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Abstract. This paper is part of an eight paper project [14]-[20] studying

the arithmetic mean operator ideals in B(H) introduced by Dykema, Figiel,

Weiss and Wodzicki in [10]. Every ideal I is generated by diagonal operators

with positive decreasing sequences, and its arithmetic mean ideal Ia is gen-

erated by diagonal operators with the arithmetic means of those sequences.

In this paper we focus on lattice properties: we prove that the lattices of

all principal ideals, of principal ideals with ∆1/2-generators, of arithmetic

mean stable principal ideals (I = Ia), and of arithmetic mean at infinity

stable principal ideals (I = Ia∞ ) are all both upper and lower dense in the

lattice of general ideals, i.e., between any ideal and an ideal in one of these

sublattices lies another ideal in that sublattice. Among the applications: a

principal ideal is am-stable (similarly for am-∞ stable) if and only if any

(hence all) of its first order arithmetic mean ideals are am-stable, e.g., its

am-interior, am-closure and others. A principal ideal I is am-stable (simi-

larly for am-∞ stable) if and only if it satisfies any (hence all) of the first

order equality cancelation properties, e.g., Ja = Ia ⇒ J = I. Cancelations

can fail even for am-stable countably generated ideals. We prove that while

the inclusion cancelation Ja ⊃ Ia ⇒ J ⊃ I does not hold in general, even

for I am-stable and principal, there is always a largest ideal Î for which

Ja ⊃ Ia ⇒ J ⊃ Î. Furthermore, if I is principal and has generator diag(ξ),

then Î has generator diag(ξ̂) and ξ̂ is a sequence optimal in the majorization

sense. That is, η ≥ ξ̂ asymptotically for all sequences η decreasing to zero

for which
∑n

1 ηj ≥
∑n

1 ξj for every n and ξ̂ is asymptotically sharp. In

particular, ω̂1/p = ω1/p′ for the harmonic sequence ω = < 1
n
>, 0 < p < 1,

and 1/p− 1/p′ = 1.
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1. Introduction

Operators ideals, the two-sided ideals of B(H), have played an important role
in operator theory and operator algebras since they were first studied by J. Calkin
[8] in 1941.

Many of the questions in the theory have involved the structure of the lattice L

of all operator ideals and of its distinguished sublattices, like the lattice PL of all
principal ideals. For instance, one basic question due to Brown, Pearly and Salinas
[7] was whether or not the ideal of compact operators K(H) was the sum of two
proper ideals. This was settled affirmatively in [6] for any proper ideal strictly
larger than F (the ideal of finite rank operators) using the continuum hypothesis
and the techniques employed led to the set-theoretic concept of groupies density
that has proved useful in point-set topology and abelian group theory ([4], [5],
[24]). Other work by Salinas (e.g., [25]) studied increasing or decreasing nests of
special classes of symmetric norm ideals (Banach ideals).

Another central topic in the theory was the study of commutator spaces (also
called commutator ideals) on which much work was done from the early years.
More recently, the introduction of cyclic cohomology in the 1980’s by A. Conned
(e.g., see [9]) and the connection with algebraic K-theory by M. Wodzicki in the
1990’s (e.g., see [31]) provided a powerful motivation for further work on operator
ideals and in particular on commutator spaces. Arithmetic means of monotone
sequences were first connected, albeit only implicitly, to commutator spaces in [27]
(see also [28]-[29] and survey [30]) and then explicitly for the trace class in [22].
They provided the key tool for the full characterization of commutator spaces
achieved in [10] in terms of arithmetic mean operations on ideals. This lead to
the definition of a number of arithmetic mean ideals derived from an ideal I: the
arithmetic mean Ia, the pre-arithmetic mean aI, the am-interior Io and the am-
closure I−. After [10], the connection between arithmetic means and operator
ideals were further studied in [23], [11], [12] and in an ongoing program by the
authors of this paper which was announced in [14] and which includes [15]-[17].

At the beginning of this project it soon became apparent that to investigate
questions such as “how many traces can an ideal support”, i.e., the codimension
of the commutator space of the ideal, which question formed the main focus of
[15], a more systematic study of the actions of the arithmetic mean operations on
operator ideals was necessary and the action of the arithmetic mean at infinity
needed also to be introduced formally (see Section 2 herein for definitions). This
program was carried out in part in [15] and further in [16], but many questions,
and in particular those involving arithmetic mean cancelation properties, led to an
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analysis of the relation between operator lattices and arithmetic mean operations.
The goal of this paper is to provide this analysis and its applications.

Section 2 introduces the notations and some of the necessary preliminaries for
arithmetic mean ideals.

In Section 3 we study the density properties of ideal sublattices of L. Given
two lattices L1 ⊂ L2, L1 is said to be upper dense in L2 if for every pair of ideals
I1 ( I2 with Ii ∈ Li, there is an intermediate ideal I1 ( L ( I2 with L ∈ L1.
The notion of lower density is similar. We consider the following sublattices of L.
(See the next section for their precise definitions.)
• PL: principal ideals,
• Lℵo

: countably generated ideals,
• ∆1/2PL: principal ideals with a generator that satisfies the ∆1/2-condition,
• SPL: principal ideals with an am-regular generator,
• S∞PL principal ideals with an am-∞ regular generator.

A first result, which is then used throughout the paper, is that PL and Lℵo
are

upper dense in L (Corollary 3.7). These lattices are, however, not lower dense in
L as every nonzero principal ideal I has a gap underneath it, i.e., an ideal M ( I

with no other ideals in-between (Corollary 3.4).
The main technical results of this section and of the paper are that ∆1/2PL,

SPL, and S∞PL are both upper and lower dense in PL (Theorems 3.9, 3.10
and 3.13). The proofs require us to construct between a “nice” sequence (the s-
numbers of the generator) and a possibly “bad” but comparable sequence, a new
“nice” intermediate sequence that is inequivalent (in the ideal sense) to either of
the two given sequences. The key tool in the case of SPL and S∞PL are the
Potter-type conditions satisfied by the regular or ∞-regular sequences. For the
am-case, these are just the properties of the Matuszewska β -index studied in [10,
Theorem 3.10]. For the am-∞ case, these are the properties of the Matuszewska
α-index and were introduced in [15, Theorem 4.12].

In Section 4 we show that a Banach ideal is am-stable if and only if it is
the union of am-stable principal ideals (Proposition 4.3). While it is clear that
every ideal is the union of the principal ideals that it contains, it is not known
which ideals are the union of an increasing chain of principal ideals. Assuming
the continuum hypothesis, we show that every ideal is the union of an increasing
chain of countably generated ideals, and we prove that if the ideal is the power of
a Banach ideal then it is also the union of an increasing chain of principal ideals
(see Proposition 4.4).

In Section 5 we use the density results from Section 3 to analyze the relation
between the properties of an ideal and those of its first order arithmetic mean
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ideals (resp., arithmetic mean ideals at infinity, see the next section for defini-
tions). The first results (Theorems 5.1 and 5.2) are: for principal ideals, the
am-stability (resp., am-∞ stability) of I is equivalent to the am-stability of any
of its first order arithmetic mean ideals (resp., first order arithmetic mean ideals
at infinity). What is perhaps interesting is that this “rigidity” property does not
extend even to countably generated ideals: Examples 5.4 and 5.5 exhibit ideals
that are not am-stable but have various first-order am-ideals that are am-stable.

In Section 6 we apply density to investigate first order cancelation properties
for arithmetic mean operations. (Second order cancelation properties are more
complex and are studied in [14] and [17].) Equality cancelation questions ask:
Under which conditions on an ideal I, does Ja = Ia imply J = I? (and similarly
for the other derived am and am-∞ ideals). Inclusion cancelation questions ask:
Under which conditions on an ideal I does Ia ⊂ Ja imply I ⊂ J , or Ja ⊂ Ia
imply J ⊂ I? (and similarly for the other derived am and am-∞ ideals). Beyond
the elementary cancelations (e.g., for fixed I, Ja ⊂ Ia ⇒ J ⊂ I if and only if I
is am-closed (see Lemma 6.1)), we know of no natural conditions for general am-
cancelation to hold. Examples 5.4 and 5.5 show that the equality am-cancelations
can fail even for am-stable countably generated ideals.

For principal ideals however, the necessary and sufficient condition for equality
cancelations is that the principal ideal I is am-stable (resp., am-∞ stable) (see
Theorem 6.7). One key ingredient in the proof is the fact that for countably
generated ideals, and hence for principal ideals, am-stability is equivalent to am-
closure, and similarly for the am-∞ case (see [16, Theorems 2.11 and 3.5]). For
other cancelations we need instead a technical result that shows that if a principal
ideal is am-open but not am-stable, then it properly contains and is properly
contained in two other principal ideals that share with it, respectively, the same
am-open envelope and the same am-interior, and similarly for the am-∞ case
(Proposition 6.5).

For the nontrivial inclusion cancelations, am-stability is not sufficient even
in the principal ideal case. For instance, for every principal ideal I, there is a
principal ideal J with aJ ⊂ aI but J 6⊂ I (Proposition 6.8 ), i.e., no cancelation
whatsoever is possible.

For the cancelation Ja ⊃ Ia ⇒ J ⊃ I, a stronger condition than am-stability
is required for the ideal I. Indeed, we show that for every ideal I there is an
“optimal” ideal Î for which Ja ⊃ Ia ⇒ J ⊃ Î. If I = (ξ), then (̂ξ) = (ξ̂).
Furthermore, the sequence ξ̂ is also optimal in the memorization sense, i.e.,
if ηa ≥ ξa then η ≥ ξ̂ asymptotically (Theorem 6.14). Sequences for which
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(ξ) = (ξ̂) are necessarily regular (Proposition 6.17) and they form a distinguished
proper subclass of the regular sequences. Indeed, for the harmonic sequence
ω, ω̂p � ωp

′
, where 0 < p < 1 and 1

p −
1
p′ = 1 (Corollary 6.16). Thus ω1/2 is

regular but ω1/2 6� ω̂1/2 � ω. This result is linked to the single commutator
problem implicit in [10, Chapter 7] on whether containment in the class of
single (I,B(H))-commutators, [I,B(H)]1, of a finite rank nonzero trace operator
implies ω1/2 ∈ Σ(I).

This paper employs commutative techniques to study noncommutative objects
(operator ideals). The main source of these connections derives from Calkin’s
B(H)-ideal characterization in terms of positive cones of sequences discussed next.

2. Notations and Preliminary results

Calkin [8] established the inclusion preserving lattice isomorphism

I → Σ(I) := {s(X) | X ∈ I}

between two-sided ideals I of B(H), the algebra of bounded linear operators on a
separable infinite-dimensional complex Hilbert space H and the characteristic sets
Σ ⊂ c∗o, i.e., the hereditary (solid) ampliation invariant (see below) subcones of
the collection c∗o of sequences decreasing to 0. Here s(X) denotes the sequence of
the s-numbers of the compact operator X and the inverse of this correspondence
maps a characteristic set Σ to the ideal generated by the collection of diagonal
operators {diag ξ | ξ ∈ Σ}.

Two sequence operations, the arithmetic mean acting on c∗o and the arith-
metic mean at infinity acting on (`1)∗ (the monotone nonincreasing summable
sequences) respectively,

ξa :=

〈
1
n

n∑
1

ξj

〉
and ξa∞ :=

〈
1
n

∞∑
n+1

ξj

〉

are essential for the study of commutator spaces (i.e., commutator ideals) and
hence traces on ideals, as mentioned in the introduction (e.g., see [10] and [14]-
[16]). For the readers’ convenience we list the definitions and first properties from
[10, Sections 2.8 and 4.3] of the ideals derived via arithmetic mean operations
(am-ideals for short).
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If I is an ideal, then the arithmetic mean ideals aI and Ia, called respectively
the pre-arithmetic mean and arithmetic mean of I, are the ideals with character-
istic sets

Σ(aI) := {ξ ∈ c∗o | ξa ∈ Σ(I)}
Σ(Ia) := {ξ ∈ c∗o | ξ = O(ηa) for some η ∈ Σ(I)}.

The arithmetic mean-closure I− and arithmetic mean-interior Io of an ideal (am-
closure and am-interior for short) are defined as

I− := a(Ia) and Io := (aI)a.

For any ideal I, the following 5-chain of inclusions holds:

aI ⊂ Io ⊂ I ⊂ I− ⊂ Ia
and the identities

Ia = (a(Ia))a and aI = a((aI)a).

Other first order arithmetic mean ideals derived from a given ideal I and in-
troduced in [14], [16] are the largest am-closed ideal I− contained in I and the
smallest am-open ideal Ioo containing I.

We take this opportunity to make a shift in the terminology introduced in [14].
There we called 2nd order arithmetic mean ideals those obtained from applying
twice the basic am and pre-am operations to an ideal, e.g., the am-closure a(Ia)
and the am-interior (aI)a. In later work we found a commonality of properties
between the ideals Ia, aI, a(Ia), (aI)a and the ideals I− and Ioo mentioned above
that motivated us to now call them all first order am-ideals, while ideals of the
kind Ia2 , a2(Ia2), and so on will be called 2nd order am-ideals.

As a consequence of one of the main results in [10], an ideal is am-stable
(i.e., I = aI, or equivalently, I = Ia) if and only if I = [I,B(H)] if and only if
I supports no nonzero trace. In particular, ideals contained in the trace class L1

cannot be am-stable. For them, the arithmetic mean at infinity is the relevant
operation. It was often used as a sequence operation in connection with operator
ideals (see for instance [24], [21], [10], [32]) and its action on operator ideals was
studied in [15, Section 4]. For the readers’ convenience we list the definitions and
first properties.

If I is an ideal, then the arithmetic mean at infinity ideals a∞I and Ia∞ are
the ideals with characteristic sets

Σ(a∞I) := {ξ ∈ (`1)∗ | ξa∞ ∈ Σ(I)}

Σ(Ia∞) := {ξ ∈ c∗o | ξ = O(ηa∞) for some η ∈ Σ(I ∩ L1)},
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and the other derived am-∞ ideals are the am-∞ closure I−∞ := a∞(Ia∞), the
am-∞ interior Io∞ := (a∞I)a∞ , the largest am-∞ closed ideal, I−∞, contained in
I and the smallest am-∞ open ideal, Ioo∞, containing I ∩se(ω) where ω =< 1

n >

is the harmonic sequence and se(ω) is the ideal whose characteristic set consists
of sequences o(ω).

The am-∞ analog of the 5-chain of inclusions are

a∞I ⊂ Io∞ ⊂ I ∩ se(ω) and I ∩ L1 ⊂ I−∞ ⊂ Ia∞ ∩ L1

and the following identities hold

Ia∞ = (a∞(Ia∞))a∞ and a∞I = a∞((a∞I)a∞).

An ideal I is am-∞ stable (I = a∞I or, equivalently, I ⊂ L1 and I = Ia∞) if and
only if I = F + [I,B(H)] if and only if I supports a nonzero trace unique up to
scalar multiples (see [15, Theorem 6.6]).

For every ideal I, the lower and upper stabilizers

sta(I) :=
∞⋂
m=0

amI ⊂ I ⊂ sta(I) :=
∞⋃
m=0

Iam

are, respectively, the largest am-stable ideal contained in ideal I (possibly {0})
and the smallest am-stable ideal containing I.

In particular, sta(F ) = sta(L1) = sta((ω)) is the smallest am-stable ideal
(K(H) is the largest). For the am-∞ case and I 6= {0},

{0} 6= sta∞(I) :=
∞⋂
m=0

am
∞
I ⊂ I

and if I ⊂ L1, then

I ⊂
∞⋃
m=0

Iam
∞

are the largest am-∞ stable ideal contained in I and the smallest am-∞ stable
ideal containing I, respectively. In particular, F is the smallest am-∞ stable ideal
and the largest am-∞ stable ideal is sta∞(L1) = sta∞((ω)) with characteristic set

{ξ ∈ c∗o |
∑

ξn log
pn <∞ for all p > 0}.

