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Some C; and C¢ Norm Inequalities
Related to the Paving Problem

K. BERMAN, H. HALPERN, V. KAFTAL, AND G. WEISS

1. Introduction and notations. The central problem in this area is the
extension problem (Kadison and Singer, 1959, [6]): Does every pure state of
the atomic masa D of the diagonal operators on a separable Hilbert space H
have a unique extension to a pure state of B(H)?

Equivalent to it is a formulation in terms of finite matrices called the
paving problem (Anderson, [1], [2]): Is there an integer k such that for every
finite matrix x with zero diagonal, there is a decomposition of the identity
into k mutually orthogonal diagonal projections p,, such that

k
> PmXPm
m=1

In this paper we consider the paving problem with respect to the Schatten
C,-norms: Is there a (minimal) integer k = k(p) such that, for every finite
matrix x with zero diagonal, there is a decomposition of the identity into k
mutually orthogonal diagonal projections p,, such that

| &
3. DX
mi=] p

We show that the answer is affirmative forp =4 and p = 6.

The crucial question, however, is: How does the (minimal) number
k = k(p) depend on p? Indeed, since lim;_, |x||; = ||x]| for all finite matri-
ces x, determining that sup k(p) < oc would provide a positive answer to the
paving problem (and hence to the extension problem). This connection was
initially our main motivation. We found, however. that the investigation,
even for low values of p, leads to some interesting and hard matrix norm
inequalities, which appear to be worth pursuing for their own merit.
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Our main result is that, for p = 4 and p = 6 and any finite selfadjoint
matrix x with zero diagonal, there is a decomposition of the identity into &
mutually orthogonal diagonal projections p,, (with & > 4 a perfect square)

such that p

< aak"liI,‘43+[h'2.u']]||x||&,

PmXPm
m=1 P
where a4 = 2% (Theorem 5) and a; = 5.3'/% (Theorem 8).

From these inequalities for selfadjoint matrices, one can easily derive anal-
ogous inequalities for nonselfadjoint matrices. Or, to obtain better upper
bounds, one can reproduce the selfadjoint proof, but with an increase in
computational complexity. Therefore, we shall consider here only selfadjoint
matrices,

Our techniques are a blend of combinatorial and probabilistic methods.
We would like to sketch them in this introduction and illustrate why we feel
that both are needed.

Throughout this paper x will denote an 1 x » selfadjoint matrix with zero
diagonal and entries x;;, and k& > 1 will be a fixed positive integer that does
not depend on x {nor on p). In Theorems 5 and 8, we shall furthermore
assume that k is a perfect square, hence k > 4,

Every diagonal projection corresponds to {and will be identified with) a
subset of {1,2,...,n}. For a decomposition of the identity into & mutually
orthogonal diagonal projections p,, (a k-decomposition, or a k-coloring of
{1,2,...,n} in the language of combinatorics) we call

k
x'= 3 PmXbn
m=l1

a k-paving of x or simply a paving of x if k is understood. If p is even, then
“} “_X'”ﬂ =trxf = Z B Y P

By decomposing this sum into apropriate pieces (see §4 on trees for in-
dices), we can explicitly compute the average E|x'||5 over all the possible
k-decompositions. An upper bound for this average will of course provide
an upper bound for the minimal value of || x'||,, which is what we are seeking.

While this simple averaging approach may work, i.e., yield a reasonable
upper bound, when the matrices are ‘diffuse’, e.g., have entries with constant
modulus, a moment’s reflection shows that it cannot work alone in the general
case. Indeed, if we go to the ‘other extreme’ and we take a matrix with at most
one nonzero entry per row and column and with zero diagonal (a *very sparse
matrix’ henceforth), then we know from [6, Theorem 3] that there is a paving
x' = 0. This paving, however, may be unique (e.g., the nonselfadjoint unitary
shift for n even and k = 2), while E||x'|| = | and the average E|x'||f also
may be relatively ‘large’. In the case where x is very sparse and selfadjoint,
(12) provides a precise formula for E|x'||3.
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The existence of such a paving x’ = 0, which is easy to prove for very sparse
matrices, can also be derived from the following more general *combinatorial’
result, which has already played an important role in work on the paving
problem [1, Theorem 2], [3, Corollary 3.3]. [S, Theorem 1.3']:

