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States λ:

positive linear functionals on a VNA with λ(I) = 1.

By Krein-Milman:

Convex + Compact in w*-topology ⇒
closure of the convex hull of the extreme pts

(these are the pure states)

FACT:

B(H)-extreme pts = all vector functionals ωx

(A → (Ax, x) with ||x|| = 1)

States on D (diagonals of B(`2)) extend trivially to

states on B(`2): λ(A) := λ(diag A)

|λ(A)| = |λ(diag A)| ≤ ||λ||D∗||diag A||D
≤ ||λ||D∗||A||B(`2)

In particular, pure states on D extend to B(`2).

But more–to a pure state on B(`2).

Kadison-Singer Problem [KS] (1959): Unique?
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Equivalent to many important problems
(cf. Casazza’s invited address at GPOTS 2005-
The KS Problem in Mathematics and Engineering:
op thy, frame thy, Hilb sp thy, Ban sp thy, harm
anal, time-requency anal and engineering).

E.g., relative Dixmier property for D:
D′ ∩ co{UAU∗ | U unitary inD} 6= φ ∀A ∈ B(H)
(Halpern, Kaftal, W 86-
Rel Dixmier property in discrete crossed products)

Important reformulation
Anderson’s Paving Problem: Fix ε > 0, ∃? k ∈ N
⇒ ∀ n ∈ N and each A ∈ Mn(C) with zero diagonal,
∃ diag ⊥ proj (d.d.) P1 +P2 + ... +Pk = I for which

‖PjAPj‖ ≤ ε‖A‖, 1 ≤ j ≤ k.

Observed in (HKW87-Matrix pavings in B(H))
and probably long before:
Paving fails for k = 2,
e.g., P1 + P2 = I ⇒ max

i=1,2
{||PiAPi||} = 1 = ||A||:

A =



0 1 0
0 0 1
1 0 0




Question (HKW87-ibid): Does k = 3 suffice?
We know of no concrete evidence against this.
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Bourgain-Tzafriri (91):
Using advanced probabilistic techniques
solved an analogous single compression problem
and the paving problem for large classes of matrices

Reformulation of Corollary 1.2 and
remark following it states:
∃ a universal C > 0 for which
every zero-diagonal matrix of size n ≥ 1

C has a
large diagonal projection with small compression.

Quantitatively: ||PAP || ≤ ε||A||, with rankP ≥ Cε2n.

This cannot be improved because of
(Berman-HKW88-Matrix norm inequalities
and the relative Dixmier property)
but BHKW did implicitly obtain
for non-negative entried matrices rankP ≥ εn

2 .

BHKW88-Theorem 3.4: For every k,
(i) For zero-diagonal nonnegative entried A,
max
1≤i≤k

{||PiAPi||} ≤ 2
k ||A|| (open question: sharp?)

for some P1 + P2 + ... + Pk = I
(ii) For s.a. zero-diagonal nonnegative entried A,
max
1≤i≤k

{||PiAPi||} ≤ 1
k ||A|| . . . and 1

k is sharp.
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Bourgain-Tzafriri in 91 paragraph before Cor 1.4:

“...reasonably good evidence [that KS is true]”),

KS in 1959 p. 397

“We incline to the view that

such extension is non-unique”

and Casazza presently believes false

BT91-Theorem 2.3: paveable if matrix is sufficiently

large (depending on ε) and its entries are O( 1
(log n)1+ε)

(ε depending also on ε) (lacks uniform bdd k)

HKW86-Matrix pavings and Laurent operators

Corollary 4.2 and Theorem 4.5:

Laurent operators with Riemann integrable symbol

are uniformly paveable (infinite matrix setting)

(projections are infinite arithmetic progressions)

but not all Laurents are uniformly paveable

BT91 on Laurent operators-Theorem 4.1:

Laurent ∩ Besov ops (weighted `2 fourier series)

(multiplication by L∞ funcs with
∑
Z
|φ̂(n)|2|n|τ < ∞

for some τ > 0) are paveable.
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Pavings in Cp-norms

Motivation: s
p
1 ≤

∑n
1 s

p
i ≤ n s

p
1 is

||A|| ≤ ||A||p ≤ n1/p||A||

Hence the variational approach:

set p = log n so n1/log n = e
log n
log n = e

and hence ||A|| ≤ ||A||p ≤ e||A|| and likewise for

smaller rank A’s,

so Cp-paveability for p sufficiently large in a sense is

equivalent to norm paveability.

