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MATRIX PAVINGS AND LAURENT OPERATORS

H. HALPERN, V. KAFTAL. G. WEISS

1. INTRODUCTION

Let D= B(H) be the algebra of dingonal operators relative to a fixed basis
of a Hilbert space /i, then a long standing open question is whether the following
equivalent properties hold [1,2,3,9.10,11].

The extension praperty © every pure state of D has a unique extension to a pure
state of B(H),

The relative Dixmier property: for every x € BH) the sel Kix) = colwaw® |
{we D, w unitary] has nonempty intersection with D,

The paving property: for every x € B(H ) and & = 0, there is a diagonal decom-
position of the identity (a decomposition of the identity into finitely many muotually
orthogonal diagonal projections p(f)) such that ||p{jix — ECxlip(f)] < & for every
g, where E(x) denotes the diagonal of .

The relative Dixmier property can be formulated in the more gencral setling
of the embedding of two C*-algebras 4 = B and was first proven to hold true by I,
Dixmier for the case that 4 = 8 is a von Meumann algebra [5]. We study this
property further in [8, 9, 10].

In this paper we investigate a related problem: if {w, re[0,1)} is the one
parameter group of diagonal unitaries that implemenis the dual action in the
decomposition of B(H) as the crossed product of D by Z,[4, 10, 13] and if
Kyl x) = cofuxu® | re Qﬁ[ﬂ,]}}, then for which x e B(H) does Kj(x) have a
nonempty intersection with 07 We call such an x wniformly paveable because of its
<characterization obtained in terms of “uniform decompositions of the identity™,
i.e. decompositions of the identity into diagonal projections which correspond to
infinite arithmetic progressions under the natural identification of diagonal pro-
Jjections with subsets of the integers (Definition 2.1),

It is well known that K(x)n D @il E(x) € K(x), 50 the distance a{x) (resp.
a(x)) from E(x) to K(x) (resp. to Ky{x)) can be scen as a modulus of paveability
(resp. uniform paveability). We cxpress o and 2 in terms of decompositions of the
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identity {resp. uniform decompositions of the identity) and in terms of U{D)inva-
riant (resp. (&, |t & @ 00, 1)}-invariant) functionals (Proposition 2.3).

It was shown in |11, Theorem 2] that the ¢lass 2 of Laurent operators, ie. the
operators L, of multiplication by functions ¢ in L0, 1) acting on L3, 1), does not
have the extension property with respect to 8(H). This was achieved by considering
a type of “uniform™ decompositions of the identity into Lawrent projections and
by construcling a suitable diagonal operator for a counterexample. Thus in the
context of uniform paveability (with respect to ) it 15 of particular nteres: w
study 27,

In §3 we reduce uniform paveability for 2 to an ergodic property in L0, 1]
{Proposition 3.5), and we prove the existence of Laurent operators that are not
uniformly paveable { Theorem 3.6),

In §4 we find an upper bound for the modulus of uniform paveability (L)
of a Laurent operator L, in terms of the upper and lower Riemann itegrals of 4,
As a consequence, we obtain that all Lavrent operators with symbeol in the C*-subal-
gebra of L=(0,1) of Riemann integrable functions are uniformly paveable and
hence are paveable,

Conversely, in Theorem 4.5 we show that 2(L,) = | — m{¥) il ¢ is the
characteristic function of an open dense subset ¥ of (0,1), hence L, is not uniformly
paveable when 1 — m(F) = 0.

In Theorem 5.4 we strengthen this result by showing that if 1V is an open
dense sel with m(F) = | — mi V), then for every diagonal projection p “comtaining”
an infinite arithmetic progression, we have that {piL, — E(L,}}p|l = 1 — miF).

Moreover, Tor every such Fand 0 < f§ < 1, there is an integer valued function
e, fy such that ||p(L, — E(L el = f] — m(F)) for every diagonal projection
p which “containg™ a fl-sufficiently long arithmetic progression, {i.e. an arithmetic
progression of difference » and length at least fin. ).

The function fin, #) is related to the rate of /*-convergence of the Fourier
cocfficients of £24(0, 1) functions. In Propositions 5.5, 5.6 we compute an upper ‘and
a lower bound for f{n, i} (for certain values of f#) in terms of the geometry of the
el P,

These results relate also to the paving problem. The fact that ||p{L,—E(L)p| =
= M1 — m{ V) for the large class of diagonal projections p containing f-sufficiently
long arithmetic progressions, makes L, 2 natural candidate for a nonpaveable oper-
ator.

An analysis of the decompositions of the identity containing projections of
this class pertains to combinatonics. The van der Waerden theorem [6, Theorem 2.1]
guarantees that for every finite coloring of the integers (or equivalently, for every
diagonal decomposition of the identity), there are arbitrarily long monochromatic
arithmetic progressions. However, litile is known about the connection between
the length ¢ of each such arithmetic progressions and its difference n.
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esults lead to an interplay between combinalorics, operator theory

Thus our 1 :
paving problem.

and Fourier analysis that might shed some light on the

o PRELIMINARY RESULTS

Let H be a separable Hilbert space with husiallm ke Z}, let Dc B(H) be
the aleebra of diagonal operators relative to this basis and let E:H{H] - D hf: the
4;::1|1:1|r;|_'iil Faithful normal conditional expectation onto D (“taking the main diago-
pal™. Denote by U} the group of the unitary diagonal up¢rsulur5. For l:.."."[:r}'
+ & B, let Kix) be the norm closure of the convex hull of the diagonal unitary

orbit of x. In symbols.

