MATRIX PAVINGS IN B(H)

H. Halpern, V. Kaftal, and G. Weiss

§1. INTRODUCTION

Let $A \subseteq B$ be two C^* -algebras in B(H). The operator $x \in B$ is said to have the relative Dixmier property (RDP) if $\overline{\operatorname{co}} \{ uxu^* \mid u \in U(A) \} \cap A' \neq \emptyset$, where U(A) denotes the unitary group of A and $\overline{\operatorname{co}}$ denotes the uniformly closed convex hull [5,7]. Then $N = \{x \in B \mid x \text{ has the RDP} \}$ is uniformly closed, and is a subspace of B provided A is abelian (see [5]).

Dixmier proved that if A=B is a von Neumann algebra then N=B[4]. Determining N is of interest and generally difficult, particularly in the case of the diagonal algebra $D \subseteq B(H)$. J. Anderson [1, 2] proved that N=B(H) if and only if the extension property for pure states holds, that is every complex homomorphism on D extends uniquely to B(H). Define $\alpha_N(x) = \inf \{|| \sum_{i=1}^N p_k(x-E(x))p_k|| | < p_k >_1^N \text{ is an orthogonal N-sequence of diagonal projections with } \sum_{i=1}^N p_k = I \}$, where E(x) denotes the diagonal of x. Define $\alpha(x) = \lim_{N \to \infty} \alpha_N(x)$, $\alpha_N = \sup \{\alpha_N(x) \mid ||x|| = 1$, $E(x) = 0 \}$, $\alpha = \sup \{\alpha(x) \mid ||x|| = 1$, $E(x) = 0 \}$. Clearly $\alpha_N + \alpha$. We say x is paveable if $\alpha(x) = 0$. Then the following are equivalent: N = B(H) (open question), $\alpha = 0$, $\alpha < 1$, $\alpha(x) = 0$ for all $x \in B(H)$, $\alpha_N(x) \neq 0$ as $N \to \infty$ for all $x \in B(H)$, $\alpha_N(x) \neq 0$ as important. Setting

$$U = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$$

we get $\alpha_2(U) = 1$ hence $\alpha_2 = 1$. Let V denote the $(2n+2) \times (2n+2)$ matrix with entries all 1 except on the lower diagonal and upper right-hand corner where the entries are all -n, then x = (1/(n+1))V is unitary, and $\alpha_3(x) \ge (2/3) - 1/(n+1)$ for $n \ge 2$, hence $\alpha_3 \ge 2/3$.

OPEN PROBLEM. Is $\alpha_3 = 2/3$ or is there a finite matrix x with ||x|| = 1 and

E(x) = 0 for which $\alpha_3(x) > 2/3$?

If α_3 = 2/3 then the extension property would hold. If on the other hand we could find a finite matrix x with E(x) = 0, ||x|| = 1 for which $\alpha_3(x) > 2/3$, we believe one could extract the properties of x to construct y's for which $\alpha_N(y)$ is arbitrarily close to 1, which would settle the problem in the negative.

Determining which Laurent operators L_{φ} (with symbol $\varphi \in L^{\infty}(0,2\pi)$) are paveable is an open question in its own right. We know that the class of Laurent operators L is contained in N if and only if $L_{\chi_{\overline{L}}} \in N$ for every measurable $E \subset (0,2\pi)$ if and only if $L_{\chi_{\overline{O}}} \in N$ for every open set $O \subset (0,2\pi)$. The latter condition follows from the Squeeze Principle: $x \in N$ if for every $\varepsilon > 0$ there exists a, b εN with a $\leq x \leq b$ and $||E(b) - E(a)|| < \varepsilon$. Another consequence of the squeeze principle is that $\alpha(L_{\chi_{\overline{D}}}) \leq (1/2\pi) - \max(m(\overline{E} \setminus E), m(\overline{E} \setminus E^{\circ}))$. Hence a necessary condition that $L_{\chi_{\overline{O}}} \notin N$ is that $m(\overline{O} \setminus O) > 0$.

We know that if φ is a step function then $L_{\varphi} \in N.$ Hence the C^* -algebra \widetilde{L} generated by these L_{φ} , namely the L_{φ} where φ is partially continuous, are all paveable. However more is true. We call a diagonal projection a "uniform projection" if its 1's along the diagonal are equally spaced. Define $\widetilde{N},\ \widetilde{\alpha}_N(x),\ \widetilde{\alpha}(x),\ \widetilde{\alpha}_N,\ \widetilde{\alpha}$ as before but using only uniform projections, so \widetilde{N} denotes the "uniformly paveable" operators and is a uniformly closed subspace of N. Then the squeeze principle and what follows it in the preceding paragraph hold true replacing N by \widetilde{N} and α by $\widetilde{\alpha}$, and in additon $\widetilde{L} \subseteq \widetilde{N}$.

Our study of Laurent operators and these aforementioned results will be presented in [5] and [6]. Here we shall prove the following results for the diagonal basis e_{n} .

THEOREM 4.2. For O =
$$\bigcup_{n=2}^{\infty} \bigcup_{k=0}^{n-1} ((0,2\pi/n^3) + 2\pi k/n), L_{\chi_{\widehat{O}}} \notin \widetilde{N}$$
. Indeed if p is the

projection onto span
$$_{j=-\infty}^{\infty}$$
, then $||p(L_{\chi_{\bigodot{O}}} - E(L_{\chi_{\bigodot{O}}}))p|| \geq 1 - m(O)/2\pi$.

QUESTION. Is
$$L_{\chi_{O}}$$
 paveable?

