \cap C$. Q.E.D.

For every t in the torus T, identified with the dual group of Z, there is an automorphism $\hat{\theta}_t$ on M uniquely determined by $\hat{\theta}_t(x) = x$ $(x \in N)$ and $\hat{\theta}_t(u) = t^{-1}u$. This so-called dual action $t \to \hat{\theta}_t$ on M is strongly continuous. The canonical expectation E is then given by integration with respect to the normalized Haar measure on T as $E(x) = \int \hat{\theta}_t(x) dt$.

DEFINITION 4.2. Let M be the crossed product of N by the action of the automorphism θ . An element x in M is said to be *continuous* if $t \to \theta_t(x)$ is continuous in the norm topology. The set of all continuous elements will be denoted by M_c .

The set M_c is a weakly dense norm closed *-subalgebra of M [21, 7.5.1]. We now describe M_c . We state this in a more general context.

PROPOSITION 4.3. Let σ be the action of a locally compact abelian group G on the von Neumann algebra A; then the C^* -algebra A_c of all x in A such that $t \to \sigma_i(x)$ is continuous in the norm is the set $\{\sigma(\phi) \mid x \mid \phi \in L^1(G), x \in A\}$. Here $\sigma(\phi)x$ is given by $\sigma(\phi)x = [\phi(t)\sigma_i(x)]$ dt.

Proof. It is known that the norm closure of $L'(G)A = \{\sigma(\phi)x \mid \phi \in L^1(G), \phi \in L^1(G),$

 $x \in A$ is equal to the set A_c of continuous elements (cf. [21, 7.5.1]). However, the set A_c forms a left Banach module over $L^1(G)$, since $\|\sigma(\phi)x\| \le \|\phi\|_1 \|x\|$ for ϕ in $L^1(G)$. The approximate identity of $L^1(G)$ is an approximate identity for the Banach module A_c . Therefore, Cohen's factorization theorem is applicable (cf. [17, 32.22]) so that $L^1(G)A_c$ is already closed and the three spaces $L^1(G)A$, $L^1(G)A_c$, and A_c thus coincide.

O.E.D.

In our setting, we have $M_c = \{\hat{\theta}(\phi)x \mid \phi \in L^1(T), x \in M\}$.

LEMMA 4.4. Let $\phi \in L^1(T)$ and $x = \sum a_n u^n \in M$, then $\hat{\theta}(\phi)x = \sum (\hat{\phi}(n)a_n)u^n$, where the series are the generalized Fourier expansions of x and $\hat{\theta}(\phi)x$, respectively.

Proof. Let $x = \sum a_n u^n$, i.e., $a_n = E(xu^{-n})$. Recall that E is σ -weakly continuous and that $E \circ \hat{\theta}_t = \hat{\theta}_t \circ E = E$ for all $t \in T$. Then

$$E((\hat{\theta}(\phi)x)u^{-n}) = E\left(\int \phi(t) \, \hat{\theta}_t(x) \, u^{-n} \, dt\right)$$

$$= E\left(\int \phi(t) \, t^{-n} \hat{\theta}_t(xu^{-n}) \, dt\right)$$

$$= \int \phi(t) t^{-n} \, E(\hat{\theta}_t(xu^{-n})) \, dt$$

$$= \left(\int \phi(t) t^{-n} \, dt\right) E(xu^{-n})$$

$$= \hat{\phi}(n) a_n. \qquad \text{O.E.D.}$$

Using this lemma on Cesaro summability, we have a simple proof of the fact that M_c coincides with the C^* -crossed product of N by θ , i.e., with the C^* -algebra generated by N and u, which is the norm closure of span $\{au^n \mid a \in N, n \in Z\}$ (cf. [20]).

Proposition 4.5. span $\{au^n \mid a \in N, n \in Z\}$ is norm dense in M_c .

Proof. For every $a \in N$, $n \in Z$ we have that $au^n \in M_c$, since $\hat{\theta}_t(au^n) = t^{-n}au^n$. Conversely, let $\phi \in L^1(T)$, $x \in M$, and $\varepsilon > 0$, then there is a $\psi \in L^1(T)$ such that $\|\psi * \phi - \phi\|_1 < \varepsilon$ and such that the support of $\hat{\psi}$ is finite [17, 33.12]. Since

$$\|\hat{\theta}(\psi * \phi)(x) - \hat{\theta}(\phi)x\| \leq \|\psi * \phi - \phi\|_1 \|x\| \leq \varepsilon \|x\|$$

 $\theta(\phi)x$ is approximated by the finite sum

$$\hat{\theta}(\psi * \phi)x = \sum \hat{\psi}(n) \hat{\phi}(n) a_n u^n$$
. Q.E.D.

