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States A\:
positive linear functionals on a VNA with AX(I) = 1.

By Krein-Milman:

Convex + Compact in w*-topology =
closure of the convex hull of the extreme pts
(these are the pure states)

FACT:
B(H)-extreme pts = all vector functionals wy
(A — (Azx,z) with ||z|| = 1)

States on D (diagonals of B(¢2)) extend trivially to
states on B(£2): A(A) := \(diag A)

[A(A)] = [A(diag A)| < [|A]|p+||diag Al|p
< [[Mp=llAll pe2y

In particular, pure states on D extend to B(¢2).
But more—to a pure state on B(¢?).

Kadison-Singer Problem [KS] (1959): Unique?
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Equivalent to many important problems

(cf. Casazza's invited address at GPOTS 2005-
The KS Problem in Mathematics and Engineering:
op thy, frame thy, Hilb sp thy, Ban sp thy, harm
anal, time-requency anal and engineering).

E.g., relative Dixmier property for D:

D' Neo{UAU* | U unitary inD} %= ¢ VA € B(H)
(Halpern, Kaftal, W 86-

Rel Dixmier property in discrete crossed products)

Important reformulation

Anderson’s Paving Problem: Fix e >0, 37 k€ N

= Vn € N and each A € M,(C) with zero diagonal,
3 diag L proj (d.d.) P{+ P>+ ...+ P, = I for which

| PjAP;|| < €||All, 1 <j<k.

Observed in (HKW87-Matrix pavings in B(H))

and probably long before:

Paving fails for k = 2,

eg., Pr+ P =1= maz|[FAR[} =1 = [[4]]

O 10
A=10 0 1
1 0 O
Question (HKWS87-ibid): Does k£ = 3 suffice?
We know of no concrete evidence against this.
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Bourgain-Tzafriri (91):

Using advanced probabilistic techniques

solved an analogous single compression problem
and the paving problem for large classes of matrices

Reformulation of Corollary 1.2 and

remark following it states:

4 a universal C' > 0 for which

every zero-diagonal matrix of size n > % has a
large diagonal projection with small compression.

Quantitatively: ||PAP|| < €||A||, with rank P > Ce?n.

This cannot be improved because of
(Berman-HKW88-Matrix norm inequalities
and the relative Dixmier property)

but BHKW did implicitly obtain

for non-negative entried matrices rank P > %

BHKWS88-Theorem 3.4: For every k,
(i) For zero-diagonal nonnegative entried A,

P,AP||} < 2||A]| (open question: sharp?
gggk{ll iAP;|[} < £I[All (open g p?)
forsome Pi+Po+ ...+ P.=1
(ii) For s.a. zero-diagonal nonnegative entried A,

P AP|Y < i1A4ll... and L is sharp.
gggk{ll AP} < 2] All T P



Bourgain-Tzafriri in 91 paragraph before Cor 1.4:
“...reasonably good evidence [that KS is true]"),
KS in 1959 p. 397

“We incline to the view that

such extension is non-unique”

and Casazza presently believes false

BT91-Theorem 2.3: paveable if matrix is sufficiently

large (depending on ¢€) and its entries are O((logi)l‘m)

(e depending also on ¢) (lacks uniform bdd k)

HKWS86-Matrix pavings and Laurent operators
Corollary 4.2 and Theorem 4.5:

Laurent operators with Riemann integrable symbol
are uniformly paveable (infinite matrix setting)
(projections are infinite arithmetic progressions)
but not all Laurents are uniformly paveable

BT91 on Laurent operators-Theorem 4.1:

Laurent N Besov ops (weighted ¢2 fourier series)

(multiplication by L* funcs with Y|é(n)[?|n|” < o
7

for some T > 0) are paveable.



Pavings in Cp-norms

Motivation: S]i % > Sf < nS]{ IS
1Al < [|A]lp < nl/P[|A]]

Hence the variational approach:

logn

set p = logn SO nl/logn — elogn = ¢

and hence ||A|| < ||Allp < ellA|| and likewise for
smaller rank A's,

so Cp-paveability for p sufficiently large in a sense is
equivalent to norm paveability.

BHKW90-Some C4 and Cg norm inequalities relat-
ing to the paving problem

IS®P,AP||» < k—1/2||Al|» (sharp for Hadamards)
k

||%®PiAPi||4 < k71444

(combinatorics improve coefficient to 21/45—3/8)

||%@PiAPi||6 < 5.31/6 k=1/3||4|q



BT90 exploits deeper phenomena of this type
e.g., his random paving principle:

an Ly,-mean (p = logn) of single compression norms
is small

iImplying k-paveability where k depends on n

Below we use Cj-norms to yield B(H)-norm bounds
for 3-pavings.