(See [15, Definition 4.16-Proposition 4.18 including proof].)
Of particular interests-and the main focus of this paper-are principal ideals. If

X ∈ B(H) is a generator of the ideal I and ξ = s(X) is the s-number sequence
of X, then the diagonal operator diag ξ is also a generator of I, thus we will
denote I := (ξ), and by abuse of language, we will simply say that a sequence
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ξ ∈ c∗o generates the ideal (ξ). The characteristic set Σ((ξ)) of a principal ideal
(ξ) consists of the sequences η ∈ c∗o for which η = O(Dm(ξ)) for some m ∈ N,
where the m-fold ampliation is

c∗o 3 ξ → Dmξ :=< ξ1, . . . , ξ1, ξ2, . . . , ξ2, ξ3, . . . , ξ3, · · · >

with each entry ξi of ξ repeated m-times. More generally, (Dtξ)n := ξdnt e for all
t > 0, where dnt e, denotes the smallest integer majorizing n

t . A sequence is said
to satisfy the ∆1/2-condition if D2ξ � ξ, namely, D2ξ = O(ξ) and ξ = O(D2ξ)
(equivalently, if ξ � Dmξ for all m ∈ N). In particular, if at least one of the
generators satisfies the ∆1/2-condition condition, then (ξ) ⊂ (η) if and only if
ξ = O(η). Now, a principal ideal (ξ) is am-stable if and only if the sequence ξ
is regular (i.e., ξa = O(ξ)) since (ξ)a = (ξa) and every arithmetic mean sequence
satisfies the ∆1/2-condition. Less trivially since ξa∞ in general does not satisfy the
∆1/2-condition, it is also true that (ξ) is am-∞ stable if and only if ξa∞ = O(Dmξ)
for some m ∈ N if and only if the sequence ξ is ∞-regular (i.e., ξa∞ = O(ξ))
(see [15, Theorem 4.12]).

Operator ideals form a lattice L with inclusion as partial order and intersec-
tion (resp. sum) as meet (resp. join). To avoid tedious disclaimers herein, we
assume that L does not include the zero ideal {0}. Since for any ξ, η ∈ c∗o,
(ξ)∩ (η) = (min(ξ, η)) and (ξ)+(η) = (ξ+η), the collection of all principal ideals
forms a sublattice which we denote by PL. Since the intersections and sums
of two am-stable (resp. am-∞ stable) ideals is easily seen also to be am-stable
(resp. am-∞ stable), the collection of all am-stable (resp. am-∞ stable) principal
nonzero ideals forms a lattice that we denote by SPL (resp. S∞PL). Similarly, the
collection of all nonzero principal ideals having a generator sequence that satisfies
the ∆1/2-condition forms a lattice denoted by ∆1/2PL. Finally we will consider
the lattice Lℵo

of countably generated nonzero ideals. Here too, we will say by
abuse of language that an ideal is generated by a countable collection of sequences
in c∗o, meaning that it is generated by the corresponding diagonal operators. No-
tice that if I is generated by the sequences η(k), then η ∈ Σ(I) if and only if
η = O(Dm(η(1) + η(2) + ...+ η(k)) for some m, k ∈ N.

3. The general ideal lattice, sublattices, density and gaps

Definition 3.1.
(i) A gap in a lattice of ideals is a nested pair of ideals in the lattice, I ( J ,
between which there is no ideal in the lattice. An upper (resp. lower) gap for an
ideal I is a gap I ( J (resp. J ( I).
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(ii) For two nested lattices L′ ⊂ L′′, L′ is upper dense (resp. lower dense ) in L′′

provided that between every pair of ideals I ∈ L′ and J ∈ L′′ with I ( J (resp.
J ( I) lies another ideal in the smaller lattice L′.

Although by assumption all ideals in a lattice are nonzero, we still say
that {0} ⊂ I is a gap in the lattice if there is no ideal L in the lattice with
{0} ( L ( I, e.g., F has a lower gap in L.

First we discuss gaps in L.

Lemma 3.2.
(i) A pair of ideals I ( J is a gap in L if and only if J = I+(ξ) for some principal
ideal (ξ) and I is maximal among the ideals I ⊂ L ⊂ J such that (ξ) 6⊂ L.

(ii) An ideal J has a lower gap in L if and only if J can be decomposed into
J = N + (ξ) with N a (possibly zero) ideal and (ξ) 6⊂ N .

(iii) An ideal I has an upper gap in L if and only if there is a principal ideal
(ξ) 6⊂ I such that if I ⊂ I + (η) ⊂ I + (ξ) for some principal ideal (η), then either
I = I + (η) or I + (η) = I + (ξ).

Proof.

(i) If J = I + (ξ) for some principal ideal (ξ) and I ⊂ L ⊂ J , then L 6= J if and
only if (ξ) 6⊂ L, thus I ⊂ J = I + (ξ) is a gap in L precisely when I is maximal
among the ideals I ⊂ L ⊂ J such that (ξ) 6⊂ L. On the other hand, if I ⊂ J is a
gap in L, then for every ξ ∈ Σ(J) \ Σ(I) it follows that J = I + (ξ).

(ii) The condition is necessary by (i). If J = N + (ξ) with N a (possibly zero)
ideal and (ξ) 6⊂ N , then the collection C of all the ideals L with N ⊂ L ⊂ J and L
does not contain (ξ) includes at least N . It is immediate to see that the union of
every chain in C is also an element of C. Let M be the union of a maximal chain
in C, which must exist by the Hausdorff Maximality Principle. Then by part (i),
M ( J is a gap.

(iii) By (i) the condition is necessary. Indeed, if I has an upper gap in L, the gap
is of the form I ( I+ (ξ) for some principal ideal (ξ). But then, any intermediate
ideal I+(η) must coincide with either I or I+(ξ). The condition is also sufficient.
Indeed, if I ⊂ L ⊂ I+ (ξ) for some ideal L, then if I 6= L then there is a principal
ideal (η) ⊂ L \ I and hence I ( I + (η) ⊂ L ⊂ I + (ξ) and from I + (η) = I + (ξ)
it follows that L = I + (ξ), that is, I ( I + (ξ) forms a gap in L. �

As a consequence, between any two nested ideals I ( J there is always a gap.
Indeed, if ξ ∈ Σ(J) \ Σ(I), then by the above lemma there is gap between I and
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I + (ξ) ⊂ J . Another consequence of the lemma is the following corollary that
lower gaps in L can never be unique.

Corollary 3.3. If (ξ) 6⊂M , then there is a gap in L, N (M+(ξ), with N 6⊂M .
Consequently, if M ( J is a gap in L, then there is another gap N ( J in L with
M 6= N .

Proof. Decompose the ideal (ξ) into the sum of two non-comparable principal
ideals (ξ) = (ρ) + (η), i.e. (η) 6⊂ (ρ) and (ρ) 6⊂ (η), which implies that both are
properly contained in (ξ). For this decomposition, inductively choose a sequence
of indices n1 = 1 and nk ≤ knk < nk+1 where nk+1 is the smallest integer j for
which ξj <

1
k ξknk

. Then define ζi := 1
k ξknk

for i ∈ [nk, nk+1), and ηi = ζi and
ρi = ξi for i ∈ [nk, nk+1) for k odd, ρi = ζi and ηi = ξi for i ∈ [nk, nk+1) for k
even. Then ρ, η ≤ ξ, ρ, η ∈ c∗o, and ( ξ

Dkρ
)knk

= k for k odd and ( ξ
Dkη

)knk
= k for

k even, from which it follows that (ρ) ( (ξ), (η) ( (ξ), and (η) 6⊂ (ρ), (ρ) 6⊂ (η).
Moreover, (ξ) = (ρ) + (η) since max (ρ, η) = ξ ≤ ρ+ η ≤ 2ξ.

Now let M1 (resp. M2) be maximal among those ideals contained in M + (ξ)
that contain (ρ) but do not contain (ξ) (resp. that contain (η) but do not contain
(ξ)). Then each Mi ⊂M+(ξ) forms a gap by the maximality of the ideal Mi. But
if M ⊃M1 and M ⊃M2, then M ⊃ (ρ) and M ⊃ (η) hence M ⊃ (η) + (ρ) = (ξ)
against the assumption, so at least one N := Mi 6⊂M . In particular, if M ( J is
a gap in L, then J = M+(ξ) for every principal ideal (ξ) 6⊂M and for any choice
of such a principal ideal, the pair N ( J constructed above provides a lower gap
for J distinct from M ( J . �

An immediate consequence of Lemma 3.2 by choosing N = 0 in (ii) is:

Corollary 3.4. Every principal ideal has lower gaps in L.

Countably generated ideals may fail to have lower gaps as the following example
shows.

Example 3.5. Let I be an ideal with generators η(k), where the sequences η(k) all
satisfy the ∆1/2-condition and η(k) = o(η(k+1)). Then I has no lower gaps in L.

Proof. Assuming otherwise, by Lemma 3.2(ii), I = N + (ξ) for some principal
ideal (ξ) 6⊂ N . Then (ξ) ⊂ (η(ko)) for some ko and hence ξ = O(η(ko)). Without
loss of generality, assume ξ ≤ η(ko) ≤ η(ko+1). Since

η(ko+1) ≤ ζ +KDmξ ≤ ζ +KDmη
(ko) ≤ ζ +K ′η(ko)
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for some ζ ∈ Σ(N),K,K ′ > 0, and m ∈ N, and since η(ko) = o(η(ko+1)), it
follows that η(ko+1) ≤ K ′′ζ for some K ′′ > 0. Hence (ξ) ⊂ N , contradicting the
assumption (ξ) 6⊂ N . �

The fact that countably generated ideals and, in particular, principal ideals never
have upper gaps will follow from the more general fact that strongly soft comple-
mented (ssc for short) ideals never have upper gaps, which we prove in Proposition
3.6 below. An ideal I is defined in [16, Definition 4.4] to be ssc if for every se-
quence η(k) 6∈ Σ(I) there is a sequence of integers nk for which if ξ ∈ c∗o and
ξi ≥ η

(k)
i for all 1 ≤ i ≤ nk, then ξ 6∈ Σ(I). Without loss of generality, nk is

increasing. In [16, Propositions 4.5, 4.6, 4.7, 4.11, 4.12, and 4.18] we show that
many “classical” ideals are ssc, among them countably generated ideals, maximal
symmetric norm ideals, Lorentz, Marcinkiewicz, and Orlicz ideals.

Proposition 3.6. Let I =
⋂
Iγ be the intersection of strongly soft-complemented

ideals Iγ .
(i) If I ( I + (ξ), then there is a principal ideal (η) ⊂ (ξ) for which

I ( I + (η) ( I + (ξ).

(ii) I has no upper gaps in L.

Proof.

(i) First we prove the statement when I itself is strongly soft-complemented. Since
1
kD 1

k
ξ 6∈ Σ(I) for all k there is an increasing sequence of integers nk such that if

ζ ∈ c∗o and ζi ≥ 1
k (D 1

k
ξ)i for 1 ≤ i ≤ nk, then ζ 6∈ Σ(I). Define ηi = 1

k (D 1
k
ξ)i

for i ∈ (nk−1, nk]; then η ∈ c∗o and η ≤ ξ. Since 1
jD 1

j
ξ ≥ 1

kD 1
k
ξ for every j ≤ k,

ηi ≥ 1
k (D 1

k
ξ)i for all i ∈ [1, nk] and hence by the strong soft-complementedness

of I, η 6∈ Σ(I). Thus I ( I + (η). For every m ∈ N and for every i > mnm
choose that k for which nk−1 < d ime ≤ nk. It is easy to verify that k ≥ m + 1,
hence kd ime ≥ i, and thus (Dmη)i = ηd i

m e
= 1

k ξkd i
m e
≤ 1

k ξi, i.e., Dmη = o(ξ) and
hence (η) ⊂ (ξ). This implies that (ξ) 6⊂ I + (η) and hence that I + (η) ( I + (ξ).
Indeed otherwise ξ ≤ ζ + KDmη for some ζ ∈ Σ(I), m ∈ N, and K > 0. Since
Dmη = o(ξ), eventually ξi ≤ 2ζi, that is (ξ) ⊂ I, against the hypothesis.

Now we prove the general case. Since (ξ) 6⊂ I, then (ξ) 6⊂ Iγ for some Iγ in the
collection. Then by the first part of the proof there is a principal ideal (η) ⊂ (ξ)
such that Iγ ( Iγ + (η) ( Iγ + (ξ). In particular, (η) 6⊂ Iγ hence (η) 6⊂ I and
similarly, (ξ) 6⊂ Iγ + (η), hence (ξ) 6⊂ I + (η). Thus I ( I + (η) ( I + (ξ).

(ii) Immediate from Lemma 3.2. �
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In particular, Proposition 3.6 applies to all ssc ideals (e.g., all countably generated
ideals).

All the gaps proved here depend on the Hausdorff Maximality Principle or
its equivalent, Zorn’s Lemma. We do not know if the existence of gaps in L is
equivalent to these.

Next we discuss density of the lattices of principal ideals and countably gener-
ated ideals.

Corollary 3.7.
(i) Lℵo

is upper dense in L.
(ii) PL is upper dense in L.

Proof.

(i) If I ∈ Lℵo , J ∈ L, and I ( J , then there is a ξ ∈ Σ(J) \ Σ(I) and hence
I ( I + (ξ). By [16, Proposition 4.5], I is ssc, so by Proposition 3.6(i), there is a
principal ideal (η) such that I ( I + (η) ( I + (ξ) ⊂ J . By adding η to each of a
countable collection of generators for I, one easily sees that I + (η) ∈ Lℵo

.
(ii) By the same argument as in (i) and the fact that I + (η) ∈ PL when I ∈ PL,
and hence PL is upper dense in L. �

In particular, Lℵo
and PL have no gaps. Corollary 3.7 implies:

Corollary 3.8. Let I ∈ Lℵo
and J ∈ PL.

(i)
⋂
{L ∈ L | L ) I} =

⋂
{L ∈ Lℵo | L ) I} = I

(ii)
⋂
{L ∈ L | L ) J} =

⋂
{L ∈ PL | L ) J} = J

Gaps in other lattices can be studied by similar tools as the following two
simple examples illustrate.

If I ( J are am-closed ideals, then I ( I + (ξ) ⊂ J for some principal ideal
(ξ) ⊂ J . But then (ξ)− ⊂ J , hence I ( I + (ξ)− ⊂ J . By [16, Theorem 2.5],
I + (ξ)− is am-closed and by [16, Lemma 2.1(v)], the union M of a maximal
chain of am-closed ideals I ⊂ L ⊂ I + (ξ)− with (ξ) 6⊂ L is also am-closed. If
M ⊂ L = L− ⊂ I + (ξ)− and L 6= I + (ξ)−, i.e., (ξ)− 6⊂ L, then (ξ) 6⊂ L since L
is am-closed. By the maximality of the chain, I ⊂ M ( I + (ξ)− is a gap in the
lattice of am-closed ideals. Similar arguments show that pairs of am-open ideals,
am-∞ closed ideals and am-∞ open ideals all contain gaps in their respective
ideal lattices.

If (ξ) ∈ SPL and M ⊂ (ξ) is a gap in L, then M must be am-stable. Indeed,
if not M ( Ma ⊂ (ξ)a = (ξ) would imply Ma = (ξ), hence ξ = O(µa) for some
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µ ∈ Σ(M). Since also µa = O(ξ), µa � ξ, hence µa is regular. But then µ itself
is regular by [10, Theorem 3.10] and thus µ � ξ, against the assumption that
M 6= (ξ).

Together with the upper density of PL in L, the following three theorems
which are the technical core of this article, will provide the tools we need for
applications to arithmetic mean ideals. Recall that a sequence ξ ∈ c∗o satisfies the
∆1/2-condition if ξn ≤ Mξ2n for some M > 1 and all n and that ∆1/2PL is the
lattice of principal ideals with ∆1/2 generators.

Theorem 3.9. ∆1/2PL is upper and lower dense in PL.

Proof. First we prove lower density. Let (ξ) be a principal ideal where the
generating sequence ξ satisfies the ∆1/2-condition and let (η) ( (ξ). Then
η = O(ξ), so assume without loss of generality that η ≤ ξ. Construct induc-
tively two sequences of indices qk−1 < nk < qk as follows. Let M > 1 be a bound
for which ξn ≤Mξ2n for all n, choose an integer ko ≥M , set qko

= 1, and assume
the construction up to k − 1 ≥ ko. Since ξ /∈ Σ((η)) and hence ξ 6= O(η), choose
nk > qk−1 so that ξnk

≥ kMkηnk
and let qk be the largest integer i for which

ξi ≥ 1
k ξ2knk

. Since ξ2k+1nk
≥ 1

M ξ2knk
≥ 1

k ξ2knk
, it follows that qk ≥ 2k+1nk. Now

define the sequence

ζi :=


ξi i ∈ (qk−1, nk]
1
j ξi i ∈ (2j−1nk, 2jnk] and 1 ≤ j ≤ k
1
k ξ2knk

i ∈ (2knk, qk].

By construction, ζ is monotone nonincreasing and ζ ≤ ξ. By assumption,
ηi ≤ ξi = ζi for i ∈ (qk−1, nk] and ζi ≥ 1

k ξ2knk
≥ 1

kMk ξnk
≥ ηnk

≥ ηi for
i ∈ (nk, qk]. Thus η ≤ ζ and hence (η) ⊂ (ζ) ⊂ (ξ). The following inequalities
show that the sequence ζ satisfies the ∆1/2-condition.

