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A CHARACTERIZATION AND SUM DECOMPOSITION

FOR OPERATOR IDEALS

BY

ANDREAS BLASS1 AND GARY WEISS

Abstract. Let L(H) be the ring of bounded operators on a separable

Hubert space. Assuming the continuum hypothesis, we prove that in L(H)

every two-sided ideal that contains an operator of infinite rank is the sum of

two smaller two-sided ideals. The proof involves a new combinatorial

description of ideals of L(H). This description is also used to deduce some

related results about decompositions of ideals. Finally, we discuss the

possibility of proving our main theorem under weaker assumptions than the

continuum hypothesis and the impossibility of proving it without the axiom

of choice.

1. Introduction and notational conventions. Let H be a separable, infinite-di-

mensional, complex Hubert space, and let L(H) be the ring of bounded linear

operators on H. Assuming the continuum hypothesis, we shall prove that

every two-sided ideal / of L(H) that properly includes the ideal of finite-rank

operators can be decomposed as the sum I = Jx + J2 of two-sided ideals J¡

properly included in L The question whether such a decomposition exists for

the ideal K(H) of compact operators was raised by Brown, Pearcy and

Salinas [1]. We shall also show that the decomposition of K(H) is necessarily

nonconstructive, in the sense that there need not be any definable ideals

C K(H) whose sum is K(H).

Our proof is in two parts. The first part develops a new characterization of

ideals in terms of sequences of natural numbers and thereby reduces the

problem to a combinatorial one. The second part uses the continuum

hypothesis to solve this combinatorial problem. The two parts are presented

in §§2 and 3, respectively. §4 contains some additional comments.

Before starting the proof, we adopt some notational conventions. By the

sum of two sequences of real numbers, we mean the sequence obtained by

adding corresponding terms; similarly, one sequence is < another if every

Received by the editors May 5, 1976 and, in revised form, July 20, 1977.

AMS (MOS) subject classifications (1970). Primary 46K05, 47B05; Secondary 02K20, 02K25.
Key words and phrases. Hubert space, operator ideals, compact operators, continuum hypothe-

sis, axiom of choice, Calkin ideal sets.

'Partially supported by NSF Grant GP43760.

© American Mathematical Society  1979

407

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



408 ANDREAS BLASS AND GARY WEISS

term of the former is < the corresponding term of the latter. The sum of two

sets consists of all possible sums of two members, one from each set. (We

have already used this convention in writing /, + J2 above.) A subset A of

the set N of natural numbers is said to be almost included in another such set

B if A — B is finite; a sequence of such sets is said to be almost decreasing if

each term is almost included in every earlier term. By an ideal we always

mean a two-sided proper ideal of L(H). We write K(H) and F(H) for the

ideals of compact operators and of finite-rank operators, respectively. (K(H)

is the largest ideal, and F(H) is the smallest nonzero ideal.) Finally / is a

variable taking only the values 1 and 2. With these conventions, our main

theorem takes the following form.

Theorem 1. Assume the continuum hypothesis. For every ideal I D F(H),

there exist two ideals J, c / such that J, + J1 = I.

2. The characterization of ideals. We begin by recalling the description of

ideals given by von Neumann and Calkin [2]. To each ideal /, associate the

Calkin ideal set Calk(Z), consisting of all the sequences obtainable by taking

any nonnegative selfadjoint operator in / and listing (in any order) its

eigenvalues, repeating multiple eigenvalues according to their multiplicities.

Since / C K(H), Calk(7) is a subclass of the class c£ of sequences of

nonnegative real numbers converging to zero. Furthermore, Calk(7) is easily

seen to be closed under the relations permute, decrease, and add defined as

follows:

Permute: A sequence x yields a sequence v by permute if the same positive

numbers occur in x and v with the same multiplicités.

Decrease: x yields y by decrease if v < x.

Add: x and y yield x + y by add.

It is shown in [2] that every nonempty subset of c¿ that is closed under

permute, decrease, and add is Calk(7) for a unique ideal L An easy corollary,

which we shall need later, is that the lattice 5 of ideals is distributive. (Our

formulation differs from Calkin's in that permute allows insertion or deletion

of zeros. Calkin shows that this is redundant, but it will be convenient for our

purposes.) In this characterization of Calkin ideal sets, add can be replaced by

the following two relations.