BHKW90-Some C4 and C6 norm inequalities relat-

ing to the paving problem

||
∑
k

⊕PiAPi||2 ≤ k−1/2||A||2 (sharp for Hadamards)

||∑
k

⊕PiAPi||4 ≤ k−1/4||A||4

(combinatorics improve coefficient to 21/4k−3/8)

||∑
k

⊕PiAPi||6 ≤ 5.31/6 k−1/3||A||6
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BT90 exploits deeper phenomena of this type

e.g., his random paving principle:

an Lp-mean (p = log n) of single compression norms

is small

implying k-paveability where k depends on n

Below we use Cp-norms to yield B(H)-norm bounds

for 3-pavings.
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Negative evidence

BT91-Example 2.2:
zero-diagonal matrices exist for which
the BT probabilistic techniques fail
(i.e., averages are too large)

Quantitatively:
∀ 0 < δ < 1, ∃ N(δ) where for each n ≥ N(δ)
can construct A with entries |aij| ≤ 2log1

δ/log n

with large paving average (expectation)

Bad average example: finite “unitary” shift
Stirling set number-counting number of n-partitions
into k-nonempty subsets

S(n, k) = 1
k!
∑k−1

0 (−1)i

(
k
i

)
(k − i)n

≤ # of partitions of m not nec empty subsets
S(n,3) = 1

6(3
n − 6 · 2n + 3) = O(3n)

# partitions not containing any {i, i+1} nor {1, n}:
1
63 · 2 · 1 · 2 · · ·2 = 2n−3

∴ Ave paving approaches 1 as n → ∞

BT goal for Example 2.2 was to get uniformly small
entries-so not this example
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Preliminary Report on Bad 3-Pavings

Setup for Bad Paver (i.e., ground up) approach:

For a zero-diagonal matrix

(finite or infinite and bounded),

α3(A) := inf
d.d.

||∑
3

⊕PiAPi|| = inf
d.d.

max
3

||PiAPi||

normalized: α̃3(A) := α3(A)/||A||

Easy facts about α:

α̃k(A) ≤ 1 and paving problem is

whether or not for some k, sup
A

α̃k(A) < 1

αk(
∑⊕ Ai) = sup

i
αk(Ai) and

αk(UAU∗) = αk(A) for all permutations U .

Consequence: KS ⇔ there is a universal k for which

α̃k(A) < 1 for every zero-diagonal A ∈ B(`2)
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Bad pavers are extremals A for which

α3(A) = max ||PiAPi|| (∃ via fin dim compactness)

Bad Paver approach:

find bad pavers and study their properties

E.g., preliminary data suggests the best d.d.

for bad pavers is uniform, e.g., 3−3−4 for a 10×10

(open: prove it)

HKW87-Example (2n + 2) × (2n + 2) unitary

(then remove diagonal) α̃3(A) ∼ 2/3

1

n + 1




1 −n 1 1 · · ·
1 1 −n 1 · · ·
... ... . . . . . . . . .
1 1 1 · · · −n
−n 1 1 · · · 1




(Toeplitz)

Largest P has PAP norm ≥ 2n+2
3(n+1) = 2/3.

So beating 2/3 is a starting goal and

a problem posed in HKW87-Matrix pavings in B(H).
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Bad 4 × 4 pavers:

idea-first renormalize to insist α3(A) = 1.

∴ each entry or its diag reflection are ≥ 1.

Associate to A the undirected graph on 4 pts with

edge (i, j) when i,j-entry or its reflection is ≥ 1.

All possible such graphs after

left and right multiplication by a diagonal unitary

possess a submatrix which entrywise dominates(
1 1
0 1

)
which has norm =

√
3+

√
5

2 = 1+
√

5
2 ≈ 1.618- Fibonnacci’s golden ratio.

By searching with our proprietary software:

norm 1+
√

5
2 with constraint α3(A) = 1 is attainable.




0 1 1 − 2
1+

√
5

0 0 1 1
0 0 0 1
1 0 0 0




∴ α̃3(A) = 2
1+

√
5
≈ .618
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5 × 5 = 4 × 4 ⊕ 01

6 × 6: α̃3(A) =
√

2
2 ≈ .7071!