THEOREM 4.6. Let N be a von Neumann algebra on a separable Hilbert space, let θ be an automorphism of N, let $M = N \times_{\theta} Z$, and let M_c be the set of elements of M continuous under the dual automorphism $\hat{\theta}$; then $M_c \subset N_0$. In particular, every continuous element of M has the relative Dixmier property.

Proof. By Proposition 4.5, the algebra M_c is the C^* -algebra generated by N and u, and is thus contained in the C^* -algebra generated by U(M; N). By Theorem 4.1, the algebra M_c is contained in N_0 . Q.E.D.

We assume henceforth that M, θ are as in Theorem 4.6 and that θ is aperiodic. We shall see in Section 5 that there are elements with the RDP that are not in M_c , however, the continuous elements have a connection with the relative Dixmier property. We state this in the following form:

PROPOSITION 4.7. The element $x \in M$ has the relative Dixmier property if and only if $K(x) \cap M_c$ is nonvoid.

Proof. If x has the RDP, there is a $z \in K'(x)$; but then $z \in M \cap N' = N \cap N'$ is fixed under θ_t , hence is in M_c . Conversely, if $y \in K(x) \cap M_c$ then by Theorem 4.6, $K'(y) \subset K'(x)$ is nonvoid and thus x has the RDP. Q.E.D.

If $x \in M_c$, or more generally if $x \in N_0$, then K'(x) coincides with the essential central range K'(E(x)) of E(x) [8; 12; 13].

PROPOSITION 4.8. (a) $K'(x) \subset K'(E(x))$ for every $x \in M$; and (b) K'(x) = K'(E(x)) for every $x \in N_0$.

Proof. (a) Let $z \in K'(x)$, let $\varepsilon > 0$, and let $f \in F$ be such that $||f \cdot x - z|| < \varepsilon$. Then $||E(f \cdot x - z)|| = ||f \cdot E(x) - z|| < \varepsilon$. Since ε is arbitrary, $z \in K(E(x))$.

(b) Let $z \in K'(E(x))$, let $\varepsilon > 0$, and let $f \in F$ be such that $||f \cdot E(x) - z|| < \varepsilon$. Then there is a $z' \in K'(f \cdot x)$ and hence a $g \in F$ such that $||g * f \cdot x - z'|| < \varepsilon$. Therefore,

$$\begin{split} \| \, z - z' \, \| & \leq \| \, z - g * f \cdot E(x) \, \| + \| \, g * f \cdot E(x) - z' \, \| \\ & = \| \, g \cdot (z - f \cdot E(x)) \, \| + \| \, E(g * f \cdot x - z') \, \| \\ & < 2 \varepsilon. \end{split}$$

This shows that K'(x) is dense in K'(E(x)) and hence coincides with it. Q.E.D.

If N is a properly infinite algebra we can strengthen Theorem 4.6: we show that if $x \in M$ has a "large piece" in M_c then x has the RDP.

PROPOSITION 4.9. Let N be properly infinite and let $x \in M$. If there is a projection $p \in N$, $p \sim I$ such that $pxp \in M_c$, then x has the relative Dixmier property.

Proof. For every projection $p' \leq p$ in N we have that $t \to \hat{\theta}_t(p'xp') = p'\hat{\theta}_t(pxp)$ p' is norm continuous and hence $p'xp' \in M_c$. Thus we can assume without loss of generality that $1-p \sim p \sim 1$. Then reasoning as in [13, Theorem 4.12], for every $\varepsilon > 0$ and $k > \varepsilon^{-1} \| x \|$ we can find k unitary operators w_j such that $w_j(1-p)w_j^*$ are mutually orthogonal. Let $f(v) = k^{-1}$ for $v = w_j$, j = 1, 2, ..., k, and zero otherwise; then $\| f \cdot (1-p)x(1-p)\| = k^{-1} \| \sum w_j(1-p)x(1-p)w_j^* \| < \varepsilon$. Since $pxp \in M_c \subset N_0$, $f \cdot pxp \in N_0$ and hence there is a $z \in N \cap N'$ and a $g \in F$ such that $\| g * f \cdot pxp - z \| < \varepsilon$. But then $g * f \cdot (pxp + (1-p)x(1-p))$ belongs to K(x) by Lemma 2.2 and has distance from z and hence N' not greater than 2ε . Therefore x has the RDP.