Double: x yields y by double if y = 2x, i.e.,yn = 2xn for all n.

Mesh: x and v yield z by mesh if the multiplicity of occurence in z of each

real number is the sum of its multiplicities in x andy.

Indeed, double is obviously a special case of add, while mesh is obtainable

from permute and add (use permute to insert infinitely many zeros). Con-

versely, the sum of two sequences is obtainable by double and decrease from

their (term-by-term) maximum, which is a subsequence of a sequence given
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CHARACTERIZATION FOR OPERATOR IDEALS 409

by mesh. One can extract the subsequence by using decrease to replace the

unwanted terms by zeros and then using permute to remove these zeros. Thus,

the Calkin ideal sets are precisely the nonempty subsets of c0+ closed under

permute, decrease, double, and mesh.

Let b be the subset of c0+ consisting of sequences all of whose nonzero

terms are of the form 1 /2" with «EN. For each x E c0+ there exists y E b

such that yn < xn < 2yn for all but finitely many « (the exceptional values of

« are those for which xn > 2). Then any nonzero Calkin ideal set contains x if

and only if it contains v. Thus, a Calkin ideal set is uniquely determined by

its intersection with b. Furthermore, a nonempty subset of b is b n Calk(7)

for some ideal / if and only if it is closed under permute, decrease (restricted

to b), mesh, and a modified form of double in which only terms < 1 are

doubled while ones are left unchanged (so that the result still lies in b).

A sequence x E b can be specified uniquely, modulo permute, by giving

the multiplicity of each power of ¿ in x. It is more convenient for our

purposes, however, to use cumulative multiplicities; we define x*(ri) to be

the total number of occurrences of 1, 1/2, ... , 1/2" in x. Thus, for each

x E b, x* belongs to the set 5 of nondecreasing functions from N to N. An

ideal / is completely determined by b n Calk(Z), which is in turn completely

determined by the subset

/* = {x*\x Ebn Calk(/)}

of s. By translating the characterization of sets of the form b n Calk(7), we

find that sets of the form I* are characterized, among all subsets of s, by

closure under decrease (restricted to s), add, and shift, where we define

Shift: / yields g by shift if g(«) = /(« + 1) for all «.
We denote the lattice of these sets by S.

It is obvious that the correspondences between ideals, their Calkin ideal

sets, their intersections with b, and finally their *-transforms all preserve

inclusion. Thus, we have the first part of the following result.

Theorem 2. The correspondence Ih>I* is an isomorphism from the lattice 9

of ideals to the lattice S of subsets of s closed under decrease, add, and shift. In

both of these lattices, meet is set-theoretic intersection and join is sum.

The proof of the last sentence of the theorem is trivial except, possibly, the

verification that, if two subsets of s are closed under decrease, then so is their

sum. This amounts to checking that if / < g, + g2 then/ = «, + «2 for some

h¡ < g, (where /, g„ «, all belong to s); the required functions «, are easily

defined by induction. Once «,(«) have been defined for a particular «, the

requirements for «,(« + 1) are «,(«) < «,(« + 1) < g,(« + 1) and «,(« + 1) +

h2(n + 1) = /(« + 1); these requirements can be satisfied because hx(n) +

h2(n) = /(«) < /(« + 1) < g,(« + 1) + g2(« + 1).
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Theorem 2 immediately implies the following corollary, which reduces the

proof of Theorem 1 to a combinatorial problem about s.

Corollary. An ideal I is the sum of two ideals 7, c / if and only if I* is the

sum of two sets S¡ C /* in S.

For future reference, we record here that the ideals F(H) and K(H)

correspond to F(H)*, consisting of all bounded functions in s, and K(H)* =
s.

The first part of the proof of Theorem 1, introducing the combinatorial

characterization of ideals, is complete. Before proceeding with the second

part (§3), we present some other results obtainable by combining Theorem 2

with some classical facts about s. The facts we have in mind are contained in

the following lemma, which is due to Hausdorff [3].

Lemma. Let fk (k = 1, 2, . . . ) be countably many functions in s. Then there

exists f E s such that, for each k, the inequality fk(n) < /(«) holds for all but

finitely many n. Furthermore, if each fk is unbounded, then there exists an

unbounded g E s such that, for each k, g(n) < fk(n) holds for all but finitely

many n.

