ABSTRACT

COMMUTATORS AND OPERATOR IDEALS

by
Gary Lynn Weiss

Chairman: Allen L. Shields

This work concerns itself with ideals of operators on
separable Hilbert space and commutators of these operators.
It is intended to be a complete and self-contained source
for what is presently known on this subject. The following
are two examples of the kinds of results we obtain.

We prove that every trace class operator with trace 0
which is also contained in a Schatten p-class for some p < 1
is the sum of 14 or fewer commutators of Hilbert-Schmidt
operators.

We prove that if I is the two-sided ideal of operators
which is the union of all the Schatten p-classes for which
P < 2, then the operators in I2 whose traces are 0 are
precisely the finite linear combinations of commutators of
operatore in I,

We further prove that if every trace class operator
with trace 0 is a finite linear combination of commutators
of Hilbert-Schmidt operators, then the number of such
commutators needed is 14 or fewer.

The central result is that any diagonal operator with

entries 'd'dl'dz"" satisfying dniﬂ, z dn =d < e,
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and £ (log n}dn-ﬁ*ﬂ is a finite linear combination of
commutators of Hilbert-Schmidt operators. This result is
important in view of another of our results which is that
every trace class operator with trace 0 is a finite linear
combination of commutators of Hilbert-Schmidt operators

if and only if every diagonal operator with diagonal entries
-d,d,,d,,... satisfying 40 and Zd =d<= isa
finite linear combination of commutators of Hilbert-Schmidt
operators.

We generalize Fuglede's Commutativity Theorem in a
context relating to operator ideals. We show that in some
cases the generalization holds true, and in others it fails.

We prove that the 1973 Brown, Douglas, and Fillmore
characterization of ] + K(H) does not extend, as is, to
other operator ideals.

We introduce a new "stretch" axiom for Calkin ideal
sets, and investigate some of its properties. We mention
that independently of this thesis, we recently used ideas
related to this axiom to develop a new characterization of
all ideals of L(H) in terms of increasing sequences of
positive integers. With this characterization and assuming
the continuum hypotheeis, we have shown in joint work with
Andreas Blass that K(H) properly contains two two-sided
ideals of L(H) whose sum is precisely K(H),

In regard to our work on commutators and a few other
topics, the point of view is largely matricial and many of

the techniques we develop are infinite matrix techniques,
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INTRODUCTION

Bounded linear operators acting on a separable,
infinite-dimensional complex Hilbert space have been
objects of intense study for over 60 years. Some of
the deepest and most useful results of the last 40
years were found by expleiting multiplicative
commutativity relations between operators (e.g. the
spectral thecrem for normal operators, the theory of
von Neumann algebras, and the theory of invariant
subspaces), L(H), the set of all bounded linear
operators acting on such a Hilbert space H, is a
B*-algebra which is itself noncommutative, but which
contains many important commutative and "almost”
commutative classes. To understand the structure of L(H)
we must study how operators commute as well as how they
do not commute. One of the best ways to study non-
commutativity is to study commutators, that is, operators
of the form AB-BA. The operator ABE-BA may be viewed as
a measure of the commutativity of A and E. We say
A and B almost commute if the operator AB-BA is "small".
"Small" can have one of several qualitative or quantitative
meanings. For example, an operator may be said to be small
if it belongs to a specified class of operators, usually
an ideal in L(H) such as the compact operators, or
simply if its operator norm is small., Compared to the

large body of knowledge on commuting operators,



surprigingly little is known about noncommuting and
almost commuting operators. Only in the last 10 years
have many deep and important results been discovered
in this area.

Originally, the study of commutators received its
impetus from gquantum mechanics. The Heisenberg uncertainty
principle when formulated in mathematical terms involves
the statement that the identity operator I is the
commitator of two unbounded operators. Furthermore,
physical considerations make it natural to conjecture
that in order to have I = AB-BA, either A or E must be
unbounded. That is, the identity 1s not a commutator of
two bounded linear operators. This was first proved by
Wintner [ 39] in 1947. Two years later, Wielandt [ 38]
showed that the same result holds true in any normed
algebra with an identity. In the 1950's, Halmos initiated
the first purely mathematical study of commutators in
[15], [16] and [17]. He noted that Wielandt's proof
showed that an operator of the form AI + K (where
A#0 is a complex number and K is a compact operator)
is not a commutator of bounded operators, and he asked which
operators are. He also introduced a number of basic
techniques which remain extremely useful. In [16],
he stated the following conjecture due to Kaplansky:

If B = AX-XA and AB=BA, then B is quasinilpotent. Later,
this was proved independently by hkleineke L21] and
Shirokov L 35]. In the early 1960's Pearcy L25] and

Brown, Halmos and Pearcy | 5] refined the halmos tech-
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niques to give partial results on the structure of the
class of commutators of L(H). Finally, in 1965, Brown

and Pearcy [ 6] completely characterized the class of
commutators of L(H) with the remarkable result that

the only noncommutators are operators of the form

AI + K, where A#0 and K is a compact operator. At the

game time, but using quite different technigues,

Radjavi [ 28] characterized the class of self-commutators,
that is, operators of the form A¥A-AA*, In 1967 Putnam [ 27]
published a short book containing most of what was known
about commutators at that time. In 1971, Anderson Ll]

and Anderson and Stampfli LE} feund an elegant and

much shorter proof of the Brown and FPearcy characterization.
Also in 1971, Pearcy and Topping | 26] began to study

the commutator structure of special classes of operators.
In particular, they considered commutators of operators in
various two-sided ideals of L(H) such as the class of
compact operators and the Schatten p-classes. They proved
that every compact operator is the sum of 10 (or fewer)
commutators of compact éperatﬁrs. However, they left
unsolved the gquestion: Is every compact operator a
commutator of compact operators. This remains unsolved
today and provides much of the impetus for the current
studies on compact operators. The techniques of the 1960's
which were developed to characterize the commutator class
of L{H) appeared to have little use when considering the
commutator structure of classes of compact operators.

Indeed, it appeared that new techniques needed to be
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developed to handle commutators of compact operators.

Tn 1972 Salinas | 31], in a sequel to [26], used the

Pearcy and Topping technigues to extend their results.
Sinece then, several peripheral papers have appeared
extending the results in | 26] to various Banach spaces
(e.g. the LP-spaces), but no further progress has been made
on the essential structure questions of commutator classes.
The 1970's has seen a flurry of activity in related areas.
Deep results on 'derivations' (a branch of commutator
theory) were discovered. In 1973, a surprisingly large
number of important papers were published in which

compact operators and commutators play central roles.

Some of the most striking papers were Brown, Douglas and
Fillmore [ 8], Berger and Shaw [4], and Helton and Howe [ 20].
It is especially interesting to note that the trace class
and the trace play major roles in [ 4] and [ 20] and will
also be crucial in this treatise.

In this thesis we study compact operators, operator
ideals and commutators from a constructive point of view
depending heavily on the use of sequences and infinite
matrices, In the following remarks we summarize the
main results of each chapter.

We first establish some notation. Let H be a separable,
infinite-dimensional complex Hilbert space. Let L(H) denote
the algebra of all bounded linear operators on H, and
let K(H) denote the two-sided ideal in L(H) of all

compact operaters. Furthermore, let GP denote the Schatten



p-class, =o that EE and Cl are the Hilbert-Schmidt and

trace class ideals, respectively, of compact operators

in L(H). For each ideal I in L(H), let C(I) denote

the class of commutators AB-BA where A,B € I, Let

[1,1] denote the finite linear span of C(I). Let I° denote

the ideal generated by I:1 and, if I = Gl, let 1° denote

the class of operators in I whose trace is 0. Finally,

let (N) denote the class of all normal operators in L(H).
We mentioned earlier that in 1965, Erown and Fearcy

[ 6] characterized C(L(H)), and in 1971, Pearcy and Topping

[26] began to study commutators of compact operators. In

L26] the authors proved that [K(H),K(H)] = K(H) and

GeveiCaw= [uzﬁ,gzﬂ] for every p> 1, and asked whether or

1 o

not C(K(H)) = K(H) (or even whether or not P € C(L(H)),
where P = (aij}?,j=l and aij=0 for every i,j except all=lJ.
They also asked whether or not C{ﬂgp} = Cp for'p & 1,

c(c,) = ¢, or [€,6,] = €{. In 1972 Salinas [31]
attempted to generalize the Pearcy and Topping technigues
and results.

In Chapter 1 of this work, we study commutators of
compact operaters. In Section 3, we give a short proof of
the results of Pearcy and Topping, and Salinas, we general-
ize their techniques, and we mention that Salinas erred
when he claimed to have improved the Pearcy and Topping
techniques (He has acknowledged this fact). In fact, we

mention that their techniques do not generalize naturally. In

Section 4 (the main section) we develop infinite matrix



techniques together with several infinite series and
elementary number theoretic results to yield results
on the structure of [ I,I] when I C, (in which case
(1,11 = (I%)9). We show that a certain class of well-
known non-trivial ideals satisfy [ I,1] = {ZE}D. The
main result yields, among others, the main structural
relation

cgm{PglcP}°=[ngcp,yichjc LC,,C, )= €Y, for every g<l.
This relation contains the set theoretic eguation
[1,I]1 = (1°)° for I = U C,» which is the largest ideal
we have which we know g:iisfies this identity. Furthermore,
we mention that in joint work with John Conway we have
shown that these techniques cannct be generalized, In
Section 5, we develop necessary conditions and sufficient
conditions on an ideal I in order that C, = [I,I]. e
further show that g G, # LI,I] if and only if P € [I,1],
where P is the rani éne projection operator mentioned
earlier, In Section 6, we show that F # A*A-AA¥* for any
A € K(H) and we produce A,B € K(H) for whieh the matrix
entries of AB-EBEA are the same as those of P except for
two types of diagonals off the main diagonal on which
the entries are of the order of the sequence (1/n).
In Section 7, we show that if we let [I,I]n denote
the set of all sums of n or fewer commutators in C(I),
then [I,I] ® 0 < LI.I]B. Furthermore, (I%)° = L1,1I] if and

only if [I,I]y, =L1,1] = (1%)°, 1° =(1,1] if and only if



[1,1]g = [1,1] = 1%, and in particular, [C,,C,] = ¢ if and
only if [C,,C. ]y * [C,,C,] = Ci. In other words, if the
commutator equations in question were true, then it would
suffice to consider 14 or fewer commutators., In Section &,
we pose several concrete problems for commutators of finite
matrices and give partial results in this direction. It
appears that a positive or negative scolution to any of our
commutator problems for finite matrices could yield the
corresponding answer to the question 'Is {Gz,ﬁzj = Cg?'.

In Section 9, we interpret the results of Chapter 1,
expressing the likelihood that fﬂz,ﬁzj d Ei and likewise
for the other equations under consideration.

Chapter 2 deals with generalizations of the Fuglede
Commutativity Theorem (and the Fuglede-Putman generaliza-
tion) [ 27] for normal operators., We ask which ideals I
have "the generalized Fuglede property" that whenever
A€ (N), BE€ L(H) and AB-BA € I, we then obtain
A%B-BA* € I (The case I ={0} is Fuglede's Theorenm).

We show that K(H) has this property, F(H) (the class of

all finite rank operators) does not have this property,

and GE has this property at least for those 4 that are

also diagonalizable (We have recently shown, independent
of“this*thesis, that Cp also fails to possess this property
when 0 < p < 1). Furthermore, if C, should fail to possess
this property for some normal operator A, then it would
follow that A cannot be expressed as the sum of a diagonal-

izable operator and a Hilbert-Schmidt operator. This would

answer, in the negative, a well-known and important guestion



of Halmos and Berg [ 3].

In Chapter 3, Section 1 we answer two guestions of
Brown, Douglas and Fillmore [8, especially pp. 1l23-1247,
We prove that not every Hilbert-Schmidt operator is the
gum of a normal operator and a trace class operator.
Furthermore, there exist operators A € CE so that
A®Qg (N)+ Cy for every Q € L(H), The significance
of thege results is that they show that the Erown,
Douglag, Fillmore characterization of (M) + K(H)
[ 8, especially Theorem 11,2] in conjunction with the
Helton and Howe [ 20] vanishing of the trace invariant
fails to characterize (N) + Cy. In addition, we show
that these characterizations fail to hold for (N) + I
for every ideal I for which I # 112, e also construet
two Hilbert-Schmidt weighted shift operators which are
not trace class operators; one is the sum of a normal
and a trace class operator and the other is not. This
answers a question recently posed to me by Ciprian Foias,
among others. In Section 2, we investigate the relationship
between the diagonal sequences of matrix representations of
operators and the membership of these operators in ideals,
The main result is that if 1 € p<«, then T € Gp if and
only if, for every hasis-{eg}, the diagonal sequence
( (To.,0 ) J2.. € AP,

Chapter 4 deals with infinite series rearrangements

of a new type. Let x ¢ =, ;.,rn,;‘ D, X = {xn}’ L UACE

and let S{x,y) = {lE Xn(n)¥n * hin) is any rearrangement
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of the set of positive integers}; We examine the structure

of S(x,y) din RL. The main result, contributed to by

Paul Erdos and Hugh Montgomery, states that, for every

such y, S(x,y) = [a,#») for some a > 0, if and only if

xn+lfkn is uniformly bounded. (Recently W.A.J. Luxembourg

has pointed out to us related work by Peter W. Day | 10])
Chapter 5 deals with several topics, In Section 1,

we give matricial representations for the normal operators

€ L LE{[-ﬂ,ﬂ}x[-ﬂ,ﬂ]} )} and M B LE{TE} )

I""z Z+w

(where T° denotes the torus), each having some continuous
spectrum of positive planar area. Hence, according to Berg
[3], both of these operators are candidates for normal opera-
tors which are not the sum of a diagonalizable and a Hilbert-
Sschmidt operator. In fact, they are candidates for which

it is hoped that one of them shall fail to possess the
generalized luglede property in regard to GE' In Section 2,
we introduce the "stretch" axiom to create new classes of
ideals together with a new way of looking at ideals.
(Recently this point of view has led to a solution of a
problem posed by Brown, Pearcy and Salinas [ 7] in 1971,
Independently of this thesis, we use the stretch axiom

to find a new characterization of all ideals in L(H) and

we use this together with transfinite induction and the
continuum hypothesis to prove that K(H) is the join of

two proper ideals (i.e. K(H) = I + J where I,J are

ideals in L(H) and I,J < K(H)). The transfinite induction

argument is due to Andreas Blass,) Finally, in Section 3,



10

we prove that every admissible function is equivalent to

a continuous (even n-differentiable) admissible function
(in the sense of Brown, Fearcy and Salinas | 7]). (This
result was obtained simultaneously with, and independently

of Salinas [ 32]).



NOTATION AND FRELIMINARY FACTS

We shall introduce notation as the need arises,
However, for the reader who wishes to read sections
out of sequence, we provide here a brief summary of
the notation we most often use.

Let Hl and H2 denote two separable, complex Hilbert
gpaces. If for A € L{Hl} and B € L(HEJ there exists a

unitary operator U:H,—> H, such that A = U™

BU, then
we say A and B are unitarily equivalent and we denote
this relation by A = B, We will not distinguish the case
when A and E act on the same Hilbert space.

Let x = (anzzl = (x_) denote an arbitrary sequence
of complex numbers. Let D(x) = DEExn}} denote the diagonal
operator with diagonal entries (xl.xg,...]. It is easily
shown that if y = Eyn} is a rearrangement of x = (xnl.
then D(y) = D(x). This holds in a more general sense,

If A has a complete orthogonal set of eigenvectors in Hl
and B has a complete orthogonal set of eigenvectors in HE’
where H1 and HE have the same dimension, then A = B if and
only 1f the set of eigenvalues of A is the same as that of
B, counting multiplicities. For example, D(x) =
D{(xl,xj,...J} & D{{KE*K#""}} where the left-hand
operator acts on H, with respect to the standard basis,

and the right-hand operator acts on H & H, with respect

to its standard basis. For the sake of simplicity, we

shall also let D{xl,xz....) denote D(x) = D((XHJJ =

1l



X2

D((%y,Xpp0ee)).

Let F(H) and K(H) denote the two-sided ideals in L.}
of the finite rank operators (operators with finite-dim-
ensional range) and compact operators, respectively. Let I,J
denote nontrivial two-sided ideals in L(H). It is well-known
that F(H) © I = K(H). Also the quotient algebra L(H)/K(H)
ig known as the Calkin algebra. It is also a E¥-algebra
with identity.

Let C(I) denote the set of all commutators AB-BA
where A and B € I, Let [I,I] denote the linear span of C(I).
Let EI,I]n denote the set of linear combinations of n or
fewer commutators of I (equivalently, the set of all sums
of n elements of C(I)).

Let Cp denote the Schatten p-ideals and H"C denote
the Cprnﬂrm. Let,tp denote the seguence space of ill
p-summable sequences and let ”-" 5 denote thejﬂp-norm.
Therefore the trace class is Cl and the Hilbert-Schmidt
class is CE'

If I c< Gl' let I° denote the set of cperators in I
with trace O,

In the case when the elements of a set are real or
complex numberé, we shall sometimes, depending on the
context, use standard set notation to mean something
different than usual. Namely, if (d_) is a sequence of
real or complex numbers, then {dn} ordinarily means
simply the set of numbers occurring in (d_ ) and ignores
miltiplicities, However it is very important that we do not

ignore multiplicities, Therefore, depending on the context,
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we shall sometimes define {dg} to be the unordered set of
numbers, counting multiplicities, corresponding to the
sequence {dnJ.
If {%;} is a set of operators in L(H), then
Euﬁﬁu denotes the direct sum of {ﬁﬂ} and acts on EnﬁH.
Let ¢ denote the complex numbers, R the real numbers,
and Z the integers.
Let z¥ denote the set of positive integers, let 4
denote the set of finite-tuples of positive integers,
and l&tg£+ denote the set of all finite-tuples of
positive integers that are greater than or equal to 2.
Let M(Ty,,Ty5,T59,T,,) denote the 2x2 matrix with

operator entries Ti in the (i,3) pasition. It is

J
well-known that this is a general form for all operators
in L{H & H).

1f I is an ideal in L(H), let I° denote the ideal
generated by I-1.

For each ideal I in L(H), let Calk(I) dencte the
well-known Calkin ideal set of I (see [9]) which is
precisely {cw;: D((x,)) € I},

If Hl and HE are two Hilbert spaces of the same
dimension, then there are many isometric isomorphisms U
(i.e. unitary transformations) mapping Hl onto H,.
Each such unitary transformation U induces a canonical
#~-isometric isomorphism F,; mapping L[Hl} onto L(HE} via
the map F;+ A —> UAU™L, It is clear that each such

induced FU preserves compactness, positivity, and

eigenvalues (counting multiplicities). From this it
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is clear that each such induced Fy takes each ideal in
L(Hl} into the unique ideal in L({H,) that has the same
Calkin ideal set. That is, we induce a multiplicative
lattice isomorphism between the lattice of ideals in L(E:J
and the lattice of ideals in L(HEJ. what is more, this
induced lattice isomorphism is the same one for all
such FU‘ Hence we can identify ideals in L{Hl} with
ideals in L(H,;). In light of this identification, an
ideal I will be thought of as lying in either L{Hl} or
L(HE}, whichever is convenient at the moment., For example,
if I is an ideal in L(H), then (the associated ideal) I
is also contained in L(H # H). Furthermore, it is easy
to prove that this associated ideal I in L(H & H) is also
precisely the set {m{Tll,le,Tzl,Tzzj: Tij e 1% LiE).

Let T = U|} denote the peclar decomposition of
an operator T, where [Tl = {T*lefg is the positive part
and U is a partial isometry which satisfies U*U|T| = |T|.

We shall use the symbol | to mean non-increasing.

For example, X, J 0 means that x_ is decreasing (but
not necessarily strictly) to 0, and is never equal to O.

1% is a sequence of operators in L(H) and T € L(H),
we shall say T —> T(S0T) if T, approaches T in the strong
operator topology. That is, for every f € H, |T _f - Tf“———} 0
as n —> w, Also, we shall say T —> T(WOT) if o
approaches T in the weak operator topology. That is,

for every f,g § H, (T f,g8) —> (Tf,g) as n —> =,



CHAPTER 1

COMMUTATORS IN IDEALS OF CGMPACT OPZRATORS

l. Introduction

Let H be a separable, infinite-dimensional complex
Hilbert space and let L(H) denote the algebra of all
bounded linear operators on H (all ornerators herein are
bounded and linear). Denote by w(H) and F(d) the two-sided
ideals in L(H) of compact operators and finite rank
operators, respectively. Let I and J represent any non-
trivial two-sided ideals in L(H) (all ideals herein are
two-sided) and so, as is well-known, F(H) € I € L(H) and
is closed in the operator norm topclogy if and only if

: =oKLY

-

=

A commutator is an operator of the form AZ-BA where

A and B are operators in L(H). Such an operator is said
to be the commutator of 4 and B. A commutator of I is
an operator of the form AB-BA where A and B are operators
in I. Due to the ideal structure of I, commutators of I
are themselves coperators in I.