There is a k-paving x' such that [|x'e]| £ k='/?||xe,|| for all

2) i (here {e;} denotes the basis of H for which the elements
of D are diagonal). If x were not selfadjoint, then we would
replace k=1/2 by 21/2-1/2,

Reducing the row norms of a matrix x by passing to the paving x’ given by
(2) will—wvery roughly speaking—eliminate the peak entries of the matrix x.
But then we can average the further pavings x" of this matrix x' (which are
themselves pavings of x, but for a finer diagonal decomposition) and we will
obtain in general a better upper bound. We make this heuristic argument
precise in §3 where we show how our purely ‘probabilistic’ estimates are
indeed improved by this method.

We present here in detail the computations for the case p = 4. Since the
computational complexity grows exponentially, in keeping with the exposi-
tory purpose of this paper, we only sketch our argument in the p = 6 case
and provide examples of the key subcases that best illustrate the nature of
the proof.

Not surprisingly, this method will not reproduce the best results for the
‘extreme’ cases, but this is the price to pay for having a unified approach.
This fact is immediately obvious for very sparse matrices, because, as we
have remarked above, there may exist a unique paving equal to zero. For
‘diffuse’ matrices, reducing combinatorially the row norms first also is not
the most efficient strategy: The purely probabilistic method will yield some-
what better results. To illustrate this point, and because they are important
on their own, we analyze in §6 the pavings of Hadamard matrices A {unitary
n % n matrices with entries £n~!/? and in our case also selfadjoint and with
diagonal removed, i.e., set equal to zero). We obtain in (24) that if p = 4 the
estimate k~3*% in Theorem 5 can be decreased (asymptotically for n — o)
to k=2, and for p = 6, we prove in Theorem 9 that the estimate k~!/3 in
Theorem 8 can be decreased to £~ '/2 and 5.3 can be decreased to 5 {asymp-
totically). These upper bounds can be compared with k~'/2, which is the
lower bound (asymptotically) for the C,-norm of any paving 4’ for p = 2 [3,
Theorem 4.2].

In our proofs we shall often use the following two inequalities: If x is any
positive operator and ¢ is any unit vector in the Hilbert space, then we have
for p = 1[7, Lemma 2.1):

(3) (xPe,e) > (xe,e)’.

For any finite matrix x, when p > 2,

(4) Il 2 3 lxedll” 2 3 i .
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The first inequality in (4) follows from (3), and the proof of the second
ineguality is obvious.
We wish to thank W. Bryc for useful suggestions.

£2, Averaging and the cases p =2 and p = 4.
DerFiniTioN 1. The operation £ denotes the average over the collection of
all k-decompositions.

Equivalently, E 1s the average over the collection (of cardinality k") of all

partitions (or colorings) of {1,....n} into k subsets (some of which may be
empty).
Motice that if x' is a paving of x, then
’ x;j if i,j€pm for some m, ie., have the same color
(5) Xij = ;
0  otherwise.

LeEmMma 2. If(iy,12,13,....0p) is a p-tuple of the integers {1,2,...,n} with
precisely q distinct entries, then

EE.X':I !lelefa 33 'x:,,l']} = Ii"'_':J:ir_I.:I':":Iflf':r':"::f?fi iy 'xipil h
Proofr. By (5), the only colorings contributing to the average

i’ r L
'El::‘x.l'thxl'y']. i 'xf’ﬂ:l

are those for which each pair {i1, iz}, {72, 73},..., {fs—1, ip} has the same color,

Le., for which {#;,i3,3,...,{,} all have the same color; and for each of these

colorings we have xj , x|, -~ X| ;| = XiiXii, -+ X5, Thus

. ! !
El:‘xr'”'gxl':f} e x]'lpr'| :I P thr'zxf}]'], R 'xfyﬁ ¥

where ¢ is the probability that {ij, i, #3,...,i,} all have the same color.

Clearly, ¢ is also the probability that {1,..., g} all have the same color, hence
g =t

REMARK. Lemma 2 does not require x to have zero diagonal nor to be
selfadjoint.

