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MATRIX NORM INEQUALITIES AND THE RELATIVE DIXMIER PROPERTY

Kenneth Berman, Herbert Halpern, Victor Kaftal *) and Gary Weiss **)

If x is a selfadjoint matrix with zero diagonal and non-negative entries, then there exists
& decomposition of the identity into k diagonal orthogonal projections [pg,} for which
IZppapmll = (LRIxH .

From this follows that all bounded matrices with non-negative entries satisfy the relative
Dixmier property or, equivalently, the Kadison Singer extension property. This inequality fails
for large Hadamard matrices. However a similar inequality holds for all matrices with respect to

the Hilbert-Schmidt norm with constant k™% and for Hadamard matrices with respect to the
Schatten 4-norm with constant 2"k 12

41 INTRODUCTION
A long standing open problem, first discussed by Kadison and-Binger in 1959, is
whether every pure state on the atomic masa D of diagonal operators on a separable Hilbert
space H has a unique extension to a pure state of B(H) (extension property for the embedding
of D into B{H)).
An equivalent problem is whether every element x of B(H) has the Dixmier property
relative to D , i.e., whether the norm closed convex hull
K(x) = co{uxu* | u<D,u unitary }
has non-empty intersection with D, in which case K(x) 0 D = [E(x)}, where E(x)
denotes the diagonal of x ( relative Dixmier property for the embedding of D intoe B(H) ).
The distance o{x) from E(x) to K(x} or equivalently, the distance from 0 to
E(x - E(x)) , can be measured using decompositions of the identity into a sum of finitely many
mutually orthogonal diagonal projections ( diagonal decompositions or d.d. for short ), i.e. we
have:
a(x) = inf { IZpnlx- EGDpll | [pn) isa dd. ).
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Clearly, if we denote

oy (x) = inf [ UEpy(x - EGDPl | (Pr)mer2 i i52 dd. },
then oo(x) = limyog(x) .

While it is obvious that c(x) = 0 for all finite matrices x, it is in general highly non-
trivial to compute, or at least estimate, the values of oy (x) . This task involves analyzing some
deep norm inequalities for matrices which have interest in their own right and which also have a
direct bearing on the Dixmier property discussed above. For instance, proving that for some
positive integer k ,

B = sup{ oyix) | x finite mawrix, lxll< 1, E(x)=0]} < 1,
is equivalent to proving that the embedding of D into B{H) has the relative Dixmier property
(Proposition 2.8).

It is known that the set N of elements having the relative Dixmier property is a
selfadioint uniformly closed subspace of B(H) and that it rrivially contains D and the ideal of
compact operators. Already in [10] Kadison and Singer showed that N contains the Banach
space generated by the permutation matrices ( by showing that cy(x) = 0 for each permutation
matrix x ). Apart from the recent result that N contains all Toeplitz operators with Riemann
integrable symbol [8], not much more was known about its elements.

We prove here that every bounded matrix x with non-negative entries is in N, by
showing that o (x)/lx - E(x)Il < 2/k ( Corollary 3.5 ). Our proof uses techniques from
graph theory combined with the Perron - Frobenius - Schur theory of finite matrices with non-
negative entries. In the selfadjoint case { Theorem 3.4 ) we obtain the same inequality, but with
constant 1/k , and we prove that this result is sharp.

In Proposition 2.11 we exhibit selfadjoint operators (direct sums of Hadamard matrices)
for which o (x)/lx - EGoll 2 k™V?, which provide, so far, the largest known value for this
ratio (for k>3,

Related to this are our results on Schatten p-norms. If in the definition of o(x) we use
the Schatten p-norm |l Il instead of the operator norm Il Il , we obtain a new parameter
0 ,(x). Then in Theorem 4.4 we prove that oy a(x)lix - E(x)ll; £ k' or every finite
matrix x ( or more generally, for every Hilbert-Schmidt operator x ) and this result is sharp,
Moreover, we show that for p=2 and p=4 the ratio o (x}lx - E(x}ll, for Hadamard
matrices behaves like k' ( Propositions 4.2 and 4.6 ).

We were recently informed that in his 1986 doctoral dissertation at the University of
Aberdeen, K. Gregson has independently obtained that bounded matrices with non-negative
entries have the relative Dixmier property.

We would like to thank D, Larson for information and encouragement throughout the
preparation of this work,
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" £2 THE RELATIVE DIXMIER PROPERTY AND NORM INEQUALITIES FOR

MATRICES.

Let H denote a separable infinite-dimensional Hilbert space with an orthonormal basis
{Mj}j- 12, andlet g, be the projectionon span{ m; | j=1...n]. Let D be the
maximal abelian subalgebra ( masa ) of B(H) generated by [q,),-12. :1et E: B(H) = D
be the canonical normal conditional expectation onto D and let U{D) be the group of unitary
operators of D . Henceforth we shall identify B(H) (resp. D ) with the algebra of bounded
( resp. bounded diagonal ) matrices and E with the operation of taking the main diagonal of a
matrix. Whenever we shall talk of direct sums, we shall always mean relative to the given basis
{m;} . Forevery x € B(H), let
(1) Kix) = co” {uxu* | we D))
denote the norm closure of the convex hull of the diagonal-unitary orbit of x .

We say that x has the relative Dixmier property , ( RDP for short ), if Kix) has non-
empty intersection with D . We refer the reader to [7, 8] for a discussion of the RDP in the
more general setting of the embedding of a von Neumann algebra into its discrete crossed
product.

A special reason to investigate the case D C B(H) is that already in [10] and more
explicitly in [2, Theorem 3.6 and 4, Theorem 3.4], it was shown that the embedding D C B(H)
has the extension property , i.e., every pure state on D has a unique extension to a ( necessarily
pure ) state on B(H) , if and only if the embedding has the relative Dixmier property ( i.e. every
x € B(H) has the RDP).