5. B(H) and Type III_{λ} $(0 \le \lambda < 1)$ Factors

Let $\{\zeta_n \mid n \in Z\}$ be the canonical basis of the Hilbert space $l^2 = l^2(Z)$ given by $\zeta_n(m) = \delta_{mn}$ (Kronecker delta) and let u_{mn} be the partial isometries on l^2 given by $u_{mn}(\zeta) = (\zeta, \zeta_n)\zeta_m$. The von Neumann algebra N of diagonal operators with respect to the basis $\{\zeta_n\}$ is isomorphic to $l^\infty(Z)$ under the identification $\phi \to \sum \phi(n)u_{nn}$. If u denotes the bilateral shift on $l^2(Z)$ given by $u(\sum \alpha_n \zeta_n) = \sum \alpha_n \zeta_{n+1}$, then ad $u = \theta$ is a properly outer automorphism on N. In fact, given any nonzero projection p in N, any 1-dimensional subprojection q of p satisfies $q\theta(q) = 0$. Similarly, each automorphism θ^n $(n \neq 0)$ is properly outer and so θ is aperiodic.

The algebra N and the bilateral shift generate the algebra $B(l^2)$ of all bounded linear operators on l^2 . On the other hand, the bilateral shift generates the (von Neumann) algebra L(Z) of Laurent operators. The algebra L(Z) is isomorphic to $L^{\infty}(T)$ under the map $\phi \to \sum \hat{\phi}(n)u^n = L_{\phi}$ so that $L_{\phi}\zeta = \phi * \zeta$ for ζ in l^2 . The function ϕ is called the symbol of the Laurent operator L_{ϕ} .

For t in T, let w_t be the unitary operator on l^2 given by $(w_t\zeta)(n) = t^{-n}\zeta(n)$. The map $t \to w_t$ is a strongly continuous unitary representation of T on $l^2(Z)$ with generator d (i.e., $w_t = \exp(\log td)$) with d equal to an unbounded selfadjoint operator affiliated with N. If the algebra $B(l^2)$ is identified with the crossed product $N \times_{\theta} Z$ under the isomorphism that sends x in N into $\pi_{\theta}(x)$ and u into u_{θ} , then ad w_t is the action $\hat{\theta}_t$ dual to θ .

The algebra $B_c = B(l^2)_c$ is precisely the C^* -algebra generated by N and u (cf. Proposition 4.5). The algebra $B_c \cap L(Z)$ is by Proposition 4.5 the C^* -algebra generated by u, i.e., the algebra of all Laurent operators with continuous symbol. By Theorem 4.6 all the elements of B_c have the relative Dixmier property. In another place [16, 4.2] we show that the Laurent operators with Riemann integrable symbol have the RDP. It is an open question [2; 18] whether all operators in B(H) or even in L(Z) have the relative Dixmier property.

The compact operators on l^2 are also in B_c . In fact, we have a more general result. Let T^{∞} be the compact group $T^{\infty} = X\{T_n \mid n \in Z\}$, where $T_n = T$. We embed T in T^{∞} by identifying t in T with $\{t^n\}$ in T^{∞} . The map w of T^{∞} into N given by $(w_{\alpha}\zeta)(n) = \overline{\alpha(n)}\zeta(n)$ for $\alpha \in T^{\infty}$ is a strongly continuous unitary representation of T^{∞} on l^2 since

$$\alpha \to (w_{\alpha}\zeta, \, \xi) = \sum \overline{\alpha(n)} \, \zeta(n) \, \overline{\xi(n)}$$

is continuous if ζ , ξ have finite support and thus is continuous for any ζ , ξ in l^2 . We note that w_i , for t in T has the meaning originally assigned to it. Notice that the range of w is actually U(N) and that T^{∞} and U(N) with its strong (equivalently, weak) topology are algebraically and topologically isomorphic. Let ω be the action of T^{∞} on $B(l^2)$ given by $\omega_{\alpha} = \operatorname{ad} w_{\alpha}$.

PROPOSITION 5.1. An operator x in $B(l^2)$ is continuous under $\alpha \to \omega_{\alpha}(x)$ in the norm topology if and only if x - E(x) is compact.

