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Arveson has shown in [1] that if 4 is a nest algebra of operators acting
on a separable Hilbert space H with nest of order type the extended natural
numbers and if K(H) is the ideal of compact operators on H, then the
quasitriangular algebra 4+ K(H) is norm closed. In [6] Fall, Arveson,
and Muhly extended Arveson’s result proving that in B(H), general
quasitriangular algebras (i.e., compact perturbations of nest algebras) are
always norm closed. A key step in their proof, and a result of independent
interest, first obtained by Erdos in [5], is the g-weak density of 4 n K(H)
in A. From this fact they deduced that quasitriangular algebras were norm
closed by using an argument depending on the duality K(H)** = B(H).

Every semifinite von Neumann algebra M has an ideal of compact
operators that behaves like K(H), namely the norm-closed two-sided ideal
K generated by the finite projections of the algebra. It is a natural question,
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which has circulated informally for several years, whether the above
two results and especially the closure result can be extended to the
von Neumann algebra setting,

In this paper we settle both questions in the affirmative. However, the
closure result does not seem to be obtainable from the density result by
using duality arguments as in B(H), since in general K** # M. Instead our
proof is matricial and is based on approximating Hilbert-Schmidt elements
of M (relative to a semifinite trace) by Hilbert-Schmidt elements in the
nest algebra, retaining joint control of both the operator norm and the
Hilbert-Schmidt norm. In the case M = B(H), this provides a new proof of
the closure of quasitriangular algebras independent of the density resuit.

In addition, as an application of our matricial technique, we obtain a
joint norm control Nehari type theorem in which we approximate L%
functions on the unit circle by H* functions, while retaining control of
both the L® and L%-norms. As a consequence of our construction, we
obtain another proof of Sarason’s theorem on the closure of H* + C [21].
Recently, G. Pisier showed us how to deduce a qualitative version of the
joint norm control Nehari type theorem from some deep interpolation
theoretic work of Jones based on Carleson measure techniques [10].

We use the following notations: M denotes a semifinite (but not
necessarily o-finite) von Neumann algebra with center Z and predual M,
7 is a faithful semifinite normal trace on M, and C,(M) (resp. C,(M)) is the
Hilbert-Schmidt class with norm ||-||, (resp. the trace class with norm
[|-1l1)- That is, C,(M) (resp. C,(M)) is the ideal of the elements x € M such
that |Ix[|3=1(x*x)< o (resp.|x|,=1(]x])< o). Clearly C,(M) and
C,(M) are contained in the ideal K of compact operators defined above.

A nest N in M is a family of projections in M containing 0 and I which
is totally ordered by inclusion and is complete in the sense that it contains
the intersections and the joins of arbitrary subfamilies. For every nest N
in M, let Ay={xeM|p*xp=0 for pe N} be the corresponding nest
subalgebra [8], let I, be the set of intervals in N, (ie., the set of the
projections of the form p— p’ with p, p’e N, p= p’), let C,, be the core of
N, (ie, Cy=N"), and let D be the diagonal of 4, (ie, Dy=Cyn M=
Apnn A%).

Power [19, Sect. 7], Kraus [unpublished], Pop [16], and Pai [13]
noted that Power’s proof [17] of Arveson’s distance formula for nest
algebras in B(H) [1] adapts to nest subalgebras of von Neumann algebras,
and we shall use this fact without further reference. That is, d(x, Ay)=
sup{|| p*xp| | pe N} for every x e M, where d(-,-) denotes distance in the
operator norm. Likewise d,(-,-) will denote distance in the Hilbert-
Schmidt norm.

A 2x2 operator matrix construction in [14, 2] is essential in Power’s
proof of the Arveson distance formula [17] as well as in many related
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results (e.g., see [4, 18, 3]). We quote here a special case: which we use
repeatedly in our paper.

LEMMA 1. Let y=(% ») be a matrix with bounded operator entries.
I max{| ), Iac)ll} <n, llal <n, and yo= —b(n*I—a*a)~'a*c, then
Iyl <n.

Note that b(n*I—a*a) =" is a contraction. Therefore if || al <d<n, (e.g.,
if d=max{||(%)ll, ll(ac)||} < &), we have

| =b(n*I—a*a)~'a*|| < | —b(n*I— a*a) = 2| | (n*] — a*a)~ Va*|
< d(nz _ d2)—1/2.