If we associate p with its range basis and so with the canonical subset of \mathbf{Z} , then an orthogonal diagonal projection N-decomposition of I can be thought of as an N-partition of \mathbf{Z} , which leads us to the field of combinatorics. Van der Waerden proved that at least one subset of each such partition contains arbitrarily long arithmetic progressions.

THEOREM 4.3. If (1) p contains an infinite arithmetic progression or (2) for some D $\in \mathbf{Z}^+$, p contains arbitrarily long finite arithmetic progressions with difference d \leq D, then $||p(L_{\chi_{O}} - E(L_{\chi_{O}}))p|| \geq 1 - m(O)/2\pi$.

We wish to thank D. Larson for his information and encouragement in this subject.

§ 2. MATRIX EQUIVALENCES TO THE EXTENSION PROPERTY

THEOREM 2.1. The following are equivalent:

- 1) N = B(H) (open question)
- $2) \alpha = 0$
- 3) a < 1
- 4) $\alpha(x) = 0$ for all $x \in B(H)$
- 5) $\alpha_N(x) \neq 0$ as N $\rightarrow \infty$ for all $x \in B(H)$
- 6) a_N < 1 for some N.

PROOF. 1) \Leftrightarrow 2) was proved by J. Anderson in [2, Theorem 3.6 and Corollary 3.7]. Also 2) \Leftrightarrow 4) \Leftrightarrow 5) and 2) \Rightarrow 3) \Rightarrow 6) are obvious. Hence it suffices to show 6) \Rightarrow 2). For each x with ||x|| = 1, E(x) = 0, we have $\alpha_N^2(x) \le \alpha_N^2(x) \le \alpha_N^2$, where the first inequality holds by applying $\alpha_N^2(\cdot)$ to each of the N compressions of x appearing in the computation of $\alpha_N^2(x)$. Therefore, $\alpha_N^2 \le \alpha_N^2$. Iterating we obtain $\alpha_N^2 \le \alpha_N^2$. But $\alpha \le \alpha_1^2$ for each i. Hence $\alpha = 0$.

FINITE MATRIX EQUIVALENT

Let q_m be the projection onto $\operatorname{span} < e_j >_{j=1}^m$ and canonically imbed $B(q_m H)$ into B(H). Then every $m \times m$ matrix is identified naturally with an element of B(H). Define $\beta_N = \sup \left\{ \alpha_N(x) \mid ||x|| = 1, E(x) = 0, x \text{ is a finite matrix} \right\}$.

We shall prove that β_N = α_N and hence N = B(H) if ond only if β_N < 1 for some positive integer N. This reduces the paving problem to a problem of finite matrices.

LEMMA 2.2. $\alpha_N(x) = \sup_m \alpha_N(q_m x q_m)$, for every $x \in B(H)$ and every positive integer N.

PROOF. Without loss of generality we may assume E(x) = 0. Given x ϵ B(H) and N ϵ \mathbf{Z}^+ it is clear that $\alpha_N(q_m x q_m)$ is increasing in m and bounded above by $\alpha_N(x)$. Set a = $\sup_m \alpha_N(q_m x q_m)$. Then a $\leq \alpha_N(x)$ and in order to prove the equality it suffices to

construct an N-partition of I, $\left\langle \mathbf{p}_{k}\right\rangle _{1}^{N}$ such that

$$\left\|\sum_{k=0}^{N} p_{k} x p_{k}\right\| < \alpha + \varepsilon$$
.

Let \hat{P}_m denote the set of ordered N-partitions $\langle p_k \rangle_1^N$ of q_m such that $\|\sum_1^N p_k x p_k\| < a + \varepsilon$. At least one such partition exists by the definition of a, so \hat{P}_m is not empty. Obviously \hat{P}_m is finite. Set $\hat{P} = \bigcup_1^\infty \hat{P}_m$, so \hat{P}_m is infinite. Partial order \hat{P} by setting $\langle p_k \rangle_1^N \ll \langle p_k' \rangle_1^N$ whenever $p_k \leq p_k'$ for each $1 \leq k \leq N$. By using a pidgeon-hole argument common in combinatorics, we shall construct an infinite increasing chain in \hat{P} .

Notice first that if $\langle p_k \rangle_1^N \in \hat{P}_m$ and if $i \leq m$ then $\langle p_k q_i \rangle_1^N \in \hat{P}_i$ and hence $\langle p_k q_i \rangle_1^N \ll \langle p_k \rangle_1^N$. In particular $\langle p_k q_i \rangle_1^N \in \hat{P}_1$ for all $\langle p_k \rangle_1^N \in \hat{P}$. Since \hat{P} is infinite but there are only a finite number of possible N-partitions of q_1 (at most N), for one of these, say $\langle r_k^{(1)} \rangle_1^N \in \hat{P}_1$, the set $\hat{R}_1 = \{\langle p_k \rangle_1^N \in \hat{P} \mid \langle r_k^{(1)} \rangle_1^N \ll \langle p_k \rangle_1^N \}$ is infinite. Since $\langle p_k q_2 \rangle_1^N \in \hat{P}_2$ for each $\langle p_k \rangle_1^N \in \hat{R}_1 \setminus \hat{P}_1$, we can again find a partition $\langle r_k^{(2)} \rangle_1^N \in \hat{P}_2$ such that $\hat{R}_2 = \{\langle p_k \rangle_1^N \in \hat{R}_1 \mid \langle r_k^{(2)} \rangle_1^N \ll \langle p_k \rangle_1^N \}$ is infinite. Of course then $\langle r_k^{(1)} \rangle_1^N \ll \langle r_k^{(2)} \rangle_1^N$. Proceeding inductively, we find an increasing chain of N-partitions $\langle r_k^{(m)} \rangle_1^N \in \hat{P}_m$. Set $p_k = \sup_{m} r_k^{(m)}$. Then $\langle p_k \rangle_1^N$ is an N-partition of I. Moreover for $1 \leq k \leq N$, $\|p_k x p_k\| \leq k$ in $k \in N$ in the strong operator topology. Hence $k \in N$ is the lower semicontinuity of $k \in N$ in the strong operator topology. Hence $k \in N$ is an increasing chain of N-partition of $k \in N$.