Kix)= cojwm® | we L.

We sav that a finite collection [pi =12, ...y n! of mutually orthogonal

[ : . 5

projections p(f1 € D for which % pi=1 is a diggonal decomposition af the iclentity.
: . =1 :

If furthermore p(j) is the projection on the closure of spanjn |k =J +_ rm.«..
moe 21, we call | p(j}} a wniform decomposition of the identity or, more precisely,
the #-uniform decomposition of the identity..

Under the natural identification of diagona and
an m-uniform decomposition of the identity corresponds Lo a.dls_lmrn .
Z (a coloring. in the language of combinatorics) in # infinite arithmetic progressions

with the same difference n. By Remark 2.2 we shall see that there is no g,aiu? in
§ 7. into infinite arithmelic progressions

| projections and subsets of Z.
partition of

generality in considering all the partitions o
with arbitrary differences.

Drrintrion 2.1, Let x € BUH), then we define

1f=1

E X | : ; ; )
a(x) = jnfl'gxp{;‘].i.r - E[.x-]jpij]ll,| oLy ds a diagonal
I

decomposition of the identity},

alx) 'mf'{[f pliNx — E{snpt i) '[ Ui ) is a uniform
[[ =1 i

decomposition of the idn:nlil:-]. '

IF afx) =0 (resp. &)= 0) we say that x is paveatle {resp. wnifermly puveahle).



H. HALPERM, V. KAFTAL, . WEISS

REmark 220 It is easy to wverify that &(x) coincides with the infimum of
L
E;pi_a N Eﬂ-'f]'}.l'l‘l_.r'}_ over the collection of all the diagonal decompositions of
the identity { o f)} such that

POV = span i, |.‘.‘ =a +mn,, meZLl forsomea . n €N
4 a E

in chcr words, Lo consider all decompositions of the identity into diagonal pro-
jections lt.mt “are infinite arithmelic progressions’” or to consider only  unilorm
decompositions of the identity is eguivalent [or computing &.

r _B_'.' the norm continuity of £, it is clear that K(x)nD # @ if Kix1r D =
= {Eix})} iff Fix)e K(x). From [10, Lemma 2.2 and proof of Proposition 2.3]
:f :ce that o x) is the distance from E(x} {or. eguivalently, from ) to the set
X,

By the same reasoning and by Lemma 3.1, &) is the distance from £(x) to the
norm closed convex set Kylx) — coluxut |12 Qn[D, 1)}, where {u, |12 Qni0, 1)]
is 2 rational subgroup of L'{D) which will be discussed in the next section, :

More generally, Tor every subgroup G of U(D), define for all x € B(H)

Kelx) = coluoxy® ]!i € G,
gelx) = infj» — E{x)|| |_1' E Kglx)].
The distance x.(x) can be characterized in terms of G-invariant functionals. where

a:'unc:tinnﬂl Jis said to be G-invariant if f{uxe®) = fix) for all € G and x & B(H)
of. [1, 3]

PrOPOSITION 2.3, For every v € BUHY) we have
wglx) = supj|fix — E(x) | Fe (BUHY*), and f is G-invariani®,

.Fr‘m_.lr. Without loss of gencrality, we can assume that E(x) = 0. Since
continuous G-invariant functionals are constant on each set K.{x), we have

sup{!fix) | fe (B{H)*), [ is G-invariant} =
= infisup{|f(3)] |/ € (BLH)"),. [ is G-invariant]} |y € K(x)]} <
s nff|lpl |y € Kalx)} = aglx).
Thus if a;(x}) =0 we are done, Assume not and let 0 < & < 2.(x). Let B be the

open ball of B{H) with radius z,(x) — &, then by the Hahn-Banach theorem there
sace Randape BF)® such that forallz € 8 and v € K {x). we have Relgp(z)) <
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< ¢ < Relp(v) < |p(3)|. Since sup|Re(@iz)) |z € B} = |plllaglx} — &) < e, we
have that @ = @/|lp| € (B{H)*), and [¢(p) = xel¥) — & for every v & Kglon Let
F= coly-adu |ue G} where the closure is in the weak®-topology of B{H)*;
then for all fe F we have |f(x)| = ag(x) — & By the Alaoglu-Bourbaki theorem,
F is a weak*-compact convex subset of (BH") . For every w € G, the map T:
BiH)®* — B{H)*, given by T,(f)=f-adu is a weak®-continuous linear contraciion
that maps F onto F. Since G is abelian, all the maps T, commute and thus. by
the Markov-Kakutani fixed point theorem, there is an e F which is fixed under
all T, or, in other words, is G-invariant. Thus fe (B(H)*) isa G-invariant funclional
for which |fix) = mglx) — & Since & was arbitrary, we abtain the thesis. Q.E.D.

REMARK 2.4, a) By using the same ideas as in [3, Proof of Theorem 24,
{i) = (ii))] we can show that
gglx) = 4 supfl fix — Elx)) | fis a G-invatiant state of B{H);.
If x = x% {resp. x = 0), instead of 4 we can substituie 2 {resp. 1} in the above
inequality,
b) As a consequence of a), E(x) & Kglx) iff fix) - FiExp for all G-invariant
states § of B(H) cf. [3, Theorem 2.4].