Negative evidence

BT9l-Example 2.2:

zero-diagonal matrices exist for which
the BT probabilistic techniques fail
(i.e., averages are too large)

Quantitatively:

VO<d§d<1l, 3 N(5) where for each n > N(9)
can construct A with entries |a;;| < 2log%/logn
with large paving average (expectation)

Bad average example: finite “unitary” shift
Stirling set number-counting number of n-partitions
into k-nonempty subsets

S(n, k) = 436 (=1 (’“) (k — )"

< # of partitions of m not nec empty subsets
S(n,3) = $(3"—6-2" 4 3) = O(3")

# partitions not containing any {i,i+4+ 1} nor {1,n}:
$3.2.1.2...2=2""3

.. Ave paving approaches 1 as n — oo

BT goal for Example 2.2 was to get uniformly small
entries-so not this example



Preliminary Report on Bad 3-Pavings
Setup for Bad Paver (i.e., ground up) approach:

For a zero-diagonal matrix
(finite or infinite and bounded),

az(A) :=inf ||[SPPAP|| = inf max ||P;AP||
dd. 3 dd. 3

normalized: az(A) := a3z(A)/||A]l

Easy facts about «:

ar(A) <1 and paving problem is
whether or not for some k, sup a;(A) <1
A

o (3% A) = sup ap(4;) and
1

ap(UAU*) = a1 (A) for all permutations U.

Consequence: KS < there is a universal k for which
ar(A) < 1 for every zero-diagonal A € B(¢?)



Bad pavers are extremals A for which
a3z(A) = max ||P;AP;|| (3 via fin dim compactness)

Bad Paver approach:
find bad pavers and study their properties

E.g., preliminary data suggests the best d.d.
for bad pavers is uniform, e.g., 3—3—-4 fora 10x 10
(open: prove it)

HKW87-Example (2n + 2) x (2n 4+ 2) unitary
(then remove diagonal) az(A) ~ 2/3

(1 —n 1 1 ...
I L TR
S (Toeplitz)
ntll 1 1 1 ... p
\-» 1 1 ... 1)
Largest P has PAP norm > 32(;’;1%) =2/3.

So beating 2/3 is a starting goal and
a problem posed in HKW87-Matrix pavings in B(H).
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Bad 4 x 4 pavers:

idea-first renormalize to insist a3z(A) = 1.
.. each entry or its diag reflection are > 1.

Associate to A the undirected graph on 4 pts with
edge (4,7) when i,j-entry or its reflection is > 1.

All possible such graphs after
left and right multiplication by a diagonal unitary
poOssess a submatrix which entrywise dominates

1 1 .
(O 1> which has norm =

\/3"'2—\/5 — 1"'2—\/5 ~ 1.618- Fibonnacci's golden ratio.

By searching with our proprietary software:
norm 1"'2—\/5 with constraint a3z(A) = 1 is attainable.

(0

O
O
1

1+v5

_I_
1 coas(A) = —2 _~ 618
0

(N GNGREN

\
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bxb=4x46%0,

6 x 6: d3(A) = Y2 ~.7071!

(000 O 1 0 1)
1 o_-L 0 1 o0
V2 V2
O 0 0 -1 0 1 |
A=|_14 1 o 1 ¢ (v/2-unitary)
2 2 J2
1 0 1 O 0 O
1 1 1
3 1 -3 0 -5 0,

Unique up to basis permutation! (We suspect)
I.e., rare.

Our proof required similar analysis as in the 4 case
but the number of isomorphic 6 graphs = 156
(7=1044)

Found graph-axioms and constraints that a bad
(optimal) paver must have.

E.g., insure a3(A) = 1 and involving lower bound
knowledge of as.

Reduced # of isomorphic 6 graph optimal candi-
dates to 1 (again rare)
for which other matrix techniques applied.
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Software and heuristics:
found initial conditions crucial-required theoreti-
cal insights

Steepest Ascent Method

Steepest ascent is a method for finding the local
maximum of a function. Simply follow the gradient.

Conjugate Gradient Method

Conjugate gradient is a method for finding the local
maximum of a function. It is a " weighted’ steepest
ascent method.

Simulated Annealing

Simulated annealing is a method for finding the
global maximum of a function. It (roughly) pro-
ceeds as follows: A random change is made to the
state of the system. If the change produces an in-
crease in the value of the function, then the change
IS accepted. If, on the other hand, the change pro-
duces a decrease in the value of the function, then
the change is accepted with some probability. Usu-
ally, the probability decreases exponentially with the
decrease in the function value.
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e Decide on n and search.
We find many stalls at false peaks so initial con-
ditions are crucial. Theoretical work impacts our
choice of initial condition.

e Interpret software findings-translate into useful
mathematical objects.

e Continue the loop until example and theory yield
optimality.

e Advantaged classes for possible counterexamples
(offers special features or merely reduces complex-

ity)

Laurents (Toeplitz) (by BT-non Besov is a place to
aim),

Ramanujan matrices (suggested by Davidson/Szarek
that incidence matrices of Ramanujan graphs should
be bad pavers. This was not our experience.),

conference matrices (zero-diag Hadamard),

circulant matrices
(fin lin combos of U™, U = the finite unilateral shift)
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3-pavings summary

n General SA complex | Real symmetric a;; > 0
4 10.6180 0.5774 0.4472 0.555C
5 10.6180 0.5774 0.4472 ?
6 | 0.7071 0.5774 ? ?
7 [.8026,1] | ? [0.6667,0.7559] | ?
8 |7 ? ? ?
9 ? ? ? ?
10| 7 ? [0.7454, 1] ?