Proof. Let χ_n be the character of T^{∞} given by $\chi_n(\alpha) = \langle \chi_n, \alpha \rangle = \alpha(n)$. For the previously defined matrix units u_{mn} , we have that

$$\omega_{\alpha}(u_{mn}) = \overline{\alpha(m)} \alpha(n) u_{mn}$$

Then, for any ϕ in $L^1(T^{\infty})$ and $x \in B(l^2)$ let the operator $\omega(\phi)x$ be given by

$$\omega(\phi)x = \int \phi(\alpha) \, \omega_{\alpha}(x) \, d\alpha.$$

Thus,

$$\omega(\phi)u_{mn} = \hat{\phi}(\chi_m \chi_n^{-1})u_{mn}.$$

However, linear combinations of the u_{mn} are dense in $B(l^2)$ in the σ -weak topology. Thus, the formula

$$\omega(\phi)x = \sum \hat{\phi}(\chi_m \chi_n^{-1})(x\zeta_n, \zeta_m)u_{mn}$$

holds for all x in $B(l^2)$. The sum is the limit of the net of the finite partial sums in the σ -weak topology.

Now let $\alpha \to \omega_{\alpha}(x)$ be continuous on T^{∞} in the norm topology. Then

$$\alpha \to \omega_{\alpha}(x - E(x)) = \omega_{\alpha}(x) - E(x)$$

is also continuous. We have already used the fact that for preassigned $\varepsilon > 0$ there is a function ϕ in $L^1(T^\infty)$, whose Fourier transform $\hat{\phi}$ has finite support, such that

$$\|\omega(\phi)(x-E(x))-(x-E(x))\|<\varepsilon.$$

However, the operator x-E(x) has zero diagonal, whence $\omega(\phi)(x-E(x))=\sum \left\{\hat{\phi}(\chi_m\chi_n^{-1})(x\zeta_n,\zeta_m)\,u_{mn}\,|\,m\neq n\right\}$ is a finite sum. Indeed, we note that $\chi_i\chi_j^{-1}=\chi_m\chi_n^{-1}$ implies either i=j and m=n or i=m and j=n. Thus x-E(x) is approximated in norm by the finite rank operator $\omega(\phi)(x-E(x))$, and consequently, x-E(x) is a compact operator.

Conversely, suppose that x - E(x) is compact. Then, given $\varepsilon > 0$, there is a finite linear combination $\sum \gamma_{mn} u_{mn}$ approximating x - E(x) within ε . Because

$$\alpha \to \omega_{\alpha} \left(\sum \gamma_{mn} u_{mn} \right) = \sum \gamma_{mn} \overline{\alpha(m)} \alpha(n) u_{mn}$$

is continuous in norm and because

$$\left\| \, \omega_{\alpha} \left(\, \sum \gamma_{mn} u_{mn} - (x - E(x)) \, \right) \right\| < \varepsilon,$$

for all $\alpha \in T^{\infty}$, the function $\alpha \to \omega_{\alpha}(x-E(x))$ is the uniform limit of continuous functions and hence continuous. Finally, the function $\omega_{\alpha}(E(x)) = E(x)$ for all α and thus, the function $\alpha \to \omega_{\alpha}(x)$ is continuous.

Q.E.D.

COROLLARY 5.2. If x - E(x) is compact, then $x \in B_c$.

The normalizer $U(B(l^2); N)$ is easy to describe.

PROPOSITION 5.3. Let P(Z) be the set of all permutations of Z; then, for every $\sigma \in P(Z)$, the equation $(u_{\sigma}\zeta)(n) = \zeta(\sigma^{-1}(n))$ defines a unitary operator on $l^2(Z)$ and $U(B(l^2); N) = \{w_{\alpha}u_{\sigma} \mid \sigma \in P(Z), \alpha \in T^{\infty}\}.$