It is thus natural to consider the set N of the elements of B(H) that have the RDP. We
know that N is a selfadjoint uniformly closed subspace of B(H) and a two sided D - module
[7. Proposition 2.4 and Corollary 2.5]. Moreover
2 N=D®@& [D,BH)] =D& [DBHI .
where @ denotes the algebraic direct sum, D" is the positive part of D, [,] denotes the
linear span of the set of commutators and the bar denotes the closure in the uniform topology
[4, Theorem 2.4, 2, Corollary 3.6).

Clearly, N contains the ideal of compact operators. By [7, Theorems 3.5 and 4.1], N
contains the C*-algebra generated by the normalizer group of D@

(3 UBH),LD) = [ue UBMH) | uDu*=D]
= [ue UBH) | Ecadu = adu=E ).
In particular, N contains all operators with matrix representation ( in the given basis {T|_i| )
with at most one 1 in each row and column and zeros elsewhere [cfr. 10, Theorem 3]. In
[8, Corollary 4.2] we have seen that N also contains all Laurent { or, equivalently, all Toeplitz)
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operators with Riemann integrable symbol. In the next section we shall prove that N contains
all bounded matrices with non-negative entries.

It is well known ( e.g. see [4, Theorem 2.4] ) and easy to verify directly that if
Kix)nD # &, then E{x)e Kix), and actually K{x) "D = [E(x)] . Therefore, in order to
measure " how far ' x is from having the RDP we consider the distance o(x) from E(x) to
K(x) ( or equivalently, the distance from 0 1o K(x - E(x)) ). By using the parameter o , we
rewrite:

() N = {xeBH | ax) =0].

Due to the commutativity of D, we can compute o(x) by using diagonal projections
instead of diagonal unitaries. More precisely, let a diagonal decomposition ( or d.d. for short )
be a partition of the identity into a sum of finitely many mutually orthogonal diagonal
projections. Then by [3, Theorem 3.6 and 7, Lemma 2.2 and proof of Proposition 2.3] we
have:

(3 ox)

inf { 1Z py(x - EGIpll | (py) isa dd. )

inf [ maxy lpy(x - EGpgll | (py) isa dd. .
For completeness' sake we also recall from [4, proof of Theorem 2.4 and 8, Proposition 2.3]
that

(6) ofx) = sup{ | fix-E{x})!| | fe (B(H}*); , f is D-invariant ).
Let us define
M B = sup{a(x)ix-E@I | xe BHND .

We start with some simple properties of the parameters ct(-) and the constant B that
we shall use throughout this paper. It is obvious that @{-) and hence P are invariant under
embedding-preserving isomorphisms. Explicitly, let Dy B(H;) be an embedding of an
atomic masa into B(H;),let E; : B{H;) — D, be the { unigue ) conditional expectation
onto Dy andlet & : B(H) — B(H,) be an isomorphism such that ®(D) = D;. Then
©:E = E;«® and hence we have for all x € B(H) that

a(®(x))

inf{ IS pr(®(x) - E{(@X)Pll | {pm) isa dd.in B(H,) )

inf( 1T q,(x - E(xX)g,ll | [g,) isa d.d.in B(H))
(x) .

Consider now the case of a direct sum of Hilbert spaces H = Z @H, and let

D = Z @D, be the direct sum of atomic masas in B(H,) ( this is equivalent to choosing a

basis in H by 'combining' the bases of H, ). Ideniify the identity I, € B(H,) with the
projection onto H, < H,then I, D and E = Z@®E,(I,- 1) where E, is the canonical
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conditional expectation from B{H_) onto D . Let x = E@xn e Bi{H), then we have:

LEMMA 2.1. o(Z@®x,) 2 supjolx).
PROOF: Lete > 0 andlet {py) bea dd in B(H) such that

||%pm{x - E(x))ppll = o(x) + €. Then for every n we have
"% (Prolxy, - E (X )} Pl

1, (2 Prn(x - E(XDP) L
IZ poy(x - E(X))py

omix) + €.
Since [pyl,} isa d.d in B(H,), we have by definition that o(x;) = wix) + g, whence
the conclusion follows.

1

%

Q.ED.

Clearly, if the RDP holds for D © B(H),ie, ox) = 0 forall x € B(H) . then
o{x) = sup,eix,) holds trivially for all direct sums. The converse is also true ( see Remark
2.71iii) ).

FROPOSITION 2.2. There iz an x € B(H) with Ixll = 1 such that E{x) = 0
and ofx) = p.

PROOF:  Tiis clear from (7) and {5) that
(E) B = supl{aox) | xe B(H),, Ex} =0).
Take a sequence X, € H with lixJl = 1 and E(x,) = 0 suchthat a{x;) > B-1/n. Let

4 -
y = nz @x, € nE @©H and let x & B(H) be the image of vy under the isomorphism of
1] =1

B(r§$ﬂ} onio B(H) :;then Wil =1, E(x) = 0, and from Lemma 2.1 and preceding
remarks, we have aix) = w(y) = sup, c(x,) = B. But «(x) £ § by (8), hence
ax) = B.

QED,

REMARK 2.3, The same proof actually shows that the supremum of @(x) over any
norm hounded class which is closed under direct summation ( e.g. (B(H),,), or (B(H)™), }is
always attained.