ζi
ζ2i

=



ξi
ξ2i
≤M i ∈ (qk−1, nk]

1
j
ξi

1
j+1 ξ2i

≤ 2M i ∈ (2j−1nk, 2
jnk] and 1 ≤ j ≤ k − 1

1
k
ξi

1
k
ξ2knk

≤
ξ2k−1nk
ξ2knk

≤M i ∈ (2k−1nk, 2
knk]

1
k
ξ2knk
ζ2i

≤ ξqk
ζ2qk

=
ξqk
ξ2qk

≤M i ∈ (2knk, qk]
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Thus ζi

ζ2i
≤ 2M for all i. Finally ζ 6= O(η) and since

(
ζ
η

)
nk

=
(
ξ
η

)
nk

≥ kMk,

then also ξ 6= O(ζ) and
(
ξ
ζ

)
2knk

= k for all k. Since ζ satisfies the ∆1/2-condition,

it follows that (η) 6= (ζ) 6= (ξ), which concludes the proof of lower density.
Next we prove upper density. Let (ξ) ∈ ∆1/2PL, let (ξ) ( (η) and assume

without loss of generality that ξ ≤ η. Construct inductively two increasing se-
quences of integers nk, qk with 2nk−1 < qk < 2nk as follows. Let M > 1 be such
that ξn ≤ Mξ2n for all n, choose an integer ko ≥ M , set nko

= 0, and assume
the construction up to k − 1 ≥ ko. Since η 6= O(ξ), we can find infinitely many
integers rk such that ηrk

≥ kMk+1ξrk
. Let nk := [log2 rk], then

η2nk ≥ ηrk
≥ kMk+1ξrk

≥ kMkξ rk
2
≥ kMkξ2nk .

Choose rk sufficiently large so that ξ2nk−1+1 ≥ kξ2nk−k and let qk to be the largest
integer i for which ξi ≥ kξ2nk−k . As kξ2nk−k ≥ k

M ξ2nk−k−1 > ξ2nk−k−1 , because
ξi > 0 for all i as ξ satisfies the ∆1/2-condition, it follows that

2nk−1 < 2nk−1+1 ≤ qk < 2nk−k−1 < 2nk .

Now define the sequence

ζi :=


ξi i ∈ [2nk−1 , qk]

kξ2nk−k i ∈ (qk, 2nk−k]

jξi i ∈ (2nk−j , 2nk−j+1] for 1 ≤ j ≤ k.

Then by construction, ζ ∈ c∗o and ξ ≤ ζ. Since ζi = ξi ≤ ηi for i ∈ [2nk−1 , qk] and

ζi ≤ kξ2nk−k ≤ kMkξ2nk ≤ η2nk ≤ ηi for i ∈ (qk, 2nk ],

it follows that ζ ≤ η and hence (ξ) ⊂ (ζ) ⊂ (η). The following inequalities show
that ζ satisfies the ∆1/2-condition.

ζi
ζ2i

=



ξi

ζ2i
≤ ξi

ξ2i
≤M i ∈ [2nk−1 , qk]

kξ
2nk−k

ζ2i
≤ ξ

2nk−k

ξ
2nk−k+1

≤M i ∈ (qk, 2nk−k]
jξi

(j−1)ξ2i
≤ 2M i ∈ (2nk−j , 2nk−j+1] for 2 ≤ j ≤ k.

ξi

ξ2i
≤M i ∈ (2nk−1, 2nk ]

For the last inequality, notice that 2nk+1 ≤ qk+1, which was proved above. Finally,
from η2nk ≥ kMkξ2nk = kMkζ2nk and ζ2nk−k = kξ2nk−k it follows that η 6= O(ζ)
and ζ 6= O(ξ). Since both ξ and ζ satisfy the ∆1/2-condition, (ξ) 6= (ζ) 6= (η),
which concludes the proof. �
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As stated in ([10, Section 2.4 (22)] and in [14, Corollary 4.15(i)], the ∆1/2-
condition is equivalent to the Potter-type condition ξn ≥ C(mn )pξm for some
C > 0 (necessarily C ≤ 1), p ∈ N, and all n ≥ m. Although we did not need to
employ explicitly this condition in the above proof, similar conditions character-
izing regular and ∞-regular sequences will be essential in the proofs of the next
two theorems.

Theorem 3.10. SPL is upper and lower dense in PL.

Proof. Let (ξ) be an am-stable principal ideal, i.e., one whose generating se-
quence ξ is regular, namely, ξa ≤ Mξ for some M > 1. Equivalently, ξ satisfies
the Potter-type condition

ξn ≥ C(
m

n
)po ξm for some 0 < C ≤ 1, 0 < po < 1 and all n ≥ m

[10, Theorem 3.10 and Remark 3.11]. (See also [3, Proposition 2.2.1], [1]). Choose
any po < p < 1.

First we show the lower density of SPL in PL. Let (η) ( (ξ) and assume
without loss of generality that η ≤ ξ. Construct inductively two increasing se-
quences of indices qk−1 < nk < qk as follows. Choose an integer ko ≥ C−

1
p−po , set

qko
= 1, and assume the construction up to k − 1 ≥ ko. Since ξ 6= O(η), choose

nk > qk−1 so that ξnk
≥ kpηnk

and choose qk to be the largest integer i for which
ξi ≥ k−pξnk

. Then ξknk
≥ Ck−poξnk

> k−pξnk
and hence nk < knk ≤ qk. Now

define the sequence

ζi :=

{
ξi on (qk−1, nk]

max
(
k−p, C(nk

i )p
)
ξnk

on (nk, qk]

As a further consequence of the Potter-type condition and of the inequality just
obtained,

ζnk
= ξnk

≥ ξnk+1 ≥ max(k−p, C(
nk

nk + 1
)p)ξnk

= ζnk+1.

Also, ζqk
≥ k−pξnk

> ξqk+1 = ζqk+1. Thus ζ is monotone nonincreasing. By the
definition of qk and by the Potter-type condition, it follows that ζi ≤ ξi for all i.
By assumption, ζi = ξi ≥ ηi for all i ∈ (qk−1, nk], while ζi ≥ k−pξnk

≥ ηnk
≥ ηi

for all i ∈ (nk, qk]. Thus η ≤ ζ ≤ ξ and hence (η) ⊂ (ζ) ⊂ (ξ).
Next we prove that the sequence ζ is regular and hence the principal ideal (ζ)

is am-stable. If j ∈ (qk−1, nk], then (ζa)j ≤ (ξa)j ≤Mξj = Mζj . If j ∈ (nk, qk],
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then

j(ζa)j =
nk∑
1

ζi +
j∑

nk+1

max
(

1
kp
, C(

nk
i

)p
)
ξnk

≤
nk∑
1

ξi + (j − nk)
1
kp
ξnk

+ C

j∑
nk+1

(
nk
i

)pξnk

≤ nk(ξa)nk
+

j

kp
ξnk

+ C

j∑
i=2

(
nk
i

)pξnk

≤Mnkξnk
+

j

kp
ξnk

+
j

1− p
C(
nk
j

)pξnk

≤ j
(

1
kp
ξnk

+ (
1

1− p
+
M

C
)C(

nk
j

)pξnk

)
≤ j(1 +

1
1− p

+
M

C
)ζj .

Thus ζa = O(ζ), i.e., ζ is regular. Since ζnk
= ξnk

≥ kpηnk
, it follows that

ζ 6= O(η).
¿From the Potter-type inequality,

ξknk
≥ Ck−poξnk

= Ck−(po−p)k−pξnk
= Ckp−poζknk

and thus ξ 6= O(ζ). As ζ is regular and hence satisfies the ∆1/2 condition, we
conclude that (η) ( (ζ) ( (ξ).

Now we prove the upper density of SPL in PL. Let M > 1, po < p < 1, and
0 < C ≤ 1 be as above and let (ξ) be am-stable with (ξ) ( (η) for some principal
ideal (η), and assume without loss of generality that ξ ≤ η. Construct inductively
two increasing sequences of indices nk−1 < qk < nk as follows. Choose an integer
ko ≥ 2C−1/p, set nko

= 1, and assume the construction up to k−1 ≥ ko. Since ξ is
regular and hence not summable, choose qk > nk−1 such that

∑qk

nk−1
ξi ≥ nk−1ξ1.

Since η 6= O(ξ), choose an integer nk such that ηnk
≥ kpξnk

and ξnk
≤ k−pξqk

. By
increasing if necessary qk, assume without loss of generality that qk is the largest
integer i such that ξi ≥ kpξnk

. Clearly, qk < nk. Next, define the sequence

ζi =

{
ξi i ∈ [nk−1, qk]

min
(
kp, 1

C (nk

i )p
)
ξnk

i ∈ (qk, nk)
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By definition, ζqk
= ξqk

≥ kpξnk
≥ ζqk+1 and since kp > kpo ≥ 2p

C > 1
C

(
nk

nk−1

)p
,

it follows that ζnk−1 = 1
C ( nk

nk−1 )pξnk
> ξnk

= ζnk
. Thus ζ is monotone nonin-

creasing. Since ξi = ζi for i ∈ [nk−1, qk] and ξi < ζi for i ∈ (qk, nk) because
ξi ≤ 1

C

(
nk

i

)po
ξnk

< 1
C

(
nk

i

)p
ξnk

and ξi < kpξnk
by the definition of qk, it follows

that ξ ≤ ζ. Since ζi = ξi ≤ ηi for i ∈ [nk−1, qk] and also ζi ≤ kpξnk
≤ ηnk

≤ ηi
for i ∈ (qk, nk), it follows that ζ ≤ η. Therefore (ξ) ⊂ (ζ) ⊂ (η).

Next we prove that the sequence ζ is regular and hence the principal ideal (ζ)
is am-stable. If j ∈ (qk, nk), then recalling that by definition ξ1 = ζ1, ξ ≤ ζ, and
that

∑qk

nk−1
ξi ≥ nk−1ξ1,

j(ζa)j =
nk−1−1∑

1

ζi +
qk∑
nk−1

ξi +
j∑

qk+1

min
(
kp,

1
C

(
nk
i

)p
)
ξnk

≤ nk−1ξ1 +
qk∑
nk−1

ξi +
j∑
2

min
(
kp,

1
C

(
nk
i

)p
)
ξnk

≤ 2
j∑
1

ξi + min

(
j∑
2

kp,

j∑
2

1
C

(
nk
i

)p
)
ξnk

≤ 2j(ξa)j + min
(
jkp,

j

1− p
1
C

(
nk
j

)p
)
ξnk

≤ 2Mjζj +
j

1− p
min

(
kp,

1
C

(
nk
j

)p
)
ξnk

= (2M +
1

1− p
)jζj .

If j ∈ [nk, qk+1], then by using the above inequality and the definition of ζ, and

recalling that ζnk−1 = 1
C

(
nk

nk−1

)p
ξnk

, we have

j(ζa)j = (nk − 1)(ζa)nk−1 +
j∑
nk

ξi ≤ (2M +
1

1− p
)(nk − 1)ζnk−1 +

j∑
1

ξi

= (2M +
1

1− p
)
nk
C

(
nk

nk − 1

)p−1

ξnk
+

j∑
1

ξi

≤ 1
C

(
(2M +

1
1− p

)nkξnk
+

j∑
1

ξi

)
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≤ 1
C

(2M +
1

1− p
+ 1)j(ξa)j

≤ 1
C

(2M +
1

1− p
+ 1)Mjξj

=
1
C

(2M +
1

1− p
+ 1)Mjζj .

Thus ζa = O(ζ), i.e., ζ is regular and hence the principal ideal (ζ) is am-stable.
Since ηnk

≥ kpξnk
= kpζnk

it follows that η 6= O(ζ). Set mk = d nk

kC1/p e, the
smallest integer majorizing nk

kC1/p . Since mk

nk
< 1

kC1/p + 1
nk

< 1 because k > ko,
and using the inequality ξmk

≤ 1
C ( nk

mk
)poξnk

< 1
C ( nk

mk
)pξnk

≤ kpξnk
, it follows

that qk < mk < nk. By the same inequalities,

ζmk
=

1
C

(
nk
mk

)pξnk
= (

nk
mk

)p−po
1
C

(
nk
mk

)poξnk
>

(
1

kC1/p
+

1
nk

)po−p

ξmk
.

and hence ζ 6= O(ξ). As ζ is regular and hence satisfies the ∆1/2-condition, it
follows that (ξ) ( (ζ) ( (η), which concludes the proof. �

Now we consider am-∞ stable principal ideals, i.e., ideals with ∞-regular gener-
ating sequences. The main tool for proving the upper and lower density of S∞PL
in PL is the Potter-type inequality for ∞-regular sequences [15, Theorem 4.12]
(see proof of Theorem 3.13). Similar to the am-case, but much less trivial, a
sequence ξ is ∞-regular, i.e., (ξ)a∞ = (ξ) if and only if ξa∞ = O(ξ) (see [ibid.]).
The main technical complication with respect to the arithmetic mean case is that
∞-regular sequences in general do not satisfy the ∆1/2-condition (e.g., see [15,
Example 4.5(ii)]). Thus Dm considerations are unavoidable, i.e., to prove that
the inclusion of two principal ideals (η) ⊂ (ξ) is proper, it is necessary to show
that ξ 6= O(Dmη) for all positive integers m. We first need the following lemmas.

Lemma 3.11. If (ξ) ) F , then (ξ) ) (η) ) F for some am-∞ stable principal
ideal (η).

Proof. Define η :=< 2−j
∏j2

j ξi > and assume without loss of generality that

ξ1 < 1. Clearly, the sequences <
∏j2

j ξi > and hence η are monotone decreasing,
η ≤ ξ and ηi > 0 for all i. Furthermore, for every m and every n ≥ m,

(Dmη)mn = ηn = 2−n
n2∏
n

ξi < 2−nξn2 ≤ 2−nξmn,
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hence ξ 6= O(Dmη). Thus (ξ) ) (η) ) F . Moreover,

(ηa∞)n =
1
n

∞∑
n+1

(2−j
j2∏
j

ξi) ≤
1
n

 n2∏
n

ξi

 ∞∑
n+1

2−j =
1
n
ηn,

hence η is∞-regular by [15, Theorem 4.12] and therefore (η) is am-∞ stable. �

Lemma 3.12. If {0} 6= (ξ) ( (η) and ξ is summable, then (ξ) ( (ζ) ( (η) for
some summable ζ.

Proof. By Corollary 3.7(ii), it is enough to find a summable ζ for which
(ξ) ( (ζ) ⊂ (η). The case when ξ is finitely supported, i.e., (ξ) = F is triv-
ial: it is enough to construct a summable but not finitely supported sequence ζ
with (ζ) ⊂ (η), e.g., < ηn

2n >. Thus assume ξi > 0 for all i, and without loss of
generality, assume that ξ ≤ η. Construct inductively two increasing sequences of
indices nk−1 < qk < nk starting with n1 = 1 and satisfying the following three
conditions: ηnk

≥ kξdnk
k e

, ξdnk
k e

< 1
k ξnk−1 , and nkξdnk

k e
≤ k−3. Indeed, since

η 6= O(Dkξ) for all k, there are infinitely many indices i such that ηi ≥ kξd i
k e

,
and among those indices, we can choose nk that satisfies the second condition
since ξi → 0 and the third since iξi → 0 by the summability of ξ. Set qk to be
the largest index i such that ξi ≥ kξdnk

k e
. Then

nk−1 ≤ qk < d
nk
k
e < nk.

Next, for a sequence ζ ∈ c∗o with ξ ≤ ζ ≤ η define:

ζi :=

{
ξi on (nk−1, qk)

kξdnk
k e

on [qk, nk]

Then ζ 6= O(Dmξ) for all m since

ζnk
= kξdnk

k e
= k(Dkξ)nk

≥ k(Dmξ)nk

for all k ≥ m. Thus ξ ( ζ ⊂ η. Finally, ζ is summable because
∞∑
i=1

ζi <

∞∑
i=1

ξi +
∞∑
k=1

nk∑
i=qk

kξdnk
k e

<

∞∑
i=1

ξi +
∞∑
k=1

knkξdnk
k e
≤
∞∑
i=1

ξi +
∞∑
k=1

k−2 <∞.

�

In the terminology of this paper, the above lemma states that the lattice of
principal ideals contained in L1 (i.e., with trace class generators) is upper dense
in PL. By the lack of gaps in PL (Corollary 3.7(ii), the lattice of principal ideals
contained in L1 is also lower dense in PL.
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Theorem 3.13. S∞PL is upper and lower dense in PL.

Proof. Let (ξ) be an am-∞ stable principal ideal, i.e., ξ is an ∞-regular se-
quence, in particular, ξ is summable. By [15, Theorem 4.12], ξa∞ ≤Mξ for some
M > 0, and by the same theorem, ξn ≤ C(mn )po ξm for some C ≥ 1, po > 1 and
all n ≥ m. Choose any 1 < p < po.