THEOREM 2.3. $\beta_N = \alpha_N$ for every N.

PROOF. Clearly $\beta_N \leq \alpha_N$. On the other hand, if $||x|| \leq 1$, E(x) = 0 then $q_m x q_m \in B(q_m H) \subset B(H)$, $||q_m x q_m|| \leq 1$, $E(q_m x q_m) = 0$ and so $\alpha_N (q_m x q_m) \leq \beta_N$. But by Lemma 2.2, $\alpha_N (x) = \sup_{m} \{\alpha_N (q_m x q_m)\}$. Hence $\alpha_N (x) \leq \beta_N$ for each ||x|| = 1, E(x) = 0, so $\alpha_N \leq \beta_N$.

§ 3. Some results on the computation of $\boldsymbol{\alpha}_N$

NOTE. If $T = (t_{ij})$ and p is a diagonal projection which we view as a subset of \mathbf{Z}^+ , then $(pTp)_{ij} = t_{ij}$ if i, $j \in p$ and 0 otherwise.

THE COMPUTATION OF α_2

PROPOSITION 3.1. If
$$T = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 , or more generally if T is any per-

mutation matrix with odd dimension, then $\alpha_2(T) = 1$, and so $\alpha_2 = 1$.

PROOF. If T is an $n \times n$ permutation matrix, then regarding it as a 1-1 map of $\{1, \ldots, n\}$ onto itself, we can express it as a disjoint product of cycles. This yields T as a direct sum of "cycles", each of which is unitarily equivalent to

$$U = \begin{bmatrix} 0 & 0 & \dots & 1 \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \dots & 1 & 0 \end{bmatrix}$$

via a permutation matrix which leaves the class of diagonals invariant. Since n is odd, at least one cycle has odd dimension (i.e. size) and without loss of generality assume it is U. Now if $p_1 + p_2 = I$, p_1 , p_2 diagonal orthogonal projections, then either $||p_iUp_i|| = 1$ or 0. If $p_iUp_i = 0$, i = 1, 2, then no consecutive j, $j + 1 \in p_i$ for $1 \le j \le dim U$. Without loss of generality $p_1 = \{1, 3, 5, \ldots, n\}$ and $p_2 = \{2, 4, 6, \ldots, n-1\}$. But then 1, $n \in p_1$ hence $(p_1Up_1)_{1n} = 1$, a contradiction. Q.E.D.

PROPOSITION 3.2. Let F denote the n×n matrix with entries all 1, so (1/n)F is a rank one projection. Then for $n \ge 3$, $\alpha_2((1/n)F) = \frac{1}{2} - 1/n$ or $\frac{1}{2} - 1/2n$ depending respectively on whether or not n is even. More generally, for n > N, n = pN + r, $p \ge 0$, $0 \le r < N$, we have $\alpha_N((1/n)F) = 1/N - 1/n$ or $(N + r/p)^{-1}$ depending respectively on whether or not N divides n.

PROOF. If $\sum\limits_{1}^{N}P_{k}=I$ then for the projection $P=P_{k}$ with largest dimension, $\dim P \geq [n/N]=p$ or [n/N]+1=p+1 depending respectively on whether or not N divides n. Therefore $||P((1/n)F)P|| \geq p/n=1/N$ or (p+1)/n if $N\mid n$ or $N\nmid n$, respectively. Since P((1/n)F)P is a rank one positive operator of norm not less than 1/N, then we remove the diagonal (1/n)I and we get $\alpha_{N}((1/N)F) \geq 1/N - 1/n$ or $p/n=(N+r/p)^{-1}$ if $N\mid n$ or $N\nmid n$, respectively. To obtain the equality simply choose all P_{k} 's of the same dimension if $N\mid n$, otherwise choose r projections of dimension p+1 and N-r projections of dimension p. Such a decomposition of I yields the equality. Q.E.D.

THE COMPUTATION OF α_3

COROLLARY 3.3. $\alpha_3 \ge 1/3$.

PROOF. This follows directly from Proposition 3.2, noting also that ||(1/n)F - E((1/n)F)|| = 1 - 1/n.

PROPOSITION 3.4. If T is a matrix (finite or infinite) with entries 0, 1 only and each row and column contains at most one 1, then $\alpha_3(T) = 0$.

PROOF. Without loss of generality, assume E(T) = 0. Since for each n, $Te_n = e_m$ for some m, or $Te_n = 0$, we may regard T as a map of \mathbf{Z}^+ into \mathbf{Z}^+ . Define p_1 , p_2 , p_3 according to the following procedure. Put $e_1 \in p_1$ and assume e_1, \ldots, e_{n-1} has been placed inside p_1 , p_2 or p_3 . If $e_j = Te_n$ with j < n and/or if $e_n = Te_k$ with k < n, place e_n in a p_i which does not contain either j or k. Otherwise, place n arbitrarily. Then it is easy to verify that $p_i Tp_i = 0$ for i = 1, 2, 3.

