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Abstract. This article is part exposition of a recent rather technical paper of

the last two authors on matrix pavings related to the 1959 Kadison-Singer Ex-
tension Problem and part a report on further computational results providing

new bounds for the paving parameters for classes of small matrices investigated
there and subsequently.

(Website address with file to be created) provides to all interested the
matrices experimentally discovered that yield these bounds along with the

propietary Matlab software with simple operational directions to load them,
pave them, and to perform paving searches.

The convergence to 1 or not of the infinite sequence of these parameters in
most cases is equivalent to the Kadison-Singer Extension Problem and in all

cases, convergence to 1 negates the problem. The last two sections describe
the search process and an interpretation of the data integrated with the results

of the precursor to this paper.
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1. Introduction

The Kadison-Singer Extension Problem has a number of matrix equivalences,
one of which is on the behavior of so-called paving parameters. Here we recall the
definitions and report our recent experimental data on these parameters, extending
data in [12] to larger matrices up to sizes over 20. There we provided sharp results
for very small matrices whose proofs depended on blending this kind of experimen-
tal data with rigorous mathematics. This data expands our scope and is the next
natural step in this program, which is to investigate paving small matrices towards
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generating ideas for the larger problem. The proprietary software created for Mat-
lab for this project with simple operational directions and all concrete matrices
produced to support our data we make available on request and encourage all who
are interested to join the search.

One alternate source for learning about this subject is the website for the 2006
workshop: http://www.aimath.org/pastworkshops/kadisonsinger.html

2. The Kadison-Singer Extension Problem

Let `2 be the Hilbert space of absolutely square-summable complex sequences
and B(`2) denote the von Neumann algebra of all bounded linear operators on `2.
Every T ∈ B(`2) has an infinite matrix representation with respect to the stan-
dard orthonormal basis E = {en : n ∈ N} of `2, namely

[

T
]

E =
[

〈Tej , ei〉
]

i,j∈N
.

Identify `∞ with the set of all T ∈ B(`2) for which
[

T
]

E is diagonal. Then `∞ is

a maximal abelian von Neumann subalgebra (or MASA) of B(`2). A fundamental
open problem in the theory of operator algebras is the Kadison-Singer Extension
Problem (hereafter KS) [9]:

Does every pure state on `∞ extend uniquely to a pure state on B(`2)?

A state on a C∗-algebra is a norm one positive linear functional and a pure state is an
extreme point of this convex class. Existence of an extension of every pure state on
`∞ is straightforward, the issue is uniqueness. Indeed, any Hahn-Banach extension
of a state on `∞ is a state on B(`2). If the original state is pure, then the Krein-
Milman Theorem implies the existence of a pure state extension. Alternatively, an
explicit construction is available—the composition of a pure state on `∞ with the
usual canonical conditional expectation of B(`2) onto `∞ is a pure state on B(`2)
[3]. An affirmative answer to KS would entail a complete description of those pure
states on B(`2) which restrict to pure states on `∞. They would be precisely the
states of the form ΦU (T ) = limU 〈Ten, en〉, where U is an ultrafilter (or Banach
limit) on N. While this would not cover all pure states on B(`2) [1], it would be a
substantial step in that direction. Kadison and Singer doubted the truth of KS [9],
and that is also the prevailing opinion among experts today. Although we share
this sentiment, the data presented herein, in a weak experimental sense, appears to
suggest that otherwise might be the case.

3. Anderson’s Paving Problem

A major advance in the study of KS was made by Anderson, who reformulated
the problem in terms of finite matrices [2]. (See also [11] in which their Proposition
2.2 combined with Theorems 2.7-2.8 provide a simplified transparent proof. That
“KS is like Riemann integration” was an observation by Hadwin to Paulsen and
Raghupathi which led to their Proposition 2.2 (communication by Paulsen).)

We state Anderson’s result in terms of certain paving parameters. To define these
we need the notion of a paving, which in turn relies on the idea of a compression.