In the case that ce C,(M), we get from the above inequality that
Iyol2<d(n*—d*)~'7|c|,. Thus in the usual “filling in process” of a
matrix used to find its best upper triangular approximant, if we give up the
exactness of the operator norm approximation, we gain control of the
Hilbert-Schmidt norm of the approximant. This idea is the key to several
of our results.

PROPOSITION 2. Let N be a finite nest. Then Sor every xe C,(M) and
0>1, there exists ze Ay Cy(M) such that lx—z|| <dd(x, Ay) and
lx—zll, <862 — 1)~ x|l .

Proof. Let N={p,},_o. . m where po=0 and p,=1I and set
d=d(x, Ay). We shall construct y=x—z inductively by replacing the
upper triangular terms p,x(p,— p,_,) in the €xpansion

xX= 3 APaX(Pn=Pu_ 1)+ PEX(Pu—Pu_1)}

n=1

with operators y, = p, y,(p,— p,_,) € M such that for each 1 <k<m, we
have

(l) ”Z:=l (yn+p;lx-x(pn—pn—l))” Séd’
(i) 1yel2< (@ =172 || picx(pe— pi_ )2

Choose y, =0, assume the construction done for n <k, and set

k
b=pisr Y, (Fut Prx(Pu—Pu_1))

n=1

k
a=Picsr 2. (Pnt PaxX(Pa=Pu-1)) = Pits 3ps

n=1

C=P/J€+ *(Pis1— Pi)
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Then “fill in” the block matrix (% ;) by choosing
Yiy1 = —b(8%d*—a*a) 'a*c.

The induction hypothesis guarantees that I(2)| <6d and Arveson’s
distance formula applied to x guarantees that ||(a ¢)ll <d and hence that
lall <d. Apply Lemma 1 choosing 1= dd. Then (i) follows from

<b yk+1>
a 4

Moreover, from the remark following Lemma 1, we have

k+1

Y (yn+pix(pn—pn_1))“= <édd.

1 Yis sl <d(n?—d?) ™ lella= (6% — 1)~ lell2.

In the (final) step kK =m, the a and ¢ parts are absent and we choose y,, = 0.
Thus if we set y=3"_, yp+ pix(Pn— Pn—1), then z=x—yeAy and
Ilx —zll = || y|| < &d. Since y is a finite sum of elements in C,(M), it belongs
to C,(M) (and hence so does z) and we have

Ix—2z13=Y 1 3(pa—Pa-0I3
=Z (”pny(pn_pn—l)”%"*' ”Pix(l’n_Pn—J"%

<T A+ =D ) 1pax(pa—Pa-)l3
SCHCEE Vi A |

Clearly, the same proof also holds for an infinite sequence {p,}.

Note that for 6 “large,” e.g., 6d = || x|, the construction in Proposition 2
does not give the best joint norm approximation (e.g., y = x gives a better
Hilbert-Schmidt norm approximation). The case 6 =1 will be treated in
Example 8.

Note also that in the next to last inequality in the proof, we have
actually obtained the stronger inequality ||lx —zl|, < (6% — 1)~ V2| LT(x)ll5,
where LT(x) is the strictly lower triangular part of x and |LT(x)|,=
da(x, ). |

Now we extend this result to the case of general nest algebras.

THEOREM 3. For every xe Co(M) and 8> 1, there exists a€ Ay Cy(M)
such that | x—al| < éd(x, Ay) and || x—al, < 8(62—1)""2d,(x, Ay N C5(M)).

Proof. Choose b,e AyN C;(M) so that

1 = ball2 < da(x, Ay Co(M)) + 1/n
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and set d=d(x, Ay). Consider the directed set I" of all the finite subnests
N, of N ordered by inclusion. For every N,= {0, p}, p3, .. I } eI and for
every ze M define

n(y)

,(2)= 3 (P} = P}-1)2(p] = Pj-1)

Since Ay < Ay,, we have d(x—b,, Ay,)<d(x— b,, Ax)=d. By Proposition 2
applied to the finite nest N,, we can find a,,€ Ay, and y, ,€ C,(M) such
that x — bn =a,. + Yyns " yy,n" < 6d’ and " y'y,n"2 < 6(52 - 1)_1/2 ”x— bn"Z'
~ Now consider the decomposition

X = bn = (ay,n - ¢7(ay,n)) + ¢y(x - bn) - (py( yy,n) + yy,n'