THEOREM 3.5. (Blending 3.1 & 3.2). Let T denote the unitary $(2n+2)\times(2n+2)$ matrix (1/(n+1))F - U with all entries 1/(n+1) except the lower diagonal and the upper right-hand corner where those entries are all -n/(n+1). For $3 \le N < 2n+2 = pN+r$ with $p \ge 1$, $0 \le r < N$ we have for $n \ge 2$ that $\alpha_N(T) = 2/N - 1/(n+1)$ or 2/N - r/N(n+1) if $N \mid 2n+2$ or $N \mid 2n+2$, respectively. Hence $\alpha_N \ge 2/N$ and in particular $\alpha_3 \ge 2/3$.

PROOF. If $\sum\limits_{1}^{N}P_k$ = I, then for the projection of largest dimension $P=P_k$, dim $P\geq \sum [(2n+2)/N]=p$ or dim $P\geq p+1$ if $N\mid 2n+2$ or $N\nmid 2n+2$, respectively. Either all the non-zero entries of PTP are 1/(n+1) or at least one entry is -n/(n+1). In the latter case, $||PTP\mid| \geq n/(n+1)$. In the first case PTP is a rank one positive operator with $||PTP\mid| \geq (2n+2)/N(n+1)=2/N$ or $||PTP\mid| \geq (p+1)/(n+1)$ depending respectively on whether or not $N\mid 2n+2$. Since PTP is a rank one positive operator of norm larger than 2/N, then removing the diagonal (1/(n+1))I, we get $\alpha_N(T) \geq 2/N - 1/(n+1)$ or $\alpha_N(T) \geq (p+1)/(n+1) - 1/(n+1) = (2n+2-r)/N(n+1) = 2/N - r/N(n+1)$ if $N\mid 2n+2$ or $N\nmid 2n+2$, respectively.

To obtain equality one needs to divide $[1, 2n+2] \cap \mathbf{Z}$ into N disjoint subsets P_1, \ldots, P_N of size (2n+2)/N or [(2n+2)/N]+1 so that no subset contains consecutive pairs of integers nor the pair $\{1, 2n+2\}$. Indeed, if r>1, set $P_1=\{qN\mid 1\leq q\leq p\}$, set $P_j=\{qN+j-1\mid 0\leq q\leq p\}$ for $1\leq j-1\leq r$, i.e. $2\leq j\leq r+1$, and set $P_j=\{qN+j-1\mid 0\leq q\leq p-1\}$ for r< j-1< N, i.e. $r+2\leq j\leq N$. If r=1, set $P_1=\{qN\mid 1\leq q\leq p\}\cup\{2n+2\}$, set $P_2=\{qN+1\mid 0\leq q\leq p-1\}$, $P_j=\{qN+j-1\mid 0\leq q\leq p\}$ for $3\leq j\leq r+1$, and set $P_j=\{qN+j-1\mid 0\leq q\leq p-1\}$.

 $|0 \le q \le p-1$ for $r+2 \le j \le N$. This is the required type of decomposition, and so $\alpha_N(T) = 2/N - 1/(n+1)$ or 2/N - r/N(n+1) if $N \mid 2n+2$ or not, respectively.

Since 1 - 1/(n + 1) \leq || T - E(T) || \leq 1 + 1/(n + 1) we have $\alpha_N \geq$ 2/N. In particular, if 3 | 2n + 2 then α_3 (T) = 2/3 - 1/(n + 1) and so $\alpha_3 \geq$ 2/3. Q.E.D.

PROBLEM 3.6. Is $\alpha_3 < 1$ or $\alpha_3 = 1$? At least is $\alpha_3 > 2/3$?

REMARK. If $\alpha_3 < 1$, this would be a remarkable result and would immediately yield N = B(H).

If α_3 = 1 we hope, indeed expect the proof to generalize to α_N = 1 for all N, hence N \neq B(H), that is $D \subset$ B(H) would not have the extension property for pure states. To obtain α_3 = 1 one must either produce a matrix T, ||T|| = 1, E(T) = 0 such that α_3 (T) = 1 or, probably more realistically, an asymptotic example $\langle T_n \rangle$ with $||T_n|| \to 1$, $||E(T_n)|| \to 0$, and α_3 (T_n) $\to 1$.

Computing $\alpha_N(T)$ has not been easy. Hence we asked a more modest question: is $\alpha_3 > 2/3$, that is, is there a matrix T with ||T|| = 1, E(T) = 0 such that $\alpha_3(T) > 2/3$?

§ 4. LAURENT OPERATORS

In [1] Anderson also asked whether or not all Toeplitz operators T_φ with symbol $\varphi \in L^\infty(0\,,2\pi)$ were paveable.

In [5], [6] we study Laurent operators. A few of the results are mentioned in the introduction to this article. For example all Laurent operators are paveable if and only if $L_{\chi_{\stackrel{}{O}}}$ is paveable for every open set $O\subset (0\,,2\pi)$. This was obtained from the "squeeze principle" and the result that N is a uniformly closed subspace of B(H). Also from the squeeze principle we obtain $\alpha(L_{\chi_{\stackrel{}{E}}}) \le (1/2\pi) \max{(m(\stackrel{}{E} \setminus E),\ m(E \setminus E^{\circ}))}$, a link between paveability, the α -measure, measure theory and the topological structure of E.

Our study of Laurent operators (equivalently, of their Toeplitz compressions) can be motivated by considering the Hilbert matrix $H = (1/(i-j))_{i \neq j}$ (0 along the diagonal, so E(H) = 0), and asking about $\alpha_2(H)$.

PROPOSITION 4.1. $\alpha_2(H) \leq \frac{1}{2} ||H||$ and hence $\alpha(H) = 0$.