Definition 3.1 (compression). For A ∈ Mn(C) (n × n complex matrices) and
σ ⊆ {1, 2, ..., n}, the σ-compression of A is Aσ := PσAPσ, where Pσ ∈ Mn(C) is
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the orthogonal projection onto span{~ei : i ∈ σ}. By a p-compression of A we mean
a compression Aσ with card(σ) = p.

Note that ‖Aσ‖ ≤ ‖Pσ‖‖A‖‖Pσ‖ = ‖A‖, where ‖ · ‖ is the operator norm.

Definition 3.2 (paving). For A ∈ Mn(C) and π ∈ Πn
k (the set of all k-partitions

of {1, 2, ..., n}), the π-paving of A is Aπ :=
∑

σ∈π Aσ. By a k-paving of A we mean
a paving Aπ with card(π) = k. By an (n1, n2, ..., nk)-paving of A we mean a paving
Aπ with π = {σ1, σ2, ..., σk}, where card(σi) = ni for all 1 ≤ i ≤ k.

Note that

‖Aπ‖ =

∥

∥

∥

∥

∥

∑

σ∈π

Aσ

∥

∥

∥

∥

∥

= max{‖Aσ‖ : σ ∈ π} ≤ ‖A‖.

Definition 3.3 (paving parameters for a matrix). For 0 6= A ∈ Mn(C), the k-
paving parameter of A is

αk(A) := min{‖Aπ‖ : π ∈ Πn
k} ∈ [0, ‖A‖].

The normalized k-paving parameter of A is

βk(A) :=
αk(A)

‖A‖ ∈ [0, 1].

There are two other simpler parameters with consequent faster computing:
Packing parameters (motivated by paving results of Bourgain and Tzafriri [5,

Corollary 1.2]): where instead of measuring compression norms using finite diagonal
projection decompositions of the identity, we use only single diagonal projections
of size dn

k
e, which resulting parameters, it is straightforward to see, provide lower

bounds for paving parameters. Formally, the packing parameters are defined the
same as the paving parameters but replacing βk(A) with the normalized k-packing
parameter of A:

β′
k(A) :=

α′
k(A)

‖A‖ ∈ [0, 1]

where
α′

k(A) := min{‖Aσ‖ | card(σ) = dn

k
e} ∈ [0, ‖A‖].

Equi-paving parameters: where we restrict the projections to ”equal dimension.”
For example, to decompose the identity for paving a 13×13 matrix we use diagonal
projections only of dimensions 4, 4, 5 rather than all possible triples summing to 13
as used for defining paving parameters. Equi-paving parameters are upper bounds
for paving parameters and bounded by 1.

Definition 3.4 (paving parameters for matrix classes). For ∅ 6= S ⊆ Mn(C), the
(normalized) k-paving parameter of S is

βk(S) := sup{βk(A) : A ∈ S} ∈ [0, 1].

In this paper, S above will be one of the following classes:

i. M
0
n(C), the set of all n × n zero-diagonal complex matrices.

ii. M
0
n(R), the set of all n × n zero-diagonal real matrices.

iii. M
0
n(R+), the set of all n×n zero-diagonal non-negative (entried) matrices.

iv. M
0
n(C)4, the set of all n × n strictly upper-triangular complex matrices.

v. M
0
n(C)T , the set of all n × n zero-diagonal complex Toeplitz matrices

(See http://en.wikipedia.org/wiki/Toeplitz matrix).
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v’. M
0
n(C)	, the set of all n × n zero-diagonal complex circulants

(a class of Toeplitz matrices: See http://en.wikipedia.org/wiki/Circulant matrix).
vi. M

0
n(C)sa = {A ∈ M

0
n(C) : A∗ = A}

(A∗ denotes the adjoint of A, i.e., the conjugate-transpose).

vii. M
0
n(R)sa = {A ∈ M

0
n(R) : A∗ = A}.

viii. M
0
n(C)	,sa = {A ∈ M

0
n(C)	 : A∗ = A}.

