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MATRIX PAVINGS IN B(H)
H. Halpern, V. Kaftal, and G. Weiss

§1. INTRODUCTION

Let A B be two C*-algebras in B(H). The operator x €B is sald to have the
relative Dixmier property (RDP) if oo fuxu® [u € Ul4)} n A’ # @, where U(A) denotes the
unitary group of A and co denotes the uniformly closed eonvex hull [5, 7). Then
N = fx € B|x has the RDP} is uniformly closed, and is a subspace of B provided A is
abelian (see [5]).

Dixmier proved that if A = B is a von Neumann algebra then N = B [4]. Deter-
mining N is of interest and generally diffieult, particularly in the case of the diagonal
algebra DS B(H). J. Anderson [1, 2] proved that ¥ = B{H) if and only if the extension
property for pure states holds, that is every complex homomorphism on D extends uni-

N
quely to B(H). Define ay(x)=inf NI pylx = By, Il < Py }f is an orthogonal N-se-
1

quence of diagonal projections with g Py = 1}, where E(x) denotes the diagonal of x. De-
1

fine ofx)= lim o (x), oy =sup frgx) | (Il =1, E(x)= o}, a=supfox) | [|x]| =1,

N+
E(x) = 0} Clearly oy + e We say x is paveable if ofx) = 0. Then the following are equiv-
mlent: N = = B(H) (open question), a=10, <1, ox) =10 for all x € B{H), uN{xJ +0 as
N += for all x €B(H), o<1 for some N. In view of this, computing o, becomes
important. Setting

o 0 1
= 0 ] ’
o 1 0

we get uzim =1 henee &, = 1. Let V denote the {2n + 2) x(2n + 2) matrix with entries all
1 except on the lower diagonal and upper right-hand corner where the entries are all -n,
then x = (1/(n + 1)}V is unitary, and a,(x) >(2/3) - 1/(n + 1) for n> 2, hence @, > 2/3.

OPEN PROBLEM. Is o, = 2/3 or is there a finite matrix x with lIx|] =1 and
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E(x) = 0 for which usfxllz- 2/3?

If 33 = 2/3 then the extension property would hold. If on the other hand we
eould find a finite matrix x with E(x) =0, || || = 1 for which a4(x) > 2/3, we believe one
eould extract the properties of x to construet y's for which (:l.Nl[g']I is arbitrarily close to
1, whieh would settle the problem in the negative.

Determining whieh Laurent operators L¢ (with symbol ¢ € L"{ﬂ,zﬂil are
paveable is an open guestion in its own right. We know that the class of Laurent

operators L is eontained in N if and only if L, € N for every measurable Ec (0,27) if

XE
end only if L, € N for every open set O< (0,2m). The latter condition follows from the

Xo

Squeere Principle: xe N if for every € 0 there exists a,b e N witha<{x<b and I EM) -
- E(a)|| <e. Another eonsequence of the squeeze prineiple is that u{Lx )< (1/2my
E

-max({m(E \ E), m(E \ E*)). Henee a necessary condition that L?{ ¢ N is that m(D\ 0)>
>0, 0

We know that if ¢ is a step funetion then L »E N. Henee the C*-algebra L
generated by these L*, namely the L¢ where ¢ is partially continuous, are all paveable.
However more is true. We call a diagonal projection a "uniform projection” if its 1's
along the diagonal are equally fpaeed. Define N, EN{x}, alx), EN’ @ as before but using
only uniform projections, so N denotes the "uniformly paveable" operators and is a
uniformly closed subspaee of N. Then the squeeze principle and what follows it in the
preceding paragraph hold true replacing N by N and @ by @, and in additon Lc N.

Our study of Laurent operators and these aforementioned results will be pre-
sented in [5] and [6]. Here we shall prove the following results for the diagonal basis e .

= n-1

THEOREM 4.2. For 0= u v ((0,21/n) + 2nk/n), L_ & N. Indeed if p is the
n=2 k=0 X

projection onto span <e,, jd>;m, then ||p(L, - E{onl}p” >1- m{o)/2n .

*o

QUESTION. Is an paveable ?