Proof. We clearly have that $u_{\sigma}^* = u_{\sigma-1}$ and that

$$\|\,u_\sigma\zeta\,\|^{\,2} = \sum\,|\,\zeta(\sigma^{\,-1}(n))\,|^{\,2} = \sum\,|\,\zeta(n)\,|^{\,2} = \|\,\zeta\,\|^{\,2}$$

for every $\zeta \in l^2(Z)$, whence u_{σ} is unitary. Furthermore, we have that

$$(u_{\sigma}^* w_{\alpha} \zeta)(n) = \overline{\alpha(\sigma(n))} \zeta(\sigma(n))$$
$$= (w_{\sigma,\sigma} u_{\sigma}^* \zeta)(n)$$

so that $u_{\sigma}^* w_{\alpha} u_{\sigma} = w_{\alpha \cdot \sigma}$. Thus, we get ad u_{σ} maps U(N) into U(N) and thus u_{σ} is in the normalizer. Conversely, let v be in the normalizer; then each projection ad $v(u_{nn})$ is a 1-dimensional projection in N. Hence, there is a σ in P(Z) such that ad $v(u_{nn}) = u_{\sigma(n)\sigma(n)}$, and consequently, the automorphism $ad(vu_{\sigma}^*)$ is the identity on N. Because N is maximal abelian, the unitary operator vu_{σ}^* is in N and $vu_{\sigma}^* = w_{\alpha}$ for some α in T^{∞} . Q.E.D.

The bilateral shift u is represented as u_{σ} for that σ in P(Z) with $\sigma(n) = n + 1$. Now we show the C^* -algebra A generated by the normalizer is strictly larger than B_c .

PROPOSITION 5.4. The unitary operator u_{σ} is in B_c if and only if $Z_{\sigma} = \{ \sigma(n) - n \mid n \in Z \}$ is a finite set.

Proof. For every α in T^{∞} we have that

$$W_{\alpha}U_{\sigma}W_{\alpha}^* = W_{\alpha}W_{\beta}U_{\sigma}$$

where β in T^{∞} is given by $\beta(n) = \alpha(\sigma^{-1}(n))^{-1}$. Thus, we have that

$$\begin{aligned} \| w_{\alpha} u_{\sigma} w_{\alpha}^{*} - u_{\sigma} \| &= \| (w_{\alpha} w_{\beta} - 1) u_{\sigma} \| = \| w_{\alpha} w_{\beta} - 1 \| \\ &= \text{lub} \{ | \alpha(n) \alpha(\sigma^{-1}(n))^{-} - 1 | | n \in \mathbb{Z} \}. \end{aligned}$$

In particular, we have that

$$||w_t u_\sigma w_t^* - u_\sigma|| = \text{lub}\{|t^p - 1| | p \in Z_\sigma\}.$$

Since

$$\lim_{\epsilon \to 0} (\text{lub}\{|t^p - 1| | p \in Z_{\sigma}, |t - 1| < \epsilon\}) = 0$$

if and only if Z_{σ} is a finite set, we see that $u_{\sigma} \in B_c$ if and only if Z_{σ} is a finite set. Q.E.D.

We can now state the extension property of Kadison and Singer [18, Theorem 3].

PROPOSITION 5.5. Every pure state of the algebra N of diagonal operators in $B(l^2)$ has a unique extension to a pure state on the C^* -algebra A generated by the normalizer $U(B(l^2); N)$.

Proof. The set K'(x) is nonvoid for every x in A. So Theorem 2.4 [5] may be applied. Q.E.D.

We note that Proposition 3.2 gives directly that $0 \in K(au)$ since N is abelian. Also we see that $E(x) \in K(x)$ whenever $x \in B_c$ follows directly from the fact that there are Riemann sums for $\int \hat{\theta}_t(x) dt = E(x)$ that

lie in $\overline{\operatorname{co}}\{\omega_t(x) \mid t \in T\}$ and converge uniformly to E(x). Also $\{w_t \mid t \in T\}$ is a compact subgroup of U(N) that generates N; moreover $\omega_t(x) = \operatorname{ad} w_t(x) \in N$ for all t in T implies $x \in N$.

We now treat a second example. Let N be a type II_{∞} von Neumann algebra with center C on a separable Hilbert space, let τ be a faithful normal semifinite trace on N, and let θ be an automorphism of N such that $\tau \cdot \theta \leqslant \lambda \tau$ for some $0 < \lambda < 1$. Then the automorphism θ is aperiodic on N. In fact, given any nonzero projection p in N, there is a nonzero θ -wandering projection q (i.e., $q\theta^n(q) = 0$ for all $n \neq 0$) majorized by p [15, 3.3]. The construction of type III_{λ} factors $(0 < \lambda < 1)$ is based on the existence of such automorphisms θ on certain type II_{∞} factors, and the construction of type III_0 factors is based on the existence of such automorphisms on certain type II_{∞} algebras with diffuse center on which θ acts ergodically.