Using the fact that βk(A⊕0) = βk(A) [4], we deduce that βk(M0
n(C)) ≤ βk(M0

n+1(C)),
and so

lim
n→∞

βk(M0
n(C)) = sup

n

βk(M0
n(C)) ∈ [0, 1].

This increasing limit formula is true for all matrix classes considered above, with
the exception of M

0
n(C)	 and M

0
n(C)	,sa and M

0
n(C)T . Indeed, monotonicity fol-

lows when a class is closed under direct summing with zero, but the direct sum of
a nonzero circulant with zero is never circulant and the direct sum of a nonzero
Toeplitz matrix with zero is never a Toeplitz matrix.

We can now state Anderson’s theorem [2] on the equivalence of KS and the
so-called Paving Problem:

Theorem 3.5. The following are equivalent:

(1) Every pure state on `∞ extends uniquely to a pure state on B(`2), i.e., KS
is true.

(2) There exists a k ∈ N such that limn→∞ βk(M0
n(C)) < 1.

(3) For every 0 < ε < 1, there exists a k ∈ N such that limn→∞ βk(M0
n(C)) < ε.

Using the formula αk2(A+B) ≤ αk(A)+αk(B) [4], one can show that M
0
n(C) in

Theorem 3.5 may be replaced by M
0
n(R), M

0
n(C)sa, or M

0
n(R)sa. Owing to recent

work of Paulsen and Raghupathi on logmodular algebras, M
0
n(C)4 also works [11].

So solving the Paving Problem for any of these classes would settle KS.

Not relevant here but curious and an easy consequence is an infinite matrix KS
equivalent free from requiring a universal ε < 1 and free from requiring a universal
fixed k is:

Corollary 3.6. KS is equivalent to the condition: Every norm one zero diagonal
B(`2)-matrix A admits a finite commuting diagonal decomposition of the identity,

I = P1 + · · ·+ Pk with k depending on A, for which ||∑k

i=1 PiAPi|| < 1.

Laurent, Toeplitz and upper-triangular operators.
The paveability of the special class of Laurent operators (L∞ multiplication opera-
tors on L2 of the torus-so in the standard basis is a bi-infinite matrix with constant
diagonals) has been studied in depth by the paving community as well, making
central to this subject the behavior of their paving parameters (tending to 1 or
not) and the paving parameters of their Toeplitz matrices (compressions of Lau-
rent matrices using only finite consecutive integer projections). The Paulsen and
Raghupathi work on logmodular algebras also yields the equivalence of the pave-
ability of the Toeplitz matrices M

0
n(C)T to the paveability of the upper triangular

Toeplitz matrices M
0
n(C)4 ∩ M

0
n(C)T . So we include both these categories in our

experiments. A counterexample sequence (i.e., tending to 1) to the latter provides
a counterexample to KS but also not tending to 1 is equivalent to the paveability
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of the Laurents.

4. Paving Results

Because of Theorem 3.5, it is of substantial interest to compute limn→∞ βk(M0
n(C))

for k ∈ N, k ≥ 2 (as well as the corresponding limits for other matrix classes).
Nonetheless, heretofore this has only been accomplished for k = 2. Since

β2









0 1 0
0 0 1
1 0 0







 = 1,

we have (trivially) that

lim
n→∞

β2(M
0
n(C)) = lim

n→∞
β2(M

0
n(R)) = lim

n→∞
β2(M

0
n(R+)) = 1.

The self-adjoint case, which is much more delicate, was recently settled by Casazza,
Edidin, Kalra, and Paulsen [6]:

Theorem 4.1. limn→∞ β2(M
0
n(C)sa) = 1.

Remark 4.2. The question of attainment in Theorem 4.1, i.e., whether or not
there exists an A ∈ M

0
n(C)sa with β2(A) = 1, is still open and of considerable

interest. For this we have some new data (Theorem 5.3).

Turning to k = 3, prior to [12] the only result in the literature is due to Halpern,
Kaftal and Weiss [8]:

Theorem 4.3. limn→∞ β3(M
0
n(C)) ≥ limn→∞ β3(M

0
n(R)) ≥ 2

3
.