We can now reformulate the relative Dixmier property for the embedding D < B(H) in
terms of the constant f :

PROPOSITION 24.  The following conditions are equivalent:
iy  The embedding D C B(H) has the RDP, ie.. tx) = 0 forevery x € B(H),
iy B = 0.
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i) B o< 1,

v) olx}) = lx-ExN forevery x € B(HND

PROOF:  The implications i) & ii) = iii) = iv) are obvious and iv) = iii) is an
immediate consequence of Proposition 2.2, Assume now that B<1. If B = 0, we can find
a7y suchthat 0 < 42 < B < 7. By Proposition 2.2 there is an operator x with llxll = 1

and E(x) = O such that ce(x)=§ and hence thereisa d.d. [py] such that I pxp,l < .
Let y = ¥!'3 pyXpy . then flyll < 1 and E(y) = 0. Hence by (8), a(y) < B so that there
isasecond dd. [qg;) suchthat IZqyvql < v. Henceif [rj} isthe d.d. refinement of the

: . i g : ; = B
two, i.e., forevery j thereisan i and an m such that 1; = gp,,. then IZrxrll < v= < B,

against the assumption that o(x) = B . Therefore B = 0 and hence iii} implies ii),
Q.ED.
For a finer analysis of @(x) , and in order to be able to reduce the discussion to finite
matrices, we consider the set of diagonal decompositions of the identity into k projections
( k-d.d. for short } and define:

(9] o (x) = inf { IEpnLx- E(xipLll | {pn)isa kdd }.
Clearly, for every x € B(H) the sequence o, (x) is monotone non-increasing and
(10 afx) = limy on(x).
Let us collect some properties of the parameters «(x) and o (x) . In order to simplify

the formulations, we st @, = @.
LEMMA 2.5, Forall x,yve B(H),ye C and k. h=0,12 .. we have:

i) o (%) £ lix - Exll,

) oy lyx) = IMloglx).

i) oy(dxd’) = oylx) forall d,d'e (D, with equality holding when
d, d are in U{D),

) oluxu®) = myx) forall ue UBH),D) (see (),

H

V) o (Z@x)

vi)  Oggulx +¥) ohx) + oly),

vil)  ofx+z) ox) forall ze N,

viii)  oyly) = max{ o(xy) + NE(x; - w0, egp(x) + WE(xg - y)ll ], for all
selfadioint operators xy, %, and ¥ suchthat x; 2 ¥ < x;,

ix)  log(x) - og(yl £ lx -yl + IE(x - y)ll.

PROOF :  i)-iii) are obvious and iv) follows easily from the definitions (9] and (3).

sup, opx,) forall k=1,

1M
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v) Let x = Z@®x_ and assume without loss of generality that E (x) = 0 forall n, and
hence that E(x) = 0. Reasoning as in the proof of Lemma 2.1 we obtain
o (x) 2 sup, oglx,).
Now let £ > O and choose foreach n a k-dd. [p,,} in B(H) such that
I PamEnPomll 3 ulx) + E.
Then, if we let p, = E'mpm,wcmrhm {pm! isa k-dd. in B(H) and

IZpoxpell = sup, I pomXoPomll = sup, o(x,) + E.
Therefore @, (x) = sup, o(x,) + &, and since £ is arbitrary, we obtain the equality.
vi) is obtained by taking refinements of partitions as in the proof of Proposition 2.4 ; vii) is an
immediate consequence of (10), vi) and (4); viii) is proven as in [8, Lemma 2.8].
ix). Let £ > 0 and let {py,] bea k-dd. suchthat IF p,(x = E(xX)pLll < oix) + &
Then

ZPnlYy —EMIPm = ZPpmx = EX))py + Zpmly - X)py + E(x) - E(y),
hence

1A

o (y) £ 12 pLly — E(y)ipgl

< o(x) + € + IZpLly — x)pgll + NE(x) — EGv)ll
< ogix) + ly—xll + IE(y-x)l + €.
Since g is arbitrary, and by switching x with y , we obtain the required inequality.
Q.ED.

Notice that ix) implies the norm continuity of o forall k = 0. The situation is
different for the strong operator topology. The lower semicontinuity of @ in the swong
operator topology is wivially equivalent to the RDP ( since the compact operators are in N ) and
hence is equivalent to continuity. The continuity in the strong operator topology of @, for
k = 1 isfalse (e.g. use v) toconstruct a counterexample ), while the lower semicontinuity of
o, in the 5.0.T. follows from Propositon 2.6 below and from its continuity on finite
dimensional subspaces.

Let us henceforth embed into B(H) the algebra M, of nx n complex matrices by
identifying it with Big,H) . When there is no risk of confusion, we shall not distinguish
between e M, , I B(g,H) and I e B(H) and thus we shall talk of k-d.d. without
specifying if taken in M, , in B(g,H) orin B(H).

To simplify notation, let us also identify diagonal projections with subsets of the
integers: henceforth say for a projection p e D and an integer j, that je p when ;e pH.
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Thus each d.d. corresponds to a coloring of the integers, and its restriction to a d.d. of
Bi{g,H) corresponds to the induced coloring of [ 1,..,n }. As in similar problems in
combinatorics, we can apply the Rado compactmess ( or selection ) principle :
PROPOSITION 2.6. og(x) = lim, oy(q,xq,) for every xe B(H) and k=12...
PROOF : Fix x€ B(H) and k = 1; by Lemma 2.5iii) , o (q,x%q,)} increases
monotonically with n and is bounded by oy (x). Let ¥ = lim_ oy(g.xq,), then ¥ £ o(x) .
Let @ bethe class of all k-d.d. andlet @, < & be the class of the k-d.d. {p,) such that

(11} IE prei(x - B(x))g Pl = 7.

Since the number of k-d.d. in B(g,H) is finite, the infimum in the definition of oy(g,xq,) is
armined and hence there is a k-dd. {p,] such that

IZ Prldn(x - EGquPmll = @ylguxgy) = 7.
Thus &, is never empty. Moreover, as the left hand side in (11) is monotone non-decreasing
in n,weseethat @, C @, forall h 2 n, Thus {d ]} has the finite intersection property,
and since @ is compact in its Tychonoff topology, by reasoning as in [5, Proof 2 of Theorem
1.4 (Compactness Principle) or 3, proof of Theorem 2], we see that {@,] has the infinite

intersection property, so there exists a k-d.d. [p,] e O*Il“ .le., [pg] satisfies (11} for all
n. Thus, by passing to the limit as n — =, and by the lower semicontinuity of the norm in the

5.0.T. we obtain that IIZ p(x - EX)pyll € ¥. Since oyix) € IZpnix - Ex))pgl . and
since 7 < oy(x) , we conclude that I3 p(x - E(x}ip,ll = ¥ = oy(x).
Q.E.D.