CAsE p = 2 (warm-up). By Lemma 2, E|x},|? = k~!|x;|? if i # j, ie.,
g = 2. The same holds also when § = j by (5) and the assumption that x has
a O-diagonal. So, by summing over all i and j, we obtain E||x'||3 = k~'||x|3.
Thus, by the minimum principle,

min ||x"|3 < El|x'|l§ = &~ [|x]3,

where the minimum is taken over all k-decompositions. Therefore, there is
a k-paving x’ such that (see [3, Theorem 4.4])

(6) ' 1l2 < &=V ]2

Notice that in general |[x[|3 = ¥ |x;;|% and since exactly the same argument
holds, there would be no advantage here in assuming that x is selfadjoint.
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CaAsE p = 4. By (1), trx* = ¥ XijXpXpXy. Since xy = 0 for all i, we
may assume that { £ j, j # k, k # I, [ # i, i.e., that consecutive indices are
distinct. Then we can split this sum into sums with 4, 3, or 2 distinct indices;

(4) (3) (2)
(7) I¥[§ =D (x) + 23 (x) + 3 _(x)
where
(4]
D o(x) =Y {xiXjeXgxy: 1 €i,j,k,] < n and are distinct},
(3}
Z':X} = Z{Ex,j|2|.x;k|2: 1 <1i,j,k < n and are distinct},
(2)
Z(IJ' = Z{IX:;-I": 1 <i,j < n and are distinct}.

In other words, all monomials x;;x ;. x;,x;; with 4 distinct indices are summed
in $%(x); those with 2 distinct indices must have i = k and j = /, and so
are summed in ¥"'%(x). Finally, those with 3 distinct indices have two cases,
namely, { = & but j aé {,ori# kbut j =[. Since the corresponding sums are
equal, this accounts for Em (x) occurring with a coefficient of 2 in equation

(7). This decomposition can be described also in terms of a certain tree,
which we shall discuss in §4. Notice, moreover, that

(3) (2
(8) D)+ (X)) =) llxel* = ID(x)|3 < ||,
where D{x) denotes the diagonal of x, and
(4) (3

(9) S o(x)+ 3 (x) = |Ix* — D(x?)|I3,

which together yield
(10) X0 = llx? = D{x)3 + |D(x?)]3-

The inequality in (8) is just (4). (10) also has a simple operator theoretic
proof, namely, write x* = (x? — D(x?)) + D(x?), square both sides, and apply
the trace. Lemma 2 applied to equation (7) for x’ yields

ProrosiTioN 3. E[lx'[4 = k-3 T (x) + 22 % (x) + k! TP (x)

Notice that this expansion of E||x'||§ into powers of k~! has no constant
term, due tu the fact that D(x) = 0 and so there is no ¥'"/(x) term in the
expansion (7) of ||x||3. We rewrite this expansion in operator thenrenc terms
using equatians (7) and (8):

(3) (3]
E|lx'lI3 = k~3|lxlI3 + (2672 = 267) Y (%) + (k™' = k73) Y ()
{2)
= k73xlI2 + 26721 = k=) ) lcel| + KN = K712 Y ().
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Using (4) we thus have
(11) E|lx'I§ < k7 3|lxlld + (k' = k=) 3" ||xeill.

So, by using (4) again, we have E|x'||; < &~' % ||x|l}, and hence by the
minimum principle applied to (11), we obtain

ProprosITiON 4. There is a k-paving x' of x such that ||x'||s < k=% x]ls.

£3. Integration of combinatorial and probabilistic methods for p = 4. Prop-
osition 4 already enables us to answer in the affirmative the paving problem
for C4, as it immediately vields k(4) < 16 {where k(4) denotes the mimimal
integer k so that ||x'|ls < 1|lx[l).

We can, however, improve on this estimate. Indeed, in the expansion of
E||x'||3 into powers of k~! given in Proposition 3, the coefficients of the
powers of k! are a priori all of the order of magnitude of |x’||] so that the
k='5"%(x) term could be the dominant one.

This indeed is the case if the matrix x is very sparse (e.g., a finite direct
sum of (Y })), because then

(4] (3) (1)
Y(x)=Y(x)=0 and Y (x)=Y_ |lxel* = |Ix[lf.

Thus we see that the upper bound given in Proposition 4 is now attained:
(12) E|x'lI3 = k™" |lx]i3.

