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Unitarily Invariant Trace Extensions Beyond the
Trace Class

K. Dykema, G. Weiss,! M. Wodzicki?

Abstract

The existence of unitarily invariant trace extensions of the standard
trace on the ideal of finite rank operators in B(H) past the trace class
to a strictly larger ideal is proven using matrix forms and a certain
trace obstruction.

1 Introduction

This paper proves the existence of unitarily invariant trace extensions of
the standard trace from the ideal of finite rank operators to an ideal strictly
larger than the ideal of trace class operators. The proof presented here is our
early matricial solution of the question about sums of commuators described
below and proved in Theorem 2, the main theorem. This question arose in
connection with the larger question: Which ideals have traces nonvanishing
on the ideal of finite rank operators? Theorem 2 also follows as a consequence
of the general characterization found in [DFWW].

All ideals herein are 2-sided ideals of B(H), the class of all bounded
linear operators on a separable, infinite-dimensional, complex Hilbert space
H. Let F denote the ideal of all finite rank operators on H and let K
denote the ideal of all compact operators on H. It is well-known that for
all ideals Z, {0} ¢ F € T € K C B(H) and that the standard trace, Tr,
is a unitarily invariant linear functional on the trace class, C, hence on all
ideals contained in C; and, in particular, on F.

Ideals are determined by their characteristic sets s(Z) where T — s(7) :=
{s(T) := (sn(T)) : T € I} is a 1-1, onto, lattice preserving map from the
class of ideals J « §, the class of characteristic sets. Here, VT € K, define
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s(T) := (sn(T)), the sequence of s-numbers of T. Characteristic sets, S,
are those subsets of ¢t := {z = (z,) : z is a decreasing sequence with
zn — 0} that are closed under addition, scalar multiplication, ampliation
(z € S implies (z1,z1, T2, Z2,Z3,...) € S) and domination (z, <y, Vn > 1
and y = (yn) € S implies z € S) (see [G]).

A unitarily invariant trace, 7, on an ideal 7 of B(H) is a unitarily
invariant linear functional on Z, i.e., a linear functional where 7(T) =
T(U*TU) VT € T and for all unitary operators U € B(H).

A linear functional, 7, is unitarily invariant on Z if and only if 7 vanishes
on the commutator space (also called the commutator ideal), [Z, B(H)], the
linear span of all (Z, B(H))-single commutators AB — BA with A € T and
B € B(H). This follows easily from the identity {U*,UT] =T — UTU* and
the fact that every B(H) operator B is representable as a linear combination
of 4 unitaries.

Every unitarily invariant trace 7 on Z is a unitarily invariant trace ex-
tension of some scalar multiple cT'r from F to Z since every ideal Z contains
the finite rank ideal F; the restriction to F of any unitarily invariant trace
7 on 7 is a unitarily invariant trace on F; and the only unitarily invariant
traces on JF are the scalar multiples, ¢T'r, of the standard trace Tr on F. In
other words, any unitarily invariant trace on Z which is nonvanishing on F
is, up to a nonzero scalar multiple, a unitarily invariant trace extension of
Tr.

A necessary and sufficient condition for the existence of trace extensions
from J C 7 to I of a nonzero trace 7 is that:

[Z,B(H)nJ c J°,

where J° := {T € J : 7(T') = 0}. To see this, first define 7 on J +{Z, B(H)]
via 7(J+ 8) :=7(J)VJ € J and VS € [Z, B(H)]. Then 7 is well-defined
if and only if [Z, B(H)]NJ C J°. Extending 7 from the linear subspace
J + [T, B(H)] nonuniquely to all of T is an easy Hamel basis argument.

Hence there is a trace on Z which is nonvanishing on the ideal F of finite
rank operators if and only if [Z, B(H)|NF C F°.