Let C(I) denote the set of all commutators of I,

that is,
A ={Aa-m= A,B € 1}.

Let [I,I] denote the linear span of C(I) or, equivalently,

the set of g1l finite sums of commutators of I and

15
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let [I.I]n denote the set of all sums of n or fewer
commutators of I. Similarly, let C(I,J) = {AB-BA:A€I & . .
and let [ I,J] denote the linear span of C(1,J),

Let Cp (for 0 < p < =) denote the Schatten p-classes
of K(H), For p > 1, these classes are the best known
complete normed ideals in ¥{H), where EE is the Hilbert-
Schmidt class and Gl is the trace class. The Gp classes
may be defined as follows. For every operator T, let
T = U|T| be the polar decomposition of T, where
I = {T*TJIKE is the positive part of T and U is a
partial isometry. Also T = U*T, Since K(H) is an ideal,

T is compact if and only if [Tl is compact. Furthermore
ITI is self-adjoint, By the spectral theorem for compact,
gelf-adjoint operators, |T| is compact if and only if

it is diagonalizable (that is, it has an orthonormal basis
of eigenvectors) and its eigenvalues, counting multipli-
cities, tend to 0. Let {hn} denote the sequence of eigen-
values , counting multiplicities, of IT!, provided T is
compact. CP ig defined to be the class of compact
operators T for which {an Effp. If T € C_, then the
cp-norm of T is given by HT“Gn = (2, A, p}lfp = H{knJH P
(for a rigorous development, see [ 347),

Calkin and von Neumann [9] observed an important duality
between proper ideals I of L(H) and sets of non-negative seg-
uences {hn) corresponding to the sequences of eigenvalues,
counting multiplicities, of all positive operators in 1I.

So far, we see that GP corresponds taxff (the non-negative

sequences i:lka and K(H) corresponds to c: (the non-negative
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sequences that tend to 0). The set of non-negative segquences
that an ideal I generates in this way is known as the
Calkin ideal set of I, and will denoted by Calk(I). Also
Salinas [23] defines the characteristic set of I to be

the set of non-increasing sequences in the Calkin ideal set
of I, and this also defines an important duality. (For
Calkin's axioms and the charaéteristic set axioms, see

pp. 57-58.)

The trace of an operator is a central, very important
and quite subtle aspect of operator theory. We will exploit
several new and peculiar properties of the trace to obtain
our main theorem, and we will consider possible generaliza-
tions of the trace. Not only here is the trace important.
Simultaneously and independently, Berger and Shaw, Helton
and Howe, and Brown, Douglas and Fillmore, in | 8], [4] and
| 20], found the trace crucial to major segments of their
work. Earlier papers too depend on the trace; for example
see Radjavi [ 28] and Deddens [12]. The trace of an operator
is not always well-defined, even in an extended sense., Let
{?H} be an orthonormal basis for H., Formally, the trace of
an operator T is the sum of the diagonal entries of its
matrix with respect to {?n}’ given by Tr(T) = En[Ten,en}.
However, this sum is clearly not always defined, and when it
is, it seems to depend on the choice of basis {?ﬁ}. The trace
is most useful when applied to operators for which the above
sum is convergent (perhaps to +«) and unitarily invariant

(that is, independent of the choice of basis), If H is finite-
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dimensional, the trace is finite and unitarily invariant.
If H is infinite-dimensional and separable, there are tvo
important cases when the trace is defined and unitarily
invariant, namely, for trace class operators and for
positive operators. If T is a trace class operator, thern
En{Ten,en} converges to a finite number which is unitarily
invariant, If T is a positive operator, then the trace of
T is well-defined in the extended sense, that is,
En(Ten.en} converges to either a finite number, in which
cagse T is in the trace class, or to + =, in which case T
is not in the trace clagg. In either case the sum is a
unitary invariant (see [14, pp. 96-97]). Interesting and
useful connections between the trace, the CP classes and
linear functionals may be found in | 3%]. It should be
noted, however, that the trace is not the only property
of the diagonals of matrices that is of interest. In this
chapter and in Chapter 3, Section 2 we depend heavily
on more gualitative properties of diagonals.

The trace is indispensable to the study of commutat-
ors. IT H is finite-dimensional and 4 and B are in L{K),
then Tr{AB-BA) = 0, If H is infinite-dimensional (not
necessarily separable), and if A € K(K), B € L(H) and
AB and BA are in the trace class, then Tr(AB-EA) = O
(see 14, p. 99]). From this it is evident that trace
class operators with trace O are worth special considera-
tion., Thus we are led to the following definition.
Let I be any ideal of L(H) that is contained in the

trace class. Denote by 1° the class of operators in I
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with trace 0, that is,
1° = {T € 1: Tr(T) = Q}.

In particular, Eg is the set of all trace class operators
with trace 0.

If I is an ideal in L(H) and I° is the ideal
generated by {TE: T & %}, the following chain of inclusions
clearly hold.

EC:

(Lal)oosClI) SdBuT dn =L 1] B4l I, for each n,

One of the most interesting problems in the structure
theory of compact operators is to determine, for a given
ideal, which of the above inclusions are proper and which
are not (see (26 , Problems 1,2,3,3'])., If 1% is's

normed ideal [ 14], then we also have the inclusion

[ 1:%)= 12 (where the closure is taken in the norm topology
of IEL The same questions can be asked about two ideals

I and J, namely, when are the following inclusions proper

and when not.
£, 18) Blr,are LI,J]HF [1.0] € 14 = Ind = I, for each n,

where IJ is the ideal generated by {TS: Ll B i é}.
If I < CE' the situation takes a sudden turn and
the trace plays a crucial role, If A,B € I, then

2

AB,BA € 1™ < Gg = Cl. By an above remark, Tr(AB-BA) = 0,

Hence the following two chains of inclusions hold true.

(r.2). elrlelorle lrgl e 2 I € I, for each n.
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Therefore if I < GE' the third inclusion of inclusion

chain (1.1) is proper. Furthermore if IJ = Cy, then

(1.2a) ©(1,9) «[1,9] <l1,0] = (19)°< 13 «1nd <1,

’

for each n.

Note that in inclusion chain (1.2), [IE}GI only makes sense
if I < C,, or equivalently I < C,, and in (1.2a),
(17)° only makes sense if IJ < C,.

In this chapter we investigate inclusion chains
(1.1), (1.1a), (1.2) and (1.2a) to determine, for some
of the major ideals such as K(H), F(H) and Gp (o< p < &),
which inclusions are proper and which are not. In part-

icular, we are interested in the structure of C(I) and

Exsxls

In the following paragraphs, we shall list the known
resulte on the structure of C(I) and [ I,1], the

outstanding unsolved problems, and some new gquestions.

Known Results

1, C{L{H)} = L{H)‘*{ll + Ki A €€, I is the identity

operator, and K € K{Hi}. ke, [ 2]
2. LKH),K(H)] = K(H). [26]
1P [CEU’CEP] = C_ for all p > 1. L26]
b, Eﬂzp'czp] = Cl for.all -pa 1, L26]
Sk BB Bikia b= 18 By [ 31]

s e i S
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Open Questions

1. Is C(K(H)) = K(H)? Even more bagic: If P is a

rank one projection operator, is P € C(K(H))? [26],[ 24]

P c{csz = cp (p> 1)7? [26]
3. Is C(C,) = CJ 2 [ 26]
4, 18.0C,,0,).= €3 7 [ 26]
5, For what ideals I is

2

8l LT .14 &9~ o
vy [I:21 = (12)° (in case I < C,)?
6. What ideals I containing C, have the property that
s 5% o Cy ?
7. Consider 5 and 6 above replacing [I,I] by C(I).
8. Consider 1-7 above replacing [I,I] by LI,J],
C(I) by C(I,J), and 1% by IJ (replace I<C, by IJCCl).

We shall devote this chapter to giving a complete
survey of all that is known in this area. We will give
a well-known proof that C(L(H)) = L{H)\{il + K1 L€€,
I is the identity operator, and KEK{Hi}, the easier half
of Known Result 1. We will a give a new and easier proof
of Known Results 2-5, which will then be subsumed under
one unified approach. This same approach will alsoc answer
an unpublished guestion of Salinas, and yield results
about [I,J]. The most significant and intricate part of
“our work is directed toward Open Question 4. We show that
a significant portion of GE is contained in [C,,C,] and

we obtain other related results which reach in several
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directions. The results and techniques are then applied
to Open Questions 5b, 6 and 1.

The complete proof of Known Result 1 was discovered
by A. Brown and C. Pearcy [ 6] in 1965 and a relatively
short and elegant proof was given by J.H. Anderson and
J.G. Stampfli [ 2] in 1971. To date, this is the deepest
result on the structure theory of commutator classes.

At present, it appears that the open questions are
much more difficult than Known Results 2-5 (perhaps even
Known Result 1).

In light of the inclusions (1.1), (1.la) and (1.2)
it is clear that, with respect to the open questions as
well as Known Results 2-5, the left-hand side of each
equation is contained in the right-hand side. Hence,
the crux of these problems is in deciding whether or not
the left-hand side contains the right-hand side. Therefore,
the questions and results may be (and usually are) viewed
as statements about commutator representations, For
instance, Open Question 3 is essentially asking whether
or not every trace class operator with trace 0 is a
Hilbert-Schmidt commutator.

An affirmative answer to any of the Open Questions
1-3 and 7, the single commutator representation questions,
obviously yields an affirmative answer to its corresponding
question among Open Questions 4-6, It is the intractability
of the single commutator problems that has led to consider-
ation of the weaker questions concerning the structure of

the linear spans of the commutator classes. For example,



23

for I = K(H), Open Question 5a is solved (in [26]) but

Open Question 1 is not.

2. The Non-Commutators of L(H)

Theorem 2.1, (Wielandt [ 38]) If @ is a normed algebra

with identity e, then e # ab - ba for any a,b € @,

Proof, Assume the theorem is false, that is, assume
e = ab - ba for some a,b & Q. . 1t follows by induction that
nan-l = a - ba"™ for all positive integers n. The case

n = 1 holds by our initial assumption. The induction

hypothesis na™ ! = a"p - pa" together with e = ab - ba
gives us a™lp = a(a™) = a(nan’l + ba") = na® + (ab)a =
n+l

{n+l)an + ba and our induction is complete. Taking the
norm of both sides of this identity and using its propert-
ies we obtain nla™ Y < fla"pll + JJva™) < 2 han ol ¥a™ L

for all positive integers n. If alk # 0 for every positive
integer k, then n < 2|jalllib)l for every positive integer n,

which is impossible. Therefore a® = 0 for some k. But then

kak-l = ak'b = bak = 0 and therefore ak—1

= 0. Hence a = 0,
However, this implies e = ab - ba = 0 which is a

contradiction since e # 0. Q.E.D.

Corollary 2.2. The identity operator I in L(H)

is not a commutator. Furthermore, for all complex numbers

A # 0, A\I is not a commutator.

Proof. L(H), with its operator norm, is a normed

algebra with identity 1. Therefore, by Theorem 2.1,
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I is not a commutator of L(H). That AI (A # 0) is not

a commutator is clear. G.E. D,

Corollary 2.3. (Halmos). Operators of the form AI + K,
where A # 0, A\ € €, and K € K(H), are not commutators.

That is,
C(L(H)) = L(H}x{u + Kt A #0, A €€, and K € K{H)}.

Proof. Consider the Calkin algebra L(H)/K(H). It is
a well-known B¥*-algebra with identity I + K(H) and there-
fore Theorem 2.1 applies. This together with the fact that
the projection operator from L(H) onto L(H)/K(H) is a
Banach algebra homomorphism leads immediately to a proof
by contradiction. Q.E.D.,

In 1965, Arlen Brown and Carl Pearcy [ 6] characterized
C(L(H)) by proving that operators of the form AI + K,
where A\ # 0, A € ¢, and K € K(H), are the only non-
commutators. That is, the inclusion above is actually
equality. In 1971, J.H. Anderson and J.G. Stampfli [ 2]
discovered a much shorter proof of this fact. However,
even this proof is somewhat lengthy. Hence we state the

theorem without proof,
Theorem 2.4. (A. Brown and C. Pearcy)
C{L(H) = L{HJ-u{lI + K: A #0, A € €, and K € K(H]}.

The next corollary completely settles the problem of

the inclusion chain (1.1) for I = L(H) and is of some
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interest besides.

Corollary 2.5. Every operator in L(H) is the sum of

two commutators of L(H).

Proof. Let {hr} :=l be any infinite orthonormal
sequence in H, For every compact operator K, HKhnﬁ —_—> 0
as n—=>x , If A # 0 is a complex number and K € K(H),
then 1lim ((LI + K}hn,hn} =\ + lim {Khn,hn} T

I —>co I ——e0
Therefore, if T is an operator for which 1lim (Th

T it o iy A
for some infinite orthonormal sequence {hA’. then T is not
of the form AI + K for A # 0, A € ¢, and K € K(H).

We claim that every operator T is the sum of two oper-
ators that are not of the form AI + K, where A # 0, A € ¢,
and K € K(H), Let {Eﬁ}:;l be any basis for H. Let

[Te.,eiJ¢ Then the matrix representation for T with

ij J
respect to {eé} is T = {tij). Let D be the diagonal oper-

ator with diagonal entries (t o

Ll o et SR
Then T =D+ (T-D). It suffices to show that D and T-D
are not operators of the form AI + K, for A # 0, » € ¢,
and K € K(H). With respect to the infinite orthonormal

sequence {FEq}:;l’ (Dezn,azn) = 0 for all n. With
oo

respect to the infinite orthonormal sequence {éznwi}n=l'

((2-Deg, ye€on1) = ¥2n1,2n-1 = Y2p-3,2n-1 = © for all n.
Therefore, by the preceding paragraph, neither D nor T-D
is of the form AI + K for A # 0, A € €, and K € K(H).
Hence, by Theorem 2.4, D and T-D are commutators, and

therefore T is the sum of two commutators. Q.E.D.
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Theorem 2.4 and Corollary 2.5 complete the inclusic:
chain (1,1) for I = L(H) as follows:

(2.6) C(L(H)) v [L(#),L(H)], = [L(H),L(H)] = (L(H))® = L(H).

2

3. Cases when [I,I] = I° and [I,J] = 1J

This section begins our study of commutators of compact
operators. C. Pearcy and D. Topping [26] and N. Salinas [31]
appear to have the only results known on the equation
(] =1°.,

Our approach subsumes the results in [26] and [31]
together with our new results on the eguations [I,I] = 1
and [I,J] = 1IJ., We formalize the two basic techniques used
in [26] and [31]. One technique exploits an important rela-
tionship between some ideals in L(H) and the tensor opera-
tion between operators. The other technique, and the most
difficult, requires a delicate construction. We offer a more
general and algebraic approach to the first technique and a
shorter and conceptually easier construction for the second.
The idea we use for this simpler construction is the simp-
lest application of a new, more general notion which we dis-
covered and will employ more fully in the next section.

We shall make free use of the elementary facts about
ideals I in L(H) and their corresponding Calkin ideal sets,
which we will denote by Calk(I)., A treatment of these facts
may be found in [31]. Also, the facts about characteristic

sets introduced in [23] will be used.
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Tensors and Ideals. It is well-known that there are
many isometric isomorphisms (i.e. unitary transformations)
between H # H and H, some of which are canonical
(o.z. £f {eﬁ} is the standard basis for H, then any one-
to-one correspondence between {?ﬂ f eﬁ}:.m=l and {en}
extends by linearity to a canonical unitary transformation
mapping H f# H onto H,). Each unitary transformation
between H # H and H induces a *-isometric isomorphism
between L(H ® H) and L(H) that preserves compact positive
operators and their eigenvalues (counting multiplicities),
Namely, if U: H 2 H —> H is a unitary transformation,
then A ——> UﬂU'l is a *-isometric isomorphism mapping
L(H 2 H) —> L(H). From this it is clear that each such
induced *-isometric isomorphism from L(H 2 H) onto L(H)
takes each ideal in L(H 8 H) to the unique ideal in L(H)
with the same Calkin ideal set. That is, we induce a
multiplicative lattice isomorphism between the lattice of
ideals in L(H & H) and the lattice of ideals in L(H).
Furthermore, this isomorphism is independent of the
original cheoice of isometric isomorphism (i.e. unitary
transformation) between H & H and H, Hence we can identify
ideals in L(H @ H) with ideals in L(H). In light of this
identification, an ideal I will be thought of as lying in
either L(H # H) or L(H), whichever is convenient at the
moment.

Let A and B be operators in L(H). Let A = (aij} be a

matrix representation for A with respect to some basis,
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Then AR B = {aijEJ is an operator in L(H B H)., Let I F 7
denote the ideal in L(H B H) (hence in L(H)) generated oy
{(ABBiAETIandBE€J}. Clearly then Calk(I B J) is
generated by {{aihj):j___l: [anl € Calk(I) and [hnj € Galk{.}}},
where {aihji is understood to be any sequential ordering
of the set aibi}' counting multiplicities.

How do I, J, and I B J compare? We claim that
I,J 1 B J. An earlier remark that F(H) = J implies that
the diagonal operator in L{H) with diagonal entries
(1,0,0,,+.) is contained in J and therefore the sequence
(bn] - (1e0i0iewe) € Galkibd)y If {an} € Calk(Il), then
the terms of (a ) appear in {aibj) and therefore
(a ) € Calk(I B J). Whence, Calk(I) = Calk(I & J), and
hence I < I B J (under our identification). Similarly
it ean be shown that J = I B J.

By the last remark, I EJ =1 if and only if I B8 J < I,
The cage I = J isg of particular importance and for this

reagon we make the following definition.

Definition 3.l. An ideal I has the tensor product
closure property (TPCP) if I 8 I = I (equivalently

Iﬂ:[:l)-

Almoest all of the ideals we consider have the tensor
product closure property. The best way we know to test an

ideal for this property is to use the following criterion.

Propogition 3.la. The ideal I has the TPCP if and

only if (a ) € Calk(I) me===> (aiaj) € Calk(I).



29

Proof. Assume first that [an] € Calk(I) ==>
{aiaj) €=Calkfr)is2f (a ) and {bn) € Calk(I), then
(a, + b ) € Calk(I). Whence ((a; + bi}(aj + bj]J € Calk(I).
However, Calk(I) consists only of non-negative sequences,
and so the inequality aibj_j {ai + bi)faj + ij holds,
By Calkin's axioms [9], any non-negative sequence that is
bounded by a sequence in Calk(I) is itself contained in

Calk(I). Therefore {aiij € Calk(I): that is, I has

the TFCP. The converse is clear. Q. E.D,

Considering the size of the lattice of ideals, it
seems likely that most ideals do not have the TPCF. We
give one general example of an ideal which fails to have
the TPCP. Let aniﬂ. Let {aim}} = Eal,....al.az....,aE,...}
where each a_ is repeated m times. Let Calk(I) ={ﬁx“{n})=
= D{aim}) for some m, and m permutes Zf}. It is not

n
hard to see that this is indeed a Calkin ideal set for

xﬁ$0, ¥

some ideal I, This can be verified directly from Calkin's
axioms or may be proved using characteristic sets intro-
duced in | 23] {{kxn}t xﬁiﬂ and x = G{aﬁm}} for some @}
is the characteristic set to consider). Now choose T "~ g
Hence aim}=zﬂhﬁnhlkﬁi Other choices would suffice but this
one seems to involve the easiest computation. To prove that

I does not have the TPCP, it suffices to show that

{aiaj) = {1/21+J}: 5=1 7 when arranged in decreasing order,
L]

is not G{E‘Ln}m]} for any m. Indeed, the rearranged
decreasing sequence is precisely the sequence given by

{1;22,1;23,1/23,1;24,1f24,1;2”....J where 1/2" occurs
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n-1 times (that is, the number of pogitive integer soluti'n
pairs of the equation i+ j = n). Call this sequence (x ).
If Eﬂ'ékﬁnﬁfziak for N > 1, then xn=1,/2H+l.

Therefore n—> « implies N ——> = and Etnfm)xn =
@ L ) sne
o/m -N-1  , k=0 - p®(N-1)/2m) -N-1

——— ()

as n —> «, That is, x # GEE_[nfm]) for any m.