For fixed n, each of the four nets in this decomposition is norm bounded.
Thus by using the o-weak compactness of the unit ball of M and passing
successively to converging subnets, we can assume without loss of generality
that each net converges o-weakly. Then

x—b,=lim(a, ,— d.(a,,)+ lim @, (x—b,)
¥ v

—lim @.(y, ) +1lim y, .
Y 7

It is now easy to verify that a,,—P,a,,) € A, and hence
lim,(a,, — ®(a,,) € Ay For every peN and every finite nest
N,> {0, p, I}, p commutes with @,(y,,) and hence lim, D,(y,n)EAN-
By the same reasoning lim, & (x—b,)e Ay. Set y,=lim, y,,; then
x—b,—y,eAy and so a,=x—y,€Ay. By the o-weak lower semi-
continuity of || and ||, we obtain |y, <6d, y.€ Cy(M), and
Iyl <882 —1)"Y?|lx — b, ,. Since {y,} is norm bounded, {a,} is also
norm bounded. Again by the o-weak compactness of the unit ball, by
passing if necessary to subnets, we can assume without loss of generality
that both sequences converge o-weakly. Let a=lima, and y=limy,.
From the o-weak lower semicontinuity of both norms. we obtain that
| ¥l < éd, y e Co(M), hence a=x—yeAynCy(M) and

|yl <8(82— 1) Pdy(x, Ay 0 Co(M))- |

Remarks. (i) In general one cannot find be Ayn C,(M) such that
lx—blla=dxx, Ay C,(M)) (ie., Ay Cy(M) is not proximinal in C,(M)
in the ||-||,-norm). See Example 9. ‘ :
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(ii) If only the first inequality in Theorem 3 were known, then
Corollary 4 and Theorem 5 would still follow. However, we do not know
of a way to obtain this directly without also proving the second “dual
control” inequality, which is new even for the case M = B(H). Indeed, the
uniform boundedness of the Hilbert-Schmidt norms of y,, (resp. y,) was
essential in proving that their o-weak limits y, (resp. y) belonged to
C,(M).

An immediate consequence of Theorem 3 is that

dix, Ay)=d(x, A, C,(M))
for every x e C,(M). This property extends to K:

CoRrOLLARY 4. d(k, Ay)=d(k, Ay K) for every ke K.

Proof. Clearly, d(k, Ay)<d(k, Ay K). For the opposite inequality, let
&>0 and choose a finite rank operator /4 such that ||k — /| <& Note that
h may fail to belong to C,(M), but there is a decomposition of the identity
into mutually orthogonal central projections e; such that he, e C,(M) for
each 4 [15]. Since the center of M is contained in A4,, we have
dlhe;, Ay)<d(h, Ay). Applying Theorem 3 with 1 <d<1+¢g/d(h,Ay), we
can decompose he,=a,+ y, so that a,e 4, y, e C,(M), and

.l <Sd(he,, Ay) <d(h, Ay)+e<dk, Ay)+ 2.

Assume without loss of generality that a,e,=a; and y,e,=y,, and let
a=>a; and y=3" y,. Then ae A, because 4, is g-weakly closed, and
yeK because y;eK and 3 y, is a central direct sum. Moreover,
[yl <dk, Ay)+2e. Now a=h—yeAdynK and k—a=y+(k—h),
hence d(k, Ayn K)<d(k, Ay)+3e. Since ¢ is arbitrary, d(k, A, K)<
dik, 4y). 1

As in the Fall, Arveson, and Muhly proof [6, Theorem 1.1], from the
isometry of the map a(k+AynK)=k+ A, from K/A,y K into M/A,, it
follows that «(K/AynK)=(K+ Ay)/Ay is norm closed, and hence
Ay+K=n"'((K+ Ay)/Ay) is also norm closed (where n: M — M/A,, is
the quotient map). This proves main result.

THEOREM 5. A, + K is norm closed.

We now apply the techniques used in Proposition 2 and Theorem 3 to
obtain a joint norm control Nehari type theorem. Let L™ = L*(T) (where
T is the unit circle with normalized Lebesgue measure) and similarly let
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L?*=L*T), C=C(T). Let H* (resp. H* ) be the classical Hardy space,
which we identify with the closed subspace of L™ (resp. L) of the functions
with vanishing negative Fourier coefficients. For every p € L™, let M, be
multiplication by ¢ on L2 It is well known that the map ¢ > M, is
an isometry onto the algebra % of Laurent matrices (with respect to the
orthonormal basis {z"},.z). Moreover, the image of H® under this
isometry is (T(Z) n £)*, where T(Z) is the algebra of the upper triangular
matrices (i.e., the nest algebra corresponding to the nest { p,},cz, where p,
is the projection onto span {z*|k<n}).