But in the case of very sparse matrices, the gap between average and min-
imum for ||x’||} is particularly large, because, as we have noticed in the in-
troduction, combinatorial methods, either directly or by using (2), show that
min || x'||l4 = 0.

On the other hand, the averaging method works fairly well for matrices
with |x;;| = constant, since then the coefficient E:m (x) of k="' is much smaller
than the other coefficients (see §6 and [3, Proposition 4.6]).

We can now integrate the combinatorial method (2) with the averaging
process used above to improve the estimate in Proposition 4.

Assume k is a perfect square and choose the (possibly unique) paving x'
of x into k'/? “colors’ given by (2) such that ||x'e;]| < k~'/%||xe|| for all i.
Keeping this x' fixed, average all pavings x"” of x' into a further k!/? colors.
Then, by (11) (applied to x’ and k'/? colors), the fact that ||x'|ls < ||x]l4. and
by {4), we have

Ellx"|l§ < k=2 |x'[4 + (k=172 - k=) 3 |x'es
< k -3,-’3“):“3 @ ER—IIE i k—lfljk-l Z “xflli‘
< 2k x|

Now every k'/2-paving x" of x' is also a k-paving of x, so that from the
above inequality and from the minimum principle we get
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THEOREM 5. There is a k-paving x' such that ||x'||s < 2"/%k=3/8||x||s.

This is a better estimate than the one obtained in Proposition 4 for all &,
(since k > 4) but particularly so for large values of k. Notice for instance
that an upper bound for k(4) is now 11.

&4, Trees for indices. In order to generalize (7) to the case p = 6 (or larger
even integers) we need to split the sum ||x||f = trx? =} x;,4, %4, - - - X4, 01O
sub-sums corresponding to different groupings of their associated p-tuples
{fy,d2,f3,...,1p). To describe these groupings we introduce a tree for the
p-tuples and we sum over the individual branches of the tree. In the tree,
distinct letters denote distinct values. Instead of a rigorous definition of the
tree, it is simpler to present the self-explanatory tree for the case of p = 4,
where we have already seen the decomposition, and for p = 6.

Tree forp=4

i
i

j.
™
k i
e

14

Tree for p=6
j
k i
/\ { /\-\,\
i o ol e m.-'“d‘l“-

| i —— - ; —
m l,-''"".'-']-‘-‘-"""--.. r"'""'..‘i:‘""‘"- Joalj l"'I.I\_," i R j
] ~—

a
A

,,_
El
e
[
a
El
S

Thus the p = 4 tree has four branches: The branch i, j, &, [ (all values
distinct) that yields the sum 5'“/(x), the branch £, j, i, j that yields the sum
Em (x), and the two branches i, j. k, j and i, j,i,[ that yield the same sum
Zm (x), as one sum is obtained from the other through an elementary change
of variables in the summation indices. Notice that this change of variables
corresponds to the action of a permutation matrix on x. We shall call these
two branches of the tree isomorphic; also we shall call the sums 5" (x),
¥¥(x), and ©"?(x) the invariant sums.

The p = 6 tree is already considerably more complex because it has 41
branches. We list below the 12 invariant sums, and in parentheses, their
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isomorphism classes, where we number the branches left to right.

Eiﬁj{x:l = EIUIJ'kame-xmnxnr' {1:':

E{S.l?{xw} = Y XyXjXuXmEmaXni  (2,4,5,11,15,30),
E{S’EJ{I} = Exf}'xjk.xkga‘fimxmnxni (3318‘: 23),

2[4’”[_1") = Z.X'gjx;afo'xJ'm—xMﬂxni (6,12,14,18, 32,38),
EE‘J (X) = ¥ XiiXjXuXiiXinXni {9,13, 16,25, 26, 36).
TNy = TxxpxaXmxmn  (7,20,31),

b Bl L ¥ XX XieiXij XX (10,24, 28),
E[‘*'S](x] = 3 XiiXjiXuXiXinXnt (17,33),

SN = T i 2 XX (19,22, 34, 35, 39, 40),
Z{J,z}{x} = 3 Xy XXX XX (21:27.37)
Yot = ToaprptiitgEp 129,

Emf_xj 2 X XijXXijXijXij (41).