If we associate p with its range basis and so with the eanonieal subset of Z, then
an orthogonal diagonal projection N-decomposition of I ean be thought of as an
N-partition of Z, which leads us to the field of combinatories. Van der Waerden proved
that at least one subset of eameh such partition contains erbitrarily long arithmetie
progressions.
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THEOREM 4.3. If (1) p contains an infinite arithmetic progression or (2) for
some D e:z+, p containg arbitrarily long finite arithmetic progressions with difference
d<D, then ||p(L, - E(L_ Mpll >1 - mO)2m.

Rl

We wish to thank D. Larson for his information and encouragement in this
subjeect.

§2. MATRIX EQUIVALENCES TO THE EXTENSION PROPERTY

THEOREM 2.1. The following are equivalent:
1) N = B(H) (open guestion)

a=0

ac1

4) oifx) = 0 for all x e B(H)

5) uNI:x} +0as N -+ = forall x € B(H)

6) g <1 for some N,

PROOF. 1)<=>2) was proved by J. Anderson in [2, Theorem 3.6 and Corollary
3.7]. Also 2)<=4)<>35) and 2)=>3=>6) are cbvious. Hence it suffices to show 8)=>2).
For each x with || x|| =1, E(x)=0, we have o g{xH u%;fx}': “124 where the first inequality
holds by applying G.H{ -) to each of the N mmpressmm of x appearing in the computation

of ay(x). Therefore, @ s < uﬂ Iterating we obtain o s u; But a< o for each i. Hence
a=10.

FINITE MATRIX EQUIVALENT

Let 9., be the projection onto span<e, >] =3 and ecenonically imbed E{qu}l into
B(H). Then every m xm matrix is identified naturally with an element of B(H). Define
By = sup {u-lex] | Ix]| =1, E(x) = 0, x is a finite matrix}.

We shall prove that By = oy and hence N = B(H) if ond only if By <1 for some
positive integer N. This reduces the paving problem to a problem of finite matrices.

LEMMA 2.2. -::H{x} = ;up uH{quqm}, for every x € B{H) and every positive inte-
ger N. -
PROOF. Without loss of generality we may assume E(x) = 0. Given x £ B{H) and
&
NeZ it is clear that ﬂﬂiquqm]l is increasing in m and bounded above by a(x). Set
=npaH{quqml. Then &< &N{x‘.l and in order to prove the equality it suffices to
m
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construet an N-partition of I, <pk}iq such that

I 1fll:akvcizvkll <a+e.

Let ﬁm denote the set of ordered N-partitions <p~k>-:I of 9y such that

” fpkxpk” <a+E, At least one such partition exists by the definition of a, =0 Em is
1 =

not empty. Obviously P_ is finite. Set ﬁ:u'ﬁ-m. so P is infinite. Partial order P by
1

N € <p)>Y whenever p, <p} for each 1<k<N. By using a pidgeon-hole

setting Py
argument common in combinatories, we shall construet an infinite increasing chain in P.

Notiee first that if <pk}¥stjm and if i<m then <qui}?5ﬁi and henece

<pkqi>iq < <pk>f. In particular <pkql>r'5 ‘151 for ell <pk>llqE¥'. Since P is infinite but
there are only a finite number of possible N-partitions of 9 (at most N), for one of

these, say <y >} € B, , the set &, ={<p o1 € B | <«t{Y « <p 51} is infinite, Since

N = N of LN 35
<p,9y>, € P, for each <p >, € R, \ P,, we can again find a partition <r, ">, €F, such

- N_=a (2. N : S (1) N (2l N
that R, = {(pk>1 R, | <, ]>1 « <pk>f} is infinite. Of course then <r, ">, € <r, "> "

Proceeding inductively, we find an increasing chaein of N-pertitions <rEcm}>N

1
N . 2
Py = mper}. Then -(pk}l is an N-partition of I. Moreover for 1<{k<N, H kapkﬁ £

€ Pm. Set

£ lim inf |I er}xTLm}" by the lower semicontinuity of " " in the strong operator

N
topology. Henee || { pkxpkll <@+eE. Q.E.D.
1

THEOREM 2.3. BN =y for every N.