EEMARK 2.7 i) We have actually proven more, namely that the infimum in the
definition of o, (x) is always attained, even in the infinite dimensional case. This last fact is
trivially false for o (take any compact operator with strictly non-zero off diagonal entries). The
statement in Proposition 2.6 holds true for « if and only if D € B{H) has the RDP (since
afg.xq,) = 0 forall x e B(H) and all positive integers n ).

ii) Notice that the only properties of the operator norm |l || that we have used here are that
lipxpll = lixll for every x € B(H) and every projection p , and that the norm is lower
semicontinuous in the strong operator topology. Thus Proposition 2.6 holds also for the
parameters o when defined using any other norm with the above properties. We shall use
this fact for the Schatten p-norms in §4 .

iii) If there is an operator x such that ¢(x) > 0 then we can find a direct sum of finite rank
operators v such that oy) 2 a(x) >0 (and hence for y the inequality in Lemma 2.1 is strict).
Indeed, e (x) = @(x) forall k, and hence, by Proposition 2.6, we can find an index n(k})
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such that o (qunXdngg) > @x)- 1k, Thus y = é@qm]anm satisfies the condition
o(y) = alx) because, by Lemma 2.5 v), we have
aly) 2 CllagXagy) > olx) - Uk
and hence, by (10}, aly) = o(x).
Proposition 2.6 thus reduces the problem of computing (or estimating) the parameters
oy ( for k#0) to the finite dimensional case. More precisely, define

(12) Br = sup[ay(x) | xe EL:JMHL, E(x)=0},
then we have: :

PROPOSITION 2.8. i) By = max[ox) | xe B(H) ., Ex)=0] for k21,

i) By decreases monotonically to 5,

iii) D C B(H) has the RDP iff there is a k such that Py < 1

PROOF: i) From Proposition 2.6 we easily obtain that

By = suplaux) | xe B(H). Ex)=0).
By Lemma 2.5 v), and reasoning as in Proposition 2.2 { cfr. Remark 2.3 ), we see that the
supremum in this formula i$ attained, and so we obtain 1).
ii) Clearly, By decreases monotonically, and as a(x) = og(x) forall x, we see that
B < limy B, . From Proposition 2.2 we know that there isan x € B{H),, with E(x) = 0
such that B = e(x) = Hmy et (x). Thus if we had B < limy [, . there would bea j with
o;(x) < limy B, < B;, against i).
iii) This follows immediately from ii) and Proposition 2.4,

Q.ED.

Thus the extension problem is reduced to the study of the By . ( i.e. to the problem of
finding estimates for the parameters o (x) that are independent of the size of the matrix x ),
which seems to be an interesting area of study in its own right.

The only cases for which the values of [, are known to the authors (and equal to 1),
are the cases k = 1, where o(x) = Ix- E(x)ll forall x, and k = 2, where the Example
2.9 i) below provides an operator for which ca(x) = lix - E(x)l . It is therefore important to
find upper and lower bounds for the ratio o (x)/lx - E(x)ll , at least for some particular classes
of matrices. In the case of matrices with non-negative entries, we are able to show in the next
section that 2/k is an upper bound for this ratio (Theorem 3.4},

Here we shall consider matrices that are either ' very sparse ' or ' completely diffuse ',
If x is a matrix with only one non-zero entry, then obviously o,(x) = 0. If x contains only
a ' small ' number of non-zero entries which are ' sparse ' { e.g. at most one non-zero entry per
row and column, as in [10, Theorem 3] ), then ay(x) = O ( Example 2.9 ii) ).
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Thus it is natural to consider, at the other extreme, matrices with entries all of the same

magnitude, e.g. nxn matrices x with Ixyl = n 12, Then, while the Hilbert-Schmidt norm
lixll; of x is nl2, the operator norm IIxll can vary berween n'2 and 1.

In the case that Ixll = nl? | it is elementary to show that x is rank one, so there exist
two diagonal unitary matrices u and v such that x = n'2uf v, where f, is the rank one
projection defined below in (13) { whence oy(x) = n'Ze(f) by Lemma 2.5 iii) ). We shall
analyze f, in Example 2.9 iii) and repeatedly use it in Proposition 3.1, Corollary 3.3, Theorem
3.4 and Theorem 4.4 for proving sharpness results,

In the case that lxll = 1, it follows that x is unitary and thus, if it has only real entries
{ as it is natural to consider here ), x is a Hadamard matrix ( a unitary matrix with entries
+ 02}, Lemma 2.10 and Proposition 2.11 study the ratio o (x)/llx- E(x)ll for Hadamard
matrices and yield k12 as the largest lower bound that we know for Py (for k>3). We
shall then return to investigate both £, and Hadamard matrices in the context of the Schatten p-
norms in §4,

Let us define the following two n x n matrices:

N b

1.0 el ) 1.1 14

(13} un = Fl.. O 0O f = (1/m) {10 § 14
00..10 TR R

EXAMPLE29. i) @y, =1 if nisodd, and es(u) = 0 if n iseven. If v
is the infinite unilateral or bilateral shift, then op(u) = 0. This is casy to verify directly { see
also [9, Proposition 3.1] ).

i) oafuy) = 0 and oz(u) = 0. Moreover, the same result holds for all permutation matrices
and more generally, for all bounded matrices with at most one non-zero entry per row and
column [9, Proposition 3.4]. Notice that this is essentially the content of [10, Theorem 3].