Let us denote by 4 the abelian C*-subalgebra of 0 generated by G. It is casy
to see that a continuous functional f of B(H) (and in particular a state) is G-inva-
riant iff for all x & B(H) we have flax) = f(xa) for all & in the span of G and hence
for all @ & A, if flwew*) = fix) for all unitary v e L{A), i, iff fis D A)-invaniant
cf [3.§2]. Thus we have:

COROLLARY 1.5, Let G be a subgroup af ULDY and let A be the abelian O 5= yihal-
gebra of D generated by G, then oy (X} = 20X} for every x € BUH,

In particular, Ky (xhn D # @il Kgix)n D = @, Notice that unless 4 = I,
ie. A4 is maximal abelian, an application of the Stone-Weierstrass theorem shows
that 4 cannot have the extension property relative to B(H) |11, § 1]. This is equivalent
o the existence of an operator x € B(H) for which Ki(x)n D = .

Let us relurn to the case when G is U(D) or ju, |reQn[0, 1)} Clearly,
#ix) = g(x} for all x &€ B(H). We have studied in [10, Proposition 2.4, Corollary
2.5, the class A of the paveable operators and we have seen that & is a selfad-
joint Banach space and a two sided D-module cf. [I1. Remark 6].

The same proof, with only minor modifications. shows that fhe class NN
of the uniformly paveable operators s also a selfadjoint Banach space and a two
sided D-module, Thus we have:

ProposITioN 2.6, Ler w & BU) be the hilateral shift, then the C¥-algebra sener-
ated by D and u is comained in N In particidar, every compact aperafor i wniforsly
paveable.
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Proof, Let we N and let :,ﬁljj|_,.-' n+ 1} be the (n <+ 1uniform
decompaosition of the identity, It is easy to verify that p{ jwp(j) = 0 for all § and
henee a(u") = 0. Thus v € & and hence au" € N for all a, € Dand n e L as N is
a setfadjoint D-module. But linear combinations of e are dense in the C*-algebra

generated by D and o and N is a Banach SpcE. (.E.D.

In [10, Proposilion 5.6] we have seen that the C*-algebra generated by £ and
i is a proper subalgebra of the C*-algebra penerated by £ and the permutation
matrices. By [10, Theorem 4.1] (cf. [11, Theorem 5]) the elements of this latter C*-al-
gebra are all paveable. Moreover all the matrices having only 0 and 1 entries. but
with it most one 1 per row and column, are also paveable, i.e. are in N [9, Proposi-

tion 3.4]. 1t is natural 1o ask whether they are also in A,
The following is a counterexample, which shows at the same time that N = N,

ExamrLE 2.7, Let x € B(H) be the matrix with 1 in the (f, 21) position for all
ieZ and O elsewhere. Let [p(jb|i=1,....a! be the uniform n-decomposition
of the identily, then we have p(fixp(j) = 0 For all § # & byt [|plelpin)]] = 1. Thus

% AN — Eix)pl( )| = 1 for all » and hence Z(x) = 1.
j1 1

It is however quite mon-trivial to show that there are Laurent {or equiva-
lentfy, Toeplilz) operators that are nol uniformly paveable. This will be the task
of Theorem 3.6 and of Theorem 4.3,

The following lemma will be used in §4.

Lemma 2.8 (The Squeeze Principle). Let xy, % and v be selfadioint operators
such thar x, £ v £ Xa. Then

a) oly) £ maxialn) + [|E(x; — ), alxg) + [|Elxe — 1)},

b)Y (1) £ maxia(x,) + || Elxy — V)|, Elxs)} + [ Elxs — ¥}

Proof. We shall prove b), The proof of a) is essentially identical. Let & = 0,
let {pdid i= 1,2, ...,m}, i = 1,2 be two uniform decompositions of the identity
such that

[} "f |
| 5 - s b - A
| % P, — Exdpd )| < @lx)+¢& fori=12
LA =

Let (p(f)]7i=1,2,....n} he the p-uniform decomposition of the identity which
is the refinement of the two partitions, i.e. pij) = pik)peim) for some &k, m and
where # is the least common multiple of #, and n,. Then it is easy to verify that

LY PO, — Blxpt) < @) + & for i = 1.2,
= | |

T =
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Let

a= ¥ P — EGp),
J=1
then E{x,) < E(y) £ E(x,) 'and

a1 E pliNxg — Evipd j) = E PliWxe = Flxgdp (i) + Elvg— 1) £

i=1 i=1

£ ( ¥ Pl — L P + | Eixe — ) ]! £ (#xg) + £ + | E{xy — MDA
J=1
Similarly

g i PNy — ExDp(f) + E(xy — p) 2 — (a(x,) + & + [ Elx, — ) M.

iz
These two inequalities give
llall < max{a(x;) + [[EGxy — 0, @xg) + [Elxg = 0]} + e

Since &(») = |la|| and ¢ is arbitrary, we obtain the thesis. Q.E.D.

We leave the proof of the following lemma o the reader. An analogous ver-
sion holds for o.