Proof. Set /(«) = ma\{fk(n)\k < «}. Set g(«) = max{/| for all k < /,

/*(«) > ¡I
The following corollary slightly strengthens a result of Salinas [8].

Corollary. K(H) is not the union of countably many ideals Ik c K(H).

Proof. For each k, let/. E s - I*. By the lemma, let/ E i be such that

fk<f almost everywhere (i.e., for all but finitely many values). Then / is in

no 4*, and it follows that a nonnegative selfadjoint compact operator with

eigenvalues l/2"+l with multiplicity/(« + 1) - /(«) is in no Ik.

The next corollary shows that the decomposition in Theorem 1 cannot be

very simple.

Corollary. // K(H) = Ix + I2 with I¡ c K(H), then neither of the ideals 7,

is countably generated.

Proof. Suppose /, were countably generated. Then /* would also be

countably generated, say by /,,/2, . . . . We may suppose, without loss of

generality, that all of the functions obtainable from the fk's by add and shift

are already among the/.'s. Thus

j = K(H)* = I* + I*

= {g E s\ for some « £ /* and some k, g < fk + «}.

(It is easy to see the last equality by checking that the right side is in S and

recalling that, in S, + is join.)
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By the lemma, let / E s be such that fk<f almost everywhere. For every

function g E s, we have / + g E s, so, for some h E I* and some k,

f + g < fk + h. The choice of/ then implies that g < h almost everywhere,

so g E 1%. But g was an arbitrary element of s, so s = I* and therefore

K(H) = I2, a contradiction.

3. The combinatorial construction. We now return to the proof of Theorem

1. Our goal is to find two sets 5, E S whose sum is a prescribed S E §, with

S D F(H)*, i.e., with 5 containing some unbounded function. From here on,

we assume the continuum hypothesis.

The first (and main) step in the construction of the S¡ is to construct (quite

independently of the prescribed S) certain almost decreasing sequences of

subsets of N. We begin with the observation that, if (B() is an almost

decreasing sequence of infinite sets, indexed by a countable well-ordered set,

then there is an infinite set B almost included in all the B^s. Indeed, this is

trivial if the given sequence is empty (use N as B) or has a last term (use that

term as B). Otherwise, we can extract a cofinal subsequence that can be

re-indexed by natural numbers, so we need only consider the case where the

given sequence is (Bn) indexed by N. In this case, we define B to consist of

one element from B0, a different element from B0 n Bx, yet another element

from B0 n Bx n B2, etc. Such elements can be found because B0 n • • • n

Bn almost includes Bn and is therefore infinite. It is obvious that B is almost

included in each Bn.

Having made this preliminary observation (which, like the lemma above,

goes back to [3]), we now proceed to construct two almost decreasing

sequences, (B*) and (B2), of infinite subsets of N, each indexed by the set of

all countable ordinal numbers, and having the following property. For any

f E s, there is an index a such that, for all «EN,

max {nextiX1, «), next(£a2, «)} > /(«), (*)

where we use the notation next(5, «) for the smallest number in B that is

> n.

Since the set s has the cardinality of the continuum and the set of

countable ordinal numbers has cardinality N,, the continuum hypothesis

asserts that there is a bijection between these two sets. Fix such a bijection.

We shall define the sets B^ by transfinite induction on a, in such a way that

(*) holds whenever / and a correspond in our fixed bijection. For any

countable ordinal number a, the ath step of the induction is as follows.

Suppose Bç has been defined for all £ < a (and for both values of /), and

suppose/is the function in s that corresponds to a. We must find two infinite

sets, 5a' and B2, such that, first, (*) holds, and, second, B^ is almost included

in B't for all i < a. By our preliminary observation, we can satisfy the second
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requirement; there are infinite sets A ' almost included in B^ for all £ < a. By

taking the B¿ to be infinite subsets of A ', we automatically satisfy the second

requirement, so we direct our efforts toward the first, making (*) hold. We

define an increasing sequence

al<al<a\ <a2x <a\<a\< ...

of natural numbers, with ak E A ', such that ak >/(«) for all « < axk and such

that al + x > /(«) for all « < a\. Since the A "s are infinite, there is no difficulty

in inductively choosing the aks. We set B'a = {a'k\k E N}; clearly this is an

infinite subset of A '. To verify (*), consider any « E N. If a\ < « < a\ for

some k, then ne\t(B\, «) = ak\x > /(«) by our choice of a*+1. Otherwise,

ak_ | < « < a\ for some k (or simply « < a¿ if k = 0), and next(¿?a2, n) = a\

>/(«) by our choice of ak. In either case, (*) holds. This completes the

construction of the sequences (B^).