First we prove the lower density of S∞PL in PL. Let (η) ( (ξ). Then
η ≤ KDmξ for some positive integer m and some K > 0 and since (KDmξ) = (ξ),
without loss of generality we can assume that η ≤ ξ. The case where η is finitely
supported, i.e. (η) = F follows from Lemma 3.11 above, so assume that ηi > 0 for
all i. We construct inductively two increasing sequences of indices qk−1 < mk < qk
as follows. Choose an integer ko ≥ M + 1, set qko

= 1 and assume the con-
struction up to k − 1 ≥ ko. Using the fact that for all m ∈ N, ξ 6= O(Dmη),
choose nk ≥ 2kqk−1 such that ξnk

≥ kR(Dkη)nk
= kRηmk

where R := 2ppo

po−p and
mk := dnk

k e is the smallest integer majorizing nk

k ; thus mk ≥ 2qk−1. Then define
qk to be the largest integer i for which ξi ≥ ηmk

; thus mk < nk ≤ qk. Next define
the sequence

ζi :=

{
ξi on (qk−1,mk)

min (ξi, ( qk

i )pηmk
) on [mk, qk].

Since ζmk−1 = ξmk−1 ≥ ξmk
≥ ζmk

and ζqk
= ηmk

> ξqk+1 = ζqk+1, it
follows that ζ is monotone non-increasing. Clearly, ζi ≤ ξi for all i, ζi ≥ ηi for
i ∈ (qk−1,mk), and ζi ≥ ζqk

= ηmk
≥ ηi for i ∈ [mk, qk]. Thus η ≤ ζ ≤ ξ and

hence (η) ⊂ (ζ) ⊂ (ξ).
Now we prove that ζ is am-∞ regular by showing that ζa∞ = O(ζ) (see [15,

Theorem 4.12]). If j ∈ [mk, qk], then the Potter-type inequality implies that
ξj ≥ 1

C ( qk

j )poξqk
≥ 1

C ( qk

j )pηmk
, hence ζj ≥ 1

C ( qk

j )pηmk
and thus we have

ζj ≤ ( qk

j )pηmk
≤ Cζj . Thus, using the fact that ξqk+1 < ηmk

and qk ≥ ko ≥M+1,
by definition of qk and ko,

j(ζa∞)j ≤
qk∑
j+1

ζi +
∞∑
qk+1

ξi ≤
qk∑
j+1

(
qk
i

)pηmk
+ ξqk+1 + (qk + 1)(ξa∞)qk+1

≤ j

p− 1
(
qk
j

)pηmk
+ ξqk+1 +M(qk + 1)ξqk+1

≤ (
j

p− 1
(
qk
j

)p + (M + 1)qk)ηmk

≤ (
1

p− 1
+M + 1)j(

qk
j

)pηmk
≤ C(

1
p− 1

+M + 1)jζj .
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If j ∈ (qk−1,mk), then (ζa∞)j ≤ (ξa∞)j ≤Mξj = Mζj . Thus ζa∞ = O(ζ), which
proves the am-∞ regularity of ζ. It remains to prove that both inclusions in
(η) ⊂ (ζ) ⊂ (ξ) are proper. By the Potter-type condition, qk

nk
≤ (C ξnk

ξqk
)

1
po and

hence

ζmk
≤ (

qk
mk

)pηmk
≤ kp( qk

nk
)pηmk

≤ C
p

po kp(
ξnk

ξqk

)
p

po ηmk
≤ C

p
po kp(

ξnk

ηmk

)
p

po ηmk

= C
p

po kp(
ηmk

ξnk

)(1− p
po

)ξnk
≤ C

p
po kp−R(1− p

po
)ξnk

= C
p

po k−pξnk
.

Thus ξnk
≥ C−

p
po kp(Dkζ)nk

for all k ≥ ko, and hence ξ 6= O(Dmζ) for any m,
i.e., (ξ) 6⊂ (ζ). Finally, recalling that ( qk

j )pηmk
≤ Cζj for all j ∈ [mk, qk] and that

nk ≥ k
2mk and hence k2

2 mk2 ≤ nk2 ≤ qk2 we have

ζkmk2 ≥
1
C

(
qk2

kmk2
)pηmk2 ≥

1
C

(
nk2

kmk2
)pηmk2 ≥

1
C

(
k

2
)pηmk2

and hence ζ 6= O(Dmη) for any m. Thus (ζ) 6⊂ (η), completing the proof of lower
density.

Now we prove the upper density of S∞PL in PL. Let (η) ) (ξ) and, as in
the first part of the proof, assume without loss of generality that η ≥ ξ and
additionally that η1 = ξ1. By Lemma 3.11, assume that ξi > 0 for all i and by
Lemma 3.12 assume also that η is summable.

We construct inductively two increasing sequences of indices nk−1 < qk < nk
as follows. Choose n1 = 1 and assume the construction up to k − 1. For all
positive integers n define q(n) := max {i ∈ N | ξi ≥ ηn}; then clearly q(n) ↑ ∞.
Using the fact that η 6= O(Dkξ) and that η is summable, choose nk so that
ηnk
≥ kR(Dkξ)nk

and
∑∞
q(nk) ηi ≤

∑∞
nk−1

ξi where R := 2ppo

po−p . Set qk := q(nk)
and mk := dnk

k e, the smallest integer majorizing nk

k . Because of the inequal-
ities ξqk

≥ ηnk
≥ kRξmk

> ξmk
and the summation condition, it follows that

nk−1 < qk < mk < nk. Next, define the sequence

ζi :=

{
ξi on (nk−1, qk]

max (ξi, ( qk

i )pηnk
) on [qk, nk]

Since ζnk
≥ ξnk

≥ ξnk+1 = ζnk+1 we see that ζ is monotone nonincreasing. By
definition, ξi ≤ ζi for all i, ζi ≤ ηi for all i ∈ (nk−1, qk], and ζi ≤ ηnk

≤ ηi for all
i ∈ [qk, nk]. Thus ξ ≤ ζ ≤ η and hence (ξ) ⊂ (ζ) ⊂ (η). Now we prove that ζ is
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am-∞-regular. If j ∈ [qk, nk], then

j(ζa∞)j =
∞∑
j+1

ζi ≤
nk∑
j+1

ξi +
nk∑
j+1

(
qk
i

)pηnk
+

qk+1∑
nk+1

ξi +
∞∑
qk+1

ηi

≤
qk+1∑
j+1

ξi +
nk∑
j+1

(
qk
i

)pηnk
+
∞∑
nk

ξi ≤ 2
∞∑
j+1

ξi +
j

p− 1
(
qk
j

)pηnk

≤ 2Mjξj +
j

p− 1
(
qk
j

)pηnk
≤ j(2M +

1
p− 1

)ζj .

If j ∈ (nk−1, qk), then by applying the inequality just obtained and the Potter-
type inequality,

j(ζa∞)j =
qk∑
j+1

ξi +
∞∑
qk+1

ζi

≤
∞∑
j+1

ξi + (2M +
1

p− 1
)qkξqk

≤Mjξj + (2M +
1

p− 1
)Cqk(

j

qk
)pξj

≤Mjξj + (2M +
1

p− 1
)Cjξj ≤ C(3M +

1
p− 1

)jζj .

Thus ζa∞ = O(ζ) and hence ζ is am-∞ regular. Now we prove that the ideal
inclusions are proper. By the Potter-type inequality qk+1

mk
≥ ( 1

C

ξmk

ξqk+1
)

1
po , therefore

ζnk
≥
(
qk
nk

)p
ηnk
≥ (2k)−p

(
qk + 1
mk

)p
ηnk
≥ (2k)−p

(
1
C

ξmk

ξqk+1

) p
po

ηnk

≥ (2k)−pC−
p

po

(
ξmk

ηnk

) p
po

ηnk
= (2k)−pC−

p
po

(
ηnk

ξmk

)1− p
po

ξmk

≥ 2−pC−
p

po k−p+R(1− p
po

)ξmk
= 2−pC−

p
po kpξmk

.

Thus ζ 6= O(Dmξ) for all m and hence (ξ) 6= (ζ). Finally, we see that
qk2 < mk2 < kmk2 < k2mk2 ≤ nk2 and hence, again by the Potter-type con-
dition,

ζkmk2 = max
(
ξkmk2 , (

qk2

kmk2
)pηnk2

)
≤ max

(
C(
qk2 + 1
kmk2

)poξqk2+1, k
−pηnk2

)
≤ Ck−pηnk2 .

Thus η 6= O(Dmζ) for all m and so (η) 6= (ζ), concluding the proof. �
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Since PL is upper but not lower dense in L by Corollaries 3.7 and 3.4, imme-
diate consequences of Theorems 3.9, 3.10, and 3.13 are:

Corollary 3.14.
(i) PL, ∆1/2PL, SPL, and S∞PL are upper dense in L but they all have lower
gaps in L.

(ii) PL, ∆1/2PL, SPL, and S∞PL have no gaps.

Other consequences of the same theorems and the Potter-type conditions al-
ready mentioned are:

Corollary 3.15.
(i) Every principal ideal is contained in a principal ideal from SPL and if it is
strictly larger than F it contains a principal ideal in S∞PL that is strictly larger
than F .

(ii) A principal ideal (η) contains a principal ideal in ∆1/2PL if and only if for
some 0 < p < 1, ωp = O(η); it contains a principal ideal in SPL if and only if
ωp = O(η) for some 0 < p < 1; and it is contained in a principal ideal in S∞PL

if and only if η = O(ωp) for some p > 1.

Proof.

(i) Assume without loss of generality that the principal ideal I has generator η
with η1 = 1 and hence ||ηam || = 1 for the co-norm for all m ∈ N. Thus the series∑∞
m=1 2−mηam := ζ converges in the co-norm, hence weakly, and thus ζ ∈ c∗o and

(η) ⊂ (ζ). By definition,

(ζa)n =
1
n

n∑
j=1

∞∑
m=1

2−m(ηam)j =
∞∑
m=1

2−m
1
n

n∑
j=1

(ηam)j =
∞∑
m=1

2−m(ηam+1)n ≤ 2ζn

and hence ζ is regular.
When I 6= F , by Lemma 3.11 there is an ideal J ∈ S∞PL with F ( J ( I.

(ii) It is immediate to verify that the sequence ωp satisfies the ∆1/2-condition for
every p > 0, is regular if and only if 0 < p < 1 and is∞-regular if and only if p > 1.
This establishes the sufficiency in (ii). The necessity is a direct consequence of the
Potter-type conditions (in all cases taking m = 1) that we have already quoted
in this section. �

By the lack of gaps in PL and by Theorems 3.9, 3.10 and 3.13, the ideals in (i)
and (ii) are of course never unique.

If L is an am-stable ideal, I is principal, and I ⊂ L, then while Corollary
3.15(i) ensures that there are principal am-stable ideals J ⊃ I, it may be
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impossible to find any such J also contained in L, as the following example
shows. The same holds in the am-∞ case.

Recall from Section 2 that the am (resp. am-∞) stabilizer sta(I) (resp.
sta∞(I)) is the smallest am-stable ideal containing I (resp. the largest am-∞
stable ideal contained in I).

Example 3.16.
(i) Let ξ be an irregular sequence. Then L = sta((ξ)) is am-stable but there is no
intermediate am-stable principal ideal (ξ) ⊂ J ⊂ L.

(ii) sta∞((ω)) is am-∞ stable but it contains principal ideals that are not contained
in any am-∞ stable principal ideal.

Proof.

(i) Assume by contradiction that there is an am-stable principal ideal J = (η)
with (ξ) ⊂ J ⊂ L. Since J ⊃ (ξ) and J is am-stable, then J ⊃ L, hence
J = L =

⋃
n(ξan).Then η ∈ Σ((ξan)) for some n ∈ N. On the other hand,

(ξan) ⊂ (η), hence ξan � η is regular, and thus ξ too is regular (see Theorem 5.1
and the paragraph preceding it), against the hypothesis.

(ii) Choose an increasing sequence of indices nk so that
∑∞
nk

logkn

n1+ 1
k
≤ 1

k2 and define

ξn := 1

n1+ 1
k

for n ∈ [nk, nk+1). Then for every p ∈ N,

∞∑
n=np

ξn logp n ≤
∞∑
k=p

nk+1−1∑
n=nk

ξn logk n ≤
∞∑
k=p

1
k2

<∞

and thus
∑∞
n=1 ξn logp n < ∞. By [15, Proposition 4.18(ii)] (ξ) ⊂ sta∞((ω)).

Furthermore, ξ 6= O(ωp) for every p > 1, so by Corollary 3.15(ii), there is no
J ∈ S∞PL contained in I. �

To complete our analysis of the lattices ∆1/2PL, SPL, and S∞PL we consider
also their complements in PL, i.e., the principal ideals that do not satisfy the
∆1/2 condition, (resp. are not am-stable, or are not am-∞ stable.)

Proposition 3.17. Every nested pair of nonzero principal ideals has strictly be-
tween them an ideal from PL \∆1/2PL, PL \ SPL, and PL \ S∞PL.

Proof. Let I ( J be principal ideals. By the lack of gaps in PL, we can find
principal ideals I ′ and J ′ such that I ( I ′ ( J ′ ( J , so for all three cases it
is enough to find principal ideals I ⊂ L ⊂ J outside the three special lattices
considered without having to prove that they do not coincide with I or J . Notice
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also that since the arithmetic mean of a c∗o sequence always satisfies the ∆1/2-
condition, SPL ⊂ ∆1/2PL, and hence the second case follows from the first. Let
I = (ξ) and J = (η) and by passing if necessary to other generators, assume
without loss of generality that ξ ≤ η and ξ1 = η1.

First we prove that there is an I ⊂ L ⊂ J with L ∈ PL \ ∆1/2PL. Since
η 6= O(ξ), we can find an increasing sequence of positive integers nk for which
ηnk
≥ kξnk

and ηnk
≤ ξnk−1 . Define ζj := min(ξnk

, ηj) for j ∈ (nk, nk+1]. Then
ζ ∈ c∗o, ξ ≤ ζ ≤ η, and one has ζnk

= ηnk
≥ kξnk

≥ kζnk+1 ≥ kζ2nk
. Thus

L = (ζ) 6∈ ∆1/2PL and I ⊂ L ⊂ J .
Now we prove that there is an I ⊂ L ⊂ J with L ∈ PL \ S∞PL. Since

η 6= O(Dmξ) for any m ∈ N, there is an increasing sequence of positive integers
nk, starting with n1 = 1, such that ηnk

≥ k2(Dkξ)nk
= k2ξdnk

k e
, ηnk

≤ 1
kηnk−1

and nk > knk−1. Define ζi := min( 1
kηnk

, ηi) for i ∈ [dnk

k e, d
nk+1
k+1 e). Then ζ ∈ c∗o,

ζ ≤ η, and since for all i ∈ [dnk

k e, d
nk+1
k+1 e),

1
kηnk

≥ kξdnk
k e
≥ ξi and ηi ≥ ξi, it

follows that ζ ≥ ξ and hence I ⊂ L ⊂ J . Let qk := max{i ∈ N | ηi ≥ 1
kηnk

}. Then
qk ≥ nk > k(dnk

k e − 1) and

(ζa∞)dnk
k e
≥ 1
dnk

k e

qk∑
dnk

k e+1

1
k
ηnk

=
qk − dnk

k e
dnk

k e
ζdnk

k e
≥ (k − 2)ζdnk

k e

Thus ζa∞ 6= O(ζ) and hence L = (ζ) 6∈ S∞PL. �

From this we see that above and below every nonzero principal ideal (above only
for F ) lies a “bad” ideal. Indeed, by taking I = F in Proposition 3.17, we see
that every principal ideal J 6= F contains (properly) principal ideals distinct from
F not in the lattices ∆1/2PL, SPL, and S∞PL. Similarly, every principal ideal
is properly contained in another principal ideal, and hence in principal ideals not
in the lattices ∆1/2PL, SPL, and S∞PL.

4. Unions of principal ideals

Basic questions on intersections and unions of ideals from a certain lattice
play a natural role in the subject. In [25] Salinas investigated intersections
and unions of ideals related to various classes of mainly Banach ideals. In this
section, first we use Corollary 3.15 and density Theorems 3.9, 3.10 and 3.13 to
determine intersections and unions of various classes of principal ideals. Then
we investigate questions on representing ideals as unions of chains of principal or
countably generated ideals.
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An immediate consequence of Corollary 3.15(ii) is:

Corollary 4.1.

(i)
⋂
p>0

(ωp) =
⋂

L∈∆1/2PL

L;

(ii)
⋂

0<p<1

(ωp) =
⋂

L∈SPL

L;

(iii)
⋃
p>1

(ωp) =
⋃

L∈S∞PL

L.