What ideals do have the TPCP? We list some ideals
with the TPCP in the next lemma, but first we shall
consider a special type of ideal.

Let I be an arbitrary two-sided ideal, as usual. Then
I1 # I is the ideal whose Calkin ideal set is the ideal set
generated by {{aiaj)= (a,) € Galk(I%}. Let %I denote
IfIR... 8T (n times). Its Calkin ideal set is

(=]
generated by 3(a. cong: ), ai-3alaa9s€5Ca¥kii)}].
i- 11 12 i, 11""'in = 1 ¥ .J
It is eclear that the collection of ideals {IEI R is an
n 1
inereasing sequence and that b} (8I) 4is the smallest ideal
n=1 1

containing I that has the tensor product closure property.

n

If I already has the TPCP, then &I = I for every n. There
1

are several interesting questions to ask about the collect-

n
ion {HI}.
1

I. Suppose an ideal I : K(H).
a) Can K(H) =I 817
In
b) Can K(H) = 8I ?
1 n
c) can K(H) = U (a1
n=1 1
II. Suppose the ideals I,J ; KiH): Can K(H) =1 R J7

(Note that the question 'Is K(H) = I +J (i.e. the
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ideal generated by I and J) ?' is a fairly well-known
unsolved problem.)

Il
III. If ®I has the TPCP, must I have the TPCF ?
1

We do not know the answer to Ia, Ib, or Ic. They seem
to be hard questions, However, it is easy to see that the
answer to Ia is the same as the answer to Ib. It is also
interesting to note that if the answer to Ia or 1b was no,
then the answer to Ic would also be no. This follows
directly from a result of Salinas [ 33, Theorem 7.4],

The answer to II is yes; this follows directly from our
recent discovery, mentioned earlier and independent

of this thesis, that K(H) = I +J for two ideals

I,J € K(H) (assuming the continuum hypothesis). Indeed

i ? c I 8 J < K(H) clearly holds, and our previous
equality implies equality throughout this inclusion. Hence
K(H) = 1 8J. We do not know the answer to III, However,
it is clear that EI has the TPCP if and only if

n n 1 n

(BI) B I < BI, because '{II}'is nested. The relations
1l 1l 1l

between ideals and tensors are, at present, not very

well understood.

Lemma 3,2. The following ideals have the tensor

product closure property:

Yo K(H).
2,06 gofor all O:xcp xive,
P n
o0
3. U (BI)
n=1 1
b, gla , for any nested set of ideals {}a} each
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having the TPCP.

S E Im , for any set of ideals {Ié} geach having

the TFCP.

Proof. To show I 8 I =« I, it suffices to show

Calk(I & I) < Calk(I), and for this, it suffices to shew
that if (an) € Calk(I) then {aiaj} € Galk(I).
1. Let (a_) € Calk(K(H)) = c;. Then lim a_ = O,

n
n ——>od
Therefore, for every € > 0, all but a finite number in

the set {an}-are less than €., Therefore, for every € > 0,
all but a finite number in the set aiaj} are less than €,

* = calk(K(H)).

Hence (aiaj} € ¢,

P then =% g P e

2. Let (a ) € Calk(ﬂp} =~£+' n=1 “n

o P (g™ By o
Therefore Ii,j=l{aiaj} = L1 34 {zj=l 83 )
(27 aip )% < w, hence (aja5) E/Ef = Calk(C ).

3. For all positive integers n and m, we have that

n m rtm L 1 | n _ﬂﬂ‘ n
(RI) @ (1) = 81 = U (8I) . Therefore (2I) & [V (RI)] <
2 1 1 n=1 1 1 n=1 1
n n o 1 ® 7
T (81) and hence [U (1) & [u (81)] = U (8I) .
n=1 1 n=1 1 n=1 1 n=1 1

4, For each g, I @ [&Ia] = U(Ig81 ) <
g{max{IB,Ia} ) max[IE,Ia)} = gmax[IE,Ia} = Elu . Therefore
{ﬁa}ﬂ{ﬁu}cﬁh :

5. {ﬁlu] "} {gla} = IEﬂIﬂ -1 for all B. Hence
{ﬁajﬂiﬁa}:ﬁﬂ . @.E.D.

It is interesting to note that each of the above
proofs is quite different from the others and each
depends entirely on the defining properties of the

particular Calkin ideal set.
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We now begin our discussion of the second technique
mentioned at the beginning of this section. Let P denote
the diagonal matrix with diagonal entries (1,0,0,,..).
With respect to the standard basis {eé; F is a rank one
orthogonal projection operator in L(H) and every rank one
projection operator (not necessarily orthogonal) is similar
to F.

Open Question 1 of Section 1 states that it is un-
known whether or not P is a single commutator of compact
operators (i.e. P € C(K(H))). We also do not know if
P € C(K(H)) implies C(K(H)) = K(H). However, we shall
gsoon see that for all ideals I with the TPCP, we have that
P€[I,I} if and only if [I,I] = I°. In particular,

P € [K(H),K(H)] implies [K(H),K(H)] = K(H).

For any ideal I, since P € F(H) € I, we have that
[1,1] = 12 implies P € LI,I]. In general, we do not know
when P belongs to [I,I]. The question 'Is P € C(I)?"

I

appears to be very difficult, even when I = K(H) (We
present some preliminary results on this in Section 6 of
this chapter). Each known proof that P € [I,I], for a
particular ideal I, is not easy. In fact, in deciding
whether or not [I,I] = I%, the crucial and most difficult
question is whether or not P € [I,1].

The operator P and how it relates to commutators in
various ideals is a recurring theme throughout this chapter.
Our main results on commutators depend on special diagonal

operators which resemble F in certain ways. The techniques
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and difficulties that arise in regard to P have much in
common with the techniques and difficulties that arise in
regard to our special diagonal operators.

The main construction of this section provides new
proofs for the known cases when P € LI.I]. Before starting
the construction, let us introduce some notation which will

be useful throughout this chapter.

Notation. For a seguence Xx = [xn} of complex numbers
(finite or infinite), let D(x) = D(Xy,X,,...) = D((x))
denote the diagonal operator with the diagonal entries [xn}.
In particular, P = D(1,0,0,...).

Furthermore, we shall use 'A = B' to mean that the two
operators A and B are unitarily equivalent. Note that A and
B may possibly be acting on different Hilbert spaces,

It is well-known that if (an is a rearrangement of

(y,), then D((x_ )) = D((y,)) .

The Main Construction. We claim that P = D(1,0,0,...)

is the sum of two operators each of which is a commutator

of compact operators., It is clear that

P=D(1,-1/2,-1/2,1/%,1/4,1/4,1/4,-1/8,...)}
+ D(0,1/2,1/2,=1/%,=1/4,-1/4,-1/4,1/8,...).

If two diagonalizable operators A and B have the same eigen-

values, counting multiplicities, then A = E. Therefore,
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D{1,-1/2,-1/2,1/%,1/%,1/4,1/%,-1/8, ...}

z D{1,- 0/, -1/2, TS e i T -0 A /8
T L, 5 N W e | T O

= z:zﬂ o[ ¥ ™D(1,-1/2,-1/2) & -++ & 4 "D(1,-1/2,-1/2)],

th

where the n bracket contains 4" summands of

the 3x3 matrix 47 7D(1,-1/2,-1/2).
Also,
D(0,1/2,1/2,-1/0 -1/ ,=1/%,-1/4,1/8,...)

= D(0, /2,=-1/%,=1/,1/2,-1/%,-1/4,
1/8,-1/16,-1/16,1/8,-1/16,-1/16,1/8,-1/16,-1/16,
1/8,-1/16,-1/16,1/8,-1/16,-1/16,1/8,-1/16,-1/16,
1/8,-1/16,-1/16,1/8,-1/16,-1/16,
1/32,-Y/64,-1/66,...)

n

(0) @ =_, o[ Mp(1,-1/2,-1/2) & ***
W)

th bracket contains 2°+4"

where the n
summands of the 3x3 matrix

27y Mp(1,-1/2,-1/2).

Let @ = (a(n)) denote the sequence (1,1/4,1/4,1/4,
1/4,1/16,,..,) in which lfhk occurs 4° times, and let
B = (B(n)) denote the sequence (1/2,1/2,1/8,1/8,1/8,1/8,
1/8,1/8,1/8,1/8,1/32,...) in which 2"%4"% occurs 2+4% times.
Obviously B(n) = E'Iu{[{n+l}f2]} (where [x] = the greatest

integer less than or equal te x). Therefore
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D(1,-1/2,-1/2,1/4,1/4,1/4, 1 /4 ,=1/8, ...)

it

£, €(a(n)D(1,-1/2,-1/2)) and

p(o,1/2,1/2,-1/0,-1/4,=-1/4,-1/4,1/8,...)

= (0) 8 £_, €(B(n)D(1,-1/2,-1/2)) .

5 B 0
Let A = 1 G B
02"1/20-

Clearly D(1,-1/2,-1/2) = A®A - AA%,

Let (xn} and (yn] be any two sequences in c; for

which e a(n) for every n. Then we also have that

2“1x[(n+1}/2]y[{n+l]/2] = B(n) for every n. Let
Xy = By SURA") - SO #ET L it A)
5, = (0)ie.5 ﬂz-lﬁx[;nﬂ}/z]“} ; and
T = (0) eI, “E-uz:"[tml;lem

k-3 +*
(I X, = s (aln) )2, then X = Yy and S, = T3 ,)

Computing, we obtain

XY, - Y%, 5 ) ®(a(n)D(1,-1/2,-1/2)) and
ST, - 7,5, = (0) & £7_; ®(B(n)D(1,-1/2,-1/2)).

Therefore, via the underlying unitary operators, there
exist operators X,Y,5, and T for which X = Kl , Y = Yl "

S=5,, and T = Tl , such that
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XY - ¥X

D(1,-1/2,-1/2,1/4,1/4,1/8%,1/4,-1/8,...), and

]

ST - TS = D(0,1/2,1/2,-1/4,~1/4%,-1/4 -1/4,1/8,...) .
By inspection we obtain the following facts.

L 131 Paw A= XX + ST = T .

s -1/2 -
(3.4) K ;|Xﬂ = D(xq,2 1/ Xy1Xp,2 IKEXE"._} e 0
(Recall IT| = {T*TJIKE} A
W o= x| = nyl.E'leyl.yg.E'lfzyz,.,.J $ Q.
S| ElSﬂ.; D{xl,xl,E'lfle,2'1x2xl.x2,x2,2'1f2x2,
| 2"1/Ex2....1 ® 0, and
o o -1/2 -1/2 i
IT|=}T]j= D{Flnﬁrlnz fﬁ’lfz fyl,yz,},rzl?_ lxzﬁrz-
2'1f2y2,...1 &g
Thie completes our construction.
Now we are ready to handle the '[I,I] = 1% and

'(1,J] = 1J' problem for the previously known cases and
for several new ideals.

In what follows, one should keep in mind that the
hypothesis that a sequence a is contained in Calk(I) is

equivalent to the hypothesis that D(a) is contained in 1I.

Lemma 3.5. If I and J are two ideals in L(H) for
which a = {l,;fh,lfh,lfﬁ,lfﬁ.lflﬁ,..,] € Calk(1iJd),
then P € LI,J]2 :

Proof. It is well-known and easy to prove that

Calk(IJ) = {{xnyn}: (xn} € Calk(I) and (ynj € Ealk[Jé}
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(see [31]). Therefore, for some (x ) € Calk(I) and

[yn} € Calk(J), we obtain Xy = a(n) for every n,

By our main construction, P = XY - ¥X + 5T - TS where
(3.4) holds. It follows easily from the Calkin ideal set
axioms that X amd S € I, and Y and T € J., Thus P € [I,J]E .

QIEIDI

b o em 3,6, If I and J are two ideals in L(H)
for which a = (1,1/4,1/4,1/4,1/4,1/16,...) € Calk(1J)
and I and J have the tensor product closure property,

then [1,0]g=1[1,0]=1J.

Proof. Due to the inclusion chain (l.la), it suffices
to show [I,J]B > IJ. Let T be any operator in IJ. The
special case when I = J = L(H) was considered in Section 2,
so we may assume either I or J is a proper ideal of L(H).
Therefore 1IJ < InJ « L(H), and thus IJ < K(H). Hence
T is compact. >

Set T = T*' + iT" where T' and T" are the real and
imaginary parts of T. Since T is compact and T' = (T+T%)/2
and T" = (T-T*)/2i , T' and T" are compact and self-adjoint.
It therefore suffices to show that T' and T € [1,J], .
Indeed, we shall show that if S is any compact, self-adjoint
operator contained in IJ, then S € [I,J], .

By the spectral theorem for compact, self-adjoint
operators, S = D{{an}} for some real-valued sequence (anj
for which {Janf} € Calk(IJ) . Also we have the relation
D{(an}) = D(al,ﬂ.aj,ﬂ,...) + D{G,az,ﬂ,aa,...}. Furthermore

D{al.a.aj.ﬂ,...) = D(al.aB....} ® 0 and D(ﬂ,az.ﬂ.au,...)
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&= D{az,au,...} ® 0, where in each relation the left-hand
operator acts on H and the right-hand operator acts on H&H.
It follows easily from Calkin's axioms that subsequences
of sequences in a Calkin ideal set are themselves in that
Calkin ideal set. Therefore (a, ), (a, ;) € Calk(IJ) .
Hence D[{anl} is the sum of two operators, each of which
is unitarily equivalent to an operator acting on HéH of
the form D((d )) € 0 for some (d_) € Calk(IJ) . Therefore
it suffices to show that every operator of this form

is contained in [1,J], .

§ B {dnl € Calk(IJ), as in the proof of Lemma 3.5,
there exist (6 ) € Calk(I) and (y_ ) € Calk(J) such that
ﬁn?n = dn for every n. Also if 0 is the zerc operator on H,
then 0= 0 &% 0 & «++ j; that is, 0 is unitarily equivalent
to a countable direct sum of copies of itself. Therefore
D{(dn)} 0= D((an}} €008 +++=PB D{(dnJJ =
P B [D((6_))*D((v,))] and D((5_)) and D((y,)) commute.

By hypothesis a € Calk(IJ). Hence Lemma 3.5 provides
us with operators X and S € I and ¥ and T € J such that
P=XY - YX + 8T - T8 ,

Therefore, D((d, )) € 0 =P B [ﬂ{{ﬁn}}-D([Tn}J]
(XY - ¥YX + ST - 7S) & LD((8,))-D((¥_))]
(x # o6 NIy @ (v )] - Ly B DUy ) Ix 8 D((8,))]
+ (s BD((6 NIrED((v )] - LT BD¥ )]s @D((s,))] .

If I has the tensor product closure property, then

X B D((6 )) and S B D((d_)) are in I. If J has the
tensor product closure property, then Y B uttyn}) and

T B D({?n)) are in J. Wwhence D{{dnlj € 0€ L1,0] Q.E.D.

2 -
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If we examine the proofs of Theorem 3.6, Lemma 3.5
and the main construction, we see that we can actually
obtain a more general theorem by a reguiring a weaker
condition than the TPCP, We state the theorem without proof,

Its proof is almost identical to that of Theorem 3.6.

Theorem 3.6a. Let I and J be two ideals in L(H).
Suppose that for every real-valued sequence (dn} € CalklId),
there exist sequences {énl and (xnj € Calk(I) and
{wn} and Eyn) € Calk(J) such that

(1) 6y, =d and xy =a(n) for every n, and
(2) {6113) € Calk(I) and (Tiyjj € Calkid).

Then [I,J]8 2| F.F] = B,

The structure of | I,J] has been studied mainly in the
case when I = J, For this reason we state the following

obvious corollary.

Corollary 3,7. If I is an ideal in L(H) with the
tensor product closure property such that a € Galk{lz},

then [1:.1]E =11.1] = = .

The sequence o plays a crucial role in all our results.
It is closely related to the harmonic sequence (1/n).
Indeed, (bn}'l < a(n) < H(jn}'l . Therefore an ideal
contains D(a) if and only if it contains D((1/n)) or,
in other words, D(a) and D((1/n)) are contained in exactly
the same ideals, Similarly B = (1/2,1/2,1/8,1/8,1/8,1/8,
1/8,1/8,1/8,1/8,1/32,...) is equivalent to (1/n) (we shall

say {an} and (y_) are equivalent if &nf&n is bounded above
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and below) and D(B) is in the same ideals as D((1/n)).

Let (xnj be a real-valued sequence. Let I([an}
denote the ideal generated by the diagonal operator D{{xn]].
Then it is easy to see that I{{ﬁ(n}lfz}} = I{(nﬁlfz}) and
that I{[a(n}lfzjjz = I(a) = I((1/n)) . It is well-known
that every decreasing summable sequence is o(l/n)
(a, = o{bnj means anfbn ——> 0 as n —> ), and this
implies that C, < I((1/n)) = I(a) (equivalently
C, = I{(u(n)lfz}} ). Furthermore I(a) is the smallest ideal
in L(H) containing «a.

Let us consider some well-known facts,
- _1{; cpcqf C.. if p.q >0 fand p'l + q_l = r'l, and
p = Cpr2 if p=> 0.

2, By € IF goips 1,
These facts together with Lemma 3.2, Theorem 3.6 and
Corellary 3.7 prove the next theorem. All that needs to
be verified is that for each pair of ideals I,J listed
ain) = x ¥, for some pair of sequences {xn] € Calk(I)

and [yn} € Calk(Jd).

Theorem 3.8. In the following table, the ideals
I, J and IJ have the property that [I,J]B = [ILdd= 17,

4§ 4 id
1. K(H) K(H) K(H) ,
since {K(H}}2 = KIH), (Pearcy and Topping [ 26])

2. K(H) L{H) K(H)
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i L iJ
G A Dp Gq Cr 4
. -1 -1 -1
provided pyg > 0, p T+ q s p ",and r> 1.
4, cp cp Cosz

provided p > 2. (Set p = q in 3) (Pearcy-Topping [26]).

S. CP K(H) Gp '

provided p > 1.

6., NC nce ne ;
top © trg © 5 o wpeiester P
provided p,q > 0, p g TP o Al BF L .
2% N % ne NG ”
2 ¥ 2 ° 1 ©
getting p=q=2 in 7. (Salinas [ 31])
6§, NE K(H) nec
1 ° 1 ¢
9. ¥ C U Cc e
t<p . t<g 3 T AR, T t<r ¥
provided 0 < p,q < =, P PEY Ty o ol l sy Kios
10, U € uc TR ,
t<p © t<p © t<p/z ©

provided p > 2, (Set p =g in 9).

m N o A

1. 0 BI((a(m)?))) U {mszu(nilfz}J} U (8I(a))
n=1 1 n=1 1 n=1 1
o 1N SR 1 |

12, U (BI(a)) K(H) v (BI(a)) .
n=1 1 n=11

We promised a shorter proof for the Known Results 2-5,
but arriving at them via Theorem 3.8-1,4,7 is not
shorter than the proof in | 26]. We needed to proceed

along this route in order to obtain our more general
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results. To obtaln the shorter and more lucid proof we
promised, one should extract the main ideas from the main
construction and the proof of Theorem 3.6 and, in regard
to the Ep—classes, use the fact that o« and B are egquivalent
to (1/n). Indeed, the first three paragraphs in the proof
of Theorem 3.6 show that it suffices to show that if

S € 1IJ and is self-adjoint, then S € O = P E S € EI.J]2 .
The last paragraph in Theorem 3.6 gives the essential
techniques to prove this, It is elementary to show that
the solution operators are in the proper ideals. Also,

the main construction can be shortened if one were willing
to show less computation. Our use of a instead of (1/n),
which is employed in [ 26] and [ 31], eliminates the need
for Riemann's theorem to obtain results on the rearrange-
ments of certain conditionally convergent series which

were needed in [ 26] and [ 31].

On a Problem of Salinas. Salinas asked the following

question (unpublished). Does there exist an ideal I for

which CE cIlIe< N CP , Such t¥hat [1.17% 12 ? Answer: yes,
P2
Theorem 3.8-11 settles this. That is, the ideal

i 1/2 s . 2
I = uliflﬁtm{n) ))) satisfies [I,I] = I ., All that we
n=
need to show is that C, =1 < 0 C
2 2 P
By an earlier remark, C, < I{{nflyz}} = I((u{n}l/e}}.