Lemma 2.9, o) #(x + ¥) £ &@(x) + &) for every x, v € B(H),
b) Gix + ) = &(x) for every x € BIH) and vE N.
In particidar &(x) = &1 — x).

3. UNIFORM PAVEABILITY AND LAURENT OPERATORS

Let us identify H with L%0,1) and [y} with {exp 2zik¢}. Then a Laurent
operator L, € B(H) is the operator of multiplication by the function ¢ € L=(0, 1)
acting on L0, 1).

The algebra & of the Laurent operators is the von Meumann algebra {masa)
generated by the bilateral shift  on H. The map L: ¢ — L, from L=(0, 1) onto &
is an isomorphism of von Neumann algebras and hence an isometry, ie. ||[ || =
== |||l for all @ L0, 1).

The matricial representation of L, relative to the basis {n,} is given by (L,),; =

== @i = ), where. ip(m) = \ @(r)exp(— 2nimr)ds [7, Problem 241). Thus E(L)=

L

= (0 and @im) = E(Lu-™). Equivalently, L, ~ ¥ @inu™ where the series
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converges in the Bures topology [12]. Recall that BH) can be identificd with the

crossed product of 2 by the action = adx of X Then the dual action ﬂ of

the dual of Z, which we identify here with the interval (0, 1), is given by 0, = adw,,

where u, = d* has for its penerator the {unbounded) diagonal operator o

defined by dy = expl— kb, . In other words, wg, — exp{— 2aiksiy, for all £ € Z

[4. Part 1, §4). In paricular, ii,t&j a Tor all e B, ey o expl— 2aite and
1

Fixy= Slriﬁ.rid.r for all & € BN (where the convergence of this integral is in the
ir

ag-wenk topology). The action € has been further studied in this context in

a peneral setting in [10].

The connection belween the dual action (!, (or equivalently between the unitary
operators 1) for ¢ rational and the uniform decompositions of the identity is given
by the following lemma, which strengthens [10, Lemma 2]; see also [3, remarks
after Corollary 2.3).

Lrsma 3.0, Ler {plf) | F b o) be the menifirm decomposition of the

L3 L3
fdentizy, then (1} % ved, Y plixpli) for every x € BiH).
kol )

Proof. 11 is ensy o verify that w,,, - i expl - 2mijimip(j). Thus

J=l

{1 /) E"; Wy X1 = (1/m) i 3N expl— 2rilm — Hk/mp(m)ap(f) =
Eral el Meal faml

— % S (U Y expl— 2milm — kfmplaap()y = ¥ pxp(i),

pml f=t F=l i=1

since ¥ expt— 2milm — jikjn) = 0 unless (m — j)fn € Z, ic. unless m = QED.
k-1

The C®-algebra B(H). of the continuous elements relative to 0 [14, 7.5 (ic.
the eclements x for which ¢ — ﬁ,(xj i5 norm continuous) coincides  with the
C*-algebra pencrated by D and by the bilateral shift u 10, 13). The algebra B(H), n &°
is then precisely the algebra of Laurent operators with continwous symbol
[10, Section 5). Thus B(H).n & = N by Proposition 2.6.

The action operales on L, as a translation on the symbol . Indeed
extend by periodicity all the functions on (0, 1) to functions on R with period 1
and thus embed 200, 1) in L=(R). Denote by A5} the translation by s on L=(R)
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famd hence on L2200, 10, ic (3] = @it — &) Tor almost all &R, Then we
have:

Lemma 320 041, ) = Livgyp for all spe L0, 1) amd 5&(0,1).
Proof. Reasoning in part as in the proof of [10, Lemma 4.4] wec have
for all me®: :
FBL ™) = ’.’.-Ifla___l'f.:ml;'xlﬂ'— Ziritnshee ") = expl— i (L 0 ™)
expl— Zrimsltm)l 'S (shp) " (m)f = E(L petd ™™,

where we have wsed the Tuel that £ < £ ﬁ for all s : QED

o t
Let 0, = (1/m) ¥ ALjfm), then it is easy 1o verify that @, is a faithful normal
J=1

vonditional expectation of L0, 1) onto the algebra of (I/n)-periodic functions
of L(0, 1),
The following proposition shows that the paving of a Laurent operator

induced by a uniform decomposition of the identity corresponds to the @ averaging
process for the symbol.

Prorosrmion’ 3.3, Loy A=, b e n-imiform decompaosition of

the identity and fer oo L=0, 1), then ﬁ Py = Ly ..
Jal A

Lraaf.

X, POLG) = (1)) Y, wink iy, =
Fel,

F=1

{Lemma 3.1)

~ (1) § DL = (i) 3. Liion = Eg,
RS

Jel

{L_cmma 3.2)
Q.ED.