On the other hand, the Paving Problem for non-negative matrices is known to
have a positive answer, thanks to work of Berman, Halpern, Kaftal and Weiss [4]:

Theorem 4.4. For k ∈ N,

lim
n→∞

βk(M0
n(R+)sa) =

1

k
and lim

n→∞
βk(M0

n(R+)) ≤ 2

k
.

Unfortunately, KS seems not equivalent to the Paving Problem for non-negative
matrices.

5. Summary of the Papers

The impetus for [12] was a question of Halpern, Kaftal and Weiss concerning
Theorem 4.3 [8]:

Is limn→∞ β3(M
0
n(C)) < 1? or Is limn→∞ β3(M

0
n(C)) = 1?

At least is limn→∞ β3(M
0
n(C)) > 2

3
?

By computing β3(M
0
n(C)) for small values of n, we are able to answer the second

question affirmatively. Using paving parameters, packing parameters and equi-
paving parameters, we obtain the following 3-paving tables, which are thus far the
main results of this investigation. For detailed explanations of how to read these
tables see the remarks following them (Remarks 5.5 - 5.6).
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Theorem 5.1 (3-Paving Tables-Nonselfadjoints-monotone/nonmonotone β3).

n β3(M
0
n(C)) β3(M

0
n(R)) β3(M

0
n(R+)) β3(M

0
n(C)4)

4 .6180 .6180 .5550 .5412
5 .6180 .6180 .5550 [.5609, .5774]

6 .7071 .7071 [.5550, .5774] [.5725, .5774]
7 [.8239, 1] [.8029, 1] [.5550, .6667] [.6503, .9258]

8 ′′ ′′ ′′ [.6599, 1]
9 ′′ ′′ ′′ [.6630, 1]
10 [.8540, 1] [.8387, 1] ′′ [.6703, 1]

11 ′′ ′′ ′′ ′′

12 ′′ ′′ ′′ ′′

13 [.8615, 1] ′′ ′′ [.6852, 1]
14 ′′ ′′ ′′ ′′

15 ′′ ′′ ′′ ′′

16 ′′ ′′ ′′ [.6963, 1]

17 − 22 ′′ ′′ ′′ ′′

n β3(M
0
n(C)	) β3(M

0
n(C)T ) β3(M

0
n(C)T ∩ M

0
n(C)4)

4 [.6000, .6030] [, ] [, ]
5 [.6120, .6180] [, ] [, ]

6 [.5726, .6325] [, ] [, ]
7 [.8239, 1] [, ] [, ]

8 [.7651, 1] [, ] [, ]
9 [.7132, 1] [, ] [, ]

10 [.8540, 1] [, ] [, ]
11 [, ] [, ]

12 [, ] [, ]
13 [.8615, 1] [, ] [, ]

14 [.8119, 1] [, ] [, ]
15 [.7802, 1] [, ] [, ]

16 [.8523, 1] [, ] [, ]
17 [.8125, 1] [, ] [, ]

18 [.7617, 1] [, ] [, ]
19 [.8424, 1] [, ] [, ]

22 [.8230, 1] [, ] [, ]
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Theorem 5.2 (3-Paving Table for Selfadjoint Matrices).

n β3(M
0
n(C)sa) β3(M

0
n(R)sa) β3(M

0
n(C)	,sa)

4 .5774 .4472 .4142

5 .5774 .4472 .4472
6 .5774 .4851 [.4069, .4495]

7 [.6872, .7559] [.6667, .7559] [.6544, .7559]
8 [.6872, .8819] [.6667, .8819] [.5797, .8819]

9 [.6872, .8889] [.6667, .8889] [.5539, .8889]
10 [.7536, 1] [.7454, 1] [.6686, 1]

11 ′′ ′′

12 [′′ ′′

13 ′′ ′′ [.6983, 1]
14 ′′ ′′

15 ′′ ′′

16 [.7574, 1] [.7454, 1] [.7019, 1]