Fbdie clase heE plln 22 e I({n-lxéijx‘ﬂz and alsc that

l{(n-lfz}l = I{{afn}lfz}} < I. Therefore C, < I
Also, I((n"Y2)) = ncC. and n C_ has the TFCP.
p>2 P g B
Therefore, since I is the smallest ideal containing
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1 2)) = 1((a(n)l/?))  that has the TPCP, we have that

I nC_, To show that I # n C_ we must do guite a bHit
p2 P p2 P

of technical work with the sequence a. First note that it

suffices to show that 1% o .0 Gp. We know that

> & n rl
1= U (BI(a)) . It suffices to produce a sequence o such
n=1 1 I o
that D(o) € n C_~ U (BI(a)) . For this. it suffices that
Pl P p=11
c 62 P fnr every p > 1 and o £ ﬂalk{ U {EI[G]}}
n=1 1

U Calk{EI{a}J [femer 8 I Galk{ﬂI(a}J for every fi}a

n=1 p 2 1

The best procedure to determine when g € Galk[ﬂl{u}) is

based on characteristic sets (see [23] and what follows).
To complete this argument, we need two results.

First, for each fixed positive integer m, let (a{mJ(n)}

denote the sequence {uﬂill"'a{im]}? 3 =1 arranged

in decreasing order, We need to prnvelfhat i?c: is any
non-negative, non-increasing sequence, then uEECalk(EI{a))
if and only if o = G{a{m}(n}}. Secondly, we need tal
construct such a sequence ¢ so that o Ej‘r for every r = 1,
but o # D(u(m)(n}} for every m. From this it follows
that I° £ N Cp , which would complete the solution.

The chgiicteristic set of an ideal is the set of all
non-negative, non-increasing sequences contained in the
corresponding Calkin ideal set. We first claim that the
characteristic set of I(a) is the set of all non-negative,
non-increasing sequences {xn} for which A = 0(al{n))

(see p. 29). Let us indicate the proof. Since a is

equivalent to (1/n) (i.e, q{n}fh'l is bounded above and

below), we see that a(n)/a(2n) is bounded above,
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It is easy to verify that if (a ) € c;

anfézn is bounded above if and only if the set

v
and an , then

{{xnj € c:: xnl and X, » G{ani} is a characteristic set
(we omit the details). But then the set of all rearrange-
ments of the sequences [xn} in the characteristic set
+

{(xn} € c,: x4 and x = G{a.{n}ﬂ forms a Calkin ideal set
[23] that is clearly contained in Calk(I(a)). However I(a)
is the smallest ideal containing D(a). This implies that
the Calkin ideal set of all such rearrangements is precisely
Calk(I(a)), and therefore that the characteristic set of

. . +
I(a) is precisely the set {Exn) € cr x, and x = ﬂfa(n}i}.

In a similar manner, we need to represent the char-

m
acteristic set of BI(a) . We claim that the characteristic
1

set of EI{&} is the set of non-negative, non-increasing
sequencés (x ) that are D(a[mJ(n}J. It is clear that

for this, it suffices to prove the following two facts.
First, %I{u} = I{u{m}{n]} , and second, the characteristic
set of lI{u{m}(n}} is precisely the set {ixﬂ] € c:: xn¢
and x, = G{Q{m}{n}i}.

Ta prove the first fact, note that by earlier remarks,
Galk{ﬁl(a}} is generated hw‘{ (1), (EJ ; im}]l 35 o b
{k)) € Calk(I(a)) for 1 <k élﬁ} %heref;;e " o™

(a(iq)eali, }"'&(l )) € Calk{mI{u}} . Hence
(@™ (n)) € calk(B1(a)), and 50 D((a™ (n))) € B1(a)
(which is an idea%}. But I((a'™(n))) is the smillest

ideal containing D{{u{mj[n}]}. Therefore

m
BI(a) = Iiia{m}(n}}}. On the other hand, every sequence in
1
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m g5
Calk(BI{a)) is dominated by & (x'1)ivex!®)) where (x!¥

1 L | m i
Calk(I(a)) for each 1 < k < m. But by what we have
previously shown, the sequence {x;kji € Calk(I(a)) if ard
only if its decreasing rearrangement {Eik]) is Gla(n)).

However, this implies that the decreasing rearrangement
of (&M.ox{™) is 0@ ™(n)). Hence (x{1...x{™) ¢
Galk{l(i(mJ(nJT} , and so it is clear that : bi
{xilj...xim]} € Galk(l[a(m){n]}} (since they have precisely
thelsame uﬂordered entries, counting multiplicities).
Therefore EI(&J e 1((a'™(n))) , and hence
B1(a) = (@™ m)).
- To prove the second fact, as we remarked earlier, it
igs sufficient to show that a{m}{n}fh(mJ(EHJ is beunded
above as a function of n. To do this, we need to find
(a{m}{n)] explieitly. To describe (utm}(n]] explicitly,
first recall that a is the non-increasing sequence with
entries 4% oceurring K times, for every non-negative
integer k, and that {a(mJ(nJJ is the decreasing rearrange-
ment of (a(ij)+++a(i_ )) . Clearly then, for each n,
a{m}(n} is of the form 4% for some non-negative integer k.
Therefore all we need to know to describe {a{m}{njj is
how many times Yk occurs in the sequence, for each k.

Let (il....,imJ be a non-negative integer m-tuple where

-1 “in -k

15 & Bee g L sk, Henge, b4 weoly = 4 , and since

T : e S, TSR T

4™+ oecurs in o exactly 4" times, 4 b = 4" pccurs
i i

in a y-k block 4 Loooim = 4k times. Thus every such

m-tuple contributes 4k terms, each of size #'k. The number
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ﬁf such 4 ¥ blocks is exactly the number of m-tuples of
non-negative integers {il""’im} such that i +°-*+i =k,
Suppose we let fm(k] denote the number of distinet
m-tuples of non-negative integers {il,...,im} whose sum
is k. It can be shown, using induction, that fm{k} is an
increaging function in both k and m, and that fm(k} is an
(ﬂhl}sﬁ degree polynomial in k with a positive leading
coefficient, It is clear, therefore, that [m{mjtn]] is
Just the decreasing sequence with entries T repeated
4kfm(k) times, for each k. Therefore, it is clear that
if n and N satisfy
(%) R 4% ) en =zl W (k) |,
then u{m}{nj = 4N e now use this fact to prove that
m{m}(n]/&{mjiznj is bounded above. Indeed, we claim that
for all but a finite number of values of n, we have
a(mJ(EnJ.g 4'{N+l} {whence a(mjini/ﬁ(mjﬁzn]_f b).
For this it suffices to show that if n is sufficiently
large, then

airx sibgiag). |
But by (*),

oh et LW opy
It therefore suffices to show that if n is sufficiently
large, then
ki e 2 S
The last inequality is equivalent to the inequality

N .k
gL £

Zyeo WEE,(6) < 4% 1r (v |

Note that since fm(k} is an increasing function of k,
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we have
N Lk . ok NSS! : NeLY o fny
e sl i —(u -1me(h} <[ )2 () .
Hence, it suffices to show that if n is sufficiently large,
then

yMLile (n) < Ve (ve1)

b Bt E— m b
that is,
{xe) 1/3 2 £ (N+1)/f (N) .

. N+l . k

However, since n < Ek=ﬂ L fm{k}, we have that N ——> o
as n —> =, But as we remarked earlier, fmiﬁ} ig an

{m—l]St degree polynomial in N, and hence

lim f (N+1)
s m P Yy
'[q_-m}m_(ﬁ}_

Therefore if n is sufficiently large, then (**) holds,
and we have proved that a(mj{n}ﬁa{mj{zn} is bounded above,

This provides us with a criterion that determines
when a non-negative, non-increasing sequence o = {Gn}
is contained in Galk[EI{aJ} = Calk(l((a(m](n])}]- In fact,
for such a o , contaiiment holds if and only if
0. = G(u[m}(n]) . This proves our first result.

We are now ready to obtain the second and final
result, namely, we shall choose ¢ so that it is contained
in everyJ9£'far every r > 1, but so that it fails to be
D{u{m){n)}, for every fixed m, Indéed, define g = {UnJ
to be the non-negative, non-increasing sequence with
entries 4 % occurring hk-iﬂkl 2] times.

If r> 1, thew

T e, :, b (-1 k-x12)

< oo
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mﬂsoﬂE}f.

To show %1#'0{u{m}{nl] for every m, it suffices
to show that for every m we have q{mJ{nJ = o(unj
(since it is impossible to have two sequences [an and (yn]
that satisfy x_ = O(y ) and y_ = o(x )). Furthermore,
it follows easily from the description of {utmjlnjj and o
that for every m, if n is sufficiently large, then
a{m}(n} < u{m+l)(n} < 0, . Hence, it is enough to show
that a{™(n) = o(a{™1)(n)).

For each positive integer n, let N(n) and M(n) be

the unique positive integers for which
EN{n) #kf n)+l ﬂk

N(
i lmlm) o Ema %ﬁﬂki and
M(n) ,k M(n)+l ,k
g & $o00). RapvSnlens b2 (k) .

Then a{m}{n} - J_I_'{Mf.n)"'l} (“ﬁ'l){nj - u-(ﬂ‘:n.}*lj

and o '

and so '™ (n)/a(™Ll)(n) = 4 (M(n) - N(n)) , where

M(n) 2 N(n) for every n (since f (k) is an increasing
function in m), and M(n) and N(n) tend to » as n tends to «,
Therefore, to show a{m}(n} = G(Q{m+lJ{nJJ. it is enough to
show that M(n) - N(n) —> » as n —> =, Suppose not;
that is, suppose that M(n) - N(n) < N for some positive
integer No and infinitely many n. The definitions of
N(n) and M(n) imply that

LAl TN TN s el R
and since f (k) is an increasing function in both k and m,

we obtain

iy BLE L IN(n)) o ESE ED ()

< (M{n) - N{n) + z}u“‘“}+1fm{m{n)+1}.
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If 0 < M(n)-N(n) < N, , then

£, (N(n))/£,(M(n)+1) < (W(n) - N(n) + 2)sM(P)

N°+l
{Nn+2}4 and

=N(n)+1

A

fm{M[n)+l} < f (N(n)+N _+1) , Therefore, for infinitely
many n, we have

£ 1 (N(n))/£, (N(n)+N+1) < £ (N(n))/£ (M(n)+1)

N+l
{N°+2}4 ;

A

that is, as n —> ¢, we have N(n) —> « , and so for
infinitely many positive integers N, we have that
fm+1(N)/fm(N+N0+l] remains bounded, But this is impossible
due to the fact that for each m, fm{kj is an [m-l]st degree
polynomial in k with a positive leading coefficient, and

this implies that lim fm*l(N}ffm{N+No+l) = o, This

N —>o0

proves that M(n)-N(n) —> @ as n—> =, and so

q{m){n} = n{u{m+1){n}] for each m, m{m}(n} & Q(ﬂn) ’
o n

g # D{a{m}(n}} for every m, ¢ € 0N Y ~ U Calk(BI(a))

& @ n r>l1 n=1 1

and D(o) € n C_~ U (BI(ax)). This completes our solution

1 P n=11

of Salinas' problem.

An Important Theme. In light of Theorem 3.8 and our
preceding remarks 'On a Froblem of Salinas', an important
theme of this section btecomes evident. Let I be an ideal
for which CE ;_I < K(H). Then the smaller I is, the more
difficult it is for us to decide whether or not [I,1] = I°.
There is an analogous phenomenon in the next section.

That is, if F(H) = I = GE , then the larger I is, the more

difficult it is for us to decide whether or not [I,I]=(1°)°.
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New Questions. Lemma 3.5, Theorem 3.6, Corollary 3.7

and Theorem 3.8 give rise to guestions which seem difficult.
The smallest ideal I for which we can show that P € [I,1]

is I{{a{n]lfzﬁ) (see Lemma 3.5) and the smallest ideal I
that we can show satisfies [I1,I] = I° is the ideal

I= U (BI((2(n)2)))  (see Theorem 3.8-11): The latter

n=1 1
ideal is the smallest ideal with the TFCPF such that

D(a) € Iz.

Question 3.9. Is the converse of Lemma 3.5 true?

In particular, if an ideal I satisfies P € [I,I], must

2

D(o) € I®? In other words, is I({ain}l/z}l the smallest

ideal I for which P € [I,1]? Furthermore, does there exist

an ideal I = C, such that P ¢ [I,I]7
y
Question 3.10. If an ideal I satisfies [I,1] = I?,

must I have the TPCP, or must D(a) € 19 Furthermore,

is the converse of Theorem 3.6 or Theorem 3.6a true?

Question 3.11. Are Theorems 3.6 and 3.6a equivalent?

Question 3.12. (The Main Question),

@ n
Is I= U {EI{(a(njlf?JJ] the smallest ideal I for which
n=l1

[1,1] = 1%

In regard to the last gquestion, note that

o T

¢, c T((Vn¥YD) = 1((a(m)¥)) ¢ U (@I((a(n)1/?))) and that
n=11

[Cz-ﬁzj = Gi ; Cl. In this setting, the phenomenon of most

interest is the structure of [I,I] for ideals I for which
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s 1/2
C2 clc U (BI((aln) ))) . In all the results we know

on [i,l]f 2£é ise of diagonal operators and seguence
rearrangements was indispensable. It is not clear whether
or not diagonal operators are central to the questions,
though they are central to our techniques. Some of ocur
later results suggest both possibilities. However, we
conjecture (though weakly) that the answer to questions
3.9, 3.10, and 3.12 is yes, but that the proofs lie outside
the domain of present operator theory techniques. The
following remarks give some impetus for our conjecture.
Remarks., We have shown (unpublished) that the tech-
niques of our main construction do not generalize in the
obvious way. Furthermore, in joint work with Edward Azoff,
we have shown that the Pearcy and Topping technigues [ 26]
do not generalize in the obviocus way. Finally, Salinas L31]
attempted to generalize the techniques and results in [ 26],
but his work contains an error (of which he is aware) and
the best result that his proof establishes is what we call

Theorem 3.8-7.

We close this section with a generalization of Theorems
3.6 and 3.6a, whose proof is almost identical to that of
Theorem 3.6, It will be useful in the event that there
turn out to be ideals I for which D(a) ¢ IZ but yet
P€[I,I]. It indicates the basic strategies of the proofs
in [26] and [31]. We omit the proof.

Theorem 3.13. If the ideal I has the TFCP,

then P € [I,1] if and only if [I,1]=1°.
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4, Cases when [I,1] = {IE}o (The Main Section)

This section begins our study of commutators (of
compact operators) which are in the trace class and
have trace 0. Inclusion chain 1.2 states that if IE = C

1
(equivalently, 1 < GEJ' then for each n,

g(ry= PRIl e [1,11= (T%)" = i’ e
e {1 7] e {IE}O, and therefore the only operators in *
which can be commutators or finite sums of commutators of I
are those with trace 0. The main problem then is to find
out which operators in 12 with trace 0 are commutators of I
and which are finite sums of commutators of I. The structure
of C(I) is unknown for every ideal I for which
F(H) € I = L(H). Open Question 4 asks whether or not
[EE,GE] = Gg (equivalently, Cg = [C,,C,]). This question
provided the general impetus for our work with the equation
L e (12)°, We still do not know whether or not
Cg < [C,,C,] , but we have some indications that the
answer is no., We can show, however, that ( U CPJG is
contained in [CE,GEJ. In fact, we shall prugzlthat for

I= uC_, we obtain [I,1] = (1%)° = ( v C_)° . Our main
p<2 P

. . pel 2,0
construction will yield proofs that [I,I] = (1°)° for

sl

several other ideals also. Furthermore, an analogy will
become evident between many of our results and Known

Results 2-5.

-
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In Section 1 we used a fact about the trace to prove
the inclusion chain 1.2. For the sake of completeness

we will state and prove that fact in what follows.

Proposition 4,1, If A € K(H), 2 € L(H) and

AB and BA € Gl ., then Tr(AB - BA) = 0 .

Proof., First we claim that if T € F(H) then
Tr(TB) = Tr(BT). Let (Ran T) + (Ran T#) denote the linear
span of (Ran T) U (Ran T#). Then N = dim((Ran T) + (Ran T%))
< dim(Ran T) + dim(Ran T*) < =, It is elementary to show
that H = ((Ran T) + (Ran T*)) & ((ker T) n (ker T*)).
Let {éé} be a basis for H in which {%é}i=l is a baszsis for
(Ran T) + (Ran T*) and {%n}2=ﬁ+l is a basis for
(ker T) N (ker T*), Let T = (tijj denote the matrix
representation for T with respect to the basis {?&}.
Then tij = {Tej,ei} = (ej,T*eiJ = 0 if either i > N or
1> N, Bat T £ PlH) = Gl implies TB and BT € C,» and hence
Tr(TB) and Tr(BT) exist and are independent of basis.
However, with respect to {%;} [TB—BT]ij = Ektikbkj'biktkj
and Z¥(I8 - BT} = Eobybanbis "Pashon® ¥, kma baetear
E?,k=lbiktki = 0 (where, for each operator A, {A}ij denotes
{Aej,ei}: that is, the (i, j)-entry of the matrix of A with
respect to Ean}J.

If we assume AB € Cl’ letting A = UIAJ be the polar
decomposition of A, we obtain IAB = U*UIAIB = U*AB € Cye
Since A is compact, |Al is diagonalizable and there clearly

exists a sequence of projection operators P e T (SOT)
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for which Pm|h|= hIPm (where if {Xn% and X are operators,
then X —> X (SOT) means that [X f - ifll —> 0 as n —>=,
for every £ € H). It is a fact about C, that if X € C; then
me —> ¥ and KPm~#—> X as m —> =, where the convergence
is in the trace norm. Hence AF B = Ullp_B=UP WEB—>UAIB = AB.
Similarly BAPm-ﬂ*} BA. In both cases the convergence is

in the trace norm. But JLPm € F(H) and Tr[APmB - BAPm} = 0.
However, the trace is a linear functional on C, which is
continuous in the trace norm., Therefore, Tr(AB - BA) =

lim ' Tr(AP B - BAP_) = 0. 4.BE.D.
m —=oo m m

The first complete work on commutators was done,
as expected, on finite dimensional Hilbert spaces (for
references see [ 18, p. 126]). The next theorem character-

jzes C(L(H)) when dim H < = as follows:
c(L(H)) = [L(H),L(H)] = ((L())2)° = (L(x))C.

Theorem 4.,2. If dim H < =, then an operator T

is a commutator if and only if Tr T = 0.

Proof. Suppose T is a commutator. Since dim H < =
implies that F(H) = C; = L(H), Proposition 4,1 gives us
that PTr T = 0.

Conversely, suppose Tr T =0, It is well-known that
the numerical range of T is convex [ 18]. These facts imply
the existence of a basis {?q}ﬂ=l for H with respect to
which the diagonal entries of T = (tij] are all 0, (Also,
it is not hard to give a direct and constructive proof

of this using matrix representations of T.) Choose any
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sequence d = [dnJH=1 of distinct numbers (real or complex).
Then by computation, for any NxN matrix X = {xijj.

(D(d)X - KD{d]]ij = [di - dj)xij » Since d, - dj ¥ Ui iy,
we can solve {di - dj}xij = tij for X = [xij], namely let
Xy 4 = tij/[di-dj} if i#j, and X
T = D(d)X - XD(d). Q.E.D.

j=0 if i=j. Then

F(H) is the only non-trivial ideal, when H is
separable and infinite-dimensional, whose inclusion chains
l.1 and 1,2 are fully understood. Since F(H) = Cqs
inclusion chain 1.2 applies. The next theorem shows that

C(P(H)) = [F(H),F(H)] = ((F(H))?)° = (F(H))°.

It is actually a corollary to Theorem 4.2, and the tech-
niques used do not extend far beyond I = F(H). For

F(H) € I = C, , we find that the larger I becomes,

the more difficult it is for us to show [I,I] = (1%)°,
The techniques employed for the case I = F(H) are only
useful to us in one other circumstance, namely, in a
partial result regarding Gl/E - ¢» and this we can also
obtain without these techniques.

Theorem 4.3. C(F(H)) = (P(H))®. That is, a finite
rank operator is a commutator of finite rank operators

if and only if Tr T = 0,

Proof. If T is a commutator of finite rank operators
then Proposition 4.1 applies to the commutator and so

Tr T = 0,
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If T € F(H) and Tr T = 0, as in Propoaition 4,1,
H= ((Ran T) + (Ran T*)) ® ((ker T) n (ker T*)), where

dim((Ran T) + (Ran T#)) < w0, Clearly T = T, € 0, where

2y = ﬂ(Ran T)+(Ran T*) and 0 acts on (ker T)n(ker T*) .
But Tr Tl = Tr T =0 and Tl is an operator on the finite-
dimensional Hilbert space (Ran T)+(Ran T#) . Hence, by
Theorem 4.2, T, = AB - BA for some operators acting on
(Ran T)+(Ran T#), Therefore T =T, # 0 = (AB - BA) & 0 =

1
(A®0)(B®0) - (B®0)(A®0) and A®0 and B&O € F(H). QR.E.D.