iii) o (f N, - BEN = 1k -&(nk) where

fu-uk);(n-l} if k divides n,
enk) = {
L{rfk-lfk},fm-u Fisgeve. il Sk

This can easily be seen by noticing that WIf, - E(f 0l = 1 - 1/n and that for every diagonal
projection p, pf,p is unitarily equivalent to n”! dimp fiimp and hence

lip(f, - E(E,))pll = nl(dimp-1).
Now every k-d.d. contains at least one projection with dim p 2z n/k, whence in either case,
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we obtain that
o (F I, - E(EM 2 1k - elnk).
Conversely, if we take a k-d.d. with projections having dimensions either [n/k] or [nk] +1,
we achieve the equality ( here [v] denotes the integer partof v ).
iv) Let x =2f, -u,,then x isa unitary operator, a(x) = 2/k - 2/n and

Ix-E)l = 1 + 4/n° + Wn)cos2un

Moreover, o (x) = 2% - 2/n if k divides n ([9, Theorem 3.5] ).

We now begin our examination of Hadamard matrices with the following slightly more
general lemma.

LEMMA 2.10.  Ler x be an nx n marrix with Ix;| 2 nl2  forall i and j;
then wy(x) = Sk - IEx)N.

PROOF: By Holder's inequality, lixll = n"""lll}r.ﬂ2 ,implying llxll = &. Thusif p
is a diagonal projection of dimension h, pxp isan hxh matrix with

Ipxp)yl 2 &(h/m)'2h'?2 forall ije p,

which implies llpxpll = 8(h/n)'2. Asevery k-dd. [p,} conmins at least one projection p
with dimp = n/k, we have that 1T pxp, )l = 8k, and hence

NE ol x-E(x) Jpll 2 k12 - NE(x) .
Q.E.D.
PROPOSITION 2.11 i) eg(x)ilx - E(x)Il = (k'12- nV2)/(1 + n'l2) for every nxn
Hadamard matrix x . i) sup{ o ()Mix - EQIl | x=x%e BEHND ) 2 kK2 . In

particular, B, = k-2,
PROOF: i) Lemma 210 applied to an n x n Hadamard matrix x yields:

o) 2 kK - NE@ N = k202 Since Ix-EG)N < Iixll + NEX)I =1+n172,

we obtain the inequality in i),

ii) Since selfadjoint Hadamard matrices of arbitrarily large size exist , e.g. tensor products

1

1
‘ , we obtain the inequality in ii).
I3

of the selfadjoint Hadamard matrix 1“{

Q.E.D.
By Remark 2.3 we see that the supremum in ii) is attained, for instance by direct sums

of Hadamard matrices of increasing size. Notice also that, in contrast to the results in § 3,
which yield different upper bounds for o (x)/lx - E(x)ll for the selfadjoint and non-selfadjoint
cases, we obtain the same lower bound for this ratio for both selfadjoint and non-selfadjoint
Hadamard matrices.
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For k > 3, k2 is the largest lower bound for B, that is known to the authors.
The value k2 is of particular interest due to the fact that it is also an upper bound for the
analogous ratio relative to the C,-norm for all operators { see Corollary 4.5 ), and plp-112 4
{asymptotically) an upper bound for the ratio relative to the Cy-norm for all Hadamard matrices
{ see Proposition 4.6 ).

The case k = 3 is special, since 377

< 2/3, and thus a larger lower bound can be
obtained using a different, albeit non-selfadjoint, unitary ( see Example 2.9 iv) ). The constant
2/3 has appeared in the literature for the case of matrices with non-negative entries [3, Theorsm

2 and following remarks, cfr.1].

§ 3. MATRICES WITH NON-NEGATIVE ENTRIES.

For every operator x € B(H) and every integer k we know that o (x)x-E()l =1 ;
in this section we shall show that if x , identified with the matrix (x;) in the basis [n;}, has
non-negative entries, then the above ratio is bounded by 2%k (orby Lk if x=x*).

Chur tools consist of the reduction to finite matrices obtained in Proposition 2.6, the
Perron-Frobenius-Schur theory for finite matrices with non-negative entries [11], and
techniques motivated by graph theory. We start with a property on colorings of graphs, which
for the reader's convenience, we shall translate into the language of mamices.

Recall that under the identification of diagonal projections with subsets of the integers,
we say that j€ p when 1, € pH.

PROPOSITION 3.1. Let x=x* be an nx n marrix with non-negative entries
and with zero diagonal. Then for every integer k thereisa k-dd. {py ] such that

11 n
JE”(E PPl = {lfk}j;x-u- for every i.
Furthermore, the result is sharp in the sense that the constant 1/k is the best passible.
PROOF: Let O be the function defined on the collection of k-d.d. by :

(14 QU pal) = 2 TPy = ST (x5 | ife b}

Since there are only a finite number of k-dd. in M, (the algebraof all n x n complex
matrices ), we can find a k-dd. {p_,} which minimizes the function ) . We claim that this
k-dd. satisfies the condition of the proposition. Indeed, otherwise there would be an

l=h =k andan ie py such that
[j] ri
ZEpuxply = Zlxy | jep] > (1K) Zx;.

n
Since 2x; = ZZ([x; | j€ pp ). by the averaging principle there has to be at least one
j=1
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t { necessarily t# h ) such that
(15) Z{xij | je p} = “'ﬂi}gx'lj = Efxij |l je pyi.

Change the k-dd. [p,) into the k-dd. {f,} by moving i outof p, and into P A
straightforward computation shows that

QU (Pm)) - Alpal) = Zlxy ! jep) - Zix 1 jepul
+2Z{x ljepl - Zix | jepy)

Axlzp liesm) - Efsg 1 jem)
=< D.