Temporarily fix an arbitrary unbounded function h E s. (Eventually, we

will select a particular h, depending on the prescribed S E S that we want to

decompose, but for the moment the choice of « is immaterial. Some of what

follows may seem more natural if the reader pretends that « is the identity

function.) We say that a function / E s is linearly bounded on a set B Ç N if

there are constants a and b such that /(«) < ah(n) + b for all « E B. Let 5/

(/' = 1 or 2) be the set of all / E j that are linearly bounded on at least one of

the sets B'a defined above. Note that such an/ is also linearly bounded on all

later terms B'ß(ß > a) of the sequence, as these are almost included in B^. It

follows that S¡ is closed under add as well as decrease. It might not, however,

be closed under shift. We define 5, to be the closure of S¡ under shift; this is

obviously closed under decrease and is easily seen to be closed under add as

well. (The verification uses the fact that every f E s is nondecreasing, so its

«-fold shift is < its TO-fold shift if « < to.) Thus, Sx and S2 belong to S.

We show next that Sx + S2 = s. Consider an arbitrary g E s. Since « is

unbounded, we can find/ £ j such that «(/(«)) > g(ri) for all «. By construc-

tion of the sequences (2?j), we can find an a such that (*) holds for a and /.

Define

g,(«) = «(next(£¿ «)).

These two functions g, belong to the corresponding 5,, for g, is linearly

bounded on B^ (being equal to « there). And, because of (*) and the

monotonicity of «,

g\(n) + g2(n) > max{g,(«),g2(«)}

= «(max{next(5a', «), next(Äa2, «)])

> h(f(n)) > g(n).

Therefore, g £ Sx + S2.
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For any prescribed S E S, we have, by distributivity of §,

(s n sx) + (s n s2) » s n (sx + s2) = s n s = s.

To complete the proof of Theorem 1, we must still show that, if S contains an

unbounded function g, then « can be so chosen that neither 5, includes S (so

S n S,■ c S). In fact, we shall find « such that g belongs to neither S¡,

because g and all the functions from which g is obtainable by shift will be

linearly bounded only on finite sets. Thus, we seek an unbounded h E s such

that, for any a, b, c, the inequality

g(« — c) < ah(n) + b

holds for only finitely many values of «. In other words, we need an

unbounded h E s such that, for each a, b, c,

h(n) <[g(n- c)/a + b/a]

for all but finitely many «. But such an « exists by the second part of

Hausdorffs Lemma above, so the proof of Theorem 1 is complete.

4. Additional remarks.

4.1. Theorem 1 can also be proved by directly constructing the sets S¡ c S

such that 5, + S2 = S. The construction is an inductive one, of length N,. At

each step of the construction, new functions are put into Sx and S2 to

guarantee that some f E S belongs to Sx + S2. The continuum hypothesis is

needed to insure that each / E S can be considered at some stage. The

construction is so arranged that a particular unbounded g E S is never put

into either S¡, so S¡ c S. The appropriate functions to put into 5, at each stage

are given by the following "splitting lemma".

Lemma. Let Sx and S2 be countably generated members of S, let g, £ S¡,

g, E s, and let f E s be arbitrary. Then f can be written asfx+ f2, where f¡ E s,

and where the sets 5/ E S generated by S¡ U {/} do not contain the corre-

sponding g,.

This lemma is perhaps most easily proved by means of a Baire category

argument which establishes that "most" decompositions /, + /2 of / (with

/ E s) have the required property. A similar lemma can be proved (with

somewhat more work) for the characteristic sets introduced by Salinas [7],

and Theorem 1 can also be obtained in this way.

4.2. Theorem 2 can be rather neatly reformulated as follows. Define a

binary relation < on s by

/^ g iff there exist natural numbers a and b such that

/(«) < ag(n + b) for all «.