From here on, we will make much use of Calkin's
ideal set axioms [ 9]. Therefore we shall now list them

together with some important facts.

Calkin's Ideal Representation Theorem. Let 5 < c; .

There exists an ideal I < L(H) such that S = Calk(I)

if and only if S satisfies
1. (xn) €E'8,'and'n £ ¥ = X, for every n => {yn] € S,
2 1T {xn), {ynj € S, then (x_ + yn} € S,

ko £ {xn} € S => {xﬁin]} € S for every v that permutes -5

We shall make free use of several obvious facts.
Let (x,) € S = Calk(I) for some ideal I, and let (y ) € ci .
28 o for all but a finite number of values of n,
then {yn] € S, If the set of entries of (yn} are the same
counting multiplicities, as the set of entries of {xn}.
except possibly for a finite number of values of n,

then (yn] € S. Furthermore every subsequence of (xn} is

also contained in S.
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Let us also give the characteristic set axioms [[23]

together with some important facts about them.

The Characteristic Set Representation Theorem for Ideals.

Let C be a set of non-negative, non-increasing sequences
that tend to 0. Let C, (the characteristic set of 1) denote
the set of all non-increasing sequences in Calk(I).
Then C = C, for some ideal I (i.e. C is a characteristic
set) if and only if C satisfies

1. (x,) € c, yn¢ﬂ, and 0 <y < x for every n =>

(yn} € C.
2, If (x ), (y,) € C, then (x_+ y ) € C.

3 (xn} € C => [xl.xl.xz.xz,xj,...J -

It is easy to see that characteristic sets possess
properties quite similar to the properties of Calkin ideal

sets mentioned earlier. In addition, if x = (x ) € c: "

xﬁiﬂ, and {xngJ = (xl.....xl.xz.....xz....], where each

X is repeated m times, then the characteristic set of I(x)
is precisely the set ﬁ;,rn} € c;
for some mj. In case xn}kzn is bounded, then x and Exim}}

: ynl"ﬂ and T G{J{]Elmj}
are equivalent for each m, and so the characteristic set of

I(x) is {(yn} € c} ynit) and e {}{xn}.

We now begin the development of our strategy for
studying [I,1] when I = C,. There are corresponding
questions about the validity of the equation [I,J] = {Id]o.

but we shall not emphasize them.
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The first result is a lemma which introduces a class
of diagonal operators that are crucial to our techniques

and relates them to the structure of [I,I].

Lemma 4.4, Let 1 be an ideal such that I < EE .
Then the following are equivalent.
(a) [1,3] = (1937,
2 o ~
(b) If (d ) € Calk(1®), 4 l0 andZ _, a = g,
then D(-d,d;,d,,...) € EX 1.
2 =
(e) If (4.) € Calk(I®), dnJ'G and £d_ = d,
then D(-d,d,,d,,...) ®# 0 € LIsEd,
where 0 denotes the Zero operator on H and I is
considered as an ideal in L(H & H).
In fact, [CE'CZJ = Ci if and only if, for every sequence
| % :
(d,) € = such that dnJ—O and £d_ = d, we obtain

D(-d,d;,dy,...) 8 0 € [Cp,Cp].

Proof. Clearly (a) => (b) => (c). It therefore
suffices to show that (e¢) => (a). Since I « C, implies
[1,1] « (1°)° , it is enough to show (c) => e G (.

Let T € (1%)°, Then T = T'+iT" where T' = (T+T*)/2
and T" = (T-T*)/2i are the real and imaginary parts of T.
Both T' and T" are therefore compact and self-adjoint.

2

Furthermore T' and T" € 1™, We assert that T' and T" € {Iziﬁ

that is, Tr T' = Tr T" = 0. To see this, note that for every
sijJ
with respect to a basis {ég} are s;; = LSei,ei} = {ei.Sei)

= fSei,ei) and so s;. is real for each i. Therefore

gself-adjoint operator S, the diagonal entries of S = (
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Tr 8 = Eisii is real and hence Tr T' and Tr T" are real.

But then 0 = Tr T = Tr T* + i(Tr T") implies Tr T'= Tr T

So T is a linear combination of two self-adjoint operators

in I2 with trace 0, Let us consider any operator S for
which S is self-adjoint and S € (12)0.

If S € (1°)° and is self-adjoint, then S = D{{an}}
for some real-valued infinite sequence [an} where
(la,|) € Calk(I®) and £ a = 0, This follows from the
spectral theorem for compact, self-adjoint operators and
the unitary invariance of the trace, Let {a;J and (a_)
denote the subsequences of the non-negative and of the
negative entries, respectively, of the sequence (an},
counting multiplicities. Then Tr S = Ena; + Ena; = 0,
and so Za, = -Za_ . Clearly D((a_)) = D((a})) € D((a]))
We assert that D{(a;]J ® D((a_)) is the sum of at most
4 operators each of which is unitarily equivalent to an
operator of the fDIﬂl:D{-d,dl,dE,.-.} € 0 where dnlﬂ,
L = d, (d,) € Calk(1®), and O is infinite dimensional,
To see this, we must consider three cases. In the first

case, suppose {a;} and {a;J are both infinite sequences.

Letting d = Za; = -Ea; , we obtain
D((a})) © D((a;)) = [D((a))) € 0] + [0 & D((ap))]
= [D((ay)) © (-daP)] + [(-daP) © (dF)]
+ [(apP) € D((2a]))] ,

where each 0 operator is infinite-dimensional, which

0.
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proves our assertion for this case.

In the second case, suppose {a;} is a finite sequence,
say of length N. Since (anJ is an infinite sequence, {a;}
must be an infinite sequence. Let PN denote the NxN diagonal

matrix D(1,0,...,0). Then
D((ay)) @ D((a7)) = [D((ap)) € (-aP)] + [(-dPy) € (aP)]

+ Gla, ) ¢ Dl(a )],

and as before, D((a;J} € (-dP) = D(—d.az.a;....} €0

and (-dPy) © (dP) = D(-d,d) ® 0, where the 0 operator in
each case is infinite-dimensional. However (dPy) € Dl{a;)}
is not unitarily equivalent to an operator of the desired

form since its kernel is of dimension N=1. But

(aFy) @ D((al)) = [(-Za; ,)F € D{EE*O'EB'O""}J
+ [(-Za} )P © D(0,a3,0,a;,...)] .

Letting b = —Lazn_l and ¢ = -EaEH , we obtain

(-Zazn.1

(-Za, )P © D(0,a5,0,a,,+..) = -D(-c,-a5,~ay,...) ®# 0 ,

)P & D(ai,D,a},G,...} = -D{-b.-ai,-aa,,..l € 0 and

where each operator 0 is infinite-dimensional, which proves
our assertion for this case,

In the third case, suppose [a;} is a finite sequence
of length N. Then, as in the second case, (a;} must be an
infinite sequence. This is the only remaining case since
{a;) and (a_) cannot both be finite sequences because (a )
is an infinite sequence. We omit the proof for this case

as it is very similar to our proof for the second case,.
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The one essentially different aspect of this case is that
D{(a;}} can have an infinite-dimensional kernel, in which
case the proof could be shorter., However, if we ignore
this possibility, the analog of the second case proof
suffices. Thus we have proved that every self-adjoint
operator S € {I2 © is the linear combination of 4 or fewer
operators each of which is unitarily equivalent to an
operator of the form D{wﬂ,dl,dz,...} € 0 , where

a 40, £a_ = 4, (d_ ) € Calk(I®), and 0 is infinite-dimen-
sional. Hence T is the sum of 8 or fewer such operators,
Finally, since we are assuming (c) holds, we see that

& Proptd TR,

Note that in the proceeding proof, the operator
D(-d,d) is easily seen to be a commutator of finite rank
operators, namely, D(-d,d) = (21/2 g](g 31/2) #

(g gl/z)rglfé g) . It is the cases when {dn} ig an infinite

sequence that present the difficulties.

In the beginning, Halmos pointed out that if U is the
unilateral shift of multiplicity 1 and P = D(1,0,0,...)
then P = U*U - UU* ., This phenomenon and the computation
it involves permeates all the work on commutator structures
since then. In particular, it is central to the work on
commutators of compact operators. Pearcy and Topping | 267,
and Salinas [ 31] made use of its properties. Our technigues
of Section 3 are also related to the phenomenon, although
on the surface they appear to be independent of it. In

the techniques that follow, we shall depend heavily on
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that phenomenon. The next several remarks illustrate our
dependence on it.

The operator U is not compact., In order to use
Halmos's idea in our context, we need compact substitutes
for U that behave similarly. Hence we introduce the

following notation.

Notation., If (wnJ is a (finite or infinite) sequence
of complex numbers, let U((w_)) = U(w;,w,,...) denote
the weighted shift of multiplicity 1 with weights W,
(that is, in some basis (en}' U{(wn]}en = w

nen+l}‘
Also, let U*((w_)) denote [U({w_))]* .

The operators U{{wn}} are our building blocks for the
solution operators in our commutator equations. #e now
congsider their self-commutators. The self-commutator of
U((w_)) is a diagonal operator whose diagonal entries are
functions of {wn}. We need to know exactly what these
functions are and so we proceed to the following commutator

equations which follow by computation,

Special Commutator Equations.

(5.5)  U*((w ))UC(w)) = UC(w ))U*((w )

o A S N G O I L O I

Let (d ) be a non-negative, non-increasing sequence

for which Edn': d., Setting w‘n - [z";:ndi}l/'{z in

equation (4.5) we obtain
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(4,6) A*A - AA* = —D{-d,dl,dz....} for

For the purpose of generalizing our results to the LI,J}
cases, the following equation is useful. If x = {xn} and

d. for each n, then

y = (y,) are such that x y = Z, d,

(4,6a) U*(x)U(y) - U(y)u*(x) = -D(~d,d;,d5,.0.)

Using equation (4.6) we obtain the following basic theorem.

Theorem 4.7. Let d_ o and £d = d., If I is an ideal

such that ((Z. _I_ldl}l’fE =1 € Calk(1), then there exists

A € I for which [Al = D(((z_ a l)lff)} Fah, ik

D{'d.dl|d2|pt-} = -{A*A - M*} ¥ and ED D{'d,dl|d2|o||}EC(IJt

Proof. Let A = U(((Z% J]“"‘r J) in equation (4.6).

1*n 1
The rest follows by inspection. <.E.D.

With respect to the [I,J] cases, we give a general-

ization of Theorem 4.7. The proof uses equation (4,6a).

Theorem 4.7a. Let dniu and Zd = d. If I and J are

ideals such that {{2T= d;)) € Calk(1J) (equivalently,
?*nd = X ¥, for each n, for some x = {xn} € Calk(1) and

y = (y,) € Calk(J)), then there exist A € I and B¢ J

for which JAl= D(x) € I and [Bl= D(y) € J such that
D{'d’dl'dz'lll} = -ﬁB - BA. E.nd 50 D{"'d|dl|d2|¢¢¢} E C{I.J}-

Proof, Let A = U(y) and B = U*(x) in equation (4.6a),

The rest follows by inspection. q.E.D.
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Theorem 4.7 immediately yields the first known
non-trivial results on the inclusion relation Gl = LCE,CEJ,
and we state them in the next two corollaries. (By 'non-
trivial results®' we mean results on ideals 1 for which

FiH) ¢ 1= EE.}

Corollary 4.8, If dnlﬂ, zd = d and Endn < oo,
then D(-d,dl,dz....} € C{GEJ. In fact,

D(-d,dy,dy,000) = = (A¥A-AA%) where A € C, and JallZ = £nd_ .

2
Remarks. Later in this section (Theorem 4.36),

a better result is proved. Namely, if dniﬂ, £d = d, and

£(log n)d, < e, then D(-d,d;,d5,...) 8 0 € ch,ﬂgj.
Also, in a later section we show that there exists

guch an operator A with ”AHGE = E[Eﬂ+l)/2]dn .
2

Froof. let I = C, and apply Theorem 4.7 and its

: _ o0 1/2 ; - e
proof, We claim {{Liﬁndi} ) € Calk(C,) =1 . Indeed,

[ACPANCH :

by hypothesis., Whence D[-d,dl,dz,,..] = -(A%A-AA*) for

/2,42 _ = 00 oo i g
i) }”“2 = Lyay®; *Ei.59] t = Lnd < =,

some A € C, for which HAHEE = &nd . Q.E.D.

Remark 4,9. As in the proof of Lemma 4.4, if T € [12}G
then T is the sum of 8 or fewer operators each of which
is unitarily equivalent to an operator of the form
D(-d,dl,dz....} ® 0, where dn;ﬂ' Edn= a, {dn) € Calkilz}
and 0 is infinite-dimensional. Therefore if each operator

of this form is in [J,J] for some ideal J, then T € [J,J].
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Corollary 4,10, G?lféj_e e [C,,C,]g for all 0<€<1/2

5 L4
(equivalently, pglfch &= [CE'EE]B :

Proof. By Remark 4.9, it suffices to show that
if d 40, £d = 4, (a) € p{3/2)"€, anq 0 is infinite-
dimensional, then D{ud,dl,dg,...J ® 0 € G{GE}. (A better
result is obtained later. We shall be able to replace
’£{1/EJ—E byilp for any p < 1.)

1f dﬁ$ and (d_) € R{1f2}—E' then dnflfz}_E¢ and
Edn{lfzj'e < o, Therefore, since every decreasing summable
sequence is o(l/n), we obtain dn(lfz}-E = o{l/n) and thus
dz = n{n‘ef{l-ze]]. But then nd = u{n’il+2€j;{1'2€}} € ﬁly
So Ind < . By corollary 4.8, D(-d,d;,d,,...) = -{A¥A-AA¥)
for some A € Cz' Hence

) 8 0 = = (A®O)¥%(AB0) - (AG0)(AG0)*]
Therefore D{-d,dl,dz....} 0 € c{CE}. g.E.D,

D('dldlldzg " w

and A0 € CE'

0 ;
Ll Y
Corollary 4.11 G(Pﬂ"} E & [C B :IB for all O<p<2
antt B < E.<op/l ( ive,, g = (y JD o T B P
N Y ok
Proof. Using the proof of Corollary 4.10 it suffices
to show that if d_ Jo, £d = d and (dn) € E{p/h}—E.
o0 le P
then ((g3_ d;)7"") Ejf
It is well-known that if r < 1 and (xn) is a non-
negative sequence, then sz jr < Ix, T . Therefore
1/2 - p/2 P/ _ . P/2
Jees.45) nu R B G R g VT e gpg DS
However, if d_ l and (d,) Ejﬂipfu} E, then dn{pfh}'e= o(1l/n),
and so Ind_ sz = o '{P+#E}f(p'#E}J E,j , thus Er-u:l,ﬁl:"'f2 < o,

a,)}/?) 1P Q.E.D.

Hence {{ 1*n i
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Two Themes. The preceding two corollaries illustrate
two themes that motivate our strategies in this section.
Firstly, for ideals I for which F(H) = I = C, .,

?)° = [C,,C,]. We will be taking

we try to obtain (I

larger and larger such ideals in the hope of either

obtaining I = C, and (1%)° = Cg c {CE,CEJ. or character-

izing the largest ideal I for which (1%)° < [c,,C,].

As I gets larger, our techniques and constructions

become much more difficult, It is not surprising then

that we cannot presently obtain either goal. In later

sections we shall obtain results that give weak indications

that Gi #’[CE,CEJ. If this were the case, then the linear

span of all ideals satisfying (1°)° < [C,,C,] would be

the unique largest ideal that satisfies this same

inclusion relation, (The existence of such a largest ideal

follows from the fact that the linear span of a collection

of ideals is again an ideal (since if 1 and J are ideals,

then I+J is alsc an ideal), and (I1+J)° = 1°¢J°,) Then our

results would yield a candidate for this largest ideal.
Secondly, for each ideal I which we discover sgatisfies

. TH TP R A TR S b A [€,.C,], we will try to prove

the stronger inclusion relation {12]° < |I,1], equivalently

i Ll e 0 i R

Theorem 4.7 is important to us, but in itself, it
is not strong enough for our purposes. The condition that
'ind < «' is quite restrictive on the sequences {dn} that

need to be considered., 1ln a sense, the theorem works best
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on those ideals for which the sequences in their Calkin
ideal sets decrease fastest to 0. With more sophisticated
techniques we shall improve Theorem 4,7, Corollaries 4.C,
4,10 and 4.11 later in this section.

Theorem 4.7 may be used to give a trivial proof that
[F(H),F(H)] = (¥(H))° but this has little interest for us
since Theorem 4.3 yields the stronger result C(F(H)) =
(F(H))®°, However, there is one well-known class of ideals I
for which Theorem 4.7 suffices in order to show [1,1]={12}n.
Thegse ideals are such that the sequences in their Calkin
jdeal sets decrease very rapidly to 0, We define these

ideals in what follows,

Rapidly Decreasing Sequences and their Associated Ideals.

Let anTm, aEnfﬁn_g M for every n and some M > 0 (equiva-
lently, {an} has polynomial growth; i.e. there exist d,c,k>0
k =3

so that dnk = an_f ¢n for all n), &nd LR D ¢ w for

some R > 1, Define

%n

L((a,)) = {?xn}: x40 and ZX R = < = for every R > 0}*,

It is easy to verify via the axioms of characteristic sets
(see p, 58) that L{{anJ} is a characteristic set., Let
I{L{{an}}} denote the ideal whose characteristic set is
L{[an]] . Also if, for each (x_) in the definition of
L{{an]}, we set R = 1, we obtain {xn} E/El. Hence
1(L((a,))) = C; (see pp.58-59 and | 297,23] and [ 9] for
the relevant facts).

We assert that I = 1(L((a ))) is idempotent, that is,
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1° = I. To prove this it clearly suffices to show I < IE.
and this holds if for each {xn} € L{{an}) we have
(x 1/2} € L((a_)). Assume then that (x_) € L((a_)}).
n n n 1l
By hypothesis there exists R0 > 1 such that I R0 o

Let R > 0 be arbitrary and choose r = (RRDJ2 , whence

a
RO+ - R,f"rl‘f2 . By hypothesis L x r " < = and therefore
a

Lo}
x,r " < M, equivalently x_ < Mf’ra“ , for some M > 0 and
every n. Hence xnlf?H ”‘5 [Mlx?/r n )R n _ MlXERU I

a -2
and therefore L xnl/ER n_j Ml/gh R0 N < w», Thus we have

proved our assertion.

Note that if we set a = n, then L{{anj) consists of
all the non-increasing, non-negative sequences that are
the Fourier coefficients of the entire functions. Also,
if we set a = log (n+l), then L((a_)) consists of all
the non-increasing, non-negative sequences in what is
usually called “"the sequence space of all rapidly decreasing
sequences". An example of a sequence that does not satisfy
our conditions because it increases too slowly is
a_= }ﬂg log (ntl). Here there does not exist R, for which
L R, “n < =, and so what we have previously developed
does not hold for this sequence.

The next theorem solves our commutator problem for

this newly defined class of ideals.

Theorem 4.12. Suppose I = I{L[Eanj) where {an]
satisfies the conditions of the preceding paragraphs.
It [dnJ € L{{an}} and td = d, then D{-d.dl,dz....J e C{I),

Furthermore we obtain the inclusion chain
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601) €.01,3 2 [1.1] & {15008 &° < L S

Proof. The preceding remarks together with inclusicn
chain 1.2 yield this inclusion chain except for the
inclusion relation (1%)° [1,1]g . To prove this, in light
of Remark 4.9 and the fact that L{(an}} consists of all
sequences of Calk(l) = Calk(I%) arranged in decreasing
order, it suffices to show that if (dnj € L({anj} and
Eﬁn= d, then D{-d,dl.dz,...} € C(1) (for then
D(-d,dy,d5,00s) ® 0 € 4 I

By Theorem 4.7, D{-d.dl,dz,...l = -(A¥A-AA*) for some

A € I provided {[EiEndi}l/E} € Calk(I). But this sequence
2

is decreasing , and also I = 1”, This implies that it

is enough to show that ((L;;ndi}} € L((a )). Let R > 0 be
a
o i R

kkRakdk . Choose kg > 1 such that
¥ Ro-an < o, Since anf, [RD Ny js decreasing. Therefore

Rﬂ-an = oll/m) = oiL/nY, that is, R0~an < M/n for all n and
some M > 0, and so n < Mﬂoan . Pinally, X kRaR

arbitrary and recall that anf. Then I(x

& Py
i ol e

R X

k
E.k E.k ak 1
M IR, R 4 =MZ ERDR} d, < = since {dk} & L(Ean}}.