The elements v of the normalizer U(M; N) of N in M have a specific description [6, 1.5.5] because M is generated by N and the subgroup $\{u^n \mid n \in Z\}$ of the normalizer. If v is in U(M; N), then there is a doubly infinite sequence $\{p_n\}$ of projections in C of sum 1 and a doubly infinite sequence $\{u_n\}$ of partial isometries in N with $u_n^*u_n = u_nu_n^* = p_n$ such that $u^{-n}vp_nxp_nv^*u^n = u_nxu_n^*$ for every x in N. Because $N' \cap M = C$, the unitary v can be written as $v = \sum \{u^nw_np_n \mid n \in Z\}$, where $\{w_n\}$ is a doubly infinite sequence of unitaries in N with $u_n^*w_n \in Cp_n$. Conversely, if $\{p_n\}$ is a doubly infinite sequence of orthogonal projections in C of sum 1 and $\{w_n\}$ is a doubly infinite sequence of unitary operators in N such that $u^nw_np_nw_n^*u^{-n}=p_n$ for all n, then $v=\sum u^nw_np_n$ is in U(N; M). In terms of the preceding sum decomposition of elements of U(M; N), we can describe the continuous elements.

PROPOSITION 5.6. Let $\{p_n \mid n \in Z\}$ be a sequence of orthogonal projections in C of sum 1 and let $\{w_n\}$ be a corresponding sequence of unitary operators in N such that $u^n w_n p_n (u^n w_n)^* = p_n$ for all n. Then the unitary operator $v = \sum u^n w_n p_n$ in U(M; N) is in M_c if and only if the set $Z_v = \{n \in Z \mid p_n \neq 0\}$ is a finite set.

Proof. We have that

$$\hat{\theta}_{t}(v) = \sum t^{-n} u^{n} w_{n} p_{n},$$

and consequently, that

$$\|\hat{\theta}_{s}(v) - v\| = \|ub_{s}\| t^{n} - 1\| \|u^{n}w_{s}\|_{p_{s}}\|.$$

As in Proposition 5.4, $\lim_{t\to 1} \|\hat{\theta}_t(v) - v\| = 0$ if and only if Z_v is a finite set. Q.E.D.

Thus, if N is a factor, the C^* -algebra A generated by U(M; N) is equal to M_c . If N has a diffuse center C and θ acts ergodically on C, then A is strictly larger than M_c . In fact, there is a sequence $\{p_n\}$ of orthogonal projections of sum 1 in C such that $\{\theta^n(p_n)\}$ are also orthogonal of sum 1 and such that $\{n \mid p_n \neq 0\}$ is infinite (cf. [25, 29.2]). The operator $\sum u^n p_n$ is in U(M; N) by direct calculation and is not in M_c by Proposition 5.6.

We now state some results of an earlier paper in the context of the RDP.

PROPOSITION 5.7. Let N be a type Π_{∞} factor (resp. type Π_{∞} algebra with diffuse center) on a separable Hilbert space, let τ be a faithful normal semifinite trace on N, and let θ be an automorphism of N such that $\tau \cdot \theta = \lambda \tau$ for some $0 < \lambda < 1$ (resp. such that $\tau \cdot \theta \leq \lambda \tau$ for some $0 < \lambda < 1$ and such that θ is ergodic on the center of N). Let θ be in θ 0, then there is a cofinite projection θ 1 in θ 2 in the strong radical of θ 3, then there is a cofinite projection θ 3 in θ 4 such that θ 5 and θ 6.

Proof. In [14, 6.1] we have proved the existence of a cofinite projection p such that the generalized Fourier expansion of pxp converges uniformly. This means that pxp is in M_c . The second statement follows from Proposition 4.8(a) and 4.9 together with the fact that $K'(E(x)) = \{0\}$ if E(x) is compact [13, 4.12]. Q.E.D.

Let us consider now $1 \times_{\theta} Z \subset M$ which we can identify with $1 \otimes L(Z)$, where L(Z) is the previously mentioned class of Laurent operators in l^2 . While we do not know whether the elements of L(Z) have the RDP in $B(l^2)$, we have the following:

PROPOSITION 5.8. Let $x \in 1 \otimes L(Z) \subset M$, where M is a type III_{λ} factor with $0 < \lambda < 1$. Then x has the RDP and $K'(x) = \{E(x)\}$.