Here we used (15) and the fact that x is selfadjoint. Bun this contradicts the minimality of
Q( {p,) ) and thus proves our claim.

In order to see that the result is sharp, it is enough to consider x = f - E(f,).

Q.E.D.

REMAFRK 3.2 i) A similar result, but with a bound of 2/3 , has been proven for
k = 3 without the condition of selfadjointness in [3, Theorem 2]. It remains an open guestion
whether the constant 2/3 is sharp in the non-selfadjoint case.
ii) Proposition 3.1 can easily be extended to selfadjoint operators using Rado's selection
principle (cfr. Proposition 2.6).
iii) By summing the inequality in Proposition 3.1 over all i, we see that the minimal value of
the function Q sansfies: B I
(16) Q(pa)) S (UK) Z Zxy.
The same inequality is obtained in the next section (Proof of Theorem 4.4) by using different
averaging methods. Moreover, there we obtain (16) also for non-selfadjoint operators, and in
addition we show that when k divides n, (16) holds true even for the minimum of Q taken
over the class of equidimensional k-d.d. (ie. k-d.d. into projections of equal dimensions ).

As an application of Proposition 3.1 and Remark 3.2 ii), we obtain the following
inequality for vector norms.

COROLLARY 3.3  For any selfadjoint operator x and every integer k there isa
k-d.d.such that 1T pa(x - E)Ipem; !l Sk 2ixnyll  for all i. The constant k2 is

sharp.

PROOF : Without loss of generality we can assume that x has zero diagonal.
Consider the selfadjoint operator y with entries y;; = I~Jncji-|2 ; then by Proposition 3.1 along
with Remark 3.2.ii), we can find a k-d.d. {p,]} such that

il m
%-I(Z PmYPmly = {].n’k]j;}';j for every i.
But then
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112

Li]
!|E Pnl.xpmﬂ'i Ial{z mePm}j;F

n
E':':E Per¥Pin }'ij
(1K) 2y
n
(1K) Z b
(1AM mi? .
As usual, the sharpness is obtained by considering x = £ - E{f,).

[

Q.E.D.

Noptice that by the Perron-Frobenius theorem [11, Theorem 2.1] ,if % and y are
matrices with non-negative entries, then lxll £ Ix + yll . In particular, llx - E(x)ll < llxll . 'We
can now prove the main theorem of this section.

THEOREM 3.4, Let x be an n X n matrix with non-negative entries and let k
be any positive integer. Then o (x) = (2l . If x =x*, then op(x) = (1/kMxl.
The constant 1/ s sharp.

FROOF : By the remark preceding this theorem, we can assume without loss of
generality that E(x)=0. Clearly, we can also assume that x has no zero direct summands
( relative to the given basis {1;} ).

Consider first the case of x =x* . By the Perron-Frobenius theorem [11, Theorem 2.1],
x has an eigenvector { corresponding to the eigenvalue llxll, with enmries {, = 0. Let

n
pH = span{m; | { > 0); then from Ex-,jﬂj = Ix; and the fact that x 0 2 0, we

see that x; = 0 forall je p,ie p,ie pixp = 0, and hence p reduces x. Thus pxp

1]
has the eigenvector p{ with (pl); > 0 forall i e p. Moreover, plxpt is again a matrix
with zero diagonal and non-negarive entries, and since we are assuming that x has no zero
direct summand, we have that 0 < llplxptl £ lxll. Thus, by iterating, we can decompose x
into a direct sum ( relative to the basis {1} ) x = Z@&x(h) of matrices x(h) that have some
eigenvector E(h) with strictly positive entries ( in the h-th block } . Let £ =Z@E(h) ; then
(7 (xE) < IxIE and & >0 forall 1 <i<n.

Define the matrix y = (§&x;;) . then y satisfies the conditions of Proposition 3.1 and thus

n

there is a k-d.d. [p,,] . such that for every i we have E(Epmypm}h < {1;1-:}122_51-_ Then,
forevery 1 < s < k and every i € p, , we have

SilpsxpaS) ﬁigfﬁs“’s}ﬂ &

2 (PyPuij
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n
= Z(ZPnyPnly
n
< M2 vy
n
= Hﬂl}ﬁigxijﬁj
¢ (MIIE?,

This inequality also holds forall i e p,, since in this case the lefi-hand side is 0. Dividing by
E. , which by (17) is non-zero, we obtain for all s that (pxpE); = (L) Ixll E; forall i.
Therefore by the Perron-Schur test [11, Theorem 2.2 or 6, Problem 45] we have that

Mppl s (/k)ixll forall 1 £ 5 < k, and hence

(18) IE PPl < (1)

Thus we conclude that @, (x) < (1/k)lxll . Example 2.9 iii) shows that for the selfadjoint
case the constant 1/k is sharp.

In the non-selfadjoint case take a k-d.d. {p,] that satsfies (18) for the operator
x +%*. Then by the remarks preceding this theorem, we have that
(19) IEpaXpal £ X p(x +x*)p,

= (1i)x + x*l
= (2k)hxil,
so ogdx) = (2l .
Q.ED.

Clearly, the obstruction to extending this result to general matrices with real entries, by
splitting them into a difference of two matrices with non-negative entries, is that their norms
may be much larger than the norm of their difference.

By using Proposition 2.6 and (10) we easily pass to the infinite case:

COROLLARY 35 1) If xe B(H) and x has non-negative entries, then
o ix) = (2RIl and if x=x*, then o (x)= (L/k)xll. The constant 1/k is sharp.

ii) Every bounded marrix with non-negative entries has the RDP,

Since the set N of elements having the RDP is a uniformly closed subspace of B(H),
N contains all bounded matrices with non-negative entries together with the C®-algebra that
they generate ( which coincides with the Banach space that they generate).

As an application of this method, consider the following example.