So ((£5_,4;)) € L((a,)). Q.E.D.

The ideals I(L((a ))) fit into our theory more easily
than any other ideals. Therefore, in the search for an
ideal I for which F(H) = 1 € L(H) such that C(I) = (1°)°,
it appears that I(L((a_))) is the candidate that provides

us with the most hope.
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We now begin the development of our main techniques.
They consist of one construction and several calculations.
They depend heavily on Theorem 4,7 and in particular
on the commutator equation (4.6). We will use these
techniques to show that (IEJQ = LUE,UE:[ for certain ideals

I = C2 and also to show that LI,I] = (IE)Q for most of them.

THE MAIN CONSTRUCTION

Let 4,40, 2d = d , (d,) € Calk(I®) for some ideal I=C,,
and let 0 be infinite-dimensional., wWe shall consider
Dt—d,dl,dz....} ¢ 0 and try to express it as a finite sum
of commutators of compact operators of special types.

We shall define these operators explicitly in such a way
as to be able to identify some of the ideals that contain
them and, in particular, to decide if they are in I.

That 0 is infinite-dimensional is crucial to our technique.
In a sense, it provides us with 'room to work'. Note that

Theorem 4.7 implies that

n{-d.dl.dz,..,} ® 0 = (AB0)*(AB0) - (A®0)(A®0)* for which

i /2 . 1/
|a60| = D( (Z,_,d;) A y (25.54;) / rese) 80,

But compared to {dnlﬁéj € Calk(I), the sequence

({E?=ndi}1zz} may be so large as to fail to be contained

in Calk(I). Indeed, {zi=ndi}lf2
1/2

tend to O much slower than dn

may (and usually does)
+ This has the effect of

putting A in far fewer ideals than D{{dnlfzJJ‘
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Let us first describe one of the main ideas
in our construction. Cne of the keys to the main
construction of Section 3 was 'adding and subtracting
positive real numbers'. We used the fact that
(1,0,0,4...) = (1,-1/2,-1/2,1/84,1/4,1/,1/4,~1/8,..,)
+ (0,1/2,1/2,-1/4%,-1/4,-1/4,-1/4%,...). Then we rearranged
each of the sequences on the right-hand side to obtain
matrices that were realizable as the right kinds of
commutaters., The same strategy serves us here in regard to
D(-d,d .de,...) € 0 which, interestingly enough, strongly
resembles -P (recall P = D(1,0,0,...)), However, this
path presents quite a few pitfalls. For example,
P=D(1,0,0,...) is contained in every ideal but
D(1,-1/2,-1/2,1/4,1/4,1/4,1/4,...) is not. In fact
p(1,-1/2,-1/2,1/%,1/4%,1/%,1/4%,...) is contained in exactly
those ideals that contain the operator D({(1/m)),
which is not in the trace class. In our present situation,
one difficulty is that we must stay within the trace class,
in fact, we must stay within 12 if we want (1%)° < [1,1].
For this reason, we cannot add and subtract too many
'large' numbers. On the other hand, if we add and subtract
too few 'large’ numbers, then we are not able to realize
our matrices as the right kinds of commutators. Another
difficulty is that, whereas the sequence (1,0,...) has no
variables, (-d,d;,d,,...) has many variables and the
choice of what we add and subtract must depend on {dni.

Furthermore, adding and subtracting is counter-intuitive
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in that it increases the trace norms of the operators
involved, which is not what one would ordinarily want
to do.
In joint work with John Conway, we have shown that
the real numbers that we shall choose to add and subtract
in the following construction are the best possible
choices, relative to that construction. This is especially
striking in light of our joint work with Edward Azoff,
mentioned earlier, in which we show that our choice of
what we added and subtracted in the construction of Section 3
wag the best possible choice, relative to that construction.
We begin the forthcoming construction with some

notation.

Notation. Let (il,iz,..,imj denote an m-tuple of
positive integers. Let’3‘= {ﬁil...,,im]= i, = 1,2,...
for 1l < k<m, and m = 1,2,..;} be the set of all finite-
tuples of positive integers. THEndélis countable,
Therefore,S can be used to reindex (dnj in many ways.
Let w: 27 —-};3 be any one-to-one correspondence between
the set of positive integers gt and,g. Define a new
symbol d(i;,...1 ) in terms of (d,) and 7 by the

equation d{il....im] =d . In other words,

8 i v ity
for each (iy,...1 ) ﬁg » d(i;,.s.i ) is the non-negative

K38l ,
real number dn forn=n¢n (11....1m} and

{ﬁ(il....im]: {il....imj E}E} = {dé} counting multiplicities,

It may at first seem to the reader that nothing
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is gained by this reindexing procedure. Indeed the
well-ordering of E+ reflects the monotonieity of {dn}
and this is lost by reindexing using S. However more is
going on than meets the eye. This notation and the next
are egssential to our construction and calculations. In
fact, our joint work with John Conway shows that in some
gense our notation is central to this construction.

Let ( ) denote the empty-tuple and let
A =3 udc ). Por (15,...05) €3, et (k3ip, ...
denote an (m+l)-tuple of positive integers for which the
first position is 'distinguished' and we allowm = 0 in
the sense that (ki+) is a 1l-tuple with k in the
distinguished position and no positive integer entries in
the 'non-distinguished' positions. The role of the
distinguished position will be quite different from the
role of the non-distinguished positions. Define a new
symbol d{k:il,...im] to be the non-negative real number

defined by the equation

=]

d(kiillllij-m} = zim+l’...'im+k: d{il"."im'im*'ll'."im\kj’

This series converges since Edn? d. By inspection

we also have

d{k!il.lilpim} = E? nlﬁik_l;ill.".'im'im"'l}

m+l
and in particular d(k;+) = 2, d(k-1;i,).
|
We must be careful not to confuse the symbol

d{il.....im} with the symbol d{k;il....im}. The first
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has no distinguished positions but the second does.

The first is used to define the second in that

d{k;il.....im] is a specially chosen partial sum of

CTCMINGIRTI P, TS T

2.,

We summarize the above relations.

Notation Summary 4.13.

S b "
The sequence (d ) € (= satisfies dn¢ﬂ and Zd_ = d.
IT =: z*———:;é is one-to-one and onto, then

d(iljntgim} =d and

i1}
{d(il,....imé} = {#ﬁ}, counting multiplicities.

For each positive integer k,

d{k:il,..,im} o : d(il,....'

In particular di{k;+*) = Zy 3 d{il...,i
Froareracte

For each positive integer k = 1,

d(k;ll. L ;im} = Eim_ld{k_l;il' i E .im, lm+l}-

In particular dlks=<) = Ly d{k-l:ilj.
1

The Construction. The set {a(k:il.....im): k € 27 and

{il,...,im} 5}30}, counting multiplicities, is countable.

Let 0 denote the sequence whose entries are precisely the

real numbers contained in the set

{d{k;llp L ,lm9 u {-d{k;ilp L pim}| Gﬂuntlng

multiplicities and arranged in any sequential order. Then

(4.14) D(-d,dy,dy,...) 8 0 =

(D(-d,d;,d,,...) € D(a)] - O & D(0)]
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Clearly,
(4.15) D(o)
= T ® Bl Bl e reedo J MRt o5 )
L . ;i e : ' m
KEL™ | (iy00000ip )€
= E ﬁ d{k;ilpiiilimjnt-l'l]

“ A ¢ TS 551 W

The operator Dl-d.dl,dz,...J ® D(g) will undergoe an
intricate unitary transformation. We shall rearrange

its diagonal into 3 types of blocks each of which is

of the form D{wx.xl,xz,...J where xniﬂ and Ix = X.

The first block is D(-d,d(1s+),d(25+),...). The second
type of block arises from an m-tuple {il,....im} E;ﬂo
as an operator of the form

D{-d(l:il,....im}. ﬁ{il....,im.l). d(il....,im,zi. T
Note that the first block contains the entry -d and the
blocks of the second type contain the entries
d(il"“'im+l}' where m > 0, which are precisely the
entries dn’ The third type of block is of the form
D(-d(kiiqseoesiy),alk=lsiq,uan,ip,1),dlk-2305,000,1,2)000)
where 1< k € 27 and {il,...,im} E;ﬁu. Hence, by
careful inspection, we see that each of the symbols
-d,d;,d5,... and :d(k:il,....im} appear exactly once

in one of the three types of blocks. Also, by Notation
Summary 4,13, each type of diagonal bleck is of the form

D{-x.xl.xz....] where xﬁLﬂ and Exn= *. Therefore



T
(4,16) D{-d,dl.dz,..-} ® Do) =

D{'d!dE1;']ldtzi'}fd{ji‘}:-roj

ﬁ E ? r D{_d(liili"‘lim}ld(il""'im’l)'
(ll||i-|lmjﬁju d{il,_..,im,EJ,...J
] L@ + : D(‘d(k;illitllimjl
1<k€Z ,{il,....lm}ejo

d{kqlliliﬁiﬁiim’l?f
d{k"lliljqu..im,z.}'rii}

where if Hl denotes the countable direct sum of copies of H
then the left-hand operator acts on H @& H but the

right-hand operator acts on H & H, # Hl . The direct sums

1
in (4.16) may be taken in any order.
We proceed to express the right-hand operators in

(4%.15) and (4.16) as commutators, keeping careful track

of the character of the approximation numbers of our
solution operators. (The approximation numbers of a
compact operator A are the eigenvalues, counting multipli-
cities, of |Al.) We express each diagonal block as a

commutator using equation (4.6) and Theorem 4.7 (equation

(4,6a) and Theorem 4,7a for the [1,J] case).

To express D(0g) as a commutator (hence alsoc 0 @ D(g))

we use (4.,15). Recall that U((w_)) is the weighted shift
operator of multiplicity 1 with weight sequence {wn}.

In particular, U(1,0) = (E a).
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Therefore if we let

"

(4.17) 4 L ® d{k:il,....im}lfzutl,ﬂ;

¥E sl RS

then

(4.18) [Al & D( (a(kiip,...,i)?) )@ 0

LT R T Y

and

(4.19) D(a)

+ 3 & ll‘ L] m L]
6% T Chgas swndiy )64,

-(A%A - AA¥)

F‘urthErI!mrE if X = [x(kii.l.l-t.im}) and }." = {y(kiilli‘i!im}}
Euf-:h th&t d{k;ilpililim} = x{k;ilplllfim}'y[kiil'oo.,imji
then letting

(4.17a2) A = L & _ ylkiig,eon,i Ju(l,0) and
KEZ .(il,..,,im}egn o
B = L @& REBRES L i C oy, AT Q)
kEz+l{j‘1""'im}E/£0 1 m
we obtain

(4.18a) Al = D(y) € 0 and |B] = D(x) € 0 and

(4.19a) D(g)

L@ + 5 4 d{k;i e i }DI:"']- 1}
}‘[EZ |{lll*"llm}e,lga l ;.

AB - BA .

To express D{-d.dl.dz,...} ® D(o) as a commutator

we use (4,16),
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: ; ; +
For {ll'”"lm} Eléﬂ and 1 <k € Z2°, let

(#.20) A; = U( (25 d(1:-)YD)2 ),
Mo s el V00 VIS R 0 Mg B B 0
AgUiL{ o bplgy 19100 (5T, alk-14dy, o0, K rth0d/2) ),
and
A, =L @ F R Rl RNt e I
g {llrl‘tlrl }EB 2 : 0
A, =L @ glkiiy,ene,ip)
3 1<kez” N P | Jgﬁo o o
Then
(#.21) Ayl = DOC(E. ais-0)/?))

DORE R (8 5 ot s a8y 4

[Ap(Lrig,eee,ip)

Ma(kidyooesededl = DUE G105 0vs i drs 1)) %))

and

(4.22) Di-d,d(@pe) a6ay o3 sovie -Eaial - AjA7)

-

D("‘d{lil it-l|+ ) d':j- g | l]
. : 1 5 ataal EEERS L N ES
{llytroulm}E,?lﬂ d[ilr-l-rimr*‘?}fi-i}

= "(ﬂ-zﬂ.z - A Jalz:l ' and

Ze . : : oy
lﬁkEz |£11pill im}EEDD{ dtkiill'..‘.;]?:tfiilf lrll’;iiizimll}l
- 'Fllttlt, m' }’.'.J

L -3
- (A3A, - A3h3)
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Also
(4:23} A.l=L @ D{{{La_'u_- d{i P 1 '1}}11"’2}}
; 2[ {11-----imJ§jg 1=n 1 m
and
[ﬂ31= £ ﬁf{{£?=nd{k—l:il....,im,i})lfz}}.

gt .
1<k€Z" ,(iy,000,i )€}
Hence if A = A) A, ® Ay then |A| =|A) @ [4,)6 A4 and
D{-d.ﬂl.dz.-..l ® D(o) = -(A*A - AA®), Furthermore,
the eigenvalues of |A|l are given by equations (4.21) and

(#.23).

Similarly, if x(n)y(n) = I7_ d(i;.) ,
X(nf[kiilf -...im))ﬁ'{n(k:il. e '!im}}

m
x(n, (Lodyoeee, i IY(n (1A2 0000, 1)) = B d(dy000e,di1)
then letting x and y be the corresponding sequences
(arranged in any order) we obtain

D(-d,dy,d,,...) ® D(d) = AB - BA where |A|= D(y) and [B|= D(x).

Summary 4.24. Let s denote the sequence (arranged in
any order) whose entries are precisely
{E;;nd[it*}JI/E for each n € Z+,
a0
{Ei=n&(illvl*|im|i]}l}{2 for each n € z+ and (il,---,im:‘ E’jﬁi
and
o i . sl
(Ei:nd{k_ljl:L'lll'lm'l}}
for each n € 2%, 1<k € 2* and (i),...,i) Eﬁﬁo.
Then there exists an operator A such that

5 g D{-d.dl.d ) ® D(g) = -(A*A - AA*) and

prees
2. |A] = D(s).
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Let s, denote the sequence (arranged in any order)
whose entries are precisely d[k:il....,im}lfz for each
k € 2¥ and {il.....im} Exaa‘ Then by equations (4.17)-(4.19)
there exists an operator Al such that

3. 0 @ D(g) = -[ (084, )*(08A,) - (0BA,)(0€A,)*] and

4, |oea,| = D(s;) & 0 .

Thus if we choose X = A via the unitary transformation
inl, and Y = DﬂAl via the unitary transformation in 3 ,
then

5; D{“d'dl'dzlll!] ﬁ' G' = *{x*}{-]ﬂ{*] + {Y*Y—YY*} and

6. [X|= D(s) and Y= D(s;) ® 0 .

Similarly, if x = (x,) and y = (y ) are such that
[xnyn} = s, and if x, = (xﬁ} and y,= (y}) are such that
[xﬁyé} = s,, then there exist operators X,Y,X;, and Y,
such that

T D{-d.dl.dz....} # 0 = -(XY-YX) + (XlYl-lel} and

8. Ixl= D(x), ll= D(y)eo, x| = D(x;), and|Y,|= D(y,)eo.

The sequence s above is extremely important to our
theory. Using Notation Summary 4.13 we can express s

in terms of the symbols 'd{il.....imJ' as follows.

8. The sequence s is any fixed sequential ordering of

the following non-negative real numbers.

o 0 ; 2 1/2 ¥
1, (B, Eilp---sii=ld(ll""'li}] foy éathin € Z°

e
= (Ei=nd(il*'-'rim.iljlf2. for each n € 2° and

(ilfu-ulim] E"é’ﬂ' H 3!1!:1
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o0 oo . . PR : ) l,f'-’"
3. Ezi=n Ejl' - .-,jk_]_:ldtlll ‘e |1mr1|.‘.|1r ‘e p:lk__lj}
for each n € 2", (i Soo0. T elhe Boidilna et z*.

Qur main construction is now complete.

The next theorem is the first of two main theorems
and follows from the main construction. Let us first make

the following definition.

Definition. Let I be an ideal in L(H), and let
dnio and £d = d < =, Then we shall say that (d ) is

s-olosed with respect to Calk(I) provided that

there exists a map m: Z+-——}y8 that is one-to-one and onto

such that if we define d(ll.....lm} i :
] lll,...,lm}

for each (i;,...,1 ) ﬁﬂg. then the corresponding

sequence s € Calk(I).

Note. Let dniﬂ, Edn= d < = , and suppose also that
{dn] is s-closed with respect to Calk(l). That is,
for some such map m, the corresponding sequence s € Calk(1l).
We claim that (d ) € Calk(I%). Indeed, s contains
all the entries [Z?;nd(il,....im,iiilfi for each n € 27
and {il,....im] ﬁj o } We alsc have that
d(il.....im.n}lfé B et s suanbhid]) /= 4 Ang
{dn} = {ﬁ{il,....im.i]= (il,...,im,i) E‘}}' counting
multiplicities. Hence we have that {ﬂnlfe} € Calk(I),

and so (dn} € Calk(IE).
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Theorem 4.25, (Main Theorem I).
Let I be an ideal in L(H).

If dn$ﬁ. Zd = d <= , and {dn] is s-closed
with respect to Calk(I), then D(-d,d,,d,,...) € 0 € [1,1]2 .
provided 0 is infinite-dimensional.

Furthermore, if I = C, and if (d ) is s-closed
with respect to Calk(l) for every (d ) € Calk(I®) for which
a0, then [1,I]= (1°)°.

Proof. Consider Summary 4.24-5 and 4.24-6,
That is, D(—d.dl.dg....J @ 0 = =(X*X-XX*) + (Y®*Y-YY#*)

where |X| = D(s) and |Y| = Dile & 0, Cur hypothesis

that = € Calk(I) implies that X € I, We further claim
that Y € I, indeed, that s, € Calk(l). In fact, we assert
that s € Calk(I) implies that S € Calk(I). This follows
from the facts that the entries of s, are precisely

the real numbers d{k;il,....imjl/'? where k € 2 and
(ys0000ip) €4, i and that some of the entries of s are
i:}:"JIL":lciu:1-:-1:il,....im.i,‘i}l”rz for 1 < k € 27 and
(iyse000dip) €y, + and {E?=nd{i;-}}lf2 for each n € 27,

For then, if m < 1, d(kii
}1f2

1|I|-|im}lf2i
(E0n3Q(KR30 0000 i gi) , and if m = 0,

d(K;*JlXE = rr

R, \
izkdtl. )) . Hence Sy € Calk{l).

Therefore X,X*,Y and Y# € I , and so
D(-d,dy,d5,...) @ O € [1,1]2 . This proves the first
paragraph of the theorem.

From this and Lemma 4.4, it follows that if the

hypothesis of the theorem holds for every such
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sequence (d ) € ﬂalk{IEJ. then [I,1] = (1%)° .  Q.E.D.

As usual, we state without proof the analog

for the [I,J] case.

Theorem 4.25a. Let I and J be two ideals in L(H).

if dﬁlﬂ. Zd = d <, and {d ) is s-closed with respect
to Calk((15)1/2), then D(-d,d),d,,...) € 0 € [I,7],,
provided 0 is infinite-dimensional.

Furthermore, if IJ < C, and if {dnj is s-closed
with respect to Calk((IJ)le) for every (dn) € Calk(1J)
for which 4 0, then [1,J] = (13)°

We shall now begin to study the structure of [I,I]
for certain normed ideals (e.g. GP where 1 < p < 2)
and certain other ideals that depend, for their definition,
on particular quantitative finiteness conditions (e.g. GP
where 0 < p < 1), Theorem 4.25 gives qualitative information.
However, to decide whether or not its hypothesis is satis-
fied, that is, whether or not s € Calk(I), is quite hard
and in every case we know, the proof involves difficult
calculations.

On first sight, the condition that s € Calk(I) appears
to lead nowhere. It seems unrelated to any of the standard
ideals and appears to yield very little more than does
the condition [{E?zndi}lfz} € Calk(I) of Theorem 4.7.

Oddly enough, that s € Calk(1l) will sometimes follow from

congidering expressions like (E . iln case 1 = EE’
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Corollary 4.8 requires that I nd, < . What sort of

quantitative condition Thecrem 4.25 imposes on {dnJ is

hard to see, In this vein, the power of our method

will become evident with our second main theorem.

But first we require some preliminaries which develop

the computational techniques we need.

Computational Methods. There are three categories

of questions which we need to consider. They are as follows.