To support bootstrapping arguments for the 3-paving tables, as well as because
of intrinsic interest, we also compute the following 2-paving table:

Theorem 5.3 (2-Paving Table).

n β2(M
0
n(C)4) β2(M

0
n(C)	) β2(M

0
n(C)sa) β2(M

0
n(R)sa) β2(M

0
n(C)	,sa)

3 .6180 1 .5774 .5000 .5774
4 .7071 [.6000, .6030] .5774 [.5493, .5577] .4142

5 [.7715, 1] 1 .8944 .8944 .8944
6 [.8337, 1] 1 .8944 .8944 [.7454, .8944]

7 [.8500, 1] 1 [.9225, 1] [.8944, 1] [.9073, 1]
8 [.8866, 1] [.9623, 1] [.9225, 1] ′′ [.7689, 1]

9 [.8965, 1] 1 [.9414, 1] ′′ [.8920, 1]
10 [.9149, 1] 1 [.9414, 1] ′′

11 [.9207, 1] 1 [.9477, 1] ′′

12 ′′ 1 [.9477, 1] ′′

13 ′′ 1 [.9547, 1] ′′

14 ′′ 1 [.9547, 1] ′′

15 ′′ 1 [.9625, 1] ′′

16 ′′ [.9846, 1] [.9625, 1] ′′

17 ′′ 1 [.9692, 1] ′′

18 ′′ 1 [.9692, 1] ′′

19 ′′ 1 [.9742, 1] ′′

20 ′′ 1 [.9742, 1] ′′

21 ′′ 1 [.9762, 1] ′′

22 ′′ 1 [.9762, 1] ′′

23 ′′ 1 [.9780, 1] ′′

Remark 5.4 (β2(M
0
n(C)sa) implication). The shrinking gaps for β2(M

0
n(C)sa) sug-

gest a reasonable experimental conjecture to Remark 4.2: that 1 is not attainable.
To give a sense of the computational effort involved, the latter six bounds took man-
power months of parallel independent experiments using over 40 modern computers.
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The remainder of the precursor to this paper [12] is divided into seven sections
consisting of a myriad of propositions, each of which establishes particular entries
in our tables. Each section corresponds to a certain class of matrices. Although
the arguments are structurally similar, the details vary from class to class. Each
section begins with a subsection (or two) which gathers together the needed tools.
We assumed there and here that the reader is familiar with basic operator theory
and basic graph theory.

Remark 5.5 (exact vs. approximate, ditto and blank boxes). The numbers in
our paving tables are decimal approximants. The corresponding exact expressions
(i.e., closed forms when available) appear in the proposition statements of [12]. It
is natural to expect that when a single number is listed in the tables, rather than an
interval, a proof is available for it that is likely to generate a precise value rather than
a decimal approximant, for instance, the reciprocal of Fibonacci’s Golden Ratio:
β3(M

0
4(C)) = 2

1+
√

5
.

A blank data box means no experiments or not enough of them have been made
to yield credible values. A ditto means the interval for a previous matrix size re-
mains theoretically (provably) valid, usually because the respective column of paving
parameters is one which is easily seen to be theoretically increasing.

Remark 5.6 (computer-generated examples). For those table entries which consist
of an interval (e.g. the n = 7 entry of the first column of Table 5.1), the lower bound
is (almost always) the result of a computer-generated example. To our knowledge,
these examples do not have closed-form expressions, and (with one exception) we do
not include them in the paper. In Section 6 we do show the worst-known 3-paver,
a 13 × 13 complex circulant A such that β3(A) ≈ .8615.

Remark 5.7 (open questions). This paper invites many questions. In particular,
can any of the non-sharp table entries be improved? Here are some other interesting
questions:

(1) Is limn→∞ β3(M
0
n(C)) < 1 or is limn→∞ β3(M

0
n(C)) = 1? At least is

limn→∞ β3(M
0
n(C)) > .8615? This is the aforementioned question of Halpern,

Kaftal and Weiss, amended to reflect the information in Table 5.1.
(2) Does there exist n ∈ N and A ∈ M

0
n(C)sa such that β2(A) = 1.