EXAMPLE 3.6. Let x = T, be a Toeplitz operator with symbol ¢ = L™(0.2x) ,
having Fourier cocfficients @(n) = 0 forall n € Z. Then it is well known that

E(x) = (O and lixll = lpll_. Also, one sees from standard techniques in harmonic

k-]
analysis that [$(n)} € #' and Ilq}ll,,=n_}‘§ §(n). Thus ¢ is continuous, hence xe N,
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ie, c(x)=0[8, Corollary 4.2]. But by Corollary 3.5 and Remark 2.7 i) we can say more,
namely that for every k, thereisa k-dd. {p,] such that

(20) IE Pl - ()il < (2N - G0N, .

§4 SCHATTEN P-NORM INEQUALITIES.
We have seen in the previous sections that the relative Dixmier property ( and hence the
extension property ) can be reduced to the finite dimensional case, and the laner can be analyzed
in terms of the parameters o, . The following generalization in terms of the Schaten p-norms
( for p 2 1 ) is of independent interest and may also further our understanding of the inequalities
involving o .

Let C; be the Schatten p-ideal and let I I, be the p-norm (p 21 ); then define for all

I.ECF

(21) {:tt_P{xj = inf { IZ pyfx - Ex)pall, 1 {p,} isa k-dd. }
The infimum in (21) is always attained ( see Remark 2.7 i) and ii) ). By Remark 2.7 ii),
(22) 0 px) = lim, oy (g.xq,) forall xe G'kzlandpz1.

Thus it shall again suffice 10 consider finite matrices.

Notice that if x is a finite matrix, or more generally, if x € C, for some q, then
{lixll,) 5 o decreases monotonically to Iixll . As a consequence, @, ,(x) decreases
monotonically to o, (x) and thus an upper bound for Py is given by

(23) By < lim,sup( oy (x)ix - EGOIL, | xe (I:J MAD } .
Thus analyzing the upper bounds of the ratic mh,{x)ﬂlx . E{x}llp , forall p ( or at least for all
p of the form 2™, m=1,2,... ), has a bearing on the relative Dixmier property for D C B(H).
A first step in this direction is given by Theorem 4.4 ( for p=2) and by Proposition 4.6
( forp=4 and the class of Hadamard matrices ).
We start our analysis with generalizations of Lemma 2.10 and Proposition 2.11.
LEMMA 4.1.  Ler x be an nxn marix with Ixjl 2 507 for all i.j and let
P 2 2;then ay(x) 2 5n'P12 NE(x)IL, .
PROOF: Let l/p +1lfg = 1/2. Then from Hilder's inequality we have
i, 2 o', 2 3a'P.
Likewise, for every diagonal projection r we have
exryyl 2 8077 = B0 dim n)'*(dimn)'? forall ijer,
and hence
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rxell, 2 &n” dim n)'P(dim n'® = &0 (dim ',
Thus if {p,} isa k-d.d., then

iIEpmxpmllpp = 2ZIpo*Pm Ilpp
&n e % (dim pm}I o
Ern-pﬂnl +pil i Pl 1
where the last inequality is obtained from an application of Holder's inequality for
(1 +pﬂ}'1 +(1 +2,l'p}" = 1 wthesum 3 dimpy, = n. Thus

I

I

IZ paxpall, = 80 k7
and hence
IS peslx - EGOpll, 2 80Pk ™7 - IEGOI, .
Q.ED.
PROPOSITION 42 i) If x is an n x n Hadomard matrix and p = 2, then
o pix - B, 2 & -0y 4077
i) sup { o (X -EQI, | x=x"e CpD } 2 k2.
PROOF: Let x bean nxn Hadamard matrix; then Ixll, = n'?,
IEG)Il, = 0" and by Lemma 4.1 we have

ay )k - EGoll, 2 2 - 0720 Ppix - Ego,
> &2 p"ya +n'?.
As we have noticed in the proof of Propeosition 2.11, there are selfadjoint Hadamard matrices of
arbitrarily large size, hence ii) follows immediately from i).
QED.

Let us also compute the parameters @, () for the projection f,,, which we have used
so often to prove the sharpness of our results. To simplify our task, we can assume without
much loss that k divides n.

EXAMPLE 43 oy (f)/If,- EEI, = k™9 - e(n,k,p) where I/p+1/g =1
(if p=1 wetake 1)g=0). This relation defines &(n, k, p) and we have lim_ ein, k. p) = 0
forall k and p. Actually,

(24) Oy plEn 1, - E(fll, =
= kM (k) (k)P ) £ -1y -+ Pty )

Indeed, if r is any diagonal projection, we have seen in Example 2.9 iif) that rf,r is

unitarily equivalent to {1/n dim r)fg ., . and hence
r{f,- BE(E)r = (Un){ (dimr- D50, - - f5ime) 1.
where I isthe rxr identity matrix. Then
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l(E, - EEDell, = () (dimr- 17 +dimr- 1)
In particular, taking r = I, we have that

(25) g, - ECE, = { (1-1m) (1 - 1)+ )™y }1P
Let [r,} beany k-dd.:then
26) IZ f(fa- EE D, = (VDT { (@dimi,, - 1)° + (dim - 1) ]

A (- P +n-k)
K ) - k)P + )™y,
using Holder's inequality for 1/p + 1/q = 1 appliediwo > (dimr,-1) = n-k. Onthe

n

other hand, since we assume that k divides n, we can choose, as in Example 2.9 iii), a
k-d.d. with projections 1, having all dimension nfk . Substituting dimr, = n/k in the first
equality in (26) , we have

IS T(Ey - BEDIR, = Py o= 1)F + ok - 1)

kML (1 - k) (1 - k)P )Py P
Thus combining this with the inequality in (26), we obtain (24) .