PROOF. Clearly By <ay. On the other hand, if [[x|| <1, E(x)=0 then
9,9, € Blg_H)< B(H), Il 9% Il <1, E(g, xq_)=0 and so &.(g_xq_)<B.. But by
Lemma 2.2, uﬂfx]' = m{ﬂﬂiquqm}}. Henee I:IN{x]S By for emch x|l =1, Ex =0, so
@y <By- n Q.E.D.

§3. SOME RESULTS ON THE COMPUTATION OF oy

NOTE.If T = I{tij} and p is a diagonal projection which we view as a subset of - 4
then {pr}ij = tH if i, j& p and 0 otherwise.
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THE COMPUTATION OF o

2
(1] L] 1
PROPOSITION 3.1.If T= |1 0 0| , or more generally {f T is any per-
0 1 0

mutation matrix with odd dimension, then uziT}l =1, and 50 @, = 1.

PROOF. If T is an nxn permutation matrix, then regarding it as a 1 - 1 map of
{1, ~s ,n} onto itself, we can express it as a disjoint product of cyeles. This yields T as a
direet sum of "eyeles", each of whieh is unitarily equivalent to

o 0 T |
1 0 sae 0
U= |0 1 see =
] . w1 0

via a permutation matrix which leaves the elass of diagonals invariant. Sinee n is odd,
at least one cyecle has odd dimension (i.e. size) and without loss of generality assume it
is U. Now if p, *+p, =1, p;, p, diagonal orthogonal projections, then either Il p;Up; Il =
=1lor0.If piUpl =0,i=1, 2, then no consecutive j, j+1 e o for 1{j<dimU. Without
loss of penerality Py = {1, 3, 5; ...,n} and By ={2. 4,8,...,n-1}. But then 1,ne Py
hence {plﬂpl}m = 1, a contradietion. Q.E.D.

PROPOSITION 3.2. Let F denote the nxn matrix with entries all 1, so (1/n)F is
a rank one projection. Then for n > 3, uz{flfn]F} =% -1/nor % - 1/2n depending respect-
ively on whether or not n is ever. More generally, forn>N,n=pN+r, p20, 0<r<N,
we have uHIIIIJIHIIF] =1/N-1/nor(N+ r.-"::|]"1 depending respectively on whether or not
N divides n.

N
PROOF. If IF‘k=I then for the projection P =P, with largest dimension,
1

dim P > [n/N] = p or [n/N1+ 1 = p + 1 depending respectively on whether or not N divides
n. Therefore || P((1/n)FIP|| >p/n=1/N or (p+ 1)/n if N|n or N'}n, respectively. Since
P{{1/n)F)P is a rank one positive operator of norm not less than 1/N, then we remove
the diagonel (1/nl and we get a ((1/N)F)> 1/N - 1/nor p/n= (N + t/p)  if N |n or N'n,
respectively. To obtain the equality simply choose all FkTs of the same dimension if
N|n, otherwise choose r projections of dimension p+1 and N -r projections of
dimension p. Such & decomposition of I yields the equality. Q.E.D.
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THE COMPUTATION OF o,
COROLLARY 3.3. Uy 2 1/3.

PROOCF. This follows directly from Proposition 3.2, noting also that [|(1/n)F -
- E((1/n)F}]| =1 - L/n.

PROPOSITION 3.4. If T is @ matrix (finite or infinite) with entries 0, 1 only and
each row and column contains at most one 1, then EISIIT} =0,

PROOF. Without loss of generality, assume E(T) = 0. Since for each n, Te =e_
for some m, or Ten-— 0, we may regard T as & map of z* into f. Define Pys Pgs Py
according to the following procedure. Put e, € p, and assume €ys.++,€ _, has been
placed inside Py» Py OF Pg. If ej = Ten with j<n and/or if o . Te, with k<n, place e in
ap; which does not eontain either j or k. Otherwise, place n arbitrarily. Then it is easy
to verify that PiTpi =0fori=1, 2,3 Q.E.D.