This relation is obviously reflexive and transitive. We write [/] for the
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equivalence class off with respect to the associated equivalence relation and /

for the set of equivalence classes. With the partial ordering induced by ^ , /

is a distributive lattice in which

[/] A[g] =[min(/,g)]    and

[/]V[g]=[max(/g)]=[/+g].

It is easy to verify that a subset S of s belongs to S if and only if (1) it is

closed under add and (2)/ < g £ S implies/ E S. Therefore, the sets S € S

correspond, via the projection s -> I, to the ideals of /. Theorem 2 thus asserts

that the lattice of ideals (of the ring L(H)) is isomorphic to the lattice of

ideals of the lattice /.

4.3. An obvious question about Theorem 1 is whether the continuum

hypothesis is really needed. We have been unable to eliminate it entirely from

the argument, but we can get by with certain weaker hypotheses. Readers

familiar with Martin's axiom [6] will have no difficulty carrying out essen-

tially the same argument (or the argument outlined in 4.1) on the basis of that

assumption. The weakest hypothesis from which we have deduced the conclu-

sion of Theorem 1 is

There exist two nonprincipal ultrafilters D¡ on N such that

/(/>,) =£f(D2) for all finite-to-one functions /: N -» N. (**)

The proof involves showing that two such ultrafilters have the property (*)

required of the sets {B^\ a countable} in §3.

The hypothesis (**) is true if, for example, there exist two nonisomorphic

rare ultrafilters (take these as the £>,) and also if there exists a rare non-

Ramsey ultrafilter (take it as Dx and any proper image of it as D2). It is

perhaps worth noting in this connection that Kunen's model [5] (generated by

N2 random reals over a model of the continuum hypothesis), in which there

are no Ramsey ultrafilters, nevertheless satisfies (**) because it has plenty of

rare ultrafilters (measure algebra extensions preserve rarity). It seems possible

that one could prove (**) (without any special assumptions), perhaps by an

adaptation of Kunen's techniques in [4], but we have been unable to do this.

4.4. Although the continuum hypothesis might be eliminable from Theorem

1, the axiom of choice is not. Furthermore, even if the axiom of choice and

the (generalized) continuum hypothesis are assumed, there might not exist

any definable ideals I¡ c K(H) such that /, + I2 = K(H), not even if arbi-

trary real numbers and arbitrary ordinal numbers are allowed as parameters

in the definitions of the /. Thus, Theorem 1 itself, not merely its present

proof, is highly nonconstructive.

To prove these assertions, we begin by topologizing the set s as a subspace

of the product of countably many copies of the discrete space N. More

explicitly, for every finite nondecreasing sequence p of natural numbers, we
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define

[p] — {/ G s\p is an initial segment off},

and we use the sets [p] as a basis for the topology. (We reserve the letters/?, q,

and r to stand for such sequences.) The space s so defined admits a complete

metric (d(f, g) = l/(« + 1) if n is the smallest integer for which/(«) ¥= g(n))

and therefore satisfies the Baire category theorem.

We shall need the following results, which are proved in [9] (under the

assumption that the existence of an inaccessible cardinal is consistent). There

is a model of set theory without the axiom of choice, in which the axiom of

dependent choice holds, and in which every subset of j has the Baire property

(i.e. differs from an open set by a meager set). There is another model of set

theory, in which the axiom of choice and the generalized continuum hypothe-

sis hold, and in which all definable subsets of 5 have the Baire property, even

if real numbers and ordinal numbers occur as parameters in the definition.

The axiom of dependent choice, mentioned in the first of these results, is a

weak form of choice that suffices for the proofs of "nonpathological" results

of real analysis, like the Baire category theorem and our Theorem 2, but not

for the construction of "pathological" examples, like nonmeasurable sets or

sets lacking the Baire property.

In view of these facts, the following proposition suffices to establish our

claims about the nonconstructivity of Theorem 1.

Proposition. If s = Sx + S2 with 5, E §, and S, c s, then at least one of

the S j lacks the Baire property.