Remark 4.2.
(i) By Corollaries 3.8(ii) and 3.15(i) and Theorems 3.9, 3.10, and 3.13, every
ideal in the lattices PL, ∆1/2PL, SPL, and S∞PL is the intersection of all ideals
in the lattice that properly contain it. (In contrast, a principal ideal is never the
union of any chain of ideals properly contained in it.) As a consequence, every
ideal in one of these lattices is the intersection of an infinite maximal chain of
ideals that properly contain it and belong to the same lattice. By [16, Propositions
4.6 and 5.3], the chain must be uncountable because principal ideals are ssc, while
intersections of countable chains of principal ideals are never ssc. More generally,
the latter clause shows that no maximal Banach ideal (which are the symmet-
ric normed ideals Sφ for a symmetric norming function φ), which is ssc by
[16, Proposition 4.7], can be the proper intersection of a countable chain of
principal ideals. This provides an additional special case answer to Salinas’
question in [25, Section 7: (α1)] asking whether Sφ 6=

⋂
Ik if Sφ ( Ik ( Ik−1

for all k (with Ik not necessarily principal).

(ii) By [16, Lemmas 2.1 and 2.2 and Section 3], arbitrary intersections or directed
unions of am-stable ideals (resp. am-∞ stable ideals) are am-stable (resp. am-∞
stable).

In the case of Banach ideals or their powers we can obtain more. The proof
used in Corollary 3.15(i) to construct a regular sequence ζ majorizing a given
sequence η depends on the completeness of the c∗o-norm; a similar proof can be
employed for constructing directly a sequence ζ that majorizes ξ and satisfies the
∆1/2-condition. Both constructions can be extended to Banach ideals and the
latter even to powers of Banach ideals (i.e., e-complete ideals as by [10, Sections
2.9-2.14 and Theorem 3.6]).
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Proposition 4.3.
(i) Let I = Jp for some p > 0 and some Banach ideal J . Then

I =
⋃
{L ∈ ∆1/2PL | L ⊂ I}.

(ii) If I is a Banach ideal, then I is am-stable if and only if

I =
⋃
{L ∈ SPL | L ⊂ I}.

(iii) If I is a Banach ideal, then I is am-∞ stable if and only if

I =
⋃
{L ∈ S∞PL | L ⊂ I}.

Proof.

(i) Clearly, I =
⋃
{L ∈ PL | L ⊂ I}, thus proving (i) is equivalent to proving

that for every ξ ∈ Σ(I) there is a ζ ≥ ξ in Σ(I) that satisfies the ∆1/2-condition
or, equivalently, such that ζ

1
p satisfies the ∆1/2-condition. Thus without loss of

generality we can assume that p = 1 and, from [10, Section 4.5], that || · || is a
complete symmetric norm on I. Denote still by || · || the induced complete cone
norm on Σ(I). Then define ζ :=

∑∞
m=1

1
m2||Dmξ||Dmξ. The series converges in

norm and hence ζ ∈ Σ(I). Then ξ ≤ ζ. By the inequality for symmetric norms,
||D2η|| ≤ 2||η||, and since D2Dm = D2m, ζ satisfies the ∆1/2-condition because

D2ζ =
∞∑
m=1

1
m2||Dmξ||

D2Dmξ =
∞∑
m=1

4
||D2mξ||
||Dmξ||

1
(2m)2||D2mξ||

D2mξ ≤ 8ζ.

(ii) Since the finite sum of am-stable principal ideals is am-stable and the union⋃
{L ∈ SPL | L ⊂ I} is directed, the condition is sufficient by Remark 4.2(ii).
The proof of necessity requires showing that for every ξ ∈ Σ(I), there

is a regular ζ ≥ ξ in Σ(I). As in the proof of Corollary 3.15(i), define
ζ :=

∑∞
m=1

1
2m||ξam ||ξam . By the am-stability of I, ξam ∈ Σ(I) for all m. Then

by the completeness of the norm, ζ ∈ Σ(I). By [10, Lemma 2.11], the map
Σ(I) 3 η → ηa ∈ Σ(I) is bounded, hence ζ is regular because

ζa =
∞∑
m=1

1
2m||ξam ||

ξam+1

≤ 2 sup
m

(
||ξam+1 ||
||ξam ||

) ∞∑
m=1

1
2m+1||ξam+1 ||

ξam+1

≤ 2 sup
m

(
||ξam+1 ||
||ξam ||

)
ζ.

(iii) Same proof as (ii). �
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Notice: if an ideal I is “too small”, i.e., if I 6⊃ sta((ω)), then it cannot contain
any am-stable ideal and, in particular, any ideal in SPL. The same conclusion
holds for I = sta((ω)) by Example 3.16(i). Similarly, if I 6⊃ ∪

p>0
(ω)p, it cannot

contain an ideal in ∆1/2PL (Corollary 3.15(ii)). Likewise, if an ideal I is “too
large”, i.e., I 6⊂ ∪

p>1
(ω)p, then by Corollary 4.1(iii) it is not the union of ideals in

S∞PL. Example 3.16(ii) shows that sta∞((ω)) is “too large.”

While every ideal is the union of principal ideals, a different and natural ques-
tion is: which ideals are the union of an increasing chain of principal ideals.
Salinas [25] and others have studied this kind of question and nested unions play
an underlying role throughout the study of ideals. A partial answer is given by
the following proposition.

Proposition 4.4. Assuming the continuum hypothesis, the following hold.
(i) All ideals are unions of increasing chains of countably generated ideals.
(ii) An ideal I is the union of an increasing chain of principal ideals if for every
countably generated ideal J ⊂ I there is a principal ideal L with J ⊂ L ⊂ I.

Proof. Since Σ(I) has cardinality c, by the continuum hypothesis,

Σ(I) = {ξγ | γ ∈ [1,Ω)},

i.e., it can be indexed by the interval of ordinal numbers [1,Ω) where Ω is the
first uncountable ordinal. Denote by ≺ the well-order relation on [1,Ω).

(i) For each γ ∈ [1,Ω), let Iγ be the ideal generated by the countable collection
{ξα | α ≺ γ}. Thus I =

⋃
γ∈[1,Ω) Iγ is a nested (albeit uncountable) union of

countably generated ideals.
(ii) By (i) we can represent I =

⋃
γ∈[1,Ω) Iγ as a nested union of countably gener-

ated ideals and define by using transfinite induction a collection

{ηγ ∈ Σ(I) | γ ∈ [1,Ω)}

so that Iγ ⊂ (ηγ) and (ηγ) ⊂ (ηγ′) whenever γ ≺ γ′ ∈ [1,Ω). Indeed, assume
for a given β ∈ [1,Ω) that {ηα | α � β} have been chosen satisfying these two
conditions. It suffices to choose an ηβ ∈ Σ(I) so that the collection {ηγ | γ ∈ [1, β]}
too satisfies these two conditions. Since [1, β) is countable, J =

⋃
γ∈[1,β)(ηγ) is

countably generated and hence J ⊂ (η′) and Iβ ⊂ (η′′) for some η′, η′′ ∈ Σ(I).
Set ηβ := η′ + η′′ ∈ Σ(I). Then for every γ ≺ β it follows that

Iγ ⊂ (ηγ) ⊂ J + Iβ ⊂ (ηβ).

Thus {(ηγ)} forms an uncountable chain and I =
⋃
γ∈[1,Ω)(ηγ). �
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The following corollary shows that Banach ideals and more generally e-
complete ideals, i.e., powers of Banach ideals (see [10, Section 4.6]), satisfy the
condition in part (ii) of the above proposition.

Corollary 4.5. If I is an e-complete ideal and J is a countably generated ideal
with J ⊂ I, then there is a principal ideal L with J ⊂ L ⊂ I. Thus, assuming the
continuum hypothesis, I is the union of an increasing chain of principal ideals.

Proof. Since powers of countably generated (resp. principal) ideals are count-
ably generated (resp. principal), without loss of generality assume that I is a
Banach ideal. Let {η(k)} be a sequence of generators of J . Then

ζ :=
∞∑
k=1

1
k2||η(k)||

η(k) ∈ Σ(I),

and so setting L := (ζ) one has (η(k)) ⊂ L for all k, hence J ⊂ L ⊂ I. (This is a
proof that countably generated Banach ideals and hence countably generated e-
complete ideals are principal. See also [10, Corollary 2.23].) Then by Proposition
4.4, I is the union of an increasing chain of principal ideals. �

Notice that neither the e-completeness condition in the corollary nor the condition
in part (ii) of the proposition are necessary. Indeed, for the former, any principal
ideal that is not e-complete (i.e., whose generator does not satisfy the ∆1/2-
condition [10, Corollary 2.23]) still satisfies automatically the conclusion of the
corollary. And for the latter, any countably generated ideal that is not principal
fails to satisfy the condition in part (ii) and yet is obviously the union of a
(countable) chain of principal ideals.

We also do not know whether or not the continuum hypothesis or something
stronger than the usual axioms of set theory is required for Proposition 4.4.

Remark 4.6. By combining Propositions 4.3 and 4.4, and assuming the contin-
uum hypothesis, if I is a Banach ideal, then I is am-stable if and only if it is a
union of a chain of am-stable principal ideals. And if I is a positive power of a
Banach ideal, then it is the union of a chain of ∆1/2PL ideals.

5. Applications to first order arithmetic mean ideals

By the main result of [10], an ideal I is am-stable, i.e., I = Ia, if and only if
I = [I,B(H)] (the latter is the commutator space of the ideal, i.e., the span of
the commutators of elements of I with bounded operators) if and only if I does
not support any nonzero trace (unitarily invariant linear functional on I).
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We can reformulate some of the results obtained in the previous section in terms
of traces. By Corollary 3.15(i), every principal ideal I is contained in a principal
ideal J supporting no nonzero traces; so no nonzero trace on I can extend to a
trace on J . Conversely, by Corollary 3.15(ii), if a principal ideal I is sufficiently
large to contain (ωp) for some 0 < p < 1, then (ωp) = [(ωp), B(H)] ⊂ [I,B(H)]
and hence every trace on I must necessarily vanish on (ωp). More generally,
repeatedly employing Theorem 3.10 and Proposition 3.17, we see that every am-
stable principal ideal is the first ideal of an increasing (or decreasing) countable
chain of principal ideals where every odd numbered ideal is am-stable and hence
has no nonzero trace, and every even numbered ideal supports infinitely many
nonzero traces (its space of traces is infinite-dimensional) ([15, Theorem 7.5],
[16, Proposition 4.6(i)]).

The am-∞ case is similar, but with the difference that an ideal I is am-∞
stable (i.e., I = a∞I) if and only if I = F + [I,B(H)] if and only if it
supports a unique nonzero trace (up to scalar multiples). In this case, I ⊂ L1

and this trace is of course the restriction to I of the usual trace Tr on the
trace class L1 [15, Theorem 6.6]. Equivalently, by a Hamel basis argument, an
ideal contained in L1 is not am-∞ stable if and only if it supports a nonzero
singular trace, i.e., a trace that vanishes on F . And by Theorem 3.13 and
Proposition 3.17, every am-∞ stable principal ideal is the first ideal of an
increasing countable chain of principal ideals (or a decreasing countable chain
in the case that the ideal is not F ) where every odd numbered ideal is am-∞
stable and hence supports no nonzero singular trace, and every even numbered
ideal supports infinitely many singular traces (again see [15, Theorem 7.5] and
[16, Proposition 4.6(i)]).

First order arithmetic mean ideals are investigated in [10] and [14]-[16] and the
density theorems of Section 3 provide further information for the principal ideal
cases. Recall that am-stability of an ideal I is equivalent to I = aI. Thus if I is
am-stable, so are Ia and aI and hence also the first order arithmetic mean ideals

Io := (aI)a, I− := a(Ia),

Ioo (the smallest am-open ideal containing I), since I ⊂ Ioo ⊂ Ia, and I− (the
largest am-closed ideal contained in I), since aI ⊂ I− ⊂ I. The same relations
hold for the am-∞ case with the exception that we only have I∩L1 ⊂ I−∞ ⊂ Ia∞ .
While in general these first order arithmetic mean ideals (resp. am-∞ ideals) can
be am-stable without the ideal I being am-stable (e.g., see Examples 5.4 and 5.5),
principal ideals are more “rigid.”
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Theorem 5.1. For I a nonzero principal ideal, the following are equivalent.
(i) I is am-stable.
(ii) aI is nonzero and am-stable.
(ii′) Io is nonzero and am-stable.
(ii′′) I− is nonzero and am-stable.
(iii) Ioo is am-stable.
(iv) Ia is am-stable.
(iv′) I− is am-stable.

Proof. The equivalences of (ii) and (ii′), and of (iv) and (iv′), the 5-chain in-
clusions aI ⊂ Io ⊂ I ⊂ I− ⊂ Ia and aI ⊂ I− ⊂ I ⊂ Ioo ⊂ Ia and, consequently,
the fact that (i) implies all the other conditions, all hold for general ideals. (See
[16, Section 2] for details.) For principal ideals, the identity I− = aI is proven
in [ibid., Theorem 2.8] and hence (ii) is equivalent to (ii′′). Thus it remains to
prove that each of the conditions (ii′), (iii) and (iv) imply (i). By [ibid., Lemma
2.12] Io, Ioo and Ia are principal when I is principal. Assume that {0} 6= Io ( I

and that Io is am-stable. Then by Theorem 3.10, there is an am-stable principal
ideal J with Io ( J ( I. Since J = Jo, by the monotonicity of the am-interior
operation, J ⊂ Io, a contradiction. Similarly, if I ( Ioo and Ioo is am-stable
(resp. I ( Ia and Ia is am-stable), then there is an am-stable principal ideal
I ( J ( Ioo (resp. I ( J ( Ia) and J being am-open, Ioo ⊂ J (resp. Ia ⊂ J), a
contradiction. �

Notice that for any ideal I that does not contain (ω) (resp. L1), aI = Io = {0}
(resp. I− = {0}). Since {0} is am-stable while in both cases I is not, the
conditions in the last corollary that Ia, Io and I− are non-zero is essential.

There are two main differences in the am-∞ case. The first is that if I 6= {0},
then unlike the am-case, a∞I is never zero, and in lieu of the two chains of
inclusions, we have a∞I ⊂ Io∞ ⊂ I, a∞I ⊂ I−∞ ⊂ I, I ∩ L1 ⊂ I−∞ ⊂ Ia∞ , and
I ∩ se(ω) ⊂ Ioo∞ ⊂ Ia∞ . (See [15, Proposition 4.8(i)-(i′)] and remarks following
both [16, Corollary 3.8 and Proposition 3.14]). The second is that if I is principal,
then Io∞, Ioo∞ and Ia∞ are either principal or they coincide with se(ω) [15,
Lemma 4.7], [16, Lemma 3.9, Lemma 3.16]. As se(ω) is not am-stable, if any
of the ideals Io∞, Ioo∞ or Ia∞ is am-stable, then it is principal as well. With
these minor changes and the properties of arithmetic mean ideals at infinity de-
veloped in [16, Section 3], the proof of Theorem 5.1 carries over to the am-∞ case.
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Theorem 5.2. Let I 6= {0} be a principal ideal. Then am-∞ stability of the
following ideals is equivalent: I, a∞I, Io∞, I−∞, Ioo∞, Ia∞ , and I−∞.

The fact that a sequence ξ ∈ c∗o is regular if and only if ξa is regular has been
proved in a number of different ways (see [10, Remark 3.11] for a discussion).
The analogous result for ∞-regularity was obtained in [15]. Both facts are also
an immediate consequence of Theorems 5.1 and 5.2:

Corollary 5.3. Let I be a principal ideal and let n ∈ N.
(i) Ian is am-stable if and only if I is am-stable.
(ii) Ian

∞
is am-∞ stable if and only if I is am-∞ stable.

It may be of interest to note that Theorem 5.1 does not extend beyond principal
ideals. In fact, as the two examples below show, it can fail even for countably
generated ideals. It is an open question whether or not Theorem 5.2 extends
beyond principal ideals, indeed, even whether or not am-∞ stability of Ia∞ implies
am-∞ stability of I.

Example 5.4. We exhibit a countably generated ideal N which is not am-stable
but for which the ideals aN , No, and N− are all equal to sta((ω)) and hence are
am-stable.