THEOREM 3.5. (Blending 3.1 & 3.2). Let T denote the unitary (2n + 2)x(2n + 2)
matrix (1/(n+ 1))F = U with all entries 1/(n + 1) except the lower diagonal and the upper
right-hand corner where those entries are all -n/(n+ 1). For 3<{N<2n+ 2 = pN + r with
P21, 04r<N we have for n>2 that o (T)=2/N-1/(n+1) or 2/N -r/Nin+1) if
N|2n+ 20r N}2n + 2, respectively. Hence @) > 2/N and in particular &, > 2/3.

N
PROOF. If E Py =1, then for the projection of largest dimension P = Pk“ dim P >
1

>[(2n+2)/N]=por dimP>p+1 if N|2n+ 2 or N}2n + 2, respectively. Either all the
non-zero entries of PTP are 1/(n + 1) or at least one entry is -n/(n + 1). In the latter
case, ||PTP|| > n/(n+1). In the first case PTP is a rank one positive operator with
[|PTP|| >(2n + 2)/N(n+ 1) =2/N or ||PTP|| >(p+ 1)/(n + 1) depending respectively on
whether or not N I 2n + 2. Since PTP is a rank one positive operator of norm larger than
2/N, then removing the diagonal (1/(n+ 1), we get au(T)>2/N - 1/(n+ 1) or uNETlg
>+ D/n+1)-1/n+1)=(2n+2-r)/Nin+1)=2/N-r/Hln+1) if N|[2n+2 or
N}2n + 2, respectively.

To obtain equality one needs to divide [1, 2n+ 2]1n X into N disjoint subsets
Pl, e sPy of size (2n+ 2)/N or [(2n + 2)/N] + 1 so that no subset contains consecutive
pairs of integers nor the pair fl, 2n+ 2}. Indeed, if r > 1, set I-'l = qu fqujp}, set F'.1 =
={aN+j-1]0<qgp} for 1<j-1<r e 2¢j<r+1, andset Py={gN + - 1]0<q<p -1}
for r<j-1<N, le. r+2<j<N. If r=1, set P, ={gN|1<q<p}u{2n+2}, set P, =
={av+1]0<a<p- 1} Py={aN+j-1]0<q<p} for 3<j<r+ 1, and set Pj={qﬂ+j-1!
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lo<q<p- 1} for r + 2 < j< N. This is the required type of decomposition, and so quT] =
=2/N-1/(n+ 1) or 2/N - r/N(n + 1) if N|2n + 2 or not, respectively.

Since 1-1/(n+ 1)< || T-E(M|[ <1+ 1/(n + 1) we have ay > 2/N. In particular,
if 3|2n+ 2 then ag(T) = 2/3 - 1/(n + 1) and so a, > 2/3. Q.E.D.

PROBLEM 3.6. Isi:t3 <loras =17 Atleastisa,>2/3?

REMAREK. If oy <1, this would be & remarkable result and would immediately
yield N = B(H).

If a, = 1 we hope, indeed expect the proof to generalize to “N =1 for all N,
hence N # B(H), that is D < B(H) would not have the extension property for pure states.
To obtain @y =1 one must either produce a matrix T, [[T|| =1, E(T) =0 sueh that
usf‘l‘} =1 or, probably more realistically, an asymptotic example <T > with Il Tn|| =T
|| E(T )|| =+ 0, and ag(T )—+ 1.

Computing a,(T) has not been easy. Hence we asked a more modest guestion: is
Uy > 2/3, that is, is there a matrix T with || T|| = 1, E(T) = 0 such that -:tsf‘l‘}} 2187

§4. LAURENT OPERATORS

In [1] Anderson elso asked whether or not all Toeplitz operators T¢ with symbol
4 e L7(0, 21) were pavesble.

In [5], [6] we study Laurent operators. A few of the results are mentioned in the
introduction to this article. For example all Laurent operators ere paveable if and only
if LXO is paveable for every open set Oc (0, 27). This was obtained from the "squeeze

prineiple” and the result that N is a uniformly closed subspace of B(H). Also from the
squeeze principle we obtain nﬂ.x )£ (1/27)max (m(E\ E), m(E\ E")), & link between
E

paveability, the a-measure, measure theory and the topological structure of E.

Our study of Laurent operators (equivalently, of their Toeplitz eompressions)
can be motivated by considering the Hilbert matrix H = (1/(i - j}]#j (0 elong the
diagonal, so E(H) = 0), and asking about uE{H}I.