Motice that (at least for n = 2k) we have:
(27 oy pEMME, - BEN < K719,
which follows from (24) and the fact that the function (1-x ]p +(1-x JxIH is decreasing
on{0,1/2). For p =2,(27) holds for all Hilbert-Schmidt operators. Indeed Corollary 3.3
immediately yields the fact that for every finite selfadjoint matrix x and every k thereisa
k-dd. {p,]) such that
(28) IZ. (% - ECO)pPyll, < K Pk - Bl
We are going to prove (28) also in the non-selfadjoint case by using a different averaging
method.

THEOREM 4.4. i) Let x be an nx n matrix and assume that k divides n .
Then thereisa k-dd. {py) with dimp, = nk forall m, such that

IZ P - ECDpyll, < kP - EGol,.

ii) For every Hilbert-Schmidt operator x we have (x) < kIixil,. This result is
sharp. Thus sup{ @ (x) | xe (G ) = K2,

PROOF: i) Without loss of generality we can assume that E(x) =0. Consider the
set P of ordered equidimensional k-d.d. {p,} ie. k-dd. where dimp, = n/k forall
1 £ m £ k, and let 1P| be its (finite) cardinality. Then for each {p,} € P we have
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29 IZpaxPaly’ = T2, ZIPuxPal
Summing (29) overall {py] = P we have
nonon
G0  SUIZppal’ | (al€ P} = 2T ZT(I@axpa)l | (Pale P

Foranygiven 1 £i,j <nand 1 £ s £ k wehavethat (pxp.)y = x; if Liep,
and () otherwise, hence

(31) T (pexpf® | (pm) € P ) = clxyl

where c is the number of k-d.d. [p,)e ® suchthatboth i and j are in projection p, at
the s place in the decomposition. It is clear that ¢ does not dependon x ,noron i,j and s;
we can compute ¢ by using a purely probabilistic argument. Indeed, for any given projection
P . the probability that ie p, is equal to the ratio of the dimensions of p; to the dimension

of 1:thusitis (n/ki¥n = 1/k. Similarly, the probability that for j#1i both i and j arein p,
is (1 (n/k)-1¥n-1). Therefore

(32) ¢ = IPI{LR(LK- I/n}/(1-1/m),
Substituting (32) in (31) and then in (30) and summing over m , we have
(33) S (IS poxplh’ | (pa) € P ) = IPI(1k- U1 - 1/m) lixlly” .

By the averaging principle, there has to be at least one k-dd. [p,} of ¥ such that
IS poxpull? S (k- /(L - Un)lixlly € (1Al .
MNow ii) follows easily from i), since @y 9(x) = lim, 0 5(Qyxqy) by (22) . The sharpness
follows from Proposition 4.2 or Example 4.3.
QED.

As a consequence of Proposition 4.2 i) and Theorem 4.4 1) we obtain

COROLLARY 4.5 Let % be an nxn Hadamard marrix and let k divide n;
then &2 o +0' € ek - Bl £ k7.

For Hadarnard marrices, we can extend the proof of Theorem 4.4 to the case p=4.

PROPOSITION 4.6 Let x be an nxn Hadamard matrix and let k divide n;
then &KMoy +0'?) € k- Bl S 2% 4 ek
where the function €(n, k) does not depend on x and limg(n, k) = 0 for each k.

PROOF: Forevery nxn matrix y with zero diagonal, we can decompose
liyl," = tr ((A*AY) into

(34) Iyl = W) + R+ hB)
where
Ty = E{Fis:’rh;rjy}rjs 1 1<ijst sn;ijst all distinet }
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hy) = Z| |}rgj|1|}"|:j|1+ Iyplzlyjtlz I 1<jst<n;jst all distinct },
ny) = Tl | 1<stsn;ent |,

In the notation used in the proof of Theorem 4.4, we have:

(35) Z(IZpuyPals’ | (Pule P} = 8y + 8o + 83(y)

where
daly) = Z] ETE(Pm}rpm} | {Pnle ® )

T Hpypa)ed | (Pmle®) 1 1<Sst<n;s#t)
and similar expressions hold for &;(y) and 8,(y)}. Asin the proof of Theorem 4.4 ( cfr. (32) )
we can use a probabilistic argument to obtain for all s # ¢ that

ZpmyPodsd’ | (p) € P} = PULAIK - Im) - Un) Iy,

and thus
P850y} = (k- 1)/ (1-1/n)) Bs(y) .
Similarly,
o,y = ((1/k-1/n)(1/k-2m) / (1-1/n)(1-2n) ) (y) ,
P8, y) = ((1k-1/n)(1/k-2m)(1/k-3/n) / (1-1/n)(1-2/n)(1-3/n) ) ¥, (y) .

For a general y , we cannot proceed further for lack of a good estimate of (v} .
Now take y = x - E(x) where x is the given Hadamard matrix. Since lixll, = o'
and IEGN, = 0 wehave n(1-n"%* < Iyl® < n@+0™"* and hence
?3{1.""} = 1-1/n,
B = Z Oyl + ly* gt - 250),
n
Z((bn + IEGMN® + Q*nyl + TEG*n") - 2ys(y)
2n(l 4+ - 2 + 2,

[0

and similarly,
w =2 -0 - 2 4 2.
Thus, from (34) we have
Ty = il - 1) - B
< n(l+nV - 2n@-o®®* + 1 - 1,

Therefore
118, (y) < -0k + glnk),
1P, (y) < 20kt + 850k,
P11 84(y) = gink),
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IPIBy(y) + Boly) +8a(y)) < 20/k° + gy(nk)

(2" + £5(nk) n (1 - 0ty
2 "™k 4 g Iyl ,

where limg gnk)n = 0 for i=1,2,3,4 and lim g(nk) =0 for i=35,6.

Therefore, by the averaging principle applied to (35), we can find a k-d.d. in ® such that

IEpoypalla/ Tylly < 2% + gink) .
This, together with Proposition 4.2, completes the proof.
QED.
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