An interesting application of Arveson’s distance formula and the
existence of a conditional expectation E: B(L?)—» % mapping T(Z) onto
T(Z)n ¥ [1, Proposition 5.1] is Parrott’s proof [14, see also 18,
Theorem 1.5] of Nehari’s theorem [12],

d(o, H*)=|H | for every ¢@elL®™,

where the distance is computed in the L®-norm and H,=p,M,py
denotes the Hankel matrix with symbol ¢.

The technique in Proposition 2 enables us to construct directly an
approximating element € H* and to simultaneously control the L%norm
of ¢ —y. The price we pay is to give up exact approximation in the
L*-norm, but we show in Remark (iii) after Theorem 6 that this is
unavoidable.

Let d,(@, H®) denote the distance of ¢ to H* in L%-norm and note that

dy(@, H*)=dy(¢, H)=p_,0l,-

THEOREM 6. For every @ € L* and 6> 1, there exists Yy € H® such that
o — ¥l < Sd(@, H*) and |0 — Y|, < 8(8* — 1)~ '7dy (9, H*).

Proof. Set d=d(M}, T(Z)). We are going to construct a matrix y so
that M*—yeT(Z)n¥ and |y| <dd First we determine p*,y, the
“bottom half” of the matrix y. Set

®2 @1 Yoo Yo "0 Yon—1 Yo.n
Q3 O @1 Vi 0 Vin—1 Yin
04 @3 P2 @1 - Voaua Yan
P y= ’
1 P e e e o as yn——l,n—l yn—l,n «an
(Pl yn,n

(00} @,y /
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where @, =@(j)=@(—j), j=1 are the strictly lower triangular entries of
the matrix M} and y; ; are the diagonal entries of y. Let

@2 @1 Yoo Yor 0 Yon-1 Yo.n
P33 Q2 @O YVia 0 Vin-—1 Yin
b, = Ps O3 @2 O, Yan—1 , Y, Yan ,

'yn—l,n——l yn—l,n
(pl yn,n

Py Q3 @2 (3

Py Q3 )

a= k] c= b

P4 ?3
where b= (..., 93, @2, ¢;) and Y,= (o). We determine inductively the
columns Y, by setting

Y,= —b,(6*d*I — a*a) 'a*c.

For all meZ
(@a c)=pi,M}p_,=pnMip,=H},

hence by Arveson’s distance formula, |[(a ¢)| =d < dd. Moreover, for all

n=0,
b, Y,\ (b,
pilyp,.=< >=< “).
a [ a

Thus from Lemma 1 with n = dd, we obtain that || pL, yp,| < dd.

It follows that p,y is a bounded operator, that | pt, y|| <dd, and
that p , M* — p, ye T(Z). Next, we show by a matrix computation that
pt,y has constant diagonals. This property holds trivially for pt, yp,.
Assume now that p-, yp,_, and hence b, has constant diagonals. Let
e= —(6%d*I—a*a) 'a*c. Then

Yo,n @1 Yoo Yoar Yoz2 - Yon-1
Yi,n @2 @1 Yoo Vo1 ' Yon-2
Y,= Yan =be= ©®3 @2 @©1 Yoo " Yon-3
yn—l,n JYo,o0
yn,n (pl
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Thus
Yi,n @2 @1 Yoo Yo vt YVon-—2
Yo,n @3 92 @1 Yoo v Yon-3 ,
= e=bn_le=Y"_l,
yn—l,n Y .aa e Y e e yo,o
yn,n Py e .o e aae Ry (pl

which shows that pt,yp, and hence p-,y have constant diagonals.
Now extend pL,y to a Laurent matrix y by extending the constant
diagonals upwards to the left. By construction, M ¥ — y e T(Z). Therefore
Mg — y=M} for some y € H®, But then

lo—¥lw=Iyl=IlpL,yl <édMZ T(Z)) < d(p, H®).
On the other hand, (¢ — ¥, = (po— p_1) yl, where
(Po—pP_1)y="C(., 03, 02, 91, Y0,05 Yo,15 V0,25 ++)-

As in the proof of Proposition 2, we have

n 12
<Z Iyo,j|2> =7,

J=0
< ||b,(6%d* I — a*a)~'a*| | c|
<@-1)""p_i0l,

and hence

I(Po—P-1) I <6(*—1)""2|p_,0l,
=0(6>—1)""dy(e, H*). |

Remarks. (i) Our approach gives a constructive proof of the identities

Ao, H®)=dM3, T(Z))=d(M}, T(Z)n L) forevery ¢@el™.