PROPOSITION 4.1. 2,(H) < || H|| and hence a(H) = 0.

PROOF. Choose Pl ={1, 3 5, ?....,} and PEZ{Z, 4, E,---:}l B0 Pll.l PE =x+|
Then {Plﬂpl}'!j = 1/(i - j) if i # j are both odd and 0 otherwise, and I‘PEHPZ}IH =1/Mi-Pif
i # j are both even and 0 otherwise. Hence
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1/6

Hence o (HI<#||H|| and thus by iterating, uﬂg{H}j iuﬂk_liH}E. il (1/2%) NH] -
Hence g(H) < lima_(H) = 0.
e

Another proof that o(H) = 0 ean be given using the machinery developed in [5]
where it is proved that all L, with piecewise continuous ¢ are paveable, and noting the

well-known fact that H = L¢ where $(x) = ilx - 7) e L7(0,27). Q.E.D.

NOTE. This does not compute u.EI{H} precisely and we in fact do not know if
equality holds. Nevertheless the key motivating property for us here is that both
PiHPi = $H@0. The uniformity of Pl* P2 suggests defining @, N as we did in the intro-
duction. This together with the above construction yields a(H) = 0. Here we present our
central example of an open set 0 c (0, 2¢) for which gL, })> 0 (so L. is not uniformly

paveable) and which has some bearing on g and general paveability of LXD.

&= n-1
THEOREM 4.2. Let 0= u u ({0, 211:"1!13]'1- 2nk/n) (so mlO)<2n) If p is any
n=2 k=2

infinite arithmetic progression (i.e. Range p = span <ea+jd>;:—m )y then
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"p{on - m(o)2np]| >1 - mO)2w.

n-1
PROOF. Set 0_= u_((0, 21/n%) + 2wk/n) 50 O = U0, Hence xg <Xo, which

k=0
implies L, <L .Therefore pL, p<pL, p.From thisit fcllows that
Xo *o
d d
pll. - mip)/2n)p2>pL, p- m)/2r>pL, p-mON2r.

%o o Yo,

From the Note after Proposition 4.1 and the faet that ¢ e L”™(0, zn) is 2n/d

-] == 7
periodic if and only if the Fourier series } #(Me?™t= T $ape®™ ¥ (e, 00 =0

for d}k) we have that pL_ D is unitarily equivalent to LIO (t/ d}@D and hence is a

d
projection g. Therefore p{LXO - mip)/2n)p> {1 - mio)/2r)g - (m{D.‘J.-"E-"rF:Iq:l+ and hence

I p{on - mio)2nip|| >1 - mo)/2n . Q.E.D.

COROLLARY 4.3. (L. )>1-mo)/2n >0, hence L, &N .
o = o
THEOREM 4.4. Let O be the open set in Theorem 4.2.If p is any diagonal
projection whose range contains an infinite arithmetic progression, or more generally, if
there exists a positive integer D for which Range pcontains arbitrarily long finite
arithmetic progressions with d< D (d denotes the difference of the erithmetic progres-
sion <a * jd}j“;k ), then

Il p{LxO - mo)znlpl] >1 - mo)er .

PROOF. Suppose first p>q p, qe D where Range q = span <ea + d:‘:v Then by
Theorem 4.2,

piL. - mip)2np|| 2 || of - mio)/2n)g|| >1 - mio)/2n .
ety > Natty I

Now only assume that for some D, p contains arbitrarily long finite arithmetie
progressions with d < D. By a pigeon hole argument there is one fixed d so that for every
length L one prescribes, there exists aeZ sueh that <€g4 d>?zlc"Rmp. Let g,
dencte the diagonal projection with range w<£a+jd>j=1 , 8ssume without loss of
generality that L =2k + 1 and define T to be the diagonal projection with range
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spnn<el d>:‘|t=-k‘ Then sinece qELqu,‘ = rkaDrk, because Laurent operators commute
with the bilateral shift, we have
I D{an - m(O)znlp|| > || qi.{on - mfﬂlmqull = || rkl[LxG - m(ﬂ]ﬁw}rk][ :