The standard trace T'r on the trace class C} is a unitarily invariant trace
extension from F to C;. A natural ideal properly containing C} is the ideal,
Z,(1/n), of operators with s-numbers s,(T) = o (%) The class S(Zo(1/n))
satisfies the characteristic set axioms [G] and it properly contains C; since

every decreasing summable sequence satisfies the o (%)
1

sequence <h’Toﬁ> is not summable but also satisfies the condition. This

condition while the



leads to the question of the existence of a unitarily invariant trace extension
of Tr from F (beyond C1) to Zy(1/n), Or equivalently:

Question: If F is a finite rank operator which is a finite sum of commutators
AB—BA where B € B(H) and A € K with sp(A) =0 (%), must T'r F' = 0?

Note. There are no positive unitarily invariant trace extensions 7 of T'r
from F (beyond C1) to a strictly larger ideal Z. Assuming otherwise, for
any T € I\C}, multiply U* in its polar decomposition T' = U|T| so that
we can without loss of generality assume T' > 0. Then 7(T) > 7(P,T) =
Tr(P,T) — ||IT|lc, = oo, where P, denotes the projection onto the span of
the eigenvectors of the largest n-eigenvalues of T. Hence 7(T") = oo, which
is a contradiction.

Let <%> denote the sequence (1,1/2,1/3,...,1/n,...). The main theo-
rem is: ’

Theorem 2. The ideal Z,; /) possesses unitarily invariant trace extensions
of the standard trace on the ideal of finite rank operators.

Remark. A necessary and sufficient condition for an ideal Z to possess
unitarily invariant trace extensions from F to Z which is nonvanishing on F
is that diag <%> €7 (ie., <%> ¢ S(T)), but his requires more development
(see [DFWW] and a variation on [PT] or a slight variation on the simpler
[W1, pp. 34-35]).

History. The role of the classical trace Tr is well-known. In a series of
recent papers, Alain Connes linked some exotic traces (Dixmier traces on
the dual Macaev ideal) to questions in Physics [Co 1, 2], theory of noncom-
mutative residue [Co 1], [Wod 1], theory of quasifuchsian groups [Co 3}, [Co
Sul], and questions about Hausdorff measure on Julia sets [Co 3]. Which
ideals possess a nontrivial trace and the ability to describe all interesting
exotic traces on such ideals often yield significant applications.

Traces provide a dual viewpoint on commutator spaces. Indeed the trace
results in [DFWW] evolved from the study of commutator spaces. The
history of commutators dates back to one of the formulations of Heisen-
berg’s uncertainty principle. After the characterization of the class of single
(B(H), B(H))-commutators [BrPe 1| (see also [AndSta], [BrHaPe], [BrPe
2], and [Ha 1-3]), Pearcy and Topping [PeTo 2] began the study of com-
mutator spaces of operator ideals with several questions. One question



was whether or not [Cy,C2] = C{ := the trace zero operators. The sec-
ond listed author obtained results in this area [W 1-4]. In particular,
[Ca,C3] # C%, which follows from the characterization in [W 2-3] of those
diagonal operators diag(—1,d1,dz, ...) € [C3,C,] with (d,) positive and de-
creasing and ¥ d, = 1. Indeed, diag(—1,d;,ds,...) € [Ca,C9] if and only if
¥ dplogn < oo. Then in [Kal 1], Kalton proved [Cy, Ca] = [C1, B(H)] and
characterized this commutator space as follows. For each operator T' € K, let
{An) denote its nonzero eigenvalue sequence arranged in order of decreas-
ing moduli counting algebraic multiplicities and inserting zeros if T' has
only finitely many nonzero eigenvalues. Denote C(T') = diag<&%’\ﬂ>,
the diagonal operator with entries the Cesaro sequence from the eigen-
value sequence, (\,), of T. Then T € [Cy,Cs] = [C1, B(H))] if and only
if O(T) € C1, ie., [C(T)[ly = £ [M£2%22| < 00. More recently in [DFWW]
we proved, with Figiel, for arbitrary ideals I,J, that [I,J] = [IJ, B(H)]
and that this general commutator space is characterized as those opéra-
tors T € IJ whose real and imaginary parts, Re T and Im T, satisfy
C(Re T), C(Im T) € IJ. Other important contributions were [And 1-2},
[AndVas], [Kal 2] and [DykKal).