PROOF. Choose $P_1 = \{1, 3, 5, 7, \ldots,\}$ and $P_2 = \{2, 4, 6, \ldots,\}$, so $P_1 \cup P_2 = \mathbf{Z}^+$. Then $(P_1 H P_1)_{ij} = 1/(i-j)$ if $i \neq j$ are both odd and 0 otherwise, and $(P_2 H P_2)_{ij} = 1/(i-j)$ if $i \neq j$ are both even and 0 otherwise. Hence

Hence $\alpha_2(H) \leq \frac{1}{2} \mid\mid H \mid\mid$ and thus by iterating, $\alpha_2 k(H) \leq \frac{1}{2} \alpha_2 k - 1(H) \leq \ldots \leq (1/2^k) \mid\mid H \mid\mid$. Hence $\alpha(H) \leq \lim_{k \to \infty} \alpha_2 k(H) = 0$.

Another proof that $\alpha(H)=0$ can be given using the machinery developed in [5] where it is proved that all L_{φ} with piecewise continuous φ are paveable, and noting the well-known fact that $H=L_{\varphi}$ where $\varphi(x)=i(x-\pi)\,\varepsilon\,L^{\infty}(0,2\pi)$. Q.E.D.

NOTE. This does not compute $\alpha_2(H)$ precisely and we in fact do not know if equality holds. Nevertheless the key motivating property for us here is that both $P_iHP_i \simeq \frac{1}{2}H \oplus 0$. The uniformity of P_1 , P_2 suggests defining $\widetilde{\alpha}$, \widetilde{N} as we did in the introduction. This together with the above construction yields $\widetilde{\alpha}(H) = 0$. Here we present our central example of an open set $O \subset (0, 2\pi)$ for which $\widetilde{\alpha}(L) > 0$ (so L is not uniformly paveable) and which has some bearing on α and general paveability of L .

THEOREM 4.2. Let $O = \bigcup_{n=2}^{\infty} \bigcup_{k=2}^{n-1} ((0, 2\pi/n^3) + 2\pi k/n)$ (so $m(O) < 2\pi$). If p is any infinite arithmetic progression (i.e. Range p = span $< e_{a+id} >_{i=-\infty}^{\infty}$), then

$$\left| \left| \; p(L_{\chi_{\bigodot}} - \; m(O)/2\pi) p \; \right| \; \ge 1 \; - \; m(O)/2\pi \; .$$

PROOF. Set $O_n = \bigcup_{k=0}^{n-1} ((0, 2\pi/n^3) + 2\pi k/n)$ so $O = \bigcup_{k=0}^{\infty} n$. Hence $\chi_{O_d} \leq \chi_{O}$, which implies $L_{\chi_{O_d}} \leq L_{\chi_{O}}$. Therefore $pL_{\chi_{O_d}} p \leq pL_{\chi_{O}} p$. From this it follows that

$$p(L_{\mbox{χ}_{\mbox{O}}} - \mbox{$m(O)/2\pi$})p \geq pL_{\mbox{χ}_{\mbox{O}}} p - \mbox{$m(O)/2\pi$} \geq pL_{\mbox{χ}_{\mbox{O}}} p - \mbox{$m(O)/2\pi$} \cdot .$$

From the Note after Proposition 4.1 and the fact that $\phi \in L^\infty(0,\,2\pi)$ is $2\pi/d$ periodic if and only if the Fourier series $\sum\limits_{j=-\infty}^{\infty} \hat{\phi}(j) e^{2\pi \, ijt} = \sum\limits_{j=-\infty}^{\infty} \hat{\phi}(dj) e^{2\pi \, idjt} \; (i.e.,\,\hat{\phi}(k) = 0)$ for $d \mid k$ we have that pL p is unitarily equivalent to $L_{\chi_{O}(t/d)} \oplus 0 \; \text{and hence is a projection q. Therefore } p(L_{\chi_{O}} - m(O)/2\pi)p \geq (1-m(O)/2\pi)q - (m(O)/2\pi)q^{\frac{1}{2}}, \; \text{and hence}$

$$||\; p(L_{\chi_{O}} - m(O)/2\pi)p || \geq 1 - m(O)/2\pi \; . \label{eq:power_power}$$
 Q.E.D.

COROLLARY 4.3.
$$\tilde{\alpha}(L_{\chi_{\stackrel{.}{O}}}) \ge 1 - m(O)/2\pi > 0$$
, hence $L_{\chi_{\stackrel{.}{O}}} \notin \tilde{\mathbb{N}}$.

THEOREM 4.4. Let O be the open set in Theorem 4.2. If p is any diagonal projection whose range contains an infinite arithmetic progression, or more generally, if there exists a positive integer D for which Range p contains arbitrarily long finite arithmetic progressions with $d \le D$ (d denotes the difference of the arithmetic progression $(a + jd)_{i=k}^{m}$), then

$$\left| \left| \; p(L_{\chi_{\bigodot}} \; - \; m(O)/2\pi) p \; \right| \; \ge 1 \; - \; m(O)/2\pi \; . \label{eq:condition}$$

PROOF. Suppose first $p \ge q$ p, $q \in D$ where Range $q = span < e_{a+jd} >_{-\infty}^{\infty}$. Then by Theorem 4.2,

$$\big| \big| \; p(L_{\chi_{\bigodot}} \; - \; m(O)/2\pi) p \, \big| \big| \; \geq \, \big| \big| \; q(L_{\chi_{\bigodot}} \; - \; m(O)/2\pi) q \, \big| \big| \; \geq 1 \; - \; m(O)/2\pi \; .$$