§5. The case p = 6. From the list of invariant sums with their multiplici-
ties we generalize equation (7

(6} (5,1} (5.2}

(13)  IxlE=3_(x)+63 (x)+33 (x)
(4,1) (4,2) (4.3} (4.4 (4.5)
+6D (x)+6 (x)+3Y (x)+3D (x)+2) (x)
(3.1) (3,2) 13.3) ()

+63 () +33_(x)+ D (x)+ Y (x).

Since Y-U""(x') is the sum of monomials, each with m distinct entries,
we apply Lemma 2 to obtain
[, [m,n)

EY (e sik-=l8" .

Combining (13) and (14) we thus obtain

(14)

ProrosiTION 6.

(3.1}

(6} (3,2)
Elx'lt =k (x)+k™* [ﬁ S(x)+3 Z(x]]

[ (41) {4.2) 4,3) (4.4) 4,5)
+E2 63 (x)+ 63 (x)+3D (x)+3D (x)+ EZ(xj]
r (3,1) (3,2) 13,3] 12
+ET2[6d (43D () + E{x}] +k71 Y (x).

Next we pass, not without work, to the following estimate for E||x'||%:
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LEMMA 7.
E|lx'lI§
< k73||x||g + 9%k~ (1 — k7 lexe-ﬁf‘ Yxlg

+ 6k~ Z |l xe|® }”’lellﬁ

+ k(1 + 4k —9k 244k IxedlS.

SKETCH OF PROOF. The proof of this lemma requires several steps. First,
we decompose the sums 3% (x), ©%"(x),.... "% (x) in the expansion of
E||x"||& of Proposition 6 into the fallowmg ordmana sums’ (ie., sums where
the indices range freely, not subject to the condition of being distinct).

(15)  Ellx'llg = k~*|xII§
+ 341 — k) Do (o))’

+ k41— kY S fIxeilPllce

+6k=3(1 - *'}IZIx.-jlgxr-;{xﬁ,,-.-

+3k31 -k ZA;, (o))

+ 6k Elx 1

+3k 11—k E"xea” [P xe |1

+ 21~ I-Ek lex-ﬂli“

+ k31— k! }Szf (xes Y () O
i

3k = kY (gl el
i

+ k1= 6k 4+ 13k2 + 6k — 14K 3 |xyl®
if
+6kH1 =4k + 2672 + k73 Y |xigl*lces )P,
=
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Two examples of the identities linking invariant sums and ordinary sums
used to obtain (15) are

(3.1)

[lﬁ]Z(I} = E-xr'jle'xajxji-rr'n-rm' = Z ENEE

T

=y (Z |71 xin|* — nglﬁ) =3 | llell® — 3 byl
i n i iy

and the hardest identity:

(17) ZI:I:I = Zxr',fx_l'l'xu'x!mxmnxm' = Z |xfj|zxi{-x.'mxmnxm'
= > lIxedix2ed® = 23 |xijPxi(x) ;i
i i

= X lxelPlxalPlleed® + 237 Ixi*llxeil® = 3 llxesll®
if if i

+ 3 1al® = D Bl + 3 e Placal Pl
ij iy

i

Using (15) we can verify that the ‘ordinary sums’ are all real, but they
are nol necessarily positive. We majorize their absolute values in terms of
llx||8 and 3, [|lxe;||® by applying the Holder, Minkowski, (3), (4), and other
inequalities. The following string of inequalities exemplifies our work:

(18)
(2

6
0<d (x)= pyl°< leul llxe;ll* < ZIIMrII i Pllcen 1

if

< le;fl (Jlxes]|* + |.xefu )/2= E ||xef||6 < Z lxei]2]lx e
= Z"-xer” |-x £ "2 Z”xea” JC €, €;)
=

(Z |[x€é“6) 1 (Ele‘*eh ﬂ'?'ﬂ) S ‘_:-‘ (Z |j.l'£:";f|6) i (ZI:JC&E;, fa':]) i
(Z |EJCE'E||E') .
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We collect all the necessary inequalities in (19):

(19a) _

Z{ijjir'}ZI < 2 IxeilPlx’ed < (Z llxe.-if‘*) 3| x]lg
{15;1:) r 1

P ETESTIE- (Z ||xe;-nﬂ)“2r|x||£
{1!;::} J

DA £ 30 PP € 3 lxedll o llxesll* < 3 llxed|®
ij ij i ]