We shall need the following characterization of Q,. We lcave the proof 1o
the reader,

LieMma 34 For every e L290, 1) and ne N we pave that

(0o = rﬁ{k} if m divides &
¥ n if i does not divide k.
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It is easy to verily that Kif )= cojwl " | w e UM o 20t e is constan
e.. However, by Lemma 3.2, for cvery ¢ € £2(0, 1) we have that E:ufu,!.@rfﬂ
|t €@ D} = & In particular

Ki(L) = tofu L [fe Qno, D] = 2.
Let us define for all e L0, 1)

Kolg) -~ colift)e |t Qo 1)),

whers the closure is in the L*-norm,

The operator L: g = L, maps Kyig) onto Ky(L,) and hence Kjig) 0TI onlo
L) N CF = KL n D, Thus @tf & Kylp) il E(L) & Ky(L,). From Propo-
siticn 3.3 we have

I L]

H_;pmff_,,- ELYPG) = [ Lge— @O = [Qup — POV |
=1 { ;

Thus we abtain: i

ProrosiTION 3.5. For every e L0, 1) we have
4@) &L)Y=0% Klp)n'Cl = O;
b) &(L,) = inflQ0 — P(O)!,,

This recuces uniform paveability of Laurent operators to an ergodic property
of L=(0, 1), We deal with it in the following theéorem.

THEOREM 3.6. There is a g = L0 1) such thar (L) # 0.

Proof. Consider the group Up={i(|re[0,1)} and its subgroup
Ug={#) | £ € [0, 1) 1 Q. By [15, Corollary 22.4], therc are two distinct Ug-invariant
means on L=(0, 1), i.e. two states gy and pe on L7200, 1) which are invariant under
all the elements of L'y and hence under all the elements of LUg. Therefore there is
an element o € L0, 1) such that juie) # pde). Then for every i e Kylp) we
have i) = b, i = 1, 2 Thus &(L,) # O since otherwise, by Proposition 3.5 &),
@0) & Ky{gp), which vields the contradiction:

) = gy @O = 3(0) = polBOW) = pralip).
Q.E.D.

ReMark 3.7, a) We have actually proven that there is a @ e L=(0, 1) such
that
eo e (e [0, D} nCl = 8.

Thus by Corollary 2.5, E(L,) ¢ cojul u* |we 4} where 4 is the C*subalgebra
of D generated by [r, |t & [0, 1)),
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b) Note thal this argument is:nonconstrictive and i does not yield an evalug-
tion of &L}
4. THE MODULUS OF UNIFORM PAVEABILITY OF LAURENT OrERATORS

In the previous section we have seen in Theorem 3.6 (see also Femark 3.7}
thal there exigl Laurent operitors that are not uniformly paveable. In this section

‘we shall provide ‘concrete ‘examples of 'Laurent projections that are not uniformly

piaveable and evaluate their modilus of uniform paveability .
Firsily, we can obtain an upper bound for #(L,) for.a selladjoint Laurent
operator £, in terms of the upper and lower Riemann imtegrals of ils symbol .

Let Af=(0, 1) be the algebra of real-valued cverywhere bounded Lebesgue
1

measurable functions on (0, 1) and lel £ M™=(0, 1}, then we denole by RY, RY, S_.I'"d!
/ " ; )
the upper and lower Riemann integrals and t(he Lebesgue integral of [ over (0, 1)
respectively.
Prorosimion 4.1, Let L, be a selfadjvint Laurens opevator, then

1

1
gL, = ]nf{mu( Rf— gwd(,gqﬂ dr - f}'f] | fe M=(0,1} and = ¢ a .c.} g
B H

Proof. Let fe M=((,1), f=p ac and let ¢ > 0, then there are lwo real-
-valued, continuous functions g, such that g, < £ < g, (and hence L, < L, = Lg)

1 E
and Sg £ Rif% ig‘ dez RS e We have 2lready noticed in § 3that by Prope-

a @
sition 2. 2.6 all Laurend operators with continuous symbol are uniformby paveable.
Thus L b Wand by the squeese p_r:rlmph: {Lemma 2.8)

gL, )= math!!E(L'L.* — L W IEL, — J'_:l]:-] =

1 L 1 1
r

= max {Sl}.’: — @) dt, E[w = .lh]'df'] £ MK { gwd!, Scﬂ dr - -
i 8 ;

But ¢ > 0 and f = ¢ a.e.are arbitrary. Q.E.D.

Lel # be the C¥subalgebra of % of the Lavrent operators with Ricmann
integrable symbol (or more precisely, with symbol almosl everywhere equal to



kLS Fl. HALPERM, ¥, KAFTAL, (G WEISs

a Ricmaen inegrable Tunction). Then s an immediate consequence of Proposi-
tion 4.1 and Lemma 2.9 (Tor the nonselfadjoinl case) we have:

CoroLLARY 4.2, Every efeomgmt of & is wwifermiy paveable.

We shall henceforth consider Laurent projections, ie. operators [, with
symhol g = zg. the chatacteristic function of a measurable set £ < (0 1), Lel
us denote by £ E*, £ and @£ - F.E" the closure, the interior, the complement
in (0,1 and the boundary of the set £ respectively and let m be the Lebesgue
measure on (0, ). Then Ko = m{E). Rr,u = (£ and thus Proposilion 4.1 ccan
reformulated as follows!

CoropLany 4.3 Let g =y, for o mpeaswoeable ser £ < (0, 1), Then

d(l) = ml’fmarrmtr F], i F — F%) | = A )

We can u.xhll:ul. cascs where th,e upper bound is attained (Theorem 4,5).
The following lemma is a routine measurc theory resuit,

Lenma 44 17 E = (0, 1} iz either a closed or an open sef, then

i) i inf {masim( F — F};, wi(F — PO | gp= g 2t}

TuroreM 4.5 If ¥V < (0, 1) ds an open dense set and o = ¥, then B(L,) =
et ) = 0 A firthermore miVFy <102, then for' every wniform  deconipasition
of the identity {p(f)|j=1.....n} we have
& ! b
| %, pUNL, — E(L i)
1 ]

= m(d V).
¥ =

FProwf. Because of Corollary 4.3 and Lemma 4.4 we know that
#L,) < inlimaxim(E — F), m{F — F | 1 = 1y 2} = mi@¥).