Now only assume that for some D, p contains arbitrarily long finite arithmetic progressions with $d \leq D$. By a pigeon hole argument there is one fixed d so that for every length ℓ one prescribes, there exists a $\epsilon \, Z$ such that $\langle e_{a+jd} \rangle_{j=1}^{\ell} \subset Range \, p.$ Let q_{ℓ} denote the diagonal projection with range $span \langle e_{a+jd} \rangle_{j=1}^{\ell}$, assume without loss of generality that $\ell = 2k+1$ and define r_k to be the diagonal projection with range

 $\begin{aligned} & \text{span} < e_{jd} >_{j=-k}^k. & \text{Then since } q_{\ell} L_{\chi_O} q_{\ell} & \cong r_k L_{\chi_O} r_k, \text{ because Laurent operators commute} \\ & \text{with the bilateral shift, we have} \end{aligned}$

$$|| \; p(L_{\chi_{\bigodot}} - \; m(O)/2\pi) p \; || \; \geq \; || \; q_{\&}(L_{\chi_{\bigodot}} - \; m(O)/2\pi) q_{\&} \; || \; = \; || \; r_k(L_{\chi_{\bigodot}} - \; m(O)/2\pi) r_k || \; \; .$$

But $r_k + r$ (SOT) where $span < e_{jd} >_{j=-\infty}^{\infty} = Range r$, hence as is well-known $\lim_{k \to \infty} || r_k L_{X_O} r_k || = || r L_{X_O} r ||$. Therefore

$$\begin{split} || \, p(L_{\chi_{\mbox{O}}} - \, m(\mbox{O})/2\pi) p \, || \, &\geq \mbox{\lim} \, || \, r_{\mbox{k}}(L_{\chi_{\mbox{O}}} - \, m(\mbox{O})/2\pi) r_{\mbox{k}} \, || \, = \\ &= \, || \, r(L_{\chi_{\mbox{O}}} - \, m(\mbox{O})/2\pi) r \, || \, &\geq 1 - \, m(\mbox{O})/2\pi \; . \end{split} \qquad Q.E.D. \end{split}$$

PROBLEM 4.5. Is $\alpha(L_{\chi_O}) = 0$?

If $\alpha(L_{\chi_{O}}) \neq 0$ we would have a counterexample to N = B(H).

REMARK. Theorem 4.4 can be strengthened. There exists a function $D(2) \uparrow \infty$ such that the conclusion of Theorem 4.4 essentially holds under the milder condition $d \le D(2)$. This function and its relation to the van der Waerden theorem are discussed in [6].

§ 5. RELATED TECHNIQUES FROM COMPACT DERIVATIONS

One can obtain some information on general compressions PTP (and pavings) using techniques related to the well-known work of Johnson and Parrott on compact derivations [8]. We believe this information is well-known to some specialists in the area of compact derivations but may be useful to those interested in matrix pavings, so we present it here.

NOTATIONS. For each N | n, let P(N, n) denote the collection of all N-orthogonal diagonal rank n/N projection decompositions of I (the n×n identity matrix), that is, the set of all N-sequences $\langle P_k \rangle_1^N$ of n×n orthogonal diagonal projections where each rank $P_k = n/N$ and $I = \sum\limits_{1}^{N} P_k$. Let \widetilde{P}_n denote the set of all n×n diagonal projections and when N | n, let \widetilde{P}_n^N denote all n×n diagonal projections of rank n/N. Let card· denote cardinality.

PROPOSITION 5.1. If an $n \times n$ matrix T has diagonal 0 (i.e. E(T) = 0) then

I.
$$\sum_{P \in \widetilde{P}_n} PTP = \sum_{P \in \widetilde{P}_n} PTP^{\perp} = \frac{1}{4} (\operatorname{card} \widetilde{P}_n) T.$$

In addition, if N | n then

II.
$$\sum_{\substack{P_k > 1 \\ \text{and}}} \sum_{e \; P(N,n)} \sum_{k=1}^N P_k T P_k = (N/n) (\text{eard } P(N,n)) T \; ,$$
 and

III.
$$\sum_{P \in \widetilde{P}_{n}^{N}} PTP = (N/n)^{2} (eard \, \widetilde{P}_{n}^{N}) T .$$

PROOF OF I. We give two proofs of I. The first depends on the conditional expectation formula known by some specialists:

$$E(T) = (1/\text{eard}\,\widetilde{P}_n) \sum_{P \in \widetilde{P}_n} (P - P^{\perp}) T(P - P^{\perp}).$$

The other proceeds from scratch.

By expanding this identity we get $E(T) = (2/\text{card } \tilde{P}_n)(\sum_{\tilde{P}_n} PTP - \sum_{\tilde{P}_n} PTP^{\perp})$ hence

E(T) = 0 iff $\sum_{P} PTP = \sum_{P} PTP^{\perp}$. Now summing over P_n , the identity $T = (P + P^{\perp})T(P + P^{\perp})$

 $+ p^{\perp}$) = PTP + $p^{\perp}Tp^{\perp}$ + PTP^{\perp} + $p^{\perp}TP$ yields equations I immediately.

The proof from scratch is the following.