2 General block upper-Hessenberg forms.

Theorem 1. For every finite sequence of operators T3, T, ... , Tk with cyclic
vector e (i.e., with {p(T1,T%,...,Tk)e : p is a k-variable polynomial} dense
in H), e extends to a basis on which all T1,T3, ..., Tk simultaneously have
block tri-diagonal matrix forms with the same block sizes:

dl bl * *

a; da by x
0 ag d3
0 0

where a,, bn, d, are finite rectangular matrices with height a, = width

Remark. In [WW] two additional related matrix forms are obtained.

(i) In the above matrix, one can replace the *’s with 0’s as follows. For
every finite sequence of operators T1,7%,..., T, with *-cyclic vector e (i.e.,
with {p(T1, T1*, To, Ta*, . . ., Tk, Te*)e: p is a 2k-variable polynomial } dense



in H), e extends to a basis in which all 71,T5,..., T} simultaneously have
blocked tri-diagonal matrix forms with the same block sizes: height a, =
width dp+.1 = height dn+1 = width b, = O((2k)™).

(ii) If AB — BA is finite rank, then there exists A’, B/, and a projection
P with AP = A 90, BP = B’ ® 0 with A’B’ — B’A’ finite rank and
Tr(A'B' — B'A") = Tr(AB — BA) where A’ and B’ simultaneously have
block upper-Hessenberg matrix form with the same block sizes: height a, =
width dy 41 = height dns1 = Width bx = O(n).

Proof of Theorem 1. The set of ntt-order words in Ty, T5,...,Tk is

given by the disjoint union W, (T, T3, ..., Tk) = U Wn—i1(Th, T, ..., Ti)T;
j=1

which leads to the recursive cardinality equation |W,(T1,T5,... ,Tk)| =

kIW _1(T1,T2, cee ,Tk)| with lWl(Tl,T2, ces ,Tk)| = k, hence IW (Th, Ty, ..

Ti)| = k™.

Now denote the subspace M,, = span W;(Th,Ta,. .., Tk)e having dim M, <
k™ and for all 1 < 7 < k, T;M, C Mn+1 Then the subspaces M,,,1 & M,
yield block upper-Hessenberg forms as above, all the T}’s with the same
block sizes and with an, bn, d,, matrix sizes O(k™).

3 Matrix forms and commutators.

The proof of Theorem 2, the main theorem, is obtained from the interplay
between matrix forms and commutators, in particular, a certain diagonal
trace obstruction.

Theorem 2. The ideal Z,(, /) possesses unitarily invariant trace extensions
of the standard trace on the ideal of finite rank operators.

Proof: As previously mentioned, Theorem 2 is equivalent to the inclusion:
[Io(l/n)’B(H)] NF C .FO- So suppose F = Z(AkBk = BkAk) is a finite

k=1
rank operator with each Ay € Z,1/n) and By € B(H) and assume to the
contrary that Tr F # 0.

First we reduce to the case where (Ax), (Bg) has a cyclic vector. Use
the general block tri-diagonal upper-Hessenberg forms in Theorem 1 to put
all the operators in the finite sequences (Ax) and (By) simultaneously into
an infinite direct sum (or finite direct sum according to the number of cyclic
subspaces required) of block tri-diagonal forms. The restriction to each of
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m
these subspaces of Z(AkB;c — BiAg) is again finite rank and retains this
k=1

m
block matrix form. Since Z(AkBk—BkAk) € C}, the sequence of the traces
k=1

m

of these restrictions sums to Tr Z(AkBk = BiAg) # 0. Therefore at least
k=1

one restriction has non-zero trace. In other words, restricting to a common

reducing subspace for all Ax, By, the finite sequences (Ak) C Zo(1/nys (Br) C
B(’H) then have a cyclic vector as defined in Theorem 1, the restriction of