In order Lo prove the reverse incquality, by Proposition 3.5 b), it suffices 1o show
that for cvery n & N we have [|Qup — @O |l 3 m(dF) Fix ne N, and let J, =
Foood, 1), then Jfy # 8 becavse V is dense-in {0, 1). Let .fz = ¥y + 1

then we also have J, # @, Let J, = Jy — 1/n, then J, = J;. Iterating we find a
nested sequence S, = J ... = 0 of open nonemply sets such that J, +
k— 1w V.on particulur g+ kinc Viork=0,1,...,n0 — 1. Thus

Vo= U0 + k) [k=0,L....n =1} c V.
Lot g, = #,. o then g, is (1/w)-periodic and @ z'@,. But then Qo = Oup, = 0,
and thus we have:

oo =il VW = o, — mPW=1{] — m{" V. — m(FH1 — @)
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Therefore

(D = ol ¥ M py, 201 mil¥ ppe, =0
amd hence, since ' ({0 = i ¥ 1 we have

O — @l =1 — mi¥) = wliy,

Assume Turthermore that sa(F) = 172, hence mf ¥} £ mldF) Since O, is a
conteaction, @0 ~ [ and ¢ is a characteristic Tunclion, we lave

Qe — m(F) |l = @y — nl M) o =
= |:1'] —m PJ‘F |Iw = I:(i — "’,]\JTP — (¥ |,'.I'|§'w _|_|_|-.|'.|:rj."]_

Thus, by Proposition 3.3 and remarks before Proposition 3.5, we have for all #
! ¥, p(IL, — ECL Y j)l| = m(@¥). Q.ED,

| =1

thal

We shall sec in Corollary 5.4 that we actually have more;
IP(NL, — ECL P = miaV)  for each

We wish 1o point out for later wse (Propositions 5.5, 5.6) a special set that
possesses the essentinl properties used in the proof of Theorem 4.3,

Examrpie 4.6, Lel a, = 0 be a sequence of real numbers such that Y na, &

mesl

= 142, let
Vn=_[_‘J{(\U,a"j -|..j|l'n]_l,l' 0,1, ..,0=— ]_,r

o
and let Vo= |_J F,, Then F is an open densg set and
: !

miFl <y, mF) =% ng, €172,
LI §

PEY

Then the sets ¥, coincide with the *‘periodic™ subsets constructed in the prool of
Theorem 4.5,

The following example will show that if o open set Vs not dense in {0, 1)
the inequality in Corollary 4.3 could be strict. We thank A. Sourour for the idea
that led to this construction,
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Examerr 4.7, Let 1/6< fi<1/2 and let & = (0, 1/2) be the Canjor sei of measure
fi. s that its complement K7 in (0, 1) is the union of disjoint open intervals J,
with length 3-% Tor some o, Spliv cach interval J, into the union of two digjoint

i
nonempty open intervals J{ and J7 and the division point. Let W, = |_J Ji, then
1
it is easy to verify that T, = [0, 1/2] W, and, similarly, that Wy = [0, 12]> W,.

Let ¥y =W, = (0, 12), V== W o 12 (1/2, Nand let V" = ¥, u Fy, V= [V, +
+ 1/ (Fg — 1/2). Then V. oand 7 are disjoint and

mi¥F)= nFy= m(W, UW)=mK™)=1/2 = fi

Fis not dense in (0, 1), actually Ve=[0,1]P, so that m(F)= 1 — m(V) =
= 12 -+ fi. Let ap = ¥, then -':ﬁf{!i' /2= f and 2(1/2)p = ¥3. Hence

O = (1/2)ep + A(1[20p) = (1/2)(%,.,7)
and since [ = 1/6, we have
Q90 — BOM [loo = (11202, 7) = (12 — P oo =
= 1Bty 30 — (12 — U1 = %, 7)o = max(f, 112 — B) < 20 = m(0¥).

Therefore @(L,) < m{d}').

5. UNIFORM PAVINGS AND FINITE ARITHMETIC PROGRESSIONS

The techniques developed for dealing with uniform pavings can be used to
shed some light on a larger elass of pavings. Let us introduce some further notations.

Define an operator @, on L=(0, 1) by setting (0,@)(1) = (Q.p)t/m) for all
g & L0, 1) and for almost all 1 € (0, 1). An equivalent characterization is given
by property a) in the following lemma,

Lemua 5.1. a) (Q,9)"(K) = (kn) for all @ € L=(0,1) and k € Z,

b) |00 = |Qurlleo for all ¢ € L7(0, 1),
c) @, is a positive identity-preserving linear comtraction on L*=(0, 1),

d) 0.0, = 0.,
eI 0 << 1, then 10 x0m = Foma .