Proof. Let $x = \sum a_n u^n$ be the generalized Fourier expansion of x. Then all the a_n are scalar multiples of 1 and $E(x) = a_0$. Thus $K'(x) \subset K'(E(x)) = \{E(x)\}$ by Proposition 4.8(a). Without loss of generality assume that E(x) = 0. By [15, 3.6(b)] we can find an infinite wandering projection $p \in N$. Thus

$$pxp = \sum a_n pu^n p = \sum a_n p\theta^n(p)u^n = 0.$$

Since $p \sim 1$, by Proposition 4.9 we see that $0 \in K(x)$. Then $K'(x) = \{0\}$. O.E.D.

REFERENCES

 J. Anderson, Extensions, restrictions and representations of states on C*-algebras, Trans. Amer. Math. Soc. 249 (1979), 303-329.

- J. Anderson, A conjecture concerning pure states of B(H) and a related theorem, in "Proceedings, Vth International Conference Operator Algebras," Timisoara and Herculane, Romania, Pitman, New York/London, 1984.
- R. J. ARCHBOLD, Extensions of states of C*-algebras, J. London Math. Soc. 21 (1980), 351-354.
- R. J. ARCHBOLD, On the Dixmier property of certain algebras, Math. Proc. Cambridge Philos. Soc. 86 (1979), 251-259.
- R. J. ARCHBOLD, J. BUNCE, AND K. D. GREGSEN, Extensions of states of C*-algebras, II, Proc. Royal Soc. Edinburgh Sect. A 92 (1982), 113-122.
- A. Connes, Une classification des facteurs de type III, Ann. Ecole Norm. Sup. 6 (1973), 133–252.
- A. CONNES, Outer conjugacy classes of automorphisms, Ann. Ecole Norm. Sup. 8 (1975), 383–419.
- J. Conway, The numerical range and a certain convex set in an infinite factor, J. Funct. Anal. 5 (1970), 428-435.
- 9. J. Dixmier, Applications & dans les anneaux d'opérateurs, Compos. Math. 10 (1952), 1-55.
- J. DIXMIER, "Les Algèbres d'Opérateurs dans l'Espace Hilbertien," Gauthier-Villars, Paris. 1972.
- U. HAAGERUP AND L. ZSIDO, Sur la propriété de Dixmier pour C*-algèbres, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), 173-176.
- H. Halpern, Essential central spectrum and range for elements in a von Neumann algebra, Pacific J. Math. (1972), 349–380.
- H. HALPERN, Essential central ranges and self-adjoint commutators in properly infinite von Neumann algebras, Trans. Amer. Math. Soc. 238 (1977), 117-146.
- H. HALPERN AND V. KAFTAL, Compact operators in type III₂ and type III₀ factors, Math. Ann. 273 (1986), 251–270.
- H. HALPERN AND V. KAFTAL, Compact operators in type III_λ and type III₀ factors, II, Tohôku Math. J., to appear.
- H. HALPERN, V. KAFTAL, AND G. WEISS, Matrix pavings and Laurent operators, J. Oper. Theory, to appear.
- E. HEWITT AND K. Ross, "Harmonic Analysis," Vols. I, II, Springer-Verlag, New York, 1963, 1970.
- R. V. Kadison and I. M. Singer, Extensions of pure states, Amer. J. Math. 81 (1959), 547-564.
- R. Mercer, Convergence of Fourier series in discrete crossed products of von Neumann algebras, Proc. Amer. Math. Soc. 94 (1985), 254-258.
- D. Olsen and G. K. Pedersen, On a certain C*-crossed product inside a W*-crossed product, Proc. Amer. Math. Soc. 79 (1980), 587-590.
- G. K. Pedersen, "C*-Algebras and their Automorphism Groups," Academic Press, New York, 1979.
- N. RIEDEL, On the Dixmier property of simple C*-algebras, Math. Proc. Cambridge Philos. Soc. 91 (1982), 75–78.
- J. Schwartz, Two finite non-hyperfinite, non-isomorphic factors, Comm. Pure Appl. Math. 16 (1963), 19–26.
- S. STRATILA AND L. ZSIDO, An algebraic reduction theory for W*-algebras II, Rev. Roumaine Math. Pures Appl. 18 (1973), 407-460.
- 25. S. STRATILA, "Modular Theory in Operator Algebras," Abaca Books, Normal, Ill., 1981.
- M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131 (1973), 249–310.