Proof. Define the sequence ζi = 2−k
3

for i ∈ [2k
3
, 2(k+1)3). Since

ζ2(k+1)3−1 = 2−k
3
6= O((ωlogk)2(k+1)3−1)

and since ωlogk is increasing in k, ζ 6= O(ωlogp) for every p ∈ N. As ωlogp satisfies
the ∆1/2-condition, it follows that ζ 6∈ Σ((ωlogp)) and hence ζ 6∈ Σ(sta((ω))). On
the other hand, if for some p ∈ N and some ρ ∈ c∗o, ρa ≤ ζ + ωlogp, then for all
i ∈ [2k

3
, 2(k+1)3) and for k large enough,

i(ρa)i ≤ 2(k+1)3(ρa)2(k+1)3 ≤ 2(k+1)3

(
2−(k+1)3 +

logp(2(k+1)3)
2(k+1)3

)
= 1 + logp(2(k+1)3) ≤ 2logp(2k

3
) ≤ 2logpi = 2i(ωlogp)i.

Thus ρa = O(ωlogp), which proves that (ζ + ωlogp)o = (ωlogp) since
(ωlogp) = (ω)ap which is am-open. Let N := (ζ) + sta((ω)) =

⋃
p(ζ + ωlogp).

Then N is countably generated and N 6= sta((ω)). By [16, Lemma 2.1],

No =
⋃
p

(ζ + ωlogp)o =
⋃
p

(ωlogp) = sta((ω)).

Thus No = a(No) = aN 6= N. By [ibid, Theorem 2.8], N− = aN , which
concludes the proof. �
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Example 5.5. We exhibit a countably generated ideal L which is not am-stable
but for which the ideals La, L−, and Loo are all equal to sta((ω)) and hence are
am-stable.

Proof. We construct inductively a sequence of sequences ξ(p) ∈ c∗o for which
the principal ideals (ξ(1) + · · · + ξ(p)) 6⊃ (ω) and (ξ(p))a = (ω)ap+1 . The initial
p = 1 case is a special case of the general induction. Assume the construction
up to p− 1 ≥ 1. Since ω 6= O(ξ(1) + · · ·+ ξ(p−1)), choose an increasing sequence
of integers ri for which ( ξ

(1)+···+ξ(p−1)

ω )ri → 0. For the initial case p = 1 simply
choose ri = i.

Construct inductively two strictly increasing sequences of integers {qk, nk} with
qk−1 < nk−1 < qk and nk

logpnk
> (k+1)2p, starting with qo = 1 and with an integer

no chosen so that no

logpno
> 2p and no > ep (the latter condition ensures that logpj

j

is decreasing for j ≥ no). Assuming the construction of qj , nj up to k − 1 ≥ 0,
choose qk := max {j ∈ N | 1

knk−1
≤ logpj

j }; thus knk−1 < qk < n2
k−1. Then choose

nk > qk + 1 from among the sequence {ri} and sufficiently large to satisfy the
conditions

∑nk−1
j=qk+1

logpj
j ≥ 1

2

∑nk

j=1
logpj
j and nk

logpnk
> (k + 1)2p.

Now define the sequence ξ(p)
j := min { 1

knk−1
, log

pj
j } for nk−1 ≤ j < nk and

k ≥ 1, setting ξ
(p)
j := 1 for 1 ≤ j < no. Then ξ(p) ∈ c∗o, ξ(p)

j ≤ (ωlogp)j for
j ≥ no, and so (ξ(p)) ⊂ (ωlogp). An elementary computation shows that the
sequence inequalities

Cp ω log
p+1 ≤ (ωlogp)a ≤ ωlogp+1

hold for some constant 0 < Cp < 1, hence the ideal identities

(ωlogp)a = (ωlogp+1) = (ω)ap+1

also hold. Thus (ξ(p))a ⊂ (ω)ap+1 . To obtain equality, we show that
(ωlogp)a = (ξ(p))a. Indeed, for k ≥ 2 and nk−1 ≤ j ≤ qk,

j(ξ(p)
a )j ≥

nk−1−1∑
i=qk−1+1

ξ
(p)
i =

nk−1−1∑
i=qk−1+1

logpi

i
≥ 1

2

nk−1∑
i=1

logpi

i
≥ Cp

2
logp+1nk−1

≥ Cp
2
logp+1√qk ≥

Cp
2p+2

logp+1j ≥ Cp
2p+2

j((ωlogp)a)j .
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For k ≥ 2 and qk < j < nk, by the above inequality applied at qk we also have

j(ξ(p)
a )j = qk(ξ(p)

a )qk
+

j∑
i=qk+1

logpi

i
≥ Cp

2p+2
qk((ωlogp)a)qk

+
j∑

i=qk+1

logpi

i

≥ Cp
2p+2

 qk∑
i=1

logpi

i
+

j∑
i=qk+1

logpi

i

 =
Cp

2p+2
j((ωlogp)a)j .

Thus (ωlogp)a ≤ 2p+2

Cp
ξ

(p)
a on [n1,∞), which proves that (ω)ap+1 = (ξ(p))a. Finally,

(
ξ(1) + · · ·+ ξ(p)

ω
)nk

= (
ξ(1) + · · ·+ ξ(p−1)

ω
)nk

+ (
ξ(p)

ω
)nk

= (
ξ(1) + · · ·+ ξ(p−1)

ω
)nk

+
1

k + 1
→ 0.

Thus ω 6= O((ξ(1) + · · ·+ ξ(p))) and since ω satisfies the ∆1/2-condition, it follows
that (ω) 6⊂ (ξ(1) + · · · + ξ(p)). This completes the inductive construction of the
sequence of sequences ξ(p).

Now let L be the ideal generated by the sequences ξ(p). Since L is the union
of the principal ideals (ξ(1) + · · · + ξ(p)), by construction (ω) 6⊂ L. Since La is
the ideal generated by {ξ(p)

a | p ∈ N}, and since (ξ(p))a = (ωap+1), La coincides
with sta((ω)) =

⋃∞
p=0(ω)ap , the upper am-stabilizer of the principal ideal (ω) (see

Section 2). Thus La is am-stable and so La = a(La) = L−. Also La contains (ω)
while L does not, so La 6= L, i.e., L is not am-stable.

To obtain equality with Loo, we first show that (ξ(p))oo = (ω)ap for ev-
ery p. Because (ξ(p)) ⊂ (ωlogp) = (ω)ap which is am-open, by definition
(ξ(p))oo ⊂ (ωlogp). By [16, Remark 2.19], (ξ(p))oo is principal. Choose as a
generator of it some ρa ≥ ξ(p) (see [16, Lemma 2.13]). For every k ≥ 1 and
j ∈ (qk, nk) one has j(ρa)j ≥ jξ(p)

j = logpj = j(ωlogp)j from the definition of the
sequence ξ(p). For every j ∈ [nk, qk+1], by using the last inequality at nk − 1,

j(ρa)j ≥ (nk − 1)(ρa)(nk−1) ≥ logp(nk − 1) ≥ logp(√qk+1 − 1)

≥ logp(
√
j − 1) ≥ logp(j1/4) = 4−pj(ωlogp)j .
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The last inequality holds because j ≥ nk ≥ ( 1+
√

5
2 )4. Thus ωlogp = O(ρa) and

hence (ξ(p))oo = (ωlogp). By [16, Lemma 2.22(i) and (v)],

Loo =
(⋃
p

(
(ξ(1)) + · · ·+ (ξ(p))

))oo =
⋃
p

(
(ξ(1)) + · · ·+ (ξ(p))

)oo
=
⋃
p

(
(ξ(1))oo + · · ·+ (ξ(p))oo

)
=
⋃
p

(ωlogp) = sta((ω)).

�

6. First order cancelation properties

In this section we use sublattice density to study first order arithmetic mean ideals’
cancelation properties for inclusions. Several of these results were announced in
[14]. We start with the elementary equivalences.

Lemma 6.1. Let I be an ideal.

(C) The following conditions are equivalent.
(i) I is am-closed
(ii) Ja ⊂ Ia ⇒ J ⊂ I (ii ′) J− ⊂ I− ⇒ J ⊂ I
(iii) Ja = Ia ⇒ J ⊂ I (iii ′) J− = I− ⇒ J ⊂ I
(iv) I− ⊂ J− ⇒ I ⊂ J
(v) I− = J− ⇒ I ⊂ J

(O) The following conditions are equivalent.
(i) I is am-open
(ii) aI ⊂ aJ ⇒ I ⊂ J (ii ′) Io ⊂ Jo ⇒ I ⊂ J
(iii) aI = aJ ⇒ I ⊂ J (iii ′) Io = Jo ⇒ I ⊂ J
(iv) Joo ⊂ Ioo ⇒ J ⊂ I
(v) Joo = Ioo ⇒ J ⊂ I

(C∞) The following conditions are equivalent.
(i) I is am-∞ closed
(ii) J ⊂ L1 and Ja∞ ⊂ Ia∞ ⇒ J ⊂ I ⊂ L1

(ii′) J ⊂ L1 and J−∞ ⊂ I−∞ ⇒ J ⊂ I ⊂ L1

(iii) J ⊂ L1 and Ja∞ = Ia∞ ⇒ J ⊂ I ⊂ L1

(iii′) J ⊂ L1 and J−∞ = I−∞ ⇒ J ⊂ I ⊂ L1

(iv) I−∞ ⊂ J−∞ ⇒ I ⊂ J
(v) I−∞ = J−∞ ⇒ I ⊂ J
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(O∞) The following conditions are equivalent.
(i) I is am-∞ open
(ii) a∞I ⊂ a∞J ⇒ I ⊂ J (ii′) Io∞ ⊂ Jo∞ ⇒ I ⊂ J
(iii) a∞I = a∞J ⇒ I ⊂ J (iii′) Io∞ = Jo∞ ⇒ I ⊂ J
(iv) J ⊂ se(ω) and Joo∞ ⊂ Ioo∞ ⇒ J ⊂ I ⊂ se(ω)
(v) J ⊂ se(ω) and Joo∞ = Ioo∞ ⇒ J ⊂ I ⊂ se(ω)

Proof. Conditions (x) and (x′) are all equivalent by the monotonicity (i.e., in-
clusion preserving property) of the operations L 7→ La, L 7→ aL, L 7→ La∞ , and
L 7→ a∞L and by the identities

L− = ( a(La))a, Lo = a((aL)a), L−∞ = ( a∞(La∞))a∞ , L
o∞ = a∞((a∞L)a∞)

(see Section 2). Also, condition (ii) always trivially implies condition (iii) and
condition (iv) always trivially implies condition (v). The am-case being similar
but simpler because of the 5-chains of inclusions, we prove only the am-∞ case.

(C∞) Recall that a∞I ⊂ I−∞ ⊂ I and I ∩ L1 ⊂ I−∞ ⊂ Ia∞ ∩ L1 for every ideal
L (see paragraph preceding Theorem 5.2).
(i) ⇒ (ii′) I = I−∞ ⊂ L1 and J = J ∩ L1 ⊂ J−∞ ⊂ I−∞ = I.
(iii′)⇒ (i) Since I−∞ = (I−∞)−∞ and I−∞ ⊂ L1, it follows that I−∞ ⊂ I ⊂ L1.
But then I = I ∩ L1 = I−∞ and hence I is am-∞ closed.
(i)⇒ (iv) I = I−∞ ⊂ J−∞ ⊂ J .
(v)⇒ (i) Since I−∞ = (I−∞)−∞ and I−∞ ⊂ L1, it follows that I ⊂ I−∞ and
hence I = I−∞, i.e., I is am-∞ closed.

(O∞) Recall that a∞L ⊂ Lo∞ ⊂ L and L ∩ se(ω) ⊂ Loo∞ ⊂ La∞ ⊂ se(ω) for
every ideal L (see ibid).
(i) ⇒ (ii′) I = Io∞ ⊂ Jo∞ ⊂ J .
(iii′) ⇒ (i) As Io∞ = (Io∞)o∞, so I ⊂ Io∞ hence I = Io∞, i.e., I is am-∞ open.
(i)⇒ (iv) As every am-∞ open ideal, I ⊂ se(ω). Moreover,

J = J ∩ se(ω) ⊂ Joo∞ ⊂ Ioo∞ = I.

(v)⇒ (i) Since Ioo∞ = (Ioo∞)oo∞ and Ioo∞ ⊂ se(ω), so Ioo∞ ⊂ I ⊂ se(ω). hence
I = I ∩ se(ω) = Ioo∞, i.e., I is am-∞ open. �

A reformulation of (C) in the above lemma is that I is not am-closed if and
only if there is an ideal L 6⊂ I for which Ia = La, in which case I is contained in
the strictly larger ideal J := I +L with the same arithmetic mean as I. In case I
is countably generated (resp. principal) the next proposition shows that we can
choose that larger ideal J to also be countably generated (resp. principal). The
same holds for the am-∞ case.
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Proposition 6.2.
(i) If I is a countably generated ideal that is not am-stable, then there is a countably
generated ideal J ) I such that Ja = Ia. If I is principal, then J can be chosen
to be principal.

(ii) If I is a countably generated ideal that is not am-∞ stable, then there is a
countably generated ideal J ) I such that Ja∞ = Ia∞ . If I is principal, then J

can be chosen to be principal.

Proof. By [16, Corollaries 2.9 and 3.5], if I is countably generated and not am-
stable (resp. am-∞ stable,) then it is not am-closed (resp. am-∞ closed). By
the upper density of Lℵo

and PL in L, there is a J ∈ Lℵo
such that I ( J ( I−

(resp. I ( J ( I−∞), and if I ∈ PL then J can be chosen to be principal. But
then

Ia ⊂ Ja ⊂ (I−)a = Ia (resp. Ia∞ ⊂ Ja∞ ⊂ (I−)a∞ = Ia∞).

�

The answer is different for the reverse inclusion question: If I is not am-stable,
can we always find a smaller ideal J ( I such that Ja = Ia? The next example
shows that the answer is negative even when I is principal and that the same
holds for the am-∞ case.

Example 6.3.
(i) Let ξi := 1

k! for ((k − 1)!)2 < i ≤ (k!)2 and all k ≥ 2 and let ξ1 = 1. Then the
principal ideal (ξ) is not am-stable and J ( (ξ) implies Ja 6= (ξ)a.

(ii) Let ξi := 1
(k!)2 for (k − 1)! < i ≤ k! and all k ≥ 2 and let ξ1 = 1. Then the

principal ideal (ξ) is not am-∞ stable and J ( (ξ) implies Ja∞ 6= (ξ)a∞ .

Proof.

(i) It is easy to verify that ξ ∈ c∗o and that ξ does not satisfy the ∆1/2-condition
and hence is not am-stable. Now assume by contradiction that there is an ideal
J ( (ξ) with Ja = (ξ)a. Then (ξ)a = (η)a for some (η) ⊂ J , that is, J can also
be chosen to be principal. Without loss of generality, since ξ and every MDmξ

for M > 0 and m ∈ N, generate the same ideal, we can assume that η ≤ ξ.
Since (η) 6= (ξ), ξ 6= O(Djη) for every j ∈ N, i.e., ξrj

≥ jηd rj
j e

for some strictly
increasing sequence of integers rj . Furthermore, we can assume that the intervals
((kj − 1)!)2 < rj ≤ (kj !)2 containing distinct rj are disjoint, that is, kj is strictly



270 VICTOR KAFTAL AND GARY WEISS

increasing. Then η (kj !)2

j

≤ ηd rj
j e
≤ 1

j ξrj
= 1

j(kj !) , and since
∑k

1 n! ≤ 2k!,

(kj !)2(ηa)(kj !)2 =
(kj !)2∑
i=1

ηi ≤

(kj !)2

j∑
i=1

ξi +
(kj !)2∑

i=
(kj !)2

j +1

η (kj !)2

j

= 1 +
kj−1∑
n=2

(n!)2 − ((n− 1)!)2

n!
+

+
(

(kj !)2

j
− ((kj − 1)!)2

)
1
kj !

+
(

(kj !)2 − (kj !)2

j

)
η (kj !)2

j

≤ 2(kj − 1)! +
kj !
j

+
kj !
j
≤ 4

kj !
j

=
4
j

(kj !)2ξ(kj !)2

≤ 4
j

(kj !)2(ξa)(kj !)2 .

But then ξa 6= O(ηa), and hence (ηa) 6= (ξa), a contradiction.

(ii) Since
∑∞
k=1

1
(k!)2 (k!−(k−1)!) <∞, by [15, Example 4.5(iii), Corollary 4.10 and

Definition 4.11], (ξ) is not am-∞ stable. As in the proof of part (i), reasoning by
contradiction we can assume that (η) ( (ξ) but (ηa∞) = (ξa∞) for some η ∈ (`1)∗

with η ≤ ξ, and we can choose a sequence (kj − 1)! < rj ≤ kj ! with strictly
increasing kj for which ξrj ≥ jηd rj

j e
. Then jη kj !

j

≤ jηd rj
j e
≤ ξrj = ξkj ! = 1

(kj !)2 ,

and since
∑∞
k

1
n! ≤

e
k! ,

kj2 !(ηa∞) k
j2 !

j2

= j2

( kj2 !∑
i=

k
j2 !

j2
+1

ηi +
∞∑

i=kj2 !+1

ηi

)

≤ j2

(
kj2 !η k

j2 !

j2

+
∞∑

n=kj2+1

n!− (n− 1)!
n!2

)

≤ j2

(
1

j2kj2 !
+

∞∑
n=kj2+1

1
n!