Ia)

b)

c)

d)

How many elements (il.....im} E,ﬂ satisfy
1 ] 3 = 4"

11+ + 1 [ IR

1f 47 is the set of all finite-tuples

(iyseeei ) E,J for which i, > 2 for 1 < k < m,
how many elements {il....,im} Eﬁ5+ satisfy

i P owoa 3 = 9

11+ + ll'ﬂ T A

Describe the sequence obtained when the set
{il * e & im H {il"“'imj E,{S ¥ Dﬂunting
multiplicitiea}- is arranged in non-decreasing
order.

Describe the sequence obtained when the set
{11 tHawliril e (il,....im} E/B.

counting multiplicitieg}-is arranged in non-

decreasing order,.

e) Compare the sequences in c and d.

i 1

If wnTﬂﬂ, dn\ffﬁ and S{(wn},{dn}} =

. i T
{E Wo(n)dy, ¢ 9 is any permutation of 2 },
then clearly suwn).(dn}} < (0,=].

Does Sl[wnl.{dn}] have a minimum, and if so,
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what is it?

III What is the nature of (0= p=< 2] 7

sl .
P
We shall solve all these problems.

Problem la. We solve problem Ia in the following

proposition.

Proposgition 4.26. If f(n), for n € z", denotes

the number of finite-tuples {il,....imJ Ejé which satisfy
il + see + im =n, then f(n) = EH-l S

Proof. For each n € 2*. let_jn denote the set of

elements {il""’im] 2;5 for which il + e+ im =n .
Letﬂgilj denote the elements (i;,...,i ) Efgn for which
i;= 1 and 1et{2}il+} denote the elements (i;,...,i ) Ejzn

for which i; > 1 . Clearly #3;1] ﬁ,j;l+] w g and
ﬁn =/4§r{11} U’J;h} . Therefore f(n) = Mn’“lﬁi“! +w;:11+}] *

The map (l,iy, 0. i ) —> (i,,.4.,1 ) clearly maps

1[11} —-2-5“_1 one-to-one and onto if n > 2, and so

IJTE]'}1 =L3n_ll= f(n-1). The map {ilfiz“":imJ —

(1;-1,i,,.4.,i ) clearly mapsdji1+} f——?;ﬂn‘l one-to one
on-1

Therefore f(n) = ')Bi”[ - L{B‘;}""]I =];'5n_1! +‘i‘| n-l‘= 2f(n=-1).

Also, by inspection, f(1) = 1. But f(n) = 2f(n-1) for n > 2

n-1

and onto if n > 2, and 50L5i1+}[='1 |= f(n-1).

and £f(1) = 1 implies, by induction, that f(n) = 2 A 5

Note. This is a well-known partition problem for which

there are several alternate proofs.
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Problem Ib. Let g(n) denote the number of solutions
(1ipessed,) €47 for which SiF £adle o Ridein i
By inspection g(2) = g(3) = 1. we assert that g(n) satisfies
the difference equation

g(n) = g{n-1) + g(n-2) , for n > &,

To prove this, letﬁg; denote the set of (i;,...,i_) 625"'
for which i, + *** + i =n. Let/SiE} denote the set of
{il....,im} Ejaz for which i;= 2 and let,3;2+} denote
the set of (iy,...,i ) €/ for which i, > 2 . Clearly
;5:112) njig*} = @ and ,{j; =,{U»I{_12} uﬁ;ﬂj . Therefore
gin) =LJ;’=L£L2)I+L3;2+]’. The map [2,12.....imj —_—n
(iz.....im} clearly maps/ggz) *“}K?;_z one-to-one and onto
if n> 4, and so‘xgizj’=Lf;_2'= g(n-2) . The map
(Bgloyanyeded =a® (Bem Xpdnyrpnsd) PAoNA St =D ®
one-to-one and onto if n > 3, and goLJﬁ2+}|= ;_1'= g(n-1) .
Therefore if n > 4, g(n) =L ;_EI+LS;_1'= g(n-2) + g(n-1) .
Hence our difference egquation is proved.

1f we let G(n) = g(n+l), then G(1l) = G(2) = 1, and
forn > 3, G(n) = G(n-2) + G(n-1). in this setting,
however, it is well-known that G(n) is precisely the

Fibonacei numbers. The first few Fibonacci numbers are

1,1,2,3,5,8,13,21,34, It is also well-known that
6(n) = 5720 ((1+522)/2)" - ((1-51/2)/2)"] . Hence G(n)
is asymptotic to 5 V/2((1+5%/2)/2)",
Therefore g(n) = 5 /2 ((1+5%/2)/2)" 1. ((1-51/2)/2)7"1]
for n > 2 and g(n) is asymptotic to 2[5+51f2}‘1{[1+51f2;;2;n,

Note that one can prove that g(n) < 2™ 1 without the above
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equations. 1t is obvious that!S;IC,Jn and therefore
gn}=w;]5wJ=:ﬂnJ=2ml.

Problem Ib is solwved.

Problem Ic. The sequence obtained from the set
{}l a saniolie i i ¢ {11,...,1m} 55-, counting multlpllCltles}
arranged in decreasing order consists of all positive
integers, with each integer n occurring precisely once
for each {11....,1m} e,& for which i + s
By Proposition 4.26, each n occurs precisely 2“’1 times.
Let us obtain a more analytic description of our
sequence. Denote the above sequence by {akJ. By inspection,

it 2N <x<2%! then a_=N. 1f we let [x] = the
greatest integer less than or equal to x, then N = [logzk].

Therefore a, = [lngzk] and Problem Ic is solved.

Problem Id. Note that g, A im + m=

i
1
{il+l] + {iz+l} + re0 + {im+l} . From this it is clear that
the map {il,...,im}-*ﬂ-} {il+l.12+1,....im+l} maps the set
of (il,...,im} EMS which satisfy il * Ea ki im +m=n
one-to-one and untﬂ,j;_if 0 224 ButLﬁ;I= g(n). Therefore

the increasing sequence with the entries o gA AP im +m

AL
for each (il,....imJ Eﬁﬁ is the sequence of all positive
integers n > 2, with each n occurring precisely once for
each [il....,im) Exg such that il + see-+ im some=s1 ,

equivalently, g(n) times. In other words, we have that

{il Pamasdrd e FR {il.....im) EAS. counting multipli-
citie%} = {il +

multiplicities].

: : : + .
eer i : (iqg,.0.00 ) €37, counting
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A more analytic description can be obtained but
it is not as nice as the description of the sequence
of Problem Ic. Proceeding as in Ic, if we denote the
above sequence by [hk}. then if {Eq;l g01i)) I+ 1 <ok
{E§=1 g(i)) + 1 , we obtain b, = N . 1t is rather
complicated to express bk as a function of k, and we

shall not need this, Thus, we shall consider Problem Id

to be solved.

Problem Ie. Let (b,) denote the sequence of Problem Id.

Let {ak} denote the sequence of Problem Ic, which we have
shown is given by a, = [log,k]. We give the solution to
Problem Ie in the next Lemma. This our most important

computational tool.

Lemma 4.26a. For every k € Z+,

&, = Llagzk] 2oy £ ELngzk] = 2a, .,

Proof, Hecall that {ak} is the increasing rearrange-
ment of the set {}l =l im : {il,...,im} Efﬁ, counting
multiplicitieé} and (ka is the increasing rearrangement of

" . " 2 + ' .
the set {il F sasx + 1, {ll,....lm} Eﬁﬂ y counting multi-
plicitieq}. Furthermore the map {il,...,im} .
{il-l.iz—l.....imal} is a one-to-cone correspondence from
+ ; . +
ﬁ ~———>ﬁ . For each entry a, of {ak}. let {ll""'lmj EJ&
be such that the finite-tuple associated with a, is
precisely {il-l.ie—l,....im-l}. Let n(k) denote that
positive integer for which the entry hﬂ{kj of (hkj

is associated with the finite-tuple {il.....imj.
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Then mi z* —_— Z+ one-to-one and onte. Alsc

(1g=1) # see # (§-1) € B+ eee ® iy

< 2((ig=1) + eve + (i-1)),

ginge- i -~1<i, < Etik-l} for every 1 < k < m. But

1y
ay = (ig=1) + +=+ + (i-1) and by =

Therefore a, < bﬂ{k] < 2a, .

We claim that a, < b < 2a, for every k € gis

k
Indeed, suppose not. That is, suppose there exists k € g

such that either hk < a, or Eak

both cases are impossible. If b < a, then there are

< bk ., we shall show that

at least k entries bi for which b: < 8y namely

when 1< i<k . Buta <'a = bﬂ(nj for every n = k.
This implies that at most k-1 entries bi satisfy bi < a, »
which is a contradiction. Cn the other hand, if Eak < bk
then 2a, < b; for all i > k and so b; < 2a, for at mosi
the k-1 entries where 1 < i < k-1, But bﬂ[i] = Eai < Eak
for at least the k entries b, where 1.5 i < k., Which i&

a contradiction. Therefore a, < bk < Eak for every k € 57

QIEGD'

Summary 4.27. If Eanj is the sequence whose entries are
the positive integers generated by i1 Ll S5 BN im as
(iy,e.4,1) ranges over }, and arranged in increasing order,

et shchehl €@ 2F ceilibaond

times and a_ = Lloggn].

BT {bn] is the sequence whose entries are the positive
integers generated by i, + ¢+ + i +m as {il,....lm}
ranges ovarﬁﬂ-{equiva]ently, il ¥ e ¥ i, as {il....,im}

+ N :
ranges over § ), and arranged in increasing order,
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then each positive integer n > 2 occurs that number of times

l}Et

equal to the (n- Fibonacci number and

Llog,n] < b < 2[log,n].
This completes our sclutions to the guestions of

category I.

Problem II. This problem leads to many other interest-
ing ones of the same type and provides the impetus for
Chapter 4 : Infinite Series Rearrangements of a New Type.

Let w = {wnj and d = (d ) be strictly positive
sequences for which wﬁ?w and dn_¢ 0, Define
S(w,d) = {Z

(we use the set notation here in the standard sense,

; : +
nwﬂ(n}dn ¢ m is any permutation of Z_}
that is, we ignore multiplicities). We wish to say something
about the structure of S(w,d). This is the theme of Chapter &,
For the present, we require only a few facts about S(w,d).

It is well-known that S(w,d) = (0,»],

The next lemma solves Problem II,

Lemma 4.28. The minimum in S(w,d) exists (it may be =)

and is given by &L wndn .

Proof, Let m be any permutation of Z+. It suffices
to prove that £ w. d < Enwﬁ{n}dn « Define m, in terms of =
as follows. Set ﬂl{l} e 1. ﬂl{ﬂ'l{ljj = n{l), and for
n# 1l or ﬂ'l{l). set my(n) = m(n). 1t is straightforward
to verify that Ty! A— Z* one-to-one and onto and
fixes 1., We assert that En w“l[ann < En wﬂ{n}dn .
To see this, note that (1) > 1 and w'l{l}_g £ IS



> 0, Therefore

W Jd
nin2(1)) (i) Wt

Q.

Similarly we obtain a permutation w, that fixes 1l and 2

for which L wﬂg{njdn_ﬁ z . Thus we obtain,

wﬂl{njdn
inductively for each k, a permutation e that fixes 1,...,k

for which
k o o0 =0
En=1 wndn 1 En=l wwk{n}dn.f En=l ""'rwkEn}r"iﬁ-—'S zn=1 wﬂ{njdn

and the result follows. Q.E.D.

Problem III. The sequence s consists of precisely

the entries

=] oy

tzi=n i sy d[il.'.‘,ii}il/e as n ranges over Z+.
gk e

(£° }lfz

+
e as n ranges over Z and

d(iypeenpip,i)
{il.....im) ranges overﬁo , and

oINS PR, C FPRPS IOE P PTOSE M D

as n ranges over z* , k ranges over z¥ and {il,....iml
ranges averjG (see paragraph s on page 81 and recall
tha’tjo = AU {{ ]}}. With this we can compute the fP-norm

of the sequence s.
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Therefore, for p > 0, we have

(4.29) ”sHPp E
oo o ) p i 2
Em=1(En=m Lil.....in=1 dfll""'ln}}pf

+ L 1{2

3 11 RSN (T
(11.....1 }ﬁja *i= 1 me?

n=i

=) 'BU

}:k"l 1~1{En"' Jli'il‘lr]k 1 d(il."..im'n.
jl'.‘.l'jk'}}P‘le

+ I
{ili"'lim}e

Furthermore, if p < 2 then p/2 < 1 and therefore we claim

s P
I ﬂﬂp

ke o o0

z

. \p/2
el P i =1 AlEgeeee,ip)

j-l|||1| n—'
(el

*: E T
2 i=1l =1
(19000001 )ES

d{il,...,im,n}P/E

oy (=1 a0 20 . 2
+ E(il' 2 jed k=lEi=l£n=iEjl""'jk:l d{ll.--.,lm'n}
e . . \p/f2
Jl""'JRJ
=
o i ; )p/2
zm=l mzllr-'qtl =1 d{ll"‘"llm)
v i . 1)P/2
§ E(_]_ 1 } ! Eizlld{il""!lmfl}
1.-... "'"O
+ E o0 =]
(illunu,i }Ei. zkzlzjlptu. __1_ l—li d{ll..'.'lm'l'
m I
: J’llt!iiak}p”‘z



2 : ypfe
Ill-_-lz md{llgni-.lmj

i.l.-o-.im:l

+ X i ali T }pr
{11,,...im}55:5“ 1 'm

+ E E ikd[il.....ikl--qgim)p!’fa
{ill L |imJE’A J.Ekfm

' 'R 3 3 i sz
(11 + A + m) d(ll.....lmJ

L ' .
[11.....1mJ€j
The first inequality holds since (Exn}rdf Exn? if r <1 and
xndf 0 for every n. The first equality follows by inter-
changing the orders of summation and using the identity
oo o0 = .
a s = : : - g
(BB ;%)) =E;_;ix, , if x > 0 for all n
In the second equality, we substitute im for i and
(i1,00003) €3 for (iy,...,i ) €4, in the second sum;
and in the third sum, for 1 < k < m, we substitute ik for i,
and (il....,im} €A for (il,...,im} €4 o {jl.....jkl E/S,

and n € 2°, The last equality is obvious.

In short,
(4.30) |s|?. < = (igfeeeri+m) d(ij,eee,id yp/2
XP tll;tr-plm]Ej . "

where if p = 2 then equality holds.

Inequality (4.30) is the key estimate that makes

our construction worthwhile., This will now become evident.
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For any map m: R —-—:)8, we have defined

d(il....,im] =d

¥
ﬁ_l{il,...,imJ

. Hence when n = w 11""'1m}

we have Bt s

ad =
-1 1 n
" {11....,lmJ

Let {bnj dencte the increasing sequence of Problem Id
which is generated by the positive integers il+---+im+m as
(ij,00.,1 ) ranges over 4. From the definition of (b)),
we may choose a map a:,ﬂ-———} Z+ one-to-one and onto

such that if n = ﬂ{ll.....im}. then bn = 3

+er0+i + o
1 lm m

Therefore

L (Ao Toal pEl i el S5 JP”2
: 1 3 ,
(13500004 €3 e =

p/2
= I b 4y
ESTERRRE oL BLIC SURPRRS NOINE Ml € SRPIE BY
- T p/2
= ZIn=1 Pg(m(n)) %n -
Hence
4.31) ||s|P. < = ( Hgmss pmce ) 605, ..., 1 )P 2
G p/2
= A ba{ﬂ{nJJ 4 .

Note that ¢ is fixed but m is variable. We need inequality

(4.31) to decide when s E/fp. Indeed, we need to know

when Z b ) tinp”'f2 ig finite. Therefore we wish to

p/2
o(n(n)) %n

T 5 :
one-to-one and onto maps m: 2 —> 4. This is answered by

glwin)

know the minimum of £ b as M ranges over all

Lemma 4.28, alias Problem II. It is minimum when 7 = o 1
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and that minimum is given by L bnan/E. In other words,

the choice 7 = ¢"1 in our construction and results yields
the absolute minimum for the sum X bd{n{n}} dnpfg, relative
to the construction and the notations. In the case p = £,
this choice yields the absolute minimum for ”5“22. relative
to these techniques.

For m = ﬂ“l, we obtain

(4.32) ||s|P. < L g wematd b )o@y v iy )P/
P £ W T

[l

5 bndnpx’z

where if p = 2 we have equality throughout. Hence by

Lemma 4,26a, alias Problem Ie, we have
2
(4,33) L Elngzn]dn < ||5H£2 e T bndn < L EEnggn]dn , and
p p/2 p/2
(4.34) ”gﬂfp < Zbd < EElflnggn]dn , ‘Parp =2
This concludes our answer to Problem III.

We are now ready to state and prove our second main

theorem.

Theorem 4,35. (Main Theorem 11). 1f dﬁiﬂ, Ld =d<w and
p < 2 , then there exist X,Y € K(H) for which

D{-d,dl,dz....} @ 0 = =(X*X=XX*) + (Y*Y-YY*) such that
o 5
Hxﬁcp < EI:{lugzn]dnpf and
P 2
"‘IHG o I:1-'.:-g;21'11:14;:‘|.1_1p”"r .

P
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If p< 2 and I (log n]an/E < e, then

D{—d,dl,dz,...) & 0 € [cp,cp]2 ,

Proof. By Summary 4.24-5 and 4.24-6 we have that

2.;.-

where 1Xlz D(s) and Y|z D(allﬁﬂ. By equation (4.34) and
the fact that §q is pointwise bounded above by a subsequence

of s (see the proof of Theorem 4,25), we have

Ikl = Imlg = Iote)fg = Is[', < 25(108;n1a, 7/
P D
and
B P P P p
ltle = Ml =lntsp)f = psy o < [s
°p ‘p 1 C, Jllﬂfp » “zp

< zi:[lngzn}dnpfz :

The sum Il[logzn]anXz is finite if and only if
Z(log n}dnpxzis finite., This is clear since log n =
{lngzn](lngEE} for every n, and x-1 < [x] < x for every

real number x. The rest of the proof is obvious. Q.E.D,

As usual we give an [I,J] version of Theorem 4.35

without proof.

Theorem 4.35a. If 4 0, £d = d <®, and 0 < r <1
1 s e |

where for 0 < p,g < =, p "+ @~ = r ~, then there exist
A,B,X,Y € K(H) for which
D{“d.dl;d2|loc} e 'D - _{-&B-BAJ + {KY_YK)

such that
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M

P ; je 3
“hicp_4 EE:LlngEn]dnr ; HKIC;»E EE;LngEn]dnr ’

P P
"BHEP.E EE{JﬂgEn]dnr and ||Y |

LA

r
2L Llogzn]dn ;

Furthermore, if r,p,q are as above, and I (log n}ﬁnr " %

then D(—d‘dlidz,...} a G E I-_G'P"cq:tz "

The next theorem is an obvious consequence of
Theorem 4.35 but deserves special attention as it is

our best theorem on the [CE,EE} problem.
Theorem 4,36. If dnla, zd, = d <=, and
L (log n) g S®
then there exist A,B,X,Y € GE gsuch that
D(-d,d;,dy,.e0) ® 0 = AB-BA + XY-YX £ [-::E,czj

and the Hilbert-Schmidt norms of A,B,X and Y are all

less than or equal to (2Z [lu:rg‘l?1~1:|~:illﬁ_}l‘fr2 g

Note. A slightly more complicated version of the
main construction produces Theorem 4.36 with slightly
better bounds on the Hilbert-Schmidt norms (and the same

for Theorems 4.35 and 4.35a in regard to the related norms).

That is, we could insure that|all, =I[Bl; and[x], =[Y]
2 2 2 -

and
2 2
£ [log,nla,_ < ||,aL|IE2 + ﬂxﬂcz =L bd < 2Z[log,nld,.

Note. We proved earlier (Corollary 4.8) that & i <

is a sufficient condition that D{*d.dl.dz....} @ 0 € [Gz,ﬂzﬁ.
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Theorem 4,36 yields that L (log n)dn < w igs a sufficient

condition that D(-d,d,,d ) 8 0 € [cz,czj. This

PIEEE
indicates a strategy for showing Cg - [62,02], thereby
solving Open Question 4 in the affirmative. That is,

try to obtain similar sufficient conditions with improved
weight factors on the ﬁn‘s. In other words, if we new that
for every sequence {wh} for which w =, we had that

Zw d <  implies D(-d,d;,d;,...) € 0 € ch,GEJ for every
such sequence (d_) where dn40 and Zd = d < =, then it would

(a] "
follow that C,<[C, ,GE] :

Our results on the structure of [I,1] and [I,J]
follow easily from Theorems 4.25(kain Theorem 1), 4.25a,

4,35(Main Theorem 11I), 4.35a, and 4,36.