(3) Early on Table 5.3 suggested an affirmative answer with n ≈ 30 but recent
data as mentioned in Remark 5.4 has changed our view. Remember that it
is known that limn→∞ β2(M

0
n(C)sa) = 1.

(4) Is limn→∞ β2(M
0
n(C)4) = 1? Table 5.3 suggests an affirmative answer. In

that case, is there an n ∈ N and A ∈ M
0
n(C)4 such that β2(A) = 1?

(5) Is limn→∞ β3(M
0
n(R+)) < 2

3
or is limn→∞ β3(M

0
n(R+)) = 2

3
?

Table 5.1 along with substantial computer experimentation suggest that
β3(M

0
n(R+)) = 1

κ
≈ .5550 for all n ≥ 4 where

κ :=

∥

∥

∥

∥

∥

∥





1 1 0
0 1 1
0 0 1





∥

∥

∥

∥

∥

∥

=

√

5 + 2
√

7 cos(tan−1(3
√

3)/3)

3
≈ 1.8019.

Trivially β3(M
0
3(R+)) = 0.

(6) Is KS equivalent to the Paving Problem for circulants?
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6. Worst-known 3-Paver

The worst-known 3-paver A is a 13×13 complex circulant obtained by computer
experimentation. The first column of A is (approximately) equal to

~A1 =













































0
−0.055522930135728+ 0.149717916185917i
−0.085982594349687− 0.167559358391542i
0.012524801908532− 0.005174683700118i
0.211884289354117− 0.450037958090483i
0.181822822115818+ 0.190955159891972i
0.351168610117535− 0.052615522797929i
0.003304818602041+ 0.071138805339765i
−0.242643523991422+ 0.113229168904351i
0.147040327638516+ 0.000763498011691i
0.306857154117503− 0.502250996138940i
−0.333648956442746− 0.012814790427734i
−0.255497016354932− 0.470756522956261i













































We have that A∗A ≈ 1.3474I13, i.e., A is (approximately) a scalar multiple of

a unitary. The eigenvalues of A distributed on the circle of radius
√

1.3474 are
approximately

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 1. Eigenvalues of the Circulant13 near radius 1.1608

7. Informal summary description of search process

In the beginning, the fact that

lim
n→∞

β2(M
0
n(C)) = lim

n→∞
β2(M

0
n(R)) = lim

n→∞
β2(M

0
n(R+)) = 1.

follows simply from

β2(M
0
3(C)) = β2









0 1 0
0 0 1
1 0 0







 = 1
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prompted us to try to theoretically compute β3(M
0
4(C)). Computer experiments

led us to the matrix

β3

















0 1 1 − 2

1+
√

5

0 0 1 1
0 0 0 1
1 0 0 0

















=
2

1 +
√

5
≈ .6180,

and theoretical arguments involving graphs and basic matrix facts provided a proof
that this bound was sharp and this matrix was an optimal ”bad paver,” that is,

2

1+
√

5
≤ β3(M

0
4(R)) ≤ β3(M

0
4(C)) ≤ 2

1+
√

5
. We proved the same bound holds for

n = 5 with optimal bad paver the direct sum of this matrix with 0. And from a
graph theory perspective, optimal bad pavers were rare. So also for n = 6 where

β3





































0 0 0 1 0 1
1√
2

0 − 1√
2

0 1 0

0 0 0 −1 0 1
−1

2
1 1

2
0 1√

2
0

1 0 1 0 0 0
1
2

1 −1
2

0 − 1√
2

0





































=
1√
2
≈ .7071,

and from expanded theoretical arguments, that this was an optimal bad paver, that
is, 1√

2
≤ β3(M

0
6(R)) ≤ β3(M

0
6(C)) ≤ 1√

2
.