The proximinality of T(Z)n % in & follows now by a natural compact-
ness argument since . and T(Z) are both g-weakly closed. .

(ii) Let c¢=infs_ , max(, 6(6%— 1)“/2)=ﬁ. As a consequence of
Theorem 6, we see that for every ¢ € L™ there exists a ¥ € H® such that
lo -Vl <cdlo, H*) and |lo—yll,<cdy(p, H?). As G.Pisier has
pointed out to us, the existence of such a constant ¢ can also be deduced
from a deep interpolation theoretic result of Jones [10].
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(iii) If we choose a best approximant y e H*, ie., if o —y| =
d(e, H), then we lose control of the ratio (||¢ —y|,/d>(¢, H®)). Indeed
@(z)=Y ;2 _, 7" has a unique best approximant € H* and furthermore
| — | is constant (and hence equal to ||¢ — y||,) [20, Theorem 5.6]. But
then ¢ — v, =d(o, H®)=|H,|, which is well known to be asymptotic
to 2n/n, while dy(¢, H®) = ||, =/n.

A simple consequence of the construction in the proof of Theorem 6 is
a new proof of Sarason’s theorem [21].

COROLLARY 7. H® + C is norm closed.

Proof. Let ¢ be any polynomial in z and z~'. Using the notations in
the proof of Theorem 6, set y,=y,, for n>0 and y,=¢_, for n<0.
Assume that ¢, =0 for j> k, then the vector e= —(6°d*I—a*a)'a*c has
at most k—1 nonzero entries, ie, e=(.,0,0,e,_,.. e, ;). From
Y,=b,e, we get for all n> 0 the recurrence relation

k—1

yn=(~"a 0’ Y ks s Y2, Y_15Yo» Yis e )’n71)€= Z ejyn—j'

J=1

Since My—y =My —M}=y, we see that o —y =3 _, y,z", where the
series converges in L*norm. Let w(z)=1-—3*"!e;z. From the
recurrence relation on y, for n>0, we obtain that w(¢ —y) is a polyno-
mial (with only negative powers of z), and hence that ¢ — is a rational
function. Thus ¥ is rational, and hence it is continuous. Since ¢ is arbitrary,
we obtain d(¢, H*)=d(¢, H* n C) for every polynomial ¢ and hence for
every ¢ € C. By the same argument that yields Theorem 5, we obtain that
H* 4 C is closed. |

Now we return to general nest algebras. A natural question (cf. also
Remark (iii) after Theorem 6) is whether we can still retain control of the
Hilbert-Schmidt norms if we choose best approximants in the nest algebra,
ie., to what extent do Proposition 2 and Theorem 3 hold for § =1. The
following finite dimensional example shows that if |x — a| = d(x, A ), then
there is no upper bound for (|x —a|,/|x|,).

ExampLE 8. Let M= M,(C), let p, be the projection on span{e;| j <k},
where {¢;} is the standard basis, and let N={ p,} so that A is the algebra
of the upper triangular # x n matrices. Let v be any vector in C" with all
nonzero entries and set

a=llpiol =,  awe=Upiol > =llpe_vl =) for 2<k<n-—1.
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Define the matrix x with columns:

— L 1 4
x=(a; pyv, 03 P30, o3 P30, ..., 0).