T

MATRIX PAVINGS AND LAURENT OQOPERATORS 150
Proof, a). From the |jn-periodicity of @ we have:

(Ot frr o] — 2mider s =

L™ 22

(Q,0) (k) =

1
S(Q..wfrmpl— 2riknt)dr = (Q,p)" (kn) = @(kn)  (Lemma 3.4),
]

b and ¢) are obvious and d) Tollows from the fact that @, is idempotent,
e). From a) we have for every n € Z,

(MO, Koo () = (m¥iu,)” (k) = {Lumy} " (k). Q.ED.

Let piw, 7, @), r and rir) be the (diagonal) projections on spanin, | & = a + jn,
jo 1,....1}, spanin, |k € N}andspan{n, |k = 1,.. ..t} respectively. Thenr = supr(t).

The next proposition enables us to compute the norm of certain compressions
of Laurent operators.

Proposmion 5.2, Ler o € L0, 1), then for all n,r e N and a€ & the aper-
atars pin, 1, @yl pin, 1, a) and ri:jLE Jit} are anivarily equivalent, fn parijcnlar we
L}
Trave thai
lpin, t, al L, — E(L el 1. a)fj = ;‘rl,.fr{f.{;"_ E(L Ne(r).
Proof. Let x = pin, 1, )L _pin, 1, a), and let [x,;;] be the matricial representation
of x relative to the basis {n,}. If i =a + i and j= & 4+ jyn for some | < &,
Jo = 1, then we have

x, = pla, 1, (L) plr. 1. aly; =

= pli — ) = (G8) " lio — Jo) by Lemma 5.1 a)

n

(L

g, = (LG Jrted) s,

and x; = 0 elsewhere. Therefore x is unitarily equivalent to rU_ﬁLbﬂr[r}. Since
0.0 = I and E(L,) = p(0M, by applying the result obtained above to ¢ — @(0)
we see that pin, r, alL, — E(L))plr, 1. a) and "“}{Lﬁ"« — E{L)rir) are unitarily
equivalent and hence have the same norm. Q.E.D.
By the continuity of the norm in the 5.0.T. we can define;
DEFNITION 5.3, Assume that x e B{H) and rar # 0. For each 0 < ff < |
we define v(x, f) to be the minimal integer k such that [\r(k) xe(R)] = Fllrarll.
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Thus the integer valued function vx, f) measures the rate of norm convergence
of the finite blocks rik)xrik) to the infinilc matrix rer. As we shall see in Propo-
sitions 5.5 and 5.6, if x is a Laurent operator with symbol @, this rate is related
to the rate of convergence of the series of the Fourier coefficients of g, which is
easier to estimate,

| THromrEMm 54, Let ¥ obe an open dense set in (0. 1} with m(Vy=mid¥),
ler @ be the characteristic fimction of V and let p be a diagonal projeciion, Ler
fin, iy = v:LE o ELL ) f) for 0 < B < | and ne N; then

| ab if p comains in ity ramge in, IA‘ =a -+ jn, j€ N} for some ne N and
a€ X, then ||p(L, — E(L,Yp|| = m(@¥).

i bYICp oz ping,a) for some 1= fin ) and some D< =1, neN and
a€Z, then ||p(L, — E(L))p| = fm(dV),

Proaf. a) Since p = pin, 1, a) for every , we have from Proposition 5.2 that
llP(Ly — E(LYpl = ptn, 1, al L, — E(LNpln. ¢, a)l| =
= Iirl:{}{LEﬂp o -EfL\*}H!]H-

Since r{:_}iLE,“---- E(L (s} converges in the S5.0.T. to the Toeplitz operator

r(L&J

Laurent operator with the same symbol), we have that

— E(L,)r with symbol é.w — @7 (which has the same norm as the

lire ML  — E(LDr(e)| 1 lirlLg | — E(Ly)r|| =
= |lLg,, — ELI = 1Qup — $OM |l = from Lemma 5.1 b),
= | Qe — #OM ||, = m(@¥)  from the proof of Theorem 4.4.
Thus [lp(L, — B(LY)pll = m(@V). On the other hand,
1Ly = EXL = [l — @OM ||, = m{ii¥)

which proves the equality.
b) By the definition of f(n, f) = 1'(‘['&,; — E(L_}, /) and by the above com-

putation, for all ¢=f(n, /) we have
(e L 5 o — ElL ()l > ﬁ|’r-'ﬂ-§", — E(L )| = pm(d¥).

Therefore if p = pin, r, &) for some 2 f{n, B), by Proposition 5.2 we obtain the
inequality. Q.E.D,
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In particular for all projections p belonging to any uniform decomposition
of the identity we have that

[lp(Ly — E(LNpll = mid ).

Under the identification of diagonal projections with subsets of Z, we say that
a projection p contains a f~sofficiently long arithmetic progression (for L) if
p = pin,t,a) for some 7 = fin, B). Thus, by Theorem 5.4 1h), we have that

il &
IS pliL, — BLIPD| > frl@V)
Ja=l

for the large class of diagonal decompositions of the identity for which one of the
projections contains & f-sufficiently long arithmetic progression.

This fact makes L, a natural candidate for a counterexample to the paving
problem.

A characterization of the decompesitions of the identity or, equivalently,
of the colorings of Z that contain f-sufficiently long monochromatic arithmetic
progressions, pertains (o combinatorics and is dependent on an estimate of the
function f{n, f).