After working on theoretical arguments for n = 7 (the selfadjoint case) combined
with computer searches, all described in the prequel, and because the paving com-
munity bias was against KS, so against paveability, we concentrated more recently
mainly on computer searches and proceeded as follows.

Choose a class among those listed above (for instance, circulants or selfadjoint
matrices), choose a matrix size n, say n = 7 or n = 23, and perform a random
search. Do this repeatedly. Such searches consist of alternating between the off
the shelf Matlab simplex search program and the proprietary search program based
on von Neumann’s alternating projection method for finding points of intersec-
tion between closed convex sets in a Hilbert space. When the searcher detects little
improvement, that is, when one finds an apparent local peak (for the paving param-
eter), the search is finished. Another search by perturbing this matrix occasionally
produces a bounce, that is, knocks the matrix off its local peak and a new ascension
begins. Repeat this many times.

We soon found that the most successful searches began with a prior bad paver
initial matrix, then searching and perturbing sometimes mixing search types to
worsen it as measured by increasing the paving parameter. There is another vari-
able constraint we can control called the maxradius (reciprocal of the norm of
admissible sample matrices) which restricts the domain, and hence the complexity
of the search. It turns out experimentally that that can be crucial in the more suc-
cessful searches, though we understand little why. Setting the maxradius button
closer to the target paving parameter often yields faster searches and larger paving
parameter results. In particular, the largest maxradius theoretically is 1, but this
almost never results in a good search result.

By combining algebraically, or through direct summing and weighted combi-
nations, we created many initial matrices of increasing sizes that again occasion-
ally achieved significantly larger paving parameters. After time and little search
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progress on a matrix class and size, we then accept the matrix and its paving
parameter as an experimental approximant of a possible theoretical optimal bad
paver.

The next steps in this project might be to analyze such matrices for their prop-
erties and how optimal they really are, as we did for n = 4 − 6 and the selfadjoint
case for n = 7. Indeed, one hope of this project is to gain insight into which classes
or special matrix structures and their properties achieve bad optimal status and
why. Such information might lead to constructing an infinite sequence of increasing
size matrices with paving parameters tending to 1, or otherwise, reveal structures
that constrain paving parameters from approaching 1. At the very least this project
generated in the prequel a myriad of questions on small matrices that may be of
interest.

8. Interpretation of results and limitations

Recognizing that experimental work can be off the mark, but at the same time
respecting it for its center stage role in the theoretical results obtained so far, we
provide the following data analysis and observations on its weaknesses.

1. β3(M
0
n(C)) may stay bounded by approximately .8615. Despite our searches for

several years now throughout all these classes and for matrices up to size 22, we
have been unable to surpass this paving parameter bound. Likewise, for month we
have been unable to surpass the paving parameter bound of .8387 for real-entried
matrices up to size 14. Likewise for all the other monotone paving parameters, they
appear bounded and if not, very slow growing to 1.

Weakness of the evidence. Comparing the proofs of the n = 4, 6 cases, we see
that the rarity of the bad paver classes in a graph theory class sense jumps dra-
matically. In the best precise calculations of paving parameters in the prequel [12,
Propositions 2.2.1-2.2.3], we use digraph data [13] that demonstrates this. For the
4 case, we showed that optimal bad pavers lie in one of 218 classes defined by their
properties related to digraphs on 4 vertices. For the 6 case, that number is much
larger. So if bad pavers are very rare with rarity increasing with matrix size, then
a random matrix search approach has its obvious weaknesses. Nevertheless, boot-
straping by using improved initial matrices has shown alot of promise in this effort.

2. Experimental evidence for positive-entried zero-diagonal matrices:

β3(M
0
n(R+)) ≈ .5550 for all n ≥ 4.

Work on β3(M
0
6(R+)) ∈ [.5550, .5774] yielded for this line of investigation some

theoretical results and several questions [12, Section 3, esp. Proposition 3.3.3].

3. Improvement in computer speed and in our software since the project began
contributed significantly to improving our theoretical and experimental results. We
hope that with others joining the search and with newer technology, better evidence
and more proofs evolve.
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