But r tr (SOT) where w(ejd>;_m=wh hence as is well-known
lm ||e L, £ ]| = ||fL, r|| . Therefore
ke KXo K Xo

I Ly - m(@)/2m)p|| >1im || "Ly m(@)/2mr, || =
=liele - m(O)/2m)r|| >1 - m(O)2w . Q.E.D.
0
PROBLEM 4.5. IsaflL_ }=07
Xo
Ifu{Lx -‘Jl # 0 we would have a counterexample to N = B{H),

REMARK. Theorem 4.4 can be strengthened. There exists a funetion D(L) + =
such that the conelusion of Theorem 4.4 essentislly holds under the milder condition
d<D(L). This funetion and its relation to the van der Waerden theorem are discussed in
[6].

§5. RELATED TECHNIQUES FROM COMPACT DERIVATIONS

One ean obtain some information on general compressions PTP (and pevings)
using technigues related to the well-known work of Johnson and Parrott on compeet
derivations [B]l. We believe this information is well-known to some specialists in the
area of compact derivations but may be useful to those interested in matrix pavings, so
we present it here.

NOTATIONS. For each N |n, let P(N, n) denote the collection of all N-orthogo-
nal diagonal rank n/N projection deeompesitions of I (the nxn identity matrix), that is,
the set of all N-segquences cPk}iq of nxn orthogonal disgonal projections where each
rank P, = n/N and I = E‘Pk. Let Fn denote the set of all n*n diagonsal projections and

1

when N| n, let ﬁf denote all nxn diagonal projections of renk n/N. Let eard- denote
eardinality.
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PROPOSITION 5.1. If an nxn matrix T has diagonal 0 (i.e. E(T) = 0) then

5 J pre=§_ TP = H(eard BT,
PePn B

In addition, if N|n then

N
o. T I P TP, = (N/n)eard P(N,n)T ,
@ N epmy,m K
and
. 7 PpTP= {H;n}ziwdﬁg}‘l‘.
Psf':':

PROOF OF I. We give two proofs of I. The first depends on the conditional
expectation formula known by some specialists:

B(T) = (1/eara® ) [_ (- PHIT(P - P).
PeP
n
The other proceeds from scrateh. "
By expanding this identity we get E(T) = (2/eard ?n}fi PTF - ] PTP”) hence
P
n n

L. Now summing over Fn, the identity T = (P + PHIT(R +

E(T)= 0 iff ] PTP = | PTP
B B

n n
+ Pty = pTp + prrp! + pTP! + PHTP yields equations T immediately.

The proof from serateh is the following.

Note that the (i, jlentry of PTP]' is zero except when g eRanFP and
&€ Ran F*l in whieh case it is the same as the (i, jl-entey of T itself, and PTP(i, j) =
= T{i, j) when € ej€ RanF, and 0 otherwise. For each (i, j} set

1 = L
D, ={PeB :e ¢ RanP, ;¢ RanP LiDg={PeP :e éRanP, e cRanP L

1 1
D3={P3Pn=eiERMP,ej¢RanP }!mdD4={P5Fn: eisBmPandethmP L

4
Then <D >4_ are pairwise disjoint and P_= U D_. It is straightforward to verify that
k k=1 n o= k
the cardinalities of all the D, 's are the same, and so eard D, = icard P . Hence for

each (i, j),



212 Halpern, Kaftal and Weiss

(1 eteYyi,p= ] (®TPY)i, = (card DTG, §) = Heard® yTG, ).
PeP PeD 4
n
The other equality follows similary by

1 (PTP)i, j) = (eard D,)T(i, j) = d(eard P )T(i, j).
FEDE

INDICATIONSE OF PROOFS FOR I, I. The precise proofs of I and I are
rather involved so we simply present a heuristic simplification. Each B TP  has "non-

-zero size” (n/N)x(n/N) so the probebility that P TP (i, j) = Tii,j) and not 0 is {N;’n}z if

N
i#j and the probability that | PkTPk{iTj]'= T(i, i) rather than 0 is (/) - (n/N) =
k=1

= (N/n) if i#j, which suggests IL Also for each PPN

(n/N)={n/N) so the probability that PTP(i,j) = T{i, ), not 0, is {M,I'n:I2 if i#j whieh
suggests IMI. To make these precise one must show that "probebility” here is truly the

, PTP has "non-zero size"

exact degree of oecurrenee of T(i, j).