(19d)

DG ) e < 3 PPl < 3 llxed]|®
il il i
(19¢)

Do xil® < 3 il tlixesl? < 3 ixel®.
& if i

Notice that in the expansion (15) of E||x'||¢ all but the last polynomial in
k~! are non-negative for all k > 2. Furthermore, by (19%) the sum of the
last two terms in (15) is majorized by

k(1= 1162 + 18k73 - 8k Y flxedll®,
i

where this polynomial in k~! is now non-negative for all £ > 2. Thus, by
passing when necessary to the absolute values of the other ‘ordinary sums’,
and by using all the inequalities in (19) we obtain the inequality in Lemma
g

By using (4) in Lemma 7 we can furthermore obtain (for & > 2)
Ellx'lIE <k~ '(1+4k™" = 3k72 — 3k + 2k~ Y)|Ix|it,

and thus the minimum principle gives us an upper bound for min ||x'|s.

As in the p = 4 case, we can improve this purely probabilistic estimate
by also using the combinatorial method (2). Therefore, assuming that k is a
perfect square (and so k > 4), we choose the (possibly unique) paving x' of
x into k'/? colors given by (2) such that ||x'e;|| < k—'/4|.xe;|| for all i. Then
we average all the pavings x" of x' into a further k'/? colors to obtain, by
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Lemma 7, that

(20)  Elx"lI§ < &~32x'lI§ + 921 — k7112 (Z [lx"es ||5)1”le [P

+6k2(1 - k122 (Z ‘e ||f*) &

+ kU214 4k - 9k 4 4k (Z IIX‘ffﬂﬁ) -
Now we use (4) and the facts that [|x'[s < [[x[ls, [X'edl| < k=/%|xe]| 1o
obtain
> Ixell® < k=32 37 el < k=2,

and then
(21)
E|x"|I8 < k~2(1 +6k="4 4 14k~12 _ 12k=34 — 18k + 6k 3 + 4k )| x]|2.

A simple computation shows that the quantity enclosed in the parentheses
has maximum (attained for k = 9) (301 + 72+/3)/81 < 5.3 and tends asymp-
totically to 1 for k — co. Since every k'/2-paving x" of x' is also a k-paving
of x, from {21) and the minimum principle we obtain (for & a perfect square)
Theorem 8.

THEOREM 8. There is a k-paving x' such that ||x'||s < 5.3V8k=13||x||s.

§6. Hadamard matrices. Let /i denote a selfadjoint n x # Hadamard matrix
(a unitary operator with entries =n~'/2) with its diagonal removed, i.e., with
D(h) = 0. Then for p = 2, ||k, = n'/? (asymptotically, as n — o). In [3,
Proposition 4.2] we also found that for every k-paving &' of & and for p = 2
we have

k-2 -

(22) (L= H—T

|| -

To obtain an upper bound for min ||h’||, we compute (asymptotically as
n — oco) the coefficients of the powers of k~! in the expansion of E|k||Z in
Proposition 3, namely

(3} ]
laliimn, D (R~ llhel*=n, 3 (k)= 1,

and hence
[4) (3 (2

D) = |kl =23 (k) = (h) = —n.

Therefore,

(23) E|h'||3 = (k=% + 2&72)|[l|3 < 2k~ All3.
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It is essentially through this reasoning that we obtained in [3. Proposition
4.6, and Corollary 4.5] that there is a k-paving &' such that

(24) 11l < 24Kk~ = &(n, k)]s

where for each &, e(n, k) — 0 as n — co.
Likewise for p = 6, most of the invariant sums in (13) are negligible for n

large:
(5.1) i4,3) i4,5)

Z[h} = —n, E{h] =, }:{h} =88

and the rest of the invariant sums are o(n). Hence, using equation (13), we
also have E[ﬁ][h} sz 2n. Therefore, by Proposition 6,

(25) E|R||E =~ 2nk~% — 6nk~* + 5nk~3
k5 -6 + 3 = 5k
Since |4 = n, we have proven Theorem 9.
THEOREM 9. There is a k-paving k' such that
IA'lls < (5'%k="/% — e(n, k))lIAlls

where for each k., e(n, k) — 0 as n — co.
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