)

≤ j2

(
1

j2kj2 !
+

e

(kj2 + 1)!

)
≤ 4
kj2 !

.
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On the other hand, for j ≥ 2,

kj2 !(ξa∞) k
j2 !

j

≥ j
kj2 !∑

i=
k

j2 !

j +1

ξi = j(kj2 !−
kj2 !
j

)
1

(kj2 !)2
≥ j

2kj2 !
.

Therefore (ξa∞) k
j2 !

j

≥ j
8 (ηa∞) k

j2 !

j

and hence ξa∞ 6= O(Dmηa∞) for any integer

m. Thus (ηa∞) 6= (ξa∞). As in part (i), this concludes the proof. �

Remark 6.4. That (η)a ⊃ (ξ) implies (η)a ⊃ (ξ)a for the sequence ξ of part
(i) of the above example (or equivalently, that (ξ)oo = (ξ)a) was proved in [16,
Example 2.20]. This combined with Example 6.3(i) shows that if (η) ⊂ (ξ) ⊂ (η)a,
then (η) = (ξ). That is, (ξ) cannot lie strictly between any principal ideal and its
arithmetic mean.

At an early stage of this project, Ken Davidson and the second named author
found, for the case of principal ideals, a direct constructive proof of Proposition
6.2(i) or rather, equivalently, that there is a principal ideal J ) I with J− = I−.
The same result was obtained earlier by Allen and Shen [2] by different methods.
The proof that we presented here is a consequence of the identity I− = aI for
countably generated ideals (see [16, Theorem 2.9]).

To handle the am-interior (resp. am-∞ interior) analogs of Proposition 6.2 for
principal ideals, a direct constructive proof seems needed. This we present in the
next proposition.

Proposition 6.5.
(i) Let (ρ) 6= {0} be a principal ideal that is not am-stable. Then there are two
principal ideals (η(1)) and (η(2)) with (η(1)) possibly zero, such that

(η(1)) ( (ρ) ( (η(2)), (η(1))oo = (ρ)o, and (ρ)oo = (η(2))o.

(ii) Let (ρ) 6= {0} be a principal ideal that is not am-∞ stable. Then there are two
principal ideals (η(1)) and (η(2)) such that

(η(1)) ( (ρ) ( (η(2)), (η(1))oo∞ = (ρ)o∞, and (ρ)oo∞ = (η(2))o∞.

Proof.

(i) By [16, Lemma 2.14], (ρ)o and (ρ)oo are principal. Also (ρ)o = {0} precisely
when (ω) 6⊂ (ρ). If (ρ) is not am-open and hence (ρ)o ( (ρ) ( (ρ)oo, then choosing
(η(1)) := (ρ)o and (η(2)) := (ρ)oo satisfies the requirement. Thus assume that (ρ)
is am-open and hence (ρ)o = (ρ)oo = (ρ). By [16, Lemma 2.13] ρ is equivalent to
ξa for some ξ ∈ c∗o. Thus ξa is irregular and by [10, Remark 3.11] (see also Corol-
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lary 5.3(i)), ξ too is irregular, i.e., ξa 6= O(ξ). Choose an increasing sequence of
indices nk such that (ξa)nk

≥ kξnk
and without loss of generality assume that

nk+1 > knk. Then

knk(ξa)knk
=

nk∑
j=1

ξj +
knk∑

j=nk+1

ξj ≤ nk(ξa)nk
+ knkξnk

≤ 2nk(ξa)nk

and hence (ξa)nk
≥ k

2 (ξa)knk
. Define

η
(1)
j =

{
(ξa)knk

for nk ≤ j ≤ knk
(ξa)j for knk ≤ j < nk+1

η
(2)
j =

{
(ξa)nk

for nk ≤ j ≤ knk
(ξa)j for knk < j ≤ nk+1.

Then η(i) ∈ c∗o for i = 1, 2 and η(1) ≤ ξa ≤ η(2). Thus (η(1)) ⊂ (ξa) ⊂ (η(2))
and since (ξa) is am-open, (η(1))oo ⊂ (ξa) ⊂ (η(2))o. We need to prove strict
containments in the first pair of inclusions and equalities in the second pair.
Since (

ξa
η(1)

)
nk

=
(
η(2)

ξa

)
knk

=
(ξa)nk

(ξa)knk

≥ k

2
,

i.e., ξa 6= O(η(1)) and η(2) 6= O(ξa), and since ξa satisfies the ∆1/2-condition, it
follows that (η(1)) 6= (ξa) 6= (η(2)).

By [16, Lemma 2.14], (η(1))oo is principal, i.e., (η(1))oo = (µa) for some µ ∈ c∗o
[ibid, Lemma 2.13]. Since (η(1)) ⊂ (µa) and µa satisfies the ∆1/2-condition, by
multiplying µ by a constant if necessary, one can assume without loss of generality
that µa ≥ η(1). For all nk ≤ j ≤ knk,

j(µa)j ≥ (nk − 1)(µa)nk−1 ≥ (nk − 1)η(1)
nk−1 = (nk − 1)(ξa)nk−1

≥ (nk − 1)(ξa)nk
≥ k

2
(nk − 1)(ξa)knk

≥ 1
4
knk(ξa)knk

≥ 1
4
j(ξa)j .

For all knk ≤ j < nk+1 we have j(µa)j ≥ jη
(1)
j = j(ξa)j . Thus ξa = O(µa)

and hence (ξa) ⊂ (µa) = (η(1))oo, whence (ξa) = (η(1))oo. Similarly there is a
νa ≤ η(2) such that (νa) = (η(2))o. Then for all nk ≤ j ≤ knk,

j(νa)j ≤ (knk + 1)(νa)knk+1 ≤ (knk + 1)η(2)
knk+1 = (knk + 1)(ξa)knk+1

≤ 2knk(ξa)knk
≤ 4nk(ξa)nk

≤ 4j(ξa)j .

For all knk < j ≤ nk+1 we have j(νa)j ≤ jη
(2)
j = j(ξa)j . Thus νa = O(ξa) and

hence (νa) ⊂ (ξa), whence (η(2))o = (ξa).



B(H) LATTICES, DENSITY AND ARITHMETIC MEAN IDEALS 273

(ii) We consider separately the cases when (ρ) is and when it is not am-∞ open.
First assume that (ρ) is not am-∞ open and hence (ρ)o∞ ( (ρ) 6= (ρ)oo∞.

Recall that by [16, Lemma 3.9(i)], (ρ)o∞ is not principal precisely when (ω) ⊂ (ρ),
in which case (ρ)o∞ = se(ω). By [16, Lemmas 3.9(ii) and 3.16(ii)], (ρ)oo∞ is not
principal precisely when (ρ) 6⊂ se(ω), in which case (ρ)oo∞ = se(ω). Hence if
(ρ) ⊂ se(ω), then both (ρ)o∞ and (ρ)oo∞ are principal and (ρ)o∞ ( (ρ) ( (ρ)oo∞,
so it suffices to choose (η(1)) = (ρ)o∞ and (η(2)) = (ρ)oo∞. And otherwise if
(ρ) 6⊂ se(ω), then choose a sequence η(2) sufficiently large so that (ρ+ω) ( (η(2)).
Then (η(2))o∞ = se(ω) = (ρ)oo∞. To obtain η(1) in the case when (ω) ⊂ (ρ),
choose 0 6= η(1) ≤ ω but η(1) 6= o(ω). Then ω 6= O(η(1)) hence (η(1)) ( (ω),
and (η(1)) 6⊂ se(ω) (which follows since ω satisfies the ∆1/2-condition). Then
(η(1)) ( (ρ) and (η(1))oo∞ = se(ω) = (ρ)o∞. In the case when (ω) 6⊂ (ρ), choose
(η(1)) = (ρ)o∞ since then the latter ideal is principal.

Thus, as in part (i), it remains to consider only the case that (ρ) is am-∞ open
and hence (ρ) = (ξa∞) for some ξ ∈ `∗1 (see [16, Lemma 3.7]). By [15, Theorem
4.12(i) and (iv)], since (ρ) is not am-∞ stable, ξ is am-∞ irregular, and again
by [ibid, Theorem 4.12(i) and (ii)], ξa∞ 6= O(ξ). Thus we can find an increasing
sequence of indices nk such that (ξa∞)nk

≥ 2kξnk
, and without loss of generality

we can assume that nk+1 > knk. Then

nk(ξa∞)nk
=

knk∑
j=nk+1

ξj +
∞∑

j=knk+1

ξj ≤ knkξnk
+ knk(ξa∞)knk

≤ 1
2
nk(ξa∞)nk

+ knk(ξa∞)knk

and hence (ξa∞)nk
≤ 2k(ξa∞)knk

. As for the am-case, define

η
(1)
j =

{
(ξa∞)knk

for nk ≤ j ≤ knk
(ξa∞)j for knk ≤ j < nk+1

η
(2)
j =

{
(ξa∞)nk

for nk ≤ j ≤ knk
(ξa∞)j for knk < j ≤ nk+1.

Then η(i) ∈ c∗o for i = 1, 2 and η(1) ≤ ξa∞ ≤ η(2), whence it follows that
(η(1)) ⊂ (ξa∞) ⊂ (η(2)). Moreover, since ξa∞ ∈ Σ(se(ω)) it follows also that
(η(1)) ⊂ se(ω), and since ( ω

η(2) )nk
= ( ω

ξa∞
)nk
→ ∞, (η(2)) 6⊃ (ω). Thus both

(η(1))oo∞ and (η(2))o∞ are principal and (η(1))oo∞ ⊂ (ξa∞) ⊂ (η(2))o∞ [16,
Lemma 3.9(i)-(ii)]. For m ∈ N and all k ≥ m we have
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(
ξa∞

Dmη(1)

)
knk2

≥
(

ξa∞
Dkη(1)

)
knk2

=
(ξa∞)knk2

η
(1)
nk2

=
(ξa∞)knk2

(ξa∞)k2nk2

≥ k

since, as is easy to verify, (ζa∞)m ≥ k(ζa∞)km for any positive integers k,m and
ζ ∈ (`1)∗. Thus (ξa∞) 6= (η(1)). Similarly, for all k ≥ m,(

η(2)

Dmξa∞

)
k2nk2

≥
(

η(2)

Dkξa∞

)
k2nk2

=
(ξa∞)nk2

(ξa∞)knk2

≥ k,

whence (η(2)) 6= (ξa∞). Since (η(1)) ⊂ (η(1))oo∞ and the latter is am-∞ open and
principal, by [15, Lemma 4.1(i)] we can choose one of its generators µa∞ so that
µa∞ ≥ η(1). Then for all nk ≤ j ≤ knk, using (ξa∞)nk

≤ 2k(ξa∞)knk
,

j(µa∞)j ≥ knk(µa∞)knk
≥ knkη(1)

knk
= knk(ξa∞)knk

≥ 1
2
nk(ξa∞)nk

≥ 1
2
j(ξa∞)j ,

and for all knk ≤ j < nk+1 we have j(µa∞)j ≥ j(η(1))j = j(ξa∞)j . Thus
ξa∞ = O(µa∞), hence (ξa∞) ⊂ (µa∞) = (η(1))oo∞, whence (ξa∞) = (η(1))oo∞.

Similarly, by the proof of [16, Lemma 3.7], there is a generator νa∞ for (η(2))o∞

such that νa∞ ≤ η(2). If nk ≤ j ≤ knk, then

j(νa∞)j ≤ nk(νa∞)nk
≤ nkη(2)

nk
= nk(ξa∞)nk

≤ 2knk(ξa∞)knk
≤ 2j(ξa∞)j .

If knk < j ≤ nk+1, then j(νa∞)j ≤ jη
(2)
j = j(ξa∞)j . Thus νa∞ = O(ξa∞), hence

(η(2))o∞ = (νa∞) ⊂ (ξa∞), whence (η(2))o∞ = (ξa∞). �

Remark 6.6.
(i) The existence of the sequence of indices nk constructed above can also be derived
for case (i) from [26, Lemma 1] and for case (ii) from [15, Theorem 4.12(v)].

(ii) In Proposition 6.5, the non am-stability condition for the principal ideal
(ρ) is necessary. Indeed if (ρ) were am-stable, hence am-open, then condition
(η(1))oo = (ρ) or (η(2))o = (ρ) would imply (Theorem 5.1): (η(1)) = (η(1))oo = (ρ)
or (η(2)) = (η(1))o = (ρ). Likewise for the am-∞ case and argument.

Theorem 6.7.
(A) Let I 6= {0} be a principal ideal and let J be an arbitrary ideal. Then the
following are equivalent

(i) I is am-stable
(ii) aJ = aI (or, equivalently, Jo = Io) implies J = I

(iii) Ja = Ia (or, equivalently, J− = I−) implies J = I

(iv) Joo = Ioo implies J = I

(v) J− = I− implies J = I
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(B) Let I 6= {0} be a principal ideal and let J be an arbitrary ideal. Then the
following are equivalent

(i) I is am-∞ stable
(ii) a∞J = a∞I (or, equivalently, Jo∞ = Io∞) implies J = I.
(iii) Ja∞ = Ia∞ (or, equivalently, J−∞ = I−∞) implies J = I

(iv) Joo∞ = Ioo∞ implies J = I

(v) J−∞ = I−∞ implies J = I

Proof. As the am-case is similar and slightly simpler than the am-∞ case, we
prove only the latter. Recall from [15, Corollary 4.10] that I is am-∞ stable if
and only if I = a∞I, or, equivalently, if and only if I ⊂ L1 and I = Ia∞ , in which
case also

I = I−∞ = I−∞ = Io∞ = Ioo∞ ⊂ sta∞(L1) ( L1.

(i) ⇒ (ii)-(v) Since I is am-∞ open (resp. am-∞ closed), if the hypothesis of (ii)
(resp. (v)) are satisfied, then in either case, I ⊂ J by Lemma 6.1. If the hypothesis
of (iv) (resp. (iii)) are satisfied, then Joo∞ 6= se(ω) (resp. J−∞ 6= L1), hence by
[16, Lemma 3.16 (ii) ], J ⊂ se(ω) (resp. by [16, Lemma 3.16 (i) ], J ⊂ L1 and
thus in either case, J ⊂ I by Lemma 6.1.

Now assume by contradiction that I 6= J . Then in cases (ii) and (v), by the
upper density of S∞PL in L (see Corollary 3.7(ii) and Theorem 3.13) there is an
ideal L ∈ S∞PL strictly between I and J . In cases (iii) (resp. (iv)), there is a
principal ideal (η) ⊂ J for which (η)a∞ = Ia∞ = I (resp. (η)oo∞ = Ioo∞ = I).
Since I 6= (η) by the assumption I 6= J , by Theorem 3.13 there is again an ideal
L ∈ SPL strictly between I and (η). Since L = a∞L = L−∞ = Loo∞ = La∞ ,
this yields an immediate contradiction for all four cases. (ii),(iv) ⇒ (i) Since
(Io∞)o∞ = Io∞ (resp. (Ioo∞)oo∞ = Ioo∞), it follows that I is am-∞ open. The
conclusion is now immediate from Proposition 6.5(ii).
(iii),(v) ⇒ (i) If I is not am-∞ stable, then it is not am-∞ closed [16, Theorem
3.5] and so it cannot coincide with I−∞ (resp. with I−∞), but (I−∞)−∞ = I−∞

(resp. (I−∞)−∞ = I−∞), contradicting the hypothesis. �

Examples 5.4 and 5.5 show that the first order equality cancelations of Proposi-
tion 6.7 can fail for countably generated am-stable ideals. Indeed, aN = N− is
am-stable yet aN = a2N 6⇒ N = aN and N− = (N−)− 6⇒ N = N−. Similarly,
La = Loo is am-stable yet La = La2 does not imply L = La and Loo = (Loo)oo

does not imply L = Loo.

First order cancelations involving inclusions are less simple even for principal
ideals. As shown in Lemma 6.1, necessary and sufficient conditions on the ideal
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I for the cancelations aI ⊂ aJ ⇒ I ⊂ J (resp. Ja ⊂ Ia ⇒ J ⊂ I) are straight-
forward: I must be am-open (resp. am-closed). The “opposite” implications,
aJ ⊂ aI ⇒ J ⊂ I and Ia ⊂ Ja ⇒ I ⊂ J do not hold in general even when I is
principal and am-stable. For the latter, Corollaries 6.15 and 6.16 show that this
cancelation fails for every I = (ωp) (0 < p < 1) and Example 6.18 provides a
principal ideal where this cancelation does hold. For the former, the cancelation
fails for every principal ideal I, as shown by the next proposition which actually
proves more.