PROPOSITION 5.2. Let T be any nx n matrix. Then

(1 L PTP = (card P )T + E(T))

PeP

n
and
(2) I Tt = d(eard® T - E(T).
PeP
n
Furthermore if N|n then
(3) [ PTP = (eard B N)(N/n)?T + (N/n)1 - N/mE(T)).
PeE

PROOF. (1) and (2) fellow easily from Propesition 5.1. Indeed for any diagonal
operator, and in particular E(T), we have PE(T)P' = 0 for every diagonal projection.
Applying Proposition 5.1-1 to T - E(T) yields (2). To obtain (1) note that E(T) = (P + Fi]l =
= B(T)(P + P1) = PE(T)P + PLE(T)PL. By Proposition 5.1-1,

Heard® )T - E(T)) = I MT-EMP= ] PTP- ] PE(TP=
PePy, PeP PeP_

= [_PTP - #eard P JE(T),
Peb_
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and adding we obtain
© ] PTP = }(card ﬁn}(-r + E(T)).
Pp
To prove (3) use Proposition 5.1-10 to obtain

I
=N

PeP
n

P(T - E(T)P = (N/n)(card B (T - E(T).

But | PE(T)P = (N/n){card ﬁ:‘}E{TL To see this requires an involved argument as
PEFE
before, so as before, we appesl to the heuristie simplification deseribed at the end of

the proof for Proposition 5.1. Hence

) e ((8/m) (0 - E(T) + (N/n)E(TYeard BN = ((N/n)>T + (¥/nM1 - N/n)E(T))eara ﬁﬁ.
ngn Q.E.D.

LEMMA 5.3. If Thas a zero diagonal then there exists a diagonal projection
P eP_suchthat | PRt || > 2|7l

PROOF. By Proposition 5.1

teardB )| T = || I PTP! | < Hcara B ymax ||pTEt + PlrR]| =
PEP PP
n n
= Heard P ) max (|| pTP" || , |[PtTR|)).
pep

n

Therefore 4 || T || < max || PTP" |
Psﬁn

*

REMARK. The same identity yields many ﬂPTPJ' Il 3£!|T|| for € small. A

similar identity together with similar lower bound estimates also holds for 3 _FTP.
PeP
n

THEOREM 5.4. (Johnson and Parrott, the atomic case [8]). If T commutes with
the diagonals D modulo the compacts K(H), then T - E(T) e K(H).

PROOF. Since E(T)eD, T - E{T) commutes with D module K(H), so0 we may
asume without loss of generality that T has a 0 disgonal.

Assume T ¢ K(H). Then ||m(T)|| = @>0 where 7 is the projection of B(H) onto
the Calkin algebra B(H)/K(H). It is easy to construet an infinite sequence of orthogonal
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diagonal finite projections <Fk>? such that || F, TF, || >a/2. By Lemma 5.3 there exists
& diagonal projection P <F,  with

llp, (B, - PI| = || B (R TE P, || > 4 [|F,TF, || > /4.

Set P = EPk e D. We claim that this implies that TP - PT ¢ K(H), which contradicts the
hypothesis. To see this, since ~CF,M);nl are orthogonal projections, it suffices to show that

|| F (TP - PT)F, I <+ 0. Indeed

| e, (Te - PTIE, || = [|F, (B TP - PTPLE, || =

1 1 lo o=
max(||E P-TPF ||, ||E PTP F, |)> ||F PTPF || = ||B,T(F - P)|| >o/4.

Q.E.D.

K|

REMAREK. To achieve the full Johnson and Parrott theorem for the atomic case:
that every compact derivation on D is inner and can be implemented by a compact, in
view of Theorem 5.4 it suffices to merely prove that each derivation from D into B(H)
is inner. But T £ B(H), E(T) = 0 can be produced which implements the derivation & by
first restricting & to the finite case (acting on an}. using 5.1-1 replacing P']"PI' by &(E)
to produce Tn =8 |an, then using the weak compactness of B(H), and the well-known
weak continuity of derivations to obtain T.
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