Thus x is strictly lower triangular and it is easy to verify that all the
corners pixp, have rank 1 and norm 1 for 1<k<n—1. In particular,
d(x, Ay)=1, and thus there exists ae A, such that |x—a]=1. We will
show that ap,_, is uniquely determined (clearly, a(p,— p,_,) is never
unique). Set y=x—a and for 2<k<n—1, define b,=p,ype_.,
Y= pe Y(Pi— Pi—1) @ =Pi¥Pi—1> ¢k = Pk ¥(Px— Pr_1), 50 that

b, Y
yp1=(y"‘> and ypk=<" ")-

n
&y pyrv a, ¢

Since | yll=1 and |[(acce)ll =l pixpil =1, we have || ypcl =1 for all .
For k=1, it follows that y, ; =0. Also, for 2<k<n—1 it follows that the
positive matrix

PP y* = (b,,b,;" +Y,Y¥ biaf+ ch,’,")
e V¥ =

ab¥+c Y¥ acaf+c.ct

has norm one and a,a}+c,c¥ is a (rank 1) projection. Hence, as
is elementary to show, bia¥ + Y,c¥=0. By multiplying on the right
by ¢, (which is nonzero by the hypothesis on v) we obtain
Y= —llckll "2 brafc,. One can verify directly that this formula for Y,
coincides with that given by Lemma 1 (where we can choose =1 because
llawll <1). Now we determine Y, explicitly for 2<k<n—1. A direct
computation shows that

oy
_ 1 o
lexll =2 aer=—
Xi
Xr—1
By solving the equation Y,= —|c,|| ~2b.afc,, we obtain by induction

on k that y,,=0 for j<k and y,,= —((@3+al+ -+ +aZ_,)/o) v;.
Furthermore, since

al+ai+ - +ar=|pivl™> and  |vl*=pr_,vI*— Pl
we obtain for k> 2,

| yerl>= el ?l pi_ vl 73
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so that for n >3,

n—1
V1= 1ypa 3= %13+ 3 Ipiol®lpi_ ol 2 =n—1.
k=2

(Note that || y||3 <zl yl|>=n). From the last identity we also obtain
I<lx3<n—1—(n=2) v,? [lo] ~2
Thus if we choose the vector v so that vl =1 and v, =1—¢, then

213, n—t
%13~ T+ 20— 2)¢

which can be made as large as we wish.

Recall that if 4, is the algebra of upper triangular operators in a
separable Hilbert space, then every compact operator (and, in particular,
every Hilbert-Schmidt operator) has a finite rank best operator norm
approximant in Ay [18, Theorem 1.4(i)]. Despite this fact, from Example 8
we see that best operator norm approximants (even for Hilbert—Schmidt
operators) may be “very bad” Hilbert-Schmidt norm approximants.

EXAMPLE 9. We show that 4, N C,(M) need not be | - |l,-proximinal in
C»(M). In the special case M = B(H) there is proximinality simply because
Cy(M) is a Hilbert space and A, N C,(M) is a closed subspace. However
the symbol for the infinite Hilbert matrix in B(H) provides an example why
H® is not ||-||,-proximinal in L*®. The above reasoning does not apply
because H* and L™ are not ||-||,-complete. If M is type II, then C,(M) is
not ||| ,-complete. This suggests the following construction.

Let M be a type II, factor and ¢, € M be a decomposition of the identity
into infinitely many mutually orthogonal projections. Decompose further
each g, into k equivalent mutually orthogonal projections r, ;. Let N be
the nest {0, r, \, 7, +ryy, 7+ 31+ 72, .. }. By using the equivalence of
the projections r, ;, embed M(C*) into g, Myg,. Let X, €9, Mgq, be the
image under this embedding of the compression of the Hilbert matrix of
size k and let x=3_, x,. Then xeM=C,(M). It is well known that
LT(x), the strictly lower triangular part of x, is an unbounded operator
(affiliated with M). Define |LT(x)|;= {7, ILT(x )13} (<[lx]l,).
(One can actually prove this identity.) It is clear that ||x—a|, > |LT(x)|,
for every ae 4. Moreover , if a,=Y7_, (x,— LT(x,)), then a,e A, and
X —a,ll2 = | LT(x)| 5. Thus d,(x, 4 )= | LT(x)|l,. Now it is easy to verify
that if we had ae 4, and ||x—a|,=||LT(x)|,, then x —a= LT(x), which
is unbounded.
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We finish with our density theorem. Note that its proof is actually
independent from the other parts of this paper.

THEOREM 10. Ay N K is o-weakly dense in A N

Proof. Since Dyn K is a two-sided ideal of the von Neumann algebra
Dy, there is a projection e in the center of D, such that (Dy K).”" = {0}
and DynK),."" = (Dy)er. (In [11], (Dy),: and (D), are called the
M-semifinite and the M-type III parts of D). In particular, e* € Ay~ K"
and thus for every ae 4,

e E——— A
a—eae=eae" +etae+etaet e Ay K"

Hence, without loss of generality, we can assume that e= 1, ie., that
DynK={0}.