As an example of the technigues involved in such an estimate, for the remainder
of this section we shall consider the characteristic function ¢ of the open dense
subset ¥ =|_J¥, = (0, 1) given in Example 4.6 and exhibit an upper and lower
bound for fin, f) =Lz — E(L,), .

Let @, be the characteristic function of ¥, and let & = m(V), so that E[L,) =
= §1. Choose a, so that ne, < 1/4 for all ne N. Define gif) = 2(r — (x/3)*")
for 1 € (0, }-'EI.';:}; then g is monotone increasing and has maximum 4{[1"57:. Choose fi
small enough to insure that y= fi{l — &) + & = gﬂl'rin'n — 1/4). Then we have:

ProrosiTion 5.5 fin, B) < 2 + 2g—Yy)na, for all ne N,

Proof. By definition, @, = %, 2.0 = nCi ) - Then by Lemma 5.1d)
=
and ¢), we have that

Oty = hQN'IQHxI;I]_u- i "E-xw.u‘r = Xgpmay®

Thus Lz _ is a Laurent projection and ’{LE‘,& W is the corresponding Toe-
nn n

litz t {lrL = |Lz =1 and

plitz operator, so [[fLg Il = Lz, |

Ly, — 8Dl = Lz, — 61l =1—3.
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Since 0 < ¢, = ¢ and hence 0= Lﬁm £ Lﬁ_', we have For all ¢ that rqr]Lg,x_"rm:’ =1
£ |t ﬁ,,».-r“”i' Let + = v(L Bp, " 11 then

5iJ'h‘j[l'_‘-:~,"1l — &) = r[.l}f_au_rui_' —d =
2 Ly , 0l — 8 > ylirtlg , Il — 8-
= il — 8} = fliriLy , = fl.
Therefore by Definition 5.3, fim, f) = Ly, — oL, f) < 1, ie.
fin, By < Ly B0 — &)+ 8.

This ineguality holds true under the milder condition 3= (Il — & + d < I,
Sets = na,and { = Y, € LH0, 1), then { is in the range of L . [[E[F=(Z, py)=2
WP

and for j # 0 we have
(&, mi2 = (1/2)=%-%(1 — cos 2xjs).

Denote by gir) the projection on épnniu* | — 12 k=) Then it is casy lo see
{ef. proof of Proposition 5.2), that for all Laurent operators L,

(2t + 1Egr(2r + 1)} = [lglelLyg(n)] .
Thus we have for all £ = 0
W2k + Lg , 2k + Vil = lgk)Lg , qUO] = Lz, atk)s [ 2

> IEI-¥Lg,, 200G , & &) = [E1-2lath)sIF =

& k
=Iic'||"{l{ﬁ.rrg}l“ +2Y I.{{,rrj}i*l -—-5-1{52 +r Y NI - u‘mlr_,f.-:}} >

Jml =1

k
S {.t* + 7278 Y S22 0205 — (1/4 !'_I-[EH,FE‘.I‘W}-
f=1

[
=54 25 5 (1 — (3N = 2k + D — 2Phs(ns)t Y 2 =

J=1 Ji=l
(2 4 1) — QNs(rsPhll + Dk + 1/2) > 20k + 1/2)s — 2(n3)4k + 1/2) =
= g{(k + 1/2)s).
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Therefore, if & satisfies the inequality g7'(y) < (& + 12 = ].'f?r_.fm then by the
monotonicity of the function gir) we have gtk + 1/2)s) = y and hence

i : Il > 3= yllr(L= 5
Iri2k + 1)Lg , ri2k + Dl >3 vlirtlg , orl

In particular, the inequality holds for the smallest integer & such that 2g-'(y)/s <
= 2 + |. Therefore, by Definition 5.3 we have ﬂLﬁ P s 2k + 1, hence we
ne

abtain that v f_ﬁ

o+ 1) = 24 2g=T7)js, Thus we conclude that
i

fn, I s Wls  .y) < 2+ 28 y)ina,. Q.ED.

Thus we have an upper bound on the growth of fin, fil with », The following
proposition shows that indeed f{n, ) = co for # — co. Here ¢ is seen also as a
vector in A = £30, 1) and thus

-3 i 1z
‘ ) :«ﬂtf}li} = [[tr — rim)p| = 0.
fomil

ProrosimoN 5.6, |
i ) = (L2000 — S0 e — rtn — D=2 Jor all U< fls] and n>1.

Proof, Let ¢ = fin, f) and let || l, denote the Hilberi-Schmidt norm, then we |
have;
(Bl — &= Bl — dF < firlthlg = afjris)|* = |

< Uil , — SNrDlpl = X {itLg , — 8D,7 [ 1 € ij <]
=Y 0o - (-1 gijgr)=

= ¥ {r — DD — D) ) |0 < k| <1 — 1)<

SR Qe R | 1 s ki —1) = as (Qup) " (0) = &

=2}y (D) (k)2 | I <ksr—1) < as O is real valued

s 0¥ {ewh)? | 1 ksr—1} < by Lemma 5.1 a)

S Y Ue(HE | J2a} = 2lr — rin — 1ol Q.E.D,
Part af this researehk wax dowe while the recond anthor
ward o member of MERT ot Beckeley.

Research of the thivd anthor was partiolly supported by NSF grame DM S 8503300,
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