The proof of this proposition involves two lemmas about comeager subsets

of s, so we begin by discussing such sets. By definition of the topology, every

open set in s has the form

[*>J- U[/>]

for some collection D of nondecreasing finite sequences/». [D] is dense in s if

and only if every q has an extension p E D. More generally, [D] n [r] is

dense in the basic open set [r] if and only if every extension q of r has an

extension/? E D; in this case, we say that D is dense beyond r. A set C Es is

comeager in [r] if and only if it includes the intersection of countably many

sets [Dn] where each Dn is dense beyond r.

Lemma A. If C is comeager in a nonempty open subset of s, then every

function f E s is eventually majorized by the sum of two elements of C.

Proof. Without loss of generality, the nonempty open set in question is [r]

and C is n„[Dn], where each Dn is dense beyond r. Let an/ E j be given.

We shall construct g, E C such that f(k) < gx(k) + g2(k) for all but finitely
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many k. The construction will proceed in stages; after stage «, we shall have

defined finite nondecreasing sequences g" and g2, of equal length, which are

to be initial segments of the desired g, and g2. We begin by setting g® — g2 =

r. At an odd-numbered stage, say 2« + 1, we properly extend g2" to a

sequence g2"+1 E Dn. This is possible, as Dn is dense beyond r and g2"

extends r. We also extend g\" to g|"+1, of the same length as g2"+1, using

values so large that g, + g2 will majorize/on domain (g2"+1)-domain(g2").

(For example, the new values of g2 could be taken to agree with/.) Symmetri-

cally, at even-numbered stages, 2« + 2, extend g|"+1 to g|n+2 £ Dn and

extend g2n+ ' so that/is majorized. The functions g, and g2 thus obtained are

in C, for stage 2« + i guarantees that g, E [£>„]. And gx(k) + g2(k) > f(k) for

all k greater than the length of r.   fj

Lemma B. Let C be comeager in s. There exists an f E S such that, in any

decomposition f = «, + «2 with hx,h2Es, one of the summands «, majorizes an

element of C.

Proof. Without loss of generality, C = C] „[D„] with D„ dense (beyond the

empty sequence). If « £ j and p is a finite nondecreasing sequence, we say

that « is (p, «)-small if h majorizes/? but does not majorize any extension ofp

in Dn. (To be precise, "« majorizes/?" means that the finite initial segment of

« having the same length as p majorizes p.) If « is not (/?, «)-small for any /?

and «, then we can construct g E C with g < « by inductivity defining initial

segments g„ £ Dn majorized by «. The existence of g„+1 follows trivially from

the facts that « majorizes g„ and h is not (g„, « + l)-small. Thus, it suffices to

find an/ E j such that, for any quadruple (/?„ nx,p2, n2),

f has no decomposition / = «, + «2 in which each h¡ is

(/?„ «,)-small. (t)

By the Baire category theorem, it suffices to show that, for each fixed

(/?,, «,,/?2, m2), the set of / satisfying (f) has dense interior, that is, that every

finite nondecreasing sequence q has an extension q' such that every /

extending q' satisfies (f).

Let/?,, «,, and q be given. We may assume that q and both of the/?, have the

same length /; otherwise, just extend the shorter ones by repeating their last

terms. By density, we can find extensions r¡ E D^ of /?,. Let a, be the largest

(i.e. last) term in r¡. Define a' to be the extension of q, of length / + 1, having

ax + a2 as its last term q'(l). If / extends q' and / = hx + «2, then either

«,(/) > a, or h2(l) > a2. As the «, are nondecreasing, it follows, by the choice

of a„ that, for at least one of the two values of », «, majorizes r, if it majorizes

/?,. So, for at least one i, «, is not (/?„ «,)-small.   □

We now complete the proof of the proposition. Suppose s = Sx + S2 with
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5, E S, S¡ c s. We remark that neither S¡ is (0}, so any / that is majorized

almost everywhere by an element of S¡ must itself be in S¡. This remark, the

closure of 5, under add, the assumption that S¡ c s, and Lemma A im-

mediately imply that neither St is comeager in any nonempty open set. On the

other hand, if both S¡ were meager, we could apply Lemma B to the

complement of their union. Remembering that the 5, are closed under

decrease, we would obtain an/ £ s such that, in any decomposition off, one

of the summands is in neither of the S¡. This would contradict/ E s = Sx +

S2.

Thus, at least one of the S¡ is neither comeager in a nonempty open set nor

meager. It therefore lacks the Baire property.   □
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