A Special Ideal. It is easy to verify that the set

{Fdnlfzjt dﬂ}g and £(log n}dn < m} is a characteristic set
(see p. 58) and hence generates an ideal which we denote

by I,. Clearly IZ < Cy, I =C, and I2 # I_. We do not

o o

know whether or not [IQ.IQJ i {Ii}ﬂ. Theorem 4.36 and
Remark 4.9 immediately gives [I§}° = [UE.UE]. This gives
our main result on the structure of [ﬂz.ﬂzj which shows
that a significant portion of Cg is contained in Lﬂz.ﬂzj,

and greatly improves Corollary 4,10.

Theorem 4,37. For each 0 < g < 1,

P (e )’ = ¥ele (253° & [0 G
q <1 P p<1 P # o [ 2 2:|

Proof. The last inclusion follows by the above remark.
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The first inclusion and the first equality are clear. for

: : : . , 2

the second inclusion, it suffices to show pgltp = Iﬂ i

Indeed, it suffices to show U P = Calk( u C_) < Calk(I]).
p<l <1 P

Hence it is enough to show that if dn¢0 and (dnJ E/EP for
some p < 1, then I (log n)d < w. but d +0 and (d,) gl T
implies that dn = ain'lXp]. From this it follows easily
that Z (log n}dn < «, Top prove the inequality, simply note
that if dn e (1 log3n}'l , then i(log n)dn < = but Ean = =

for every p < 1. The rest is clear. Q.E.D.

We mentioned earlier that we would obtain a candidate
for the largest ideal 1 <« C2 such that {IE}o [ = LCE'CEJ'

The ideal Io is that candidate.

Question 4.38. If I  is the ideal whose character-

istic set is {{dn1f2)= dﬁ¢ﬂ and I (log n)d < ﬂ},

. . : 2,0 .

is I, the largest ideal I for which (I7)" = [C,,C ] ?
i P -

Furthermore is (I_)" = [C5,C,] ?

Several other questions arise concerning Io'

Question 4.38a. Is (I2)° = G(C,)? s (I2)° = C(C,)”

A prime motivation for our main construction and
its related techniques is as follows. By Corollary 4.8
it is easy to show that if dn = 1'1":24":';:lI for some € > O,
and if d = £d_, then D(-d,d;,d,...) ® 0 € [C,,C,].
The techniques of the main construction give us Theorem 4,36
which easily yields that if dn = (n 1ng2+En]'l for some €>0,

and if d = ¥d_, then D(-d,d;,d,,...) ® O € LEE,Czjl
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the same holds for d = n P when p > 1. The next question

to ask, and which we cannot answer, is as follows.

Question 4,39, If g, = (n lagzn}'l and d = Id_,
iE D{"d.dl.dzgtoo} ﬂ‘ 0 E [BE‘.E?‘}?

Note that very few deep negative results are known

on the structure of commutator classes.

There is an analogue to Theorem 4.37 for the case p<2.
Let I_ be the ideal whose characteristic set is
{{dn1/21= d 40 and Z(log n) anfz < w}, That this is a
characteristic set depends on the fact that p < 2.
Clearly Ii < C_/, and I, is just the ideal I, defined above.
Theorem 4.35 and Kemark 4.9 give us {Ig]ﬂ " {Cp,ﬂpj. We

give the following analogue to Theorem 4,37 without proof.

Theorem 4.40. For each 0 < g < p/2 where p < 2,

Cec(u €)%= u % (1°)7 < c,e. ]
e e q<p/2 1 ¢ P bk

Note that we could ask questions about Ip analogous

to those we asked about In.

We now give our best results on the equation
[1.1] = (1%)°.

Theorem 4,41, If g < 2 then for I = U Ep. EE 1) = [12)0.
P<q

In particular

e T T
pel ¥ p<z P p<2 P
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Proof., By Theorem 4.4 it suffices to show that if

ado, (a.) € v QP and Zd_ = d, then D(-d,d,,d,,...)8C
ef s wne K
p<g P pgq P
Theorem 4.35 states that
D{—d.dl.dg....) @ 0 = =(X*X=-XX*) + (Y*Y-YY*)

where if p < 2 and Z (log n) dﬂpﬁE < », then X,Y € CP.

It therefore is enough to show that {dn} €14 RP
p<q/2

and dniﬂ implies I (log n) dnp/E < = for some p < Q.
P
But (d ) € U LP implies (a,) € {1 for some p; < /2

p<q/2 &
and &n+ﬂ f?;ther implies that d 1. o(l/n), equivalently,
=Li/P
dn = of(n 1}. Choose any p < q such that p; < pfa < q/2.
Then

-1/p
Z(logn) a2 < E(logniMn P2 <w,

since {l/pl){ple *» ko QB

A similar approach can be used to prove the following

theorem.

Theorem 4.42, If 0 < g < 2 then for I = 0N GP, we have
D=g

[1I,I] = {Izlo. In particular

¢ adi)® = [0

c c L ]
p>0 F p>0 p’ 3 P]

=0
Note. This last ideal in Theorem 4.42 satisfies

2 = )" = [1.11
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As usual we give the corresponding [[I,J] results

without proof.

Theorem 4.40a. If 0 < r < 1 and p,q > 0 where

P-l -1

q = r’l. then

o 0
{tgrct} " Er} [G

Theorem 4.41a, If 0 < r < 1 and p,q > O where

P_l + q__l = r'l, then

(vec,)®=[uc, u ct].
t<p © t{p

Theorem 4.42a. If 0 < r < 1 and p,q > 0O where

p'l - q_l = r‘l, then

(nc)®=(nc
*r *p

nc ]

t't?q

Let us now summarize our results on the equation

[£,1] = (£*)°

Summary 4.43. The following ideals I « CE have the

property that [I,1] = (1°)°,
& BLH T,
2 J(L{ {8 })) where (a ) satisfies the requisite
conditions stated on page 68,

3 uﬂp where 0 < q < 2.
p<q

b, n GP where 0 < g < 2,
p>q

We conclude this section with a discussion of [C;,K(H)].
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It is easy to see by Proposition 4.1 that [C,,K(H)] = ag ;

We believe the following natural question is strongly

related to Open Question 4 (Is Cg = LﬁE'EEJ?J'

Question 444, Is [C,,K(H)] = €] ?
Is [C;,L(H)] = ﬂi 2

Is LEl.K{HJ]

[Gl,L(HJ] ?

The main construction yields partial results on
this question. Using Theorem 4.25a and the estimates
that we developed on s together with Remark 4.9, it
is not hard to obtain the following theorem, in

which the essential part is the last inclusion.

Theorem 4.45. For each 0 < g < 1,

0 o 2,0 ;
Cq 5 {pglcp} < (I5)7 = LCy,K(H) ],

This concludes Section &,

5. Cases when C, < [I,I]

In this section we concern ourselves with Open Quest-
ion 6 which asks whether or not an ideal I = €, satisfies
C; = LI,1]. We have seen that determining the precise
structure of [I,I] can be a difficult problem. If the
precise structure of [I,I] is not determined, one may ask
what important classes of operators are contained in [I,1].
In other words, how 'full' is [1,1]? if a particular

class of operators is contained in | 1,1], then this
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also becomes a fact about commutator representations.
For example, El < [I,I] simply means that every trace class
operator has a representation as a finite linear combination
of commutators of I.

Known Result 4 states that C, < [Cp,ﬂp] for every
p > 2, and follows from Known KResult 3 since ﬂl = Ep/?
= [CP,EPJ for every p > 2. Similarly known Result 5 implies

e o WEs bl k
p2 P p2P

Note that if C; < [I,I], it follows that C, < I°
2

that Cl

since [I,I] = I, and hence C, = 1. This suggests that
our previous work may play a role here. Indeed, Sections
3 and 4 do play a strong role in the development of this
section.

The rank one projection operator P which played an
essential role in Section 3 (recall F = D(1,0,0,...))
also plays an essential role here. Since P € ul. it follows
that if ¢, < LI,I] then P € | 1,I] and C, = I (the inequality
holds since Tr(F) = 1 # 0 which implies P ¢ LCE.CEJJ.
It is an important theme of this section to find conditions
on ideals I = C, for which we have that C; < [1,1] if and
only I PeELLid)

The following theorem uses the main results of

Section 4 to relate the operator P to the 'fullness’

of [I,I]. 1t is based on the ideal I, introduced on page 99.

Theorem 5.1. Let I be an ideal in L(H) for which

2
o

I>C,. Let J be an ideal in L(K) for which J = I
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Then the following are equivalent:
fadiedoes k31l u
(b) there exists T € [1,I] n J such that Tr(T) ¥ O,
gl P& 1.1} .

Proof. (a) ==> (b): The operator P € J = [1,1] and
Tr(P) = 1 # 0.
(b) ==> (¢): Let a = Tr(T) # O where T € [I1,I] N J

2 4

cJCIOr_—.E Then P=a"1{aP-TJ+a'T.Bu1:

1°
Tr(aP - T) = a-a = 0, Hence if T € J, thenaP - T € J°
c (IE}o — [GE,CEJ e [1,1] , by Theorem 4.37. Therefore
% e

(¢) => (a): Let T€ J= I, Then T = (T - (Tr(T))P
+ (Tr(T))P. By Theorem 4,37, we can obtain T - (Tr(T))P € " e
c {IEJQ < LCE.CEJ < [1,1]. But by (c), P € [1,I]. Therefore
T EELTL GB35

The next corollary follows immediately from Theorem 5.1.

Corollary 5.2. Let ideal 1> C,. If J is any of the

ideals a) Ep, forp4 Ly B UG feed=x1ya) ne.,
p<q P p>q P
for 0 < q < 1; d) I2, then J = [I,1] if and only if

rElLal
By Theorem 3.13 and previous remarks we know that

I8IcIand?P € [1,1] ==> [1,I] = I° ==> P € [I,1] and
T,

Therefore if UE e 1, then Gl o 12 and we have the following

theorem.
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Theorem 5.3. 1f an ideal I= CE has the TPCP, then

P €[I,I] if and only if C; < LI L

A somewhat weaker condition than the TPCF would

suffice as we see in the next theorem.

Theorem 5.4, I1f an ideal I satisfies 1 ® EE =: 45 then

P € [I,I] if and only if C; = [I,1].

Proof. If €, < [1,1I] then clearly P € [1,1]. Suppose

then that I R C, = I and P € L1718 T ¢, then

1°
e iT2 where Tl and T, are the self-adjoint real and
imaginary parts of T. Hence it suffices to show that every
self-adjoint operator S € C, is contained in [I,I].

By the spectral theorem for compact, self-adjoint
operators, S = D(Ean}} for some real sequence Ean} E_fl.
Clearly D([an}} = D{EI'G'EB'G""} + D(0,2,,0,a,,...) .
Furthermore D(a,,0,2,,0,...) = D((a, _,)) & 0
= n([azn_l}} # 0% 0@ +++ =P BE D{(agn_lll and similarly
D(0,a,,0,2;,...) = P ® D((a,,)), where (a, ;) and (a,_ )
are both contained in/?l. By hypothesis P = E?=l{xixi'yixi]
where {ki}?zl and {fi}?=1 are contained in I. Then
P ED((ay 1)) = [E]_;(X,¥,;~¥:X,)] B D(ay,_ 1))
= 2%, [(xy8D((a, )2 (x,@D((a,, 1)) /?)

- (x,B((a, ,)Y?)(x,8D((a, ,))*/%)]

1/2 1/2
and I B Gz = I, Thus IiED{[aZn_l}} and Yiiﬂiia )

21'1--1:r
are contained in I for 1 < 1 « m. The same holds for

P B D((ay,)). Hence P B D((a, _,)) and F B D((ay,)) € 11,11,
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Therefore, via the underlying unitary transformations,

D((a )) € [I,I] and so § € [I,I]. Q.E.D.

Note. If the answer to Open Question 4 was yes,
that ie, if CE = [CE’CEJ’ then for every ideal I = C,
we would have that P € [1,I] if and only if ¢, < £1.15
This follows from a fact we proved in the proof of
Theorem 5.1, namely that Gl is the linear span of Gi
and P. However, since we cannot count on this being true
and indeed, we have some evidence that it is false,

we shall try to find other conditions on I so that

‘P € [1I,1] if and only if €y . B gL

The next lemma shows that it is not unusual that an

ideal I satisfy I B Cz c I.

Lemma 5.5. Let I2 be a complete normed ideal with

norm |+||. Suppose
(1) there exists a basis.{e;}of H and M > 0 such that
it P is the orthogonal projection operator whose
range is the one-dimensional subspace spanned by

e . then ”PnJIE M for every n ; and

(2) for every sequence {&é}c Iz.
"Tn || —> 0 implies T ——> 0 (WOT).
Then CE =k,

Furthermore if in addition | * | is unitarily invariant,
then I B C, = I,

2

Proof, it is clear that CE < 1 if and only if Cl c I
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and that I E C, < I if and only if I° B C, = I (consider
the Calkin ideal sets). It therefore suffices to show that
cl = I% and when the norm is unitarily invariant, that

T N e,

IT T € Cl' then T = Tl + iT2 where Tl and T2 € Ul and
are self-adjoint. As in the last proof, to show T € IE.I
it suffices to show that every self-adjoint operator S € Cl
also satisfies S € 12. As in the preceding proof, S = D((an)]
for some (a ) € Calk(C,) =,£i_and D((a,)) = Z a P where
the convergence is taken in the trace norm. #We assert
that D{(an}} = I a P where the convergence is taken in

the I2 norm,

N

Consider S nfla P an Ll 5 Nl then
l
ﬂsﬂl" Sy ll= ||En-H+l oPal = Epowen B IPal 3 ME 2y 2|
—> 0 as N,N; —> «, since (a, ) Exg . In other words

{§ }-is a Cauchy sequence in 5 By the completeness of

12, SN—X-———} 0 in the Iz-norm as N ——> =, for some X € I

21

Then by hypothesis (2), Sy —> X (WOT). However,

Sy —>Z a P = D((a))) in the trace norm, and hence in the

weak operator topology. Therefore D{{anjj ik G- Iz.

Via the underlying unitary transformation, we then obtain

3 € IE. Hence El < IE.
To show that I2 BC, < I2 we proceed in a similar

manner., If we could show that T € 12 and S € Gl imply

that T B S € IE. then by the way in which ideals are

generated we would have that 12 B Cl < 12. Also

T RS = (T,+iT,) B (8,+iS,) = T,BS; - T,BS, + 1(T,BS,+T,8S,),
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where Tl.T S 52 are the usual real and imaginary partc

of T and S respectively. Therefore it suffices to show if

2

T € I° and S € C, are both self-adjoint, then T B S € o

It is clear, by considering Calkin ideal sets, that

2 7} Cl = Dl 8 12. Therefore it is enough to show that

T € 12 and S,T are self-adjoint imply S B T € 1°,

1
8 € Cy,
As before, S = D((a_)) for some real sequence (a ) Eﬁl.

and D((an}} = L a P where the convergence is taken in

the trace norm. That is, SN —_— D{{an}} in the trace norm
ag N—> =, IJf N < 1, then
'len T-SyRBT|= "En_ﬁ+la P BT | < Ehfﬂ*l | [F,27]
b
= (B oney la,l) [P0 —>0

as N,Ny —> w , since (a ) € {' ana [p #r| = [P &1 That
«PnﬂTﬂ = |[p,BT| follows from the fact that P BT = P,&T

and from the unitary invariance of the lz—norm.in our
hypothesis (which invariance carries over under any fixed
unitary transformation from L(H) onto L(HEH)). By consider-
ing the eigenvalues of EN B T we see that SN E T € IE.
Hence {EN il i} is a Cauchy seguence in 12. By the
completeness of Iz, we have that SN B T—> X where X € I2
and the canvergence ig taken in the Ia-nnrm. Hence, by
hypothesis (2), Sy B T —> X (W0T). But Sy —> D((a,))
(WOT) implies that EN ET —> D{(an}} B T (WOT). whence

D((a ) BT = X ¢ o S

Note. The assumption that H-! is unitarily invariant

implies hypothesis (1). This is because P = P whence
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le| = Il for a11 n,m € 2.

The next corollary puts Theorem 5.4 and Lemma 5.5
together. 1t shows that in some sense, complete normed
ideals whose topology is stronger than the uniform operator
topology or the weak operator topology resemble the

CP classes in regard to commutators and the present theme.

Corollary 5.6. Suppose I2 is a complete normed

ideal whose norm is unitarily invariant, and convergence
i 2 ‘ . ;
in the I -norm implies convergence in the weak operator

topology. Then P € [I,I] if and only if ¢, = [I,I].

In Section 3, we pointed out that the ideal I{(n'l/z}}
= I{{unlfzj} is the smallest ideal 1 that we know satisfies
P € [1,1]. Theorem 5.3 together with what we know about

b 1/2 : .
U (BI((a, " ))) yields the following corollary.
n=11
Corollary 5.7. If I = U (BI((a

/2))) then ¢, = 1,1).
=11

The following questions immediately arise.

Questions 5.8. Is the ideal of Corocllary 5.7 the
smallest ideal 1 for which C; < LE,1}?

Is C,y < [I{{anllel.liianlfz}}]?

Does there exist an ideal I = GE for which either

Cy T pe Pl 1]7

Remark. The answer to the first guestion is no.

There is an ideal 1 close to lE{uanEJ} for which

1/2

€, < LI,I], namely 1 = 1((a,™")) B C,. This provides
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a good setting in which to apply Theorem 5.4,
It is easy to prove that Ep B CP = Cp for every
0 < p < =, Therefore, even if I B C, # 1, we must at
least have (1 B CE} B EE i o C,. Hence the following
corollary follows from Theorem 5.4 and the fact that
P e [10(a, %)), 1000, 2?))] = L1((a,}?))mC,, 1((a /2 ))0C,].

Gorollary 5.9. C; < [1((a /?))m¢,,10(a 1/?))8c,].

To see that 1{(un1/EJ} B C, is strictly smaller than
the ideal of Corollary 5.7, it suffices to show that it is
strictly smaller than I{[unlfé}} B liiunlfzil. de will
not prove this as the proof is quite lengthy and requires
the use of the techniques in Section 3 ('On a Froblem of
Salinas', pp. 43-50).

This brings us to the last question.

Question 5.10. Is I = l[{unlfg}} B C, the smallest
ideal for which C, = [I,1]?

This concludes Section 5.

6. The Question 'Is P € C(K(H))?"

Open Question 1 asks whether or not C(K(H)) = K(E)
and the weaker question which is whether or not P € C(kh(H)).
If it should turn out that P € C(K(H)), it would then be
important to determine which ideals I = K(H) have P € C(1),.
However, we shall not formally pose the general guestion

since it appears that many mathematicians have considered
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the question "Is P € C(K(H))?" and yet we know of no
significant progress on the problem, As with all the
open questions in our list in Section 1, it appears that
new techniques need to be developed to handle it. We feel
that a positive solution would probably come from one or
more new computational techniques.

The main result of this section preoduces operators
A,B € K(H) that are quite simple, yet special, for which
AB - BA is, in some computational sense, close to P. 1t is
hoped that this construct may provide a first step to
golving P = AB - BA for some A,B € K(H); or, in the event
that P ¢ C(K(H)), our AB - BA may provide a candidate for
the 'closest' one can get to P using single commutators
of compact operators.

The first result is the only negative result we know
in the subject of commutators of compact operators. It

states that P is not a self-commutator of a compact operator.

Proposition 6.1, For every A € K(H), A*A - AA* # P,

Proof. We shall prove a little more than the proposi-
tion states. We claim that every trace class self-commutator
of a compact operator must have trace 0.

Suppose, to the contrary, that A¥A - AA¥ = T € Cl
for some operator A € K(H) such that Tr(T) # 0. Let
A =M+ iN be the usual decomposition of A into its real
and imaginary parts. Then A* = M - iN and A®*A-AA%* =
2i(MN-NM), where M,N € K(H) and are self-adjoint. By the

spectral theorem for compact, self-adjoint cperators,
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there exists a basis for which M is a diagonal matrix.
With respect to this basis, let M = D((d )) be this
diagonal representation of M , and let N = (nij} be the
matrix of N. As we mentioned earlier, a straightforward

computation shows that MN - NM = ( {di—ujjni ) with

J
respect to this basis, and when i = j the entries are 0.

From this it follows that MN - NM = (1/2i)(A%A-AA*®) =

(1/2i)T, and so MN - MN € C, and in this basis has diagonal
entries all 0. Hence 0 = Tr(MN-MN) = Tr((1/2i)T) # O,

which is a contradiction. Q.E.D.