Note that the (i,j)-entry of PTP^{\perp} is zero except when $e_i \in \mathbf{Ran} P$ and $e_j \in \mathbf{Ran} P^{\perp}$ in which case it is the same as the (i,j)-entry of T itself, and PTP(i,j) = T(i,j) when $e_i, e_i \in \mathbf{Ran} P$, and 0 otherwise. For each (i,j) set

$$\begin{split} & \mathbf{D}_1 = \{\mathbf{P} \in \widetilde{\mathbf{P}}_n : \mathbf{e}_i \notin \mathbf{Ran} \, \mathbf{P}, \, \mathbf{e}_j \notin \mathbf{Ran} \, \mathbf{P}^\perp \}, \, \mathbf{D}_2 = \{\mathbf{P} \in \widetilde{\mathbf{P}}_n : \mathbf{e}_i \notin \mathbf{Ran} \, \mathbf{P}, \, \mathbf{e}_j \in \mathbf{Ran} \, \mathbf{P}^\perp \}, \\ & \mathbf{D}_3 = \{\mathbf{P} \in \widetilde{\mathbf{P}}_n : \mathbf{e}_i \in \mathbf{Ran} \, \mathbf{P}, \, \mathbf{e}_j \notin \mathbf{Ran} \, \mathbf{P}^\perp \} \text{ and } \mathbf{D}_4 = \{\mathbf{P} \in \widetilde{\mathbf{P}}_n : \mathbf{e}_i \in \mathbf{Ran} \, \mathbf{P} \text{ and } \mathbf{e}_j \in \mathbf{Ran} \, \mathbf{P}^\perp \}. \end{split}$$

Then $\langle D_k \rangle_{k=1}^4$ are pairwise disjoint and $\tilde{P}_n = \bigcup_{k=1}^4 D_k$. It is straightforward to verify that the cardinalities of all the D_k 's are the same, and so **card** $D_k = \frac{1}{4}$ **card** \tilde{P}_n . Hence for each (i,j),

$$(\sum_{P \in \widetilde{P}_n} \operatorname{PTP}^{\perp})(i,j) = \sum_{P \in D_4} (\operatorname{PTP}^{\perp})(i,j) = (\operatorname{\mathbf{card}} D_4) T(i,j) = \frac{1}{4} (\operatorname{\mathbf{card}} \widetilde{P}_n) T(i,j) \; .$$

The other equality follows similary by

$$\sum_{P \in D_3} (\text{PTP})(i \;,\; j) = (\text{eard} \; D_3) \\ T(i \;,\; j) = \frac{1}{4} (\text{eard} \; \widetilde{P}_n) \\ T(i \;,\; j).$$

INDICATIONS OF PROOFS FOR II, III. The precise proofs of II and III are rather involved so we simply present a heuristic simplification. Each $P_k TP_k$ has "non-zero size" $(n/N) \times (n/N)$ so the probability that $P_k TP_k(i,j) = T(i,j)$ and not 0 is $(N/n)^2$ if $i \neq j$ and the probability that $\sum\limits_{k=1}^N P_k TP_k(i,j) = T(i,j)$ rather than 0 is $(N/n)^2 \cdot (n/N) = (N/n)$ if $i \neq j$, which suggests II. Also for each $P \in \widetilde{P}_n^N$, PTP has "non-zero size" $(n/N) \times (n/N)$ so the probability that PTP(i,j) = T(i,j), not 0, is $(N/n)^2$ if $i \neq j$ which suggests III. To make these precise one must show that "probability" here is truly the exact degree of occurrence of T(i,j).

PROPOSITION 5.2. Let T be any nxn matrix. Then

(1)
$$\sum_{P \in \widetilde{P}_n} PTP = \frac{1}{4} (\operatorname{card} \widetilde{P}_n) (T + E(T))$$

and

(2)
$$\sum_{P \in \widetilde{P}_n} PTP^{\perp} = \frac{1}{4} (\operatorname{card} \widetilde{P}_n) (T - E(T)).$$

Furthermore if N | n then

(3)
$$\sum_{P \in \widetilde{P}_n} PTP = (\mathbf{card} \, \widetilde{P}_n^N)((N/n)^2 T + (N/n)(1 - N/n)E(T)).$$

PROOF. (1) and (2) follow easily from Proposition 5.1. Indeed for any diagonal operator, and in particular E(T), we have $PE(T)P^{\perp} = 0$ for every diagonal projection. Applying Proposition 5.1-I to T - E(T) yields (2). To obtain (1) note that E(T) = $(P + P^{\perp}) = E(T)(P + P^{\perp}) = PE(T)P + P^{\perp}E(T)P^{\perp}$. By Proposition 5.1-I,

$$\begin{split} \frac{1}{4}(\mathbf{card}\,\widetilde{P}_n)(T-E(T)) &= \sum\limits_{P\in\widetilde{P}_n} P(T-E(T))P = \sum\limits_{P\in\widetilde{P}_n} PTP - \sum\limits_{P\in\widetilde{P}_n} PE(T)P = \\ &= \sum\limits_{P\in\widetilde{P}_n} PTP - \frac{1}{4}(\mathbf{card}\,\widetilde{P}_n)E(T), \end{split}$$

and adding we obtain

$$\sum_{\widetilde{P}_n} PTP = \frac{1}{4} (\mathbf{card} \ \widetilde{P}_n)(T + E(T)).$$

To prove (3) use Proposition 5.1-III to obtain

$$\sum_{P \in \widetilde{P}_{n}^{N}} P(T - E(T))P = (N/n)^{2} (\mathbf{eard} \ \widetilde{P}_{n}^{N})(T - E(T)).$$

But $\sum_{n} PE(T)P = (N/n)(card \tilde{P}_n^N)E(T)$. To see this requires an involved argument as $P\epsilon \tilde{P}_n^N$

before, so as before, we appeal to the heuristic simplification described at the end of the proof for Proposition 5.1. Hence

$$\sum_{\mathbf{P} \in \widetilde{\mathbf{P}}_{n}^{N}} \mathbf{PTP} = ((\mathbf{N}/\mathbf{n})^{2}(\mathbf{T} - \mathbf{E}(\mathbf{T})) + (\mathbf{N}/\mathbf{n})\mathbf{E}(\mathbf{T}))\mathbf{eard} \ \widetilde{\mathbf{P}}_{n}^{N} = ((\mathbf{N}/\mathbf{n})^{2}\mathbf{T} + (\mathbf{N}/\mathbf{n})(1 - \mathbf{N}/\mathbf{n})\mathbf{E}(\mathbf{T}))\mathbf{eard} \ \widetilde{\mathbf{P}}_{n}^{N}.$$
Q.E.D.