Single listings = Sharp examples (i.e., theoretically
provable):

4 x4, 5 x5 general:

A=

4 x4 5x5 6x6 SA:

2
(011 ——=72)
001 1
000 1
\1 00 0
O 2z 1 1
— 0 1 -1
1 1 0 =
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4 x4, 5 x5 symmetric:

- ~ i
O+ O N
©O 40 7o oo
—\ - OO N _
- O OO R N
N 017 01_211“2
O OO fT/_ _
(\
__ OO0 O- O -
<
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7 x 7 general (lower bound): az(A) ~ .8026

A~
0 797 672 359 -675 56.1 —27.8)
—278 0 797 672 359 -—67.5 56.1
56.1 —-27.8 0 79.7 672 359 —67.5
—67.5 56.1 —-27.8 0 797 672 35.9
359 —-67.5 56.1 -27.8 0 797 67.2
672 359 -67.5 56.1 -27.8 0 797
\ 79.7 672 359 —-675 561 -278 0

Obtained by starting with a combination of the
“fat” operator and the shift, and searching.

7 x 7 symmetric (lower bound 2/3 = a3(A)):

(O
1
1
1
1

1

\1

1
o)
1
1
1

—1
—1

1 1 1 1

1 1 1 -1
o -1 1 -1
-1 0 -1 -1
1 -1 0 1
-1 -1 1 O
-1 1 1 1

1
4
—1

1

1

1
0 )

This example is trying (unsuccessfully, of course) to
be a conference matrix (zero-diagonal Hadamard).
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Very recent.:

7-by-7 matrix (circulant 4+ unitary)
which 3-paves to 0.8231

(previous best 0.8029).

Possible (7?7) simple argument that shows that
NO 7-by-7, circulant, unitary paves to 1.000.

10x10 real symmetric (lower bound .7454 ~ a3(A)):

(0 1 1 1 1 1 1 1 1 1)
1 0 1 1 1 1 -1 -1 -1 -1
11 0 1 -1 -1 1 1 -1 -1
1 1 1 0 -1 -1 -1 -1 1 1
1 1 -1 -1 0 1 1 -1 1 -1
Cl0=1y 1 21 11 0 -1 1 -1 1
1 -1 1 -1 1 -1 0 1 1 -1
1 -1 1 -1 -1 1 1 0 -1 1
1 -1 -1 1 1 -1 1 -1 0 1
\1 -1 -1 1 -1 1 -1 1 1 0
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Most attention paid: 7 X 7 symmetric

Why?7: first case where 3 x 3 compressions are un-
avoidable
KS < paving problem holds for self-adjoints

- 2
2/3 < a3(A) < = ~ 7559

The 7 x 7 symmetric upper bound comes from the
following fact:

If Ais 7 x 7 s.a. zero-diagonal,
and every 3-compression of A has norm > 1
(analog to 2-compression constraint of smaller cases),

then ||A|l > 4 (see last slide)

Now some of the theoretical tools used for these
examples
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Analytic norm 1 criteria

Recall for 2 x 2 matrix (and hence rank 2 matrices)

Al|2 All3
Azl = 122 4 \/” U2 et ap

and so

[Apyol| = 1 < |det AP 41 = ||A]]3 <2

NASC for norm one 3 x 3 zero-trace S.A. matrix
(so rank 3 matrix & not nec zero-diagonal)

2

+ |Det A| = 1.

For >, < 1, the resp. conditions also equivalent.
Nec cond for norm 1: 3/2 < ||A]|5 < 2.
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NASC for norm one 3 x 3 zero-trace matrix
(so rank 3 matrix & not nec zero-diagonal)

1< [|A|j3 <2+ |Det A]?
and

1

2 4 4 2
|All5 — §(||A||2 — [[S]l4) + [Det A|* =1
or if you prefer
|All4 + 2|Det A]2 = (J|Al3 - 1)% +1

Necessary conditions

1A]I3 — 1

| Det A| <1 and |Det A| <

Observe: in all these cases criteria involves only
the determinant and the C5, Cs-norms.
Advantageous for averaging.

Problem: NASC for larger ranks

For generalizing-symmetric function representations
of coefs for the general char poly appear relevant.
(Cayley Hamilton also appears relevant.)

4 x 4 trace-zero S.A. norm 1l-exists but hard
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S.A. with large 3-compressions

nxXxn S.A. zero-trace

2 N —
|Al[= <

Easy from

ns? = n|lAl2 < (n—1)||A <
1 H H ( )H ||2 trace—0& Holder

s1<>5 |Sj| < (n-— 1)1/2(2721 |3j|2)1/2

(n—1)||A||?2 n odd

Even case is simply Holder and holds for all n
but odd case is harder and may be new

2
5 n||All n even
[A] S{

U

Zero-diag w/ all 3-compression having norm > 1

Vn—1
14| > ”2 n even |
¥ n oodd

2

by a Hilbert-Schmidt averaging argument

~ A
n::7:>og(A)::%é“)Z

bound we saw above.

~ .7559

Mm\H
ﬁ\w
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