By using an invariant mean on the (abelian) unitary group G of Cy, we
can define a conditional expectation E: M — D ~y=CynM such that
E(x)eco”™ {uxu*|ue G} for all xe M. By the o-weak lower semicontinuity
of the trace v, we have 10 E<t. Thus for every xe C,(M)* we have
E(x)e Ci(M)c K and E(x)eD,, hence E(x)=0. So since 7 is semifinite,
we see that M =Ker E*”, (ie., E is singular). Moreover, for every xe M,

x—E(x)eco™{(xu*)u—u(xu*)|ue G} < [Cy, M]~",

where [Cy, M] denotes the span of the commutators of C ~ and M.
Therefore Ker Ec[Cy, M]~°%, and hence M= [Cns M]7°". But
[Cn, M]™""=[N,M]~°" and, as is easy to verify, [N, M]=
span{pxp* | pe NUN*, xe M}, so we obtain

M =span™{pxp* | pe NUN*, xe M}.

Set Sy=span”{pxp* | pe N, xe M}. Then from the last identity we see
that Sy + S*°” = M. We claim that SyoDy,.

Reasoning by contradiction, assume that there is an element ae D MSw»
and by the Hahn-Banach theorem, find a normal functional w e M « that
vanishes on Sy and for which w(a)#0. Without loss of generality we may
assume that M is represented on a Hilbert space, and by replacing M, if
necessary, with its infinite ampliation M ® I, we may assume that w is a
vector functional. That is, there are two vectors ¢(,ne H such that
w(x)=(x¢, n) for all xe M. Let p, g B(H) be the (cyclic) projections on
{(Dy+Sn)€} and {Sy¢) , respectively. Thus g<p. Since S, is a two-
sided module over D, for every de D,, we have dq = qdg, and for every
s€Sy, we have sp=gsp. From the last identity, we obtain g Syp=1{0}
and hence (p—gq)Sy(p—q)= {0}. By taking adjoints, we also get
(P—4q)S¥Mp—q)={0}, and hence (p—q)Sy+S% "(p—gq)=1{0},
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whence p=g. On the other hand, from w(s) = (s¢, #) =0 for every se Sy
we get gn=0 and, since D, is unital and Oe Sy, we get gf =pé =¢. But
then

w(a)=(a¢, n) = (ag¢, g*n) = (qaqé, g*n)=0,

which contradicts the assumption that w(a)# 0. Thus we have proven that
Syo>Dy.

From [7, Proposition 2.1] we know that 4y= Sy + Dy, hence Ay =S,.
Finally, K is o-weakly dense in M and thus

Ay=Sy=span”™{pxp* | peN,xeK}. |
We conclude with some questions.

(i) In [6] the term “local” was used to denote a norm-closed linear
subspace S of B(H) with the property that S< S~ K(H)"" and the duality
argument used in [6] proved that S+ K(H) is closed for every local
subspace S. If we use the term local for the analogous property in the
semifinite von Neumann algebra setting, then Theorem 10 states that nest
subalgebras are local. However our proof of the closure of quasitriangular
algebras required an argument separate from duality considerations. All of
this raises the question: if S < M is local, is S+ K closed?

(ii) In a related but different direction, we note that the closure
result of [6] was generalized in [9] to show that if A4 is a finite width CSL
algebra (ie., an algebra generated by a finite number of commuting nests),
then A + K(H) is closed. Does this remain true when B(H) and K(H) are
replaced by M and K?

(iii) The statement of the “dual control” result of Theorem 3 formally
makes sense for arbitrary operator algebras (and in fact for linear spaces
of operators). Do many operator algebras, and especially do many CSL
algebras, satisfy at least a qualitative analog of this result (e.g., see
Remark 2 after Theorem 6)?

(iv) We have used matricial techniques to obtain the Nehari type
Theorem 6. As mentioned in Remark (ii) following Theorem 6, a
qualitative version of this theorem can be deduced from interpolation
results based on Carleson measures. This leads to the question of whether
these matricial techniques can be further exploited to produce more
elementary proofs of known interpolation resulits.

(v) Conversely, it is natural to ask which interpolation theoretic
results have non-commutative analogs in nest algebras.
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