LEMMA 5.3. If T has a zero diagonal then there exists a diagonal projection $P \in \widetilde{P}_n$ such that $\|PTP^{\perp}\| \ge \frac{1}{2} \|T\|$.

PROOF. By Proposition 5.1

$$\begin{split} \frac{1}{4}(\operatorname{card} \widetilde{P}_n) & \parallel T \parallel = \parallel \sum_{P \in \widetilde{P}_n} \operatorname{PTP}^{\perp} \parallel \leq \frac{1}{4}(\operatorname{card} \widetilde{P}_n) \max_{P \in \widetilde{P}_n} \parallel \operatorname{PTP}^{\perp} + \operatorname{P}^{\perp} \operatorname{TP} \parallel = \\ & = \frac{1}{4}(\operatorname{card} \widetilde{P}_n) \max_{P \in \widetilde{P}_n} (\parallel \operatorname{PTP}^{\perp} \parallel \ , \ \parallel \operatorname{P}^{\perp} \operatorname{TP} \parallel). \end{split}$$

Therefore $\frac{1}{2} ||T|| \leq \max_{P \in \widetilde{P}_n} ||PTP^{\perp}||$.

REMARK. The same identity yields many $\|PTP^{\perp}\| \ge \varepsilon \|T\|$ for ε small. A similar identity together with similar lower bound estimates also holds for $\sum_{P \in \widetilde{P}_n} PTP$.

THEOREM 5.4. (Johnson and Parrott, the atomic case [8]). If T commutes with the diagonals D modulo the compacts K(H), then $T - E(T) \in K(H)$.

PROOF. Since $E(T) \in D$, T - E(T) commutes with D modulo K(H), so we may assume without loss of generality that T has a 0 diagonal.

Assume T $\not\in$ K(H). Then $||\pi(T)|| = \alpha > 0$ where π is the projection of B(H) onto the Calkin algebra B(H)/K(H). It is easy to construct an infinite sequence of orthogonal

diagonal finite projections $\langle F_k \rangle_1^{\infty}$ such that $||F_k TF_k|| > \alpha/2$. By Lemma 5.3 there exists a diagonal projection $P_k \leq F_k$ with

$$||P_{k}T(F_{k} - P_{k})|| = ||P_{k}(F_{k}TF_{k})P_{k}^{\perp}|| \ge \frac{1}{4} ||F_{k}TF_{k}|| \ge \alpha/4.$$

Set $P = \sum_k P_k \in D$. We claim that this implies that $TP - PT \notin K(H)$, which contradicts the hypothesis. To see this, since $\langle F_k \rangle_1^\infty$ are orthogonal projections, it suffices to show that $\|F_k(TP - PT)F_k\| \to 0$. Indeed

$$||F_{k}(TP - PT)F_{k}|| = ||F_{k}(P^{\perp}TP - PTP^{\perp})F_{k}|| =$$

$$\max(||F_{k}P^{\perp}TPF_{k}||, ||F_{k}PTP^{\perp}F_{k}||) \ge ||F_{k}PTP^{\perp}F_{k}|| = ||P_{k}T(F_{k} - P_{k})|| \ge \alpha/4.$$
Q.E.D.

REMARK. To achieve the full Johnson and Parrott theorem for the atomic case: that every compact derivation on D is inner and can be implemented by a compact, in view of Theorem 5.4 it suffices to merely prove that each derivation from D into B(H) is inner. But T ϵ B(H), E(T) = 0 can be produced which implements the derivation δ by first restricting δ to the finite case (acting on q_nH), using 5.1-I replacing PTP by δ (P) to produce T_n = δ |q_nD, then using the weak compactness of B(H), and the well-known weak continuity of derivations to obtain T.

REFERENCES

- Anderson, J.: A conjecture concerning the pure states of B(H) and a related theorem, in Topics in modern operator theory, Birkhäuser Verlag, 1981, pp. 25-43.
- Anderson, J.: Extensions, restrictions and representations of states on C*-algebras, Trans. Amer. Math. Soc. 249 (1979), 303-329.
- Anderson, J.: A maximal abelian subalgebra with the extension property, Math. Scand. 42 (1978), 101-110.
- Dixmier, J.: Les algèbres d'opérateurs dans l'espace hilbertien, 2nd Ed., Gauthier-Villars, Paris, 1969.
- Halpern, H.; Kaftal, V.; Weiss, G.: Matrix pavings and the relative Dixmier property in B(H), preprint.
- Halpern, H.; Kaftal, V.; Weiss, G.: Matrix pavings and Laurent operators, preprint.
- Halpern, H.; Kaftal, V.; Weiss, G.: The relative Dixmier property in discrete crossed products, J. Funct. Anal., to appear.
- Johnson, B.; Parrott, S.: Operators commuting with a von Neumann algebra modulo the set of compact operators, J. Funct. Anal. 11 (1972), 39-61.

H. Halpern , V. Kaftal and G. Weiss

Department of Mathematical Sciences University of Cincinnati, Cincinnati, Ohio 45221 U.S.A.