Proposition 6.8. Let I be an ideal. Then for every principal ideal (ξ) there is a
principal ideal (ζ) 6⊂ (ξ) with a(ζ) ⊂ aI.

Proof. Assume first that aI 6= 0 and hence L1 ⊂ aI (by [16, Lemma 6.2(iii)-
(iv)]). Let nk be an increasing sequence of integers such that ξdnk+1−1

k e ≤
1
knk

.

Define the sequence ζj := 1
nk

for j ∈ [nk, nk+1). Then ζ ∈ c∗o and since for every
k, ζnk+1−1 ≥ k(Dkξ)nk+1−1 , it follows that (ζ) 6⊂ (ξ). Now let ρ ∈ Σ(a(ζ)), that
is, ρa ∈ Σ((ζ)), and since ρa satisfies the ∆1/2-condition, assume without loss of
generality that ρa ≤ ζ. Then

∑nk

i=1 ρi = nk(ρa)nk
≤ 1 and hence ρ ∈ `1. Thus

a(ζ) ⊂ L1 ⊂ aI.
For the case when aI = {0}, let nk be a strictly increasing sequence of integers

such that ξdnk+1−1
k e ≤

1
k2nk

. Define the sequence ζj := 1
knk

for j ∈ [nk, nk+1).

Then it is easy to verify that (ζ) 6⊂ (ξ) and (ω) 6⊂ (ζ), and hence a(ζ) = {0}. �

As a consequence of Proposition 6.8, recalling from [16, Theorem 2.9] that
(ζ)− = a(ζ) for every principal ideal (ζ), we see that the cancelation J− ⊂ I− ⇒
J ⊂ I also fails for every principal ideal I.

The proof of Proposition 6.8 can be adapted to show that while principal ideals
have principal am-interiors, the converse does not hold.

Example 6.9. There is a non-principal ideal with principal nonzero am-interior.

Proof. Define the sequences ζ(p)
j = 1

(2pk)! for j ∈ [(2pk)!, (2p(k + 1))!) for every
p ∈ N. Then it is easy to verify that (ω) ⊂ (ζ(p)) ( (ζ(p+1)) for all p, from which
it follows that the ideal I :=

⋃
p(ζ

(p)) is not principal. On the other hand, if
{0} 6= (ρa) ⊂ (ζ(p)) is an am-open ideal, and without loss of generality, ρa ≤ ζ(p),
then the inequality (2pk)!(ρa)(2pk)! ≤ 1 shows that ρ ∈ `1. Thus, as in the proof
of the above proposition, (ρa) = (ω), that is, (ζ(p))o = (ω). By [16, Theorem
2.17], Io =

⋃
p(ζ

(p))o = (ω), which is a principal ideal. �
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Proposition 6.8 implies that for any given ideal I, there is never a “least upper
bound” principal ideal for the solutions J of the inclusion aJ ⊂ aI. Intuitively, a
candidate might be the union of such ideals but this, in general, is not an ideal. In
contrast however, the intersection of ideals being always an ideal, for every given
ideal I, the “greatest lower bound,” Î, for the solutions of the inclusion Ja ⊃ Ia,
i.e., the largest ideal for which Ja ⊃ Ia ⇒ J ⊃ Î, is given by:

Definition 6.10. Î :=
⋂
{J | Ja ⊃ Ia}

We will identify Î for principal ideals and show that it is itself principal (when I is
principal) and that it may be strictly smaller than I (even when I is am-stable),
though not always (see Corollary 6.16(ii), Example 6.18 and Proposition 6.17).

The motivation for considering Î comes from the still open question from [10,
Section 7]: If the class [I,B(H)]1 of single commutators of operators in I with
operators in B(H), contains a finite rank operator with nonzero trace, must Σ(I)
contain

√
ω? It was shown in [10, Theorem 7.3] that Σ(I−) 3

√
ω, i.e., there

is an η ∈ Σ(I) with ηa ≥ (
√
ω)a �

√
ω. However, we will show in Corollary

6.16(ii) (for p = 1
2 ) that the latter condition does not imply (η) ⊃ (

√
ω) but only

that (η) ⊃ (ω) and that this “lower bound” (ω) is sharp for this implication. For
general ξ it can be shown that there is never a minimal ξ̂ for which ηa ≥ ξa implies
η ≥ ξ̂, but as Theorem 6.14(i) shows there is a minimal one asymptotically.

Definition 6.11. For ξ ∈ c∗o \ `1, let ν(ξ)n := min{k ∈ N |
∑k
i=1 ξi ≥ nξ1} and

define ξ̂ :=< (ξa)ν(ξ)n
>.

Lemma 6.12. If ξ ∈ c∗o \ `1, then ξ̂ ∈ c∗o and (1− 1
ν(ξ)n

) ξ̂n < n
ν(ξ)n

ξ1 ≤ ξ̂n.

Proof. Since ξ /∈ `1, the distribution sequence ν(ξ) is well-defined, nondecreas-
ing, and tends to infinity since ν(ξ)n ≥ n because nξ1 ≤

∑ν(ξ)n

i=1 ξi ≤ ν(ξ)nξ1.
Thus ξ̂ ∈ c∗o. For each fixed m and all n for which ν(ξ)n ≥ m,

nξ1 ≤
ν(ξ)n∑
i=1

ξi =
m−1∑
i=1

ξi +
ν(ξ)n∑
i=m

ξi ≤
m−1∑
i=1

ξi + ν(ξ)nξm

so 0 ≤ lim
n

n

ν(ξ)n
ξ1 ≤ lim

n

∑m−1
i=1 ξi
ν(ξ)n

+ ξm = ξm.

Since m is arbitrary, n
ν(ξ)n

→ 0. Moreover,

(ν(ξ)n − 1) ξ̂n ≤ (ν(ξ)n − 1) (ξa)ν(ξ)n−1 =
ν(ξ)n−1∑
i=1

ξi < nξ1 ≤
ν(ξ)n∑
i=1

ξi = ν(ξ)n ξ̂n,

whence the claim. �
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Notice ξ̂ is asymptotic to < n
ν(ξ)n

ξ1 >. Also the next lemma is left to the reader.

Lemma 6.13. For all ξ, η ∈ c∗o \ `1 and all t > 0 we have
(i) ν(tξ) = ν(ξ) and t̂ξ = t ξ̂

(ii) min{ν(ξ), ν(η)} ≤ ν(ξ + η) ≤ max{ν(ξ), ν(η)} and ξ̂ + η ≤ ξ̂ + η̂

Theorem 6.14. Let ξ ∈ c∗o \ `1.
(i) If ηa ≥ ξa and η ∈ c∗o, then for every ε > 0, ηn ≥ (1 − ε) ξ̂n for n sufficiently
large.

(ii) For every ρ ∈ c∗o \Σ((ξ̂)), there is an η ∈ c∗o for which ηa ≥ ξa and ρ /∈ Σ((η)).

Proof.

(i) By Lemma 6.13(i), assume without loss of generality that ξ1 = 1. For every n
large enough so that (ηa)n ≤ ε

2 and ν(ξ)n > max(n, 2
ε ), we have

n ≤
ν(ξ)n∑
i=1

ξi ≤
ν(ξ)n∑
i=1

ηi ≤
n∑
i=1

ηi + (ν(ξ)n − n)ηn ≤
ε

2
n+ (ν(ξ)n − n)ηn

and thus

ηn ≥ (1− ε

2
)

n

ν(ξ)n − n
≥ (1− ε

2
)

n

ν(ξ)n
> (1− ε

2
)2 ξ̂n > (1− ε) ξ̂n

where the third inequality follows from Lemma 6.12.
(ii) Assume without loss of generality that ξ1 = 1 and, again by Lemma 6.13(i),
that ρ1 = 1. We construct inductively an increasing sequence of integers nk and
three derived sequences lk = d 4k(k+1)

ρnk
e, mk := dnk

k e, and pk := d nk

lk−1
e starting

with l0 = n1 = 1. Assume the construction up to k−1 ≥ 1. Since ρ 6= O(Dlk−1 ξ̂),
we can choose an integer nk large enough so that

(a) ρnk
≥ k(Dlk−1 ξ̂)nk

= k(ξ̂)pk

(b) nk ≥ lk−1

(c) ρnk
≤ k2

2lk−1

(d) mk ≥ 2mk−1

(e) mk > ν(ξ)pk−1

Now define the sequence ηj := 1
kρnk

for mk ≤ j < mk+1. Then η ∈ c∗o and
ρ 6= Σ((η)) because ρnk

= k(Dkη)nk
for all k. The key to prove that ηa ≥ ξa is

the following lower bound for ν(ξ)pk
:

ν(ξ)pk
≥ pk

ξ̂pk

≥ knk
lk−1ρnk

≥ 2
nk
k
> mk,

where the first inequality follows from Lemma 6.12, the second from (a) and the
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definition of pk, the third from (c) and the fourth from the definition of mk. Thus
by (e), mk < ν(ξ)pk

< mk+1. If mk ≤ j < ν(ξ)pk
, then

j∑
i=1

ηi −
j∑
i=1

ξi ≥
mk−1∑
i=mk−1

ηi −
ν(ξ)pk

−1∑
i=1

ξi (obvious)

> (mk −mk−1)ηmk−1 − pk (by the definition of ν(ξ)pk
)

>
(mk −mk−1)

k − 1
ρnk−1 −

nk
lk−1

− 1 (by the definitions of ρ and of pk)

>
nk

2(k − 1)k
ρnk−1 − 2

nk
lk−1

(by (d) and (b) and since mk ≥
nk
k

)

≥ nk
2(k − 1)k

4(k − 1)k
lk−1

− 2
nk
lk−1

= 0 (by the definition of lk).

If now ν(ξ)pk
≤ j < mk+1, then

j∑
i=1

ηi −
j∑
i=1

ξi =
ν(ξ)pk

−1∑
i=1

ηi −
ν(ξ)pk

−1∑
i=1

ξi +
j∑

i=ν(ξ)pk

ηi −
j∑

i=ν(ξ)pk

ξi

≥
j∑

i=ν(ξ)pk

ηi −
j∑

i=ν(ξ)pk

ξi (by the above inequality)

≥ (j − ν(ξ)pk
+ 1)

(
1
k
ρnk
− ξν(ξ)pk

)
(by the monotonicity of η and ξ)

≥ (j − ν(ξ)pk
+ 1)

(
1
k
ρnk
− (ξa)ν(ξ)pk

)
= (j − ν(ξ)pk

+ 1)
(

1
k
ρnk
− ξ̂pk

)
≥ 0 (by the definition of ξ̂ and (a)).

Therefore ηa ≥ ξa, which completes the proof. �

Using Theorem 6.14 to compute Î (see Definition 6.10) for principal ideals I:

Corollary 6.15. Let 0 6= ξ ∈ c∗o, then (̂ξ) =

{
F for ξ ∈ `1

(ξ̂) for ξ /∈ `1

Proof. If ξ ∈ `1, then (ξa) = (ω) = Fa, thus (̂ξ) = F . If ξ 6= `1, then for
every ideal J such that Ja ⊃ (ξ)a, there is an η ∈ Σ(J) such that ξa ≤ ηa. By
Theorem 6.14(i), (ξ̂) ⊂ (η) ⊂ J , hence (ξ̂) ⊂ (̂ξ). By Theorem 6.14(ii), for every
ρ ∈ c∗o \Σ((ξ̂)), there is an η ∈ c∗o such that (η)a ⊃ (ξ)a but ρ /∈ Σ((η)). But then
ρ /∈ Σ(

⋂
{J | Ja ⊃ (ξ)a}) = Σ((̂ξ)), whence the claim. �
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Corollary 6.16.
(i)

(̂ω)p =


F for p > 1

(< n
en >) for p = 1

(ω)p
′

for 0 < p < 1, where 1
p −

1
p′ = 1

(ii) (̂ω)p is am-stable if and only if 0 < p < 1
2 .

Proof.

(i) For p > 1, ωp is summable and hence, by Corollary 6.15, (̂ω)p = F . A routine
computation shows ν(ω)n � en and therefore, again by Corollary 6.15 and Lemma
6.12, one has (̂ω) = (ω̂) = (< n

en >). Similarly, for 0 < p < 1, (ν(ω)p)n � n
1

1−p ,
hence on has (̂ω)p = (< n

n
1

1−p
>) = (ωp

′
).

(ii) The ideals F and (< n
en >) are clearly not am-stable, and (ω)p

′
is am-stable

if and only if 0 < p′ < 1. �

So, in particular (̂ω)1/2 = (ω). By definition, (̂ξ) ⊂ (ξ), but as the case of
(ω)1/2 illustrates, the inclusion can be proper even when ξ is regular, i.e., when
(ξ) is am-stable. As the following proposition shows, the inclusion is certainly
proper when (ξ) 6= F is not am-stable.

Proposition 6.17. If F 6= (ξ) = (̂ξ) with {0} 6= ξ ∈ c∗o, then (ξ) = (ξ)a.

Proof. Assume otherwise. Then there is an increasing sequence of integers nk,
starting with n1 = 1, such that (ξa)nk

≥ k2ξnk
and for k > 1, nk can be chosen

large enough so that for mk := max{j ∈ N | ξj > kξnk
}, mk ≥ 2knk−1, and also

(ξa)dmk
k e
≤ 1

2k ξnk−1 . First we show that
∑nk

i=1 ξi ≤ 2
∑mk

i=1 ξi. Indeed,

nk∑
i=mk+1

ξi ≤ nkξmk+1 ≤ knkξnk
≤ nk

k
(ξa)nk

=
1
k

nk∑
i=1

ξi,

thus
nk∑
i=1

ξi =
mk∑
i=1

ξi +
nk∑

i=mk+1

ξi ≤
mk∑
i=1

ξi +
1
k

nk∑
i=1

ξi,

and hence
∑nk

i=1 ξi ≤
1

1− 1
k

∑mk

i=1 ξi ≤ 2
∑mk

i=1 ξi. Now, define the sequence

ηj =

{
ξnk−1 for j ∈ [nk−1, dmk

k e)
ξnk

for j ∈ [dmk

k e, nk]
.
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Clearly, η ∈ c∗o and if j ∈ [dmk

k e, nk], then

j(ηa)j =
j∑
i=1

ηi ≥
dmk

k e∑
i=nk−1+1

ηi = (dmk

k
e − nk−1)ξnk−1 ≥

1
2
dmk

k
e2k(ξa)dmk

k e

≥ mk(ξa)dmk
k e
≥ mk(ξa)mk

≥ 1
2

nk∑
1

ξi ≥
1
2

j∑
1

ξi =
1
2
j(ξa)j .

By using this inequality, if j ∈ [nk−1, dmk

k e], then also

j(ηa)j =
nk−1∑
i=1

ηi +
j∑

i=nk−1+1

ηi ≥
1
2

nk−1∑
i=1

ξi +
j∑

i=nk−1+1

ξi ≥
1
2

j∑
i=1

ξi =
1
2
j(ξa)j .

This proves that (η)a ⊃ (ξ)a and hence (η) ⊃ (̂ξ). On the other hand,

ξmk
> kξnk

= kηdmk
k e

= k(Dkη)mk

and hence (η) 6⊃ (ξ), that is, (ξ) 6= (̂ξ), against the hypothesis. �

It remains to show that there exist principal ideals I = Î with I 6= F .

Example 6.18. Let ξj = 1
k for j ∈ ((k − 1)!, k!]. Then (ξ) = (̂ξ).

Proof. It is enough to show that if η ∈ c∗o and (ξ) 6⊂ (η), then (ξ)a 6⊂ (η)a.
Assume without loss of generality that η1 = 1. Since ξ 6∈ Σ((η)), choose an
increasing sequence rj ∈ N for which ξrj

≥ jηd rj
j e

. Let rj ∈ ((kj − 1)!, kj !] and
assume without loss of generality that kj is strictly increasing. Then

1
kj

= ξkj ! = ξrj
≥ jηd rj

j e
≥ jη kj !

j

and hence

(kj + 1)!(ηa)(kj+1)! ≤

kj !
j∑
i=1

η1 +
(kj+1)!∑
i=

kj !
j +1

η kj !
j

≤ kj !
j

+ (kj + 1)!η kj !
j

≤ (1 +
kj + 1
kj

)
kj !
j
≤ 3

kj !
j
.

On the other hand,

(kj + 1)!(ξa)(kj+1)! ≥
(kj+1)!∑
i=kj !+1

1
kj + 1

=
kj

kj + 1
kj ! ≥

1
2
kj !.
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Combining the two inequalities, (ξa)(kj+1)! ≥ j
6 (ηa)(kj+1)!, whence ξa 6= O(ηa)

and hence (ξa) 6⊂ (ηa). �
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