A =




0 0 0 1 0 1
1√
2

0 − 1√
2

0 1 0

0 0 0 −1 0 1
−1

2 1 1
2 0 1√

2
0

1 0 1 0 0 0
1
2 1 −1

2 0 − 1√
2

0




(
√

2·unitary)

Unique up to basis permutation! (We suspect)
I.e., rare.

Our proof required similar analysis as in the 4 case
but the number of isomorphic 6 graphs = 156
(7=1044)

Found graph-axioms and constraints that a bad
(optimal) paver must have.
E.g., insure α3(A) = 1 and involving lower bound
knowledge of α̃3.

Reduced # of isomorphic 6 graph optimal candi-
dates to 1 (again rare)
for which other matrix techniques applied.
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Software and heuristics:
found initial conditions crucial-required theoreti-
cal insights

Steepest Ascent Method

Steepest ascent is a method for finding the local
maximum of a function. Simply follow the gradient.

Conjugate Gradient Method

Conjugate gradient is a method for finding the local
maximum of a function. It is a ”weighted” steepest
ascent method.

Simulated Annealing

Simulated annealing is a method for finding the
global maximum of a function. It (roughly) pro-
ceeds as follows: A random change is made to the
state of the system. If the change produces an in-
crease in the value of the function, then the change
is accepted. If, on the other hand, the change pro-
duces a decrease in the value of the function, then
the change is accepted with some probability. Usu-
ally, the probability decreases exponentially with the
decrease in the function value.
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• Decide on n and search.
We find many stalls at false peaks so initial con-
ditions are crucial. Theoretical work impacts our
choice of initial condition.

• Interpret software findings-translate into useful
mathematical objects.

• Continue the loop until example and theory yield
optimality.

• Advantaged classes for possible counterexamples
(offers special features or merely reduces complex-
ity)

Laurents (Toeplitz) (by BT-non Besov is a place to
aim),

Ramanujan matrices (suggested by Davidson/Szarek
that incidence matrices of Ramanujan graphs should
be bad pavers. This was not our experience.),

conference matrices (zero-diag Hadamard),

circulant matrices
(fin lin combos of Un, U = the finite unilateral shift)

14



3-pavings summary

n General SA complex Real symmetric aij ≥ 0
4 0.6180 0.5774 0.4472 0.5550
5 0.6180 0.5774 0.4472 ?
6 0.7071 0.5774 ? ?
7 [.8026,1] ? [0.6667,0.7559] ?
8 ? ? ? ?
9 ? ? ? ?
10 ? ? [0.7454,1] ?

Single listings = Sharp examples (i.e., theoretically
provable):

4 × 4, 5 × 5 general:

A =




0 1 1 − 2
1+

√
5

0 0 1 1
0 0 0 1
1 0 0 0




4 × 4, 5 × 5, 6 × 6 SA:

A =




0 i 1 1
−i 0 1 −1
1 1 0 i
1 −1 −i 0



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4 × 4, 5 × 5 symmetric:

A =




0 1 1 1
1 0 1 −1
1 1 0 1
1 −1 1 0




4 × 4 non-negative:

A =




0 1 1 0
0 0 1 1
0 0 0 1
1 0 0 0




6 × 6 general α̃3(A) =
√

2
2 ≈ .7071:

A =




0 0 0 1 0 1
1√
2

0 − 1√
2

0 1 0

0 0 0 −1 0 1
−1

2 1 1
2 0 1√

2
0

1 0 1 0 0 0
1
2 1 −1

2 0 − 1√
2

0



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7 × 7 general (lower bound): α̃3(A) ≈ .8026

A ≈



0 79.7 67.2 35.9 −67.5 56.1 −27.8
−27.8 0 79.7 67.2 35.9 −67.5 56.1
56.1 −27.8 0 79.7 67.2 35.9 −67.5
−67.5 56.1 −27.8 0 79.7 67.2 35.9
35.9 −67.5 56.1 −27.8 0 79.7 67.2
67.2 35.9 −67.5 56.1 −27.8 0 79.7
79.7 67.2 35.9 −67.5 56.1 −27.8 0




Obtained by starting with a combination of the

“fat” operator and the shift, and searching.