Z(AkBk — B Ay) also has block matrix form, Z(AkBk — B Ag) is finite
=1 k=1

rank, and the trace of the restriction T E(AkBk — B Ag) # 0. So, without

loss of generality, we may assume the set (Ak), (Bg) has a cyclic vector and
hence, for each 1 < k < m,

di(k) bi(k) x * . 1(k) bi(k) x x
ai(k) da(k) ba(k) = . ai(k) dy(k) by(k)

Ac=| 0 axk) dsk) . . |, Be=| 0 ah(k) d(k)
o 0 A 0o 0

simultaneously with block tri-diagonal forms all with the same block sizes
and of order O((2k)™).
m

Computing the diagonal of F' = Z(AkBk — BiAy), the first diagonal
k=1

block entry Dy = Z(d1(k)d (k) — di(k)dy (k) + by(k)a1 (k) — by(K)as(k)),

followed by the nt" block diagonal entry, for n > 2,

Dr, Z(dn(k)d (k)—d, (k)dn (k) +bn(k)ap (k)-+an—1 (k)bp—1 (k) =1 (K)bn-1 (k)b (K)an(k)).

k=1
Then
Tr (ij Dj) =Y TrD;
j=1 j=1

3 S Ty (R (k) — 5 (R (6) + 3 3 Tr(bs(R)al (k) — 5 (k)b (k)

k=1j=1 k=1j=1



£ 3030 Tr(a; (B (k) — B (R)a; (K)) + Tr(ba(k)ats (k) — ¥ (k)an(E))
k=1 j=1

= Tr 3> (bn(R)ay (k) — By (k)an(R)),
k=1

since all matrices an(k), bn(k), dn(k),al,(k), ¥, (k),d. (k) are finite rank and

. n
all commutators of finite rank operators have trace 0. But also T'r Z Dj) -
j=1
Tr F # 0. That is, for n sufficiently large,

0<|Tr Fl|/2

< |7r S (8) - b:,ac)an(k))]
k=1
< S Un Bl ey R + 1) llanCe) )
k=1

< IBI Y (lba(R) 11 + lan(®)ila)-
k=1

m

So for n sufficiently large, Z(an(k)lll + ||lan(k)]]1) is bounded below with
k=1

> _(lba (k)1 + llan(k)ll1) 2 € = |Tr F|/2|| B.
k=1
We next construct an operator T' € Z,(;/,) having matrix block diagonal

m
<Z(|an(k)| + |bn(k)|)> It suffices to show how to obtain, for each fixed k,
k=1

an operator A’ € Zo(1/n) With nth block diagonal entry |a,(k)|. Then con-
structing B’ € I,(1/5) With matrix block diagonals |b,(k)| follows similarly
and adding A’ + B’ and summing over k yields T. Using the polar decompo-

0 0 00O
sitions an(k) = un|an(k)|, A’ = Ag* u(')l 1?2 8 0 has block diagonal
0 0

entry |an(k)|. Although the blocks of Ay are not all square matrices and
hence the polar decompositions are not all square matrices, still this product
is well-defined in that all matrix sizes match up properly when performing
the multiplication and A’ € Z,(;/n) is achieved.



Let P, denote the projection onto the domain of

(== == =)
O ~NO -
o O O

with block sizes the same as all the Ag’s. Then dim P, = O((2k)") and,
m
for all sufficiently large n, say n > N, 0 < £ < > _(||bn(k)|l1 + llan(k)[1) =

. k=1
Tr(P,TP,). Hence dim P, < M(2k)" for some M and, using Fan’s Theorem
[GK, 11.4, Lemma 4.1], for alln > N,

n n dim Py +dim Pa+-+dim Pp, c(2k)™
e(n-N) < Y- Tr(PTP) < Y Tr(P{TP;) < 5 ST S 8.
=N j=1 j=1 j=1

c(2k)" .
From e(n — N) < Z s;(T) for all n > N, it is routine to show that, for

i=1 n
some & > 0, ¢'logn < Z sj(T), for all sufficiently large n. But T' € Zy(1/n)

j=1

implies s;(T) = o (%), hence Z 5;(T") = o(log n), which is a contradiction.
J=1
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