7 × 7 symmetric (lower bound 2/3 = α̃3(A)):

A =




0 1 1 1 1 1 1
1 0 1 1 1 −1 −1
1 1 0 −1 1 −1 −1
1 1 −1 0 −1 −1 1
1 1 1 −1 0 1 1
1 −1 −1 −1 1 0 1
1 −1 −1 1 1 1 0




This example is trying (unsuccessfully, of course) to

be a conference matrix (zero-diagonal Hadamard).
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Very recent:

7-by-7 matrix (circulant + unitary)

which 3-paves to 0.8231

(previous best 0.8029).

Possible (??) simple argument that shows that

NO 7-by-7, circulant, unitary paves to 1.000.

10×10 real symmetric (lower bound .7454 ≈ α̃3(A)):

C10 =




0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 −1 −1 −1 −1
1 1 0 1 −1 −1 1 1 −1 −1
1 1 1 0 −1 −1 −1 −1 1 1
1 1 −1 −1 0 1 1 −1 1 −1
1 1 −1 −1 1 0 −1 1 −1 1
1 −1 1 −1 1 −1 0 1 1 −1
1 −1 1 −1 −1 1 1 0 −1 1
1 −1 −1 1 1 −1 1 −1 0 1
1 −1 −1 1 −1 1 −1 1 1 0



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Most attention paid: 7 × 7 symmetric

Why?: first case where 3 × 3 compressions are un-

avoidable

KS ⇔ paving problem holds for self-adjoints

2/3 ≤ α̃3(A) ≤ 2√
7
≈ .7559

The 7 × 7 symmetric upper bound comes from the

following fact:

If A is 7 × 7 s.a. zero-diagonal,

and every 3-compression of A has norm ≥ 1

(analog to 2-compression constraint of smaller cases),

then ‖A‖ ≥
√

7
2 . (see last slide)

Now some of the theoretical tools used for these

examples
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Analytic norm 1 criteria

Recall for 2×2 matrix (and hence rank 2 matrices)

||A2×2|| =
||A||22

2
+

√
||A||42

4
− |det A|2

and so

||A2×2|| = 1 ⇔ |det A|2 + 1 = ||A||22 ≤ 2

NASC for norm one 3 × 3 zero-trace S.A. matrix

(so rank 3 matrix & not nec zero-diagonal)

||A|| = 1 ⇔
||A||22

2
+ |Det A| = 1.

For >, < 1, the resp. conditions also equivalent.

Nec cond for norm 1: 3/2 ≤ ||A||22 ≤ 2.
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NASC for norm one 3 × 3 zero-trace matrix
(so rank 3 matrix & not nec zero-diagonal)

1 ≤ ||A||22 ≤ 2 + |Det A|2

and

||A||22 −
1

2
(||A||42 − ||S||44) + |Det A|2 = 1

or if you prefer

||A||44 + 2|Det A|2 = (||A||22 − 1)2 + 1

Necessary conditions

|Det A| ≤ 1 and |Det A| ≤
||A||22 − 1

2

Observe: in all these cases criteria involves only
the determinant and the C2, C4-norms.
Advantageous for averaging.

Problem: NASC for larger ranks
For generalizing-symmetric function representations
of coefs for the general char poly appear relevant.
(Cayley Hamilton also appears relevant.)

4 × 4 trace-zero S.A. norm 1-exists but hard
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S.A. with large 3-compressions

n × n S.A. zero-trace

‖A‖2 ≤
n − 1

n
‖A‖22.

Easy from
ns21 = n‖A‖2 ≤ (n − 1)‖A‖22 ⇔

trace−0&Holder

s1 ≤
∑n

2 |sj| ≤ (n − 1)1/2(
∑n

2 |sj|2)1/2

‖A‖22 ≤





n‖A‖2 n even

(n − 1)‖A‖2 n odd
.

Even case is simply Holder and holds for all n
but odd case is harder and may be new

⇓

Zero-diag w/ all 3-compression having norm ≥ 1

‖A‖ ≥





√
n−1
2 n even√
n

2 n odd
.

by a Hilbert-Schmidt averaging argument

n = 7 ⇒ α̃3(A) = α3(A)
||A|| ≥ 1√

7
2

= 2√
7
≈ .7559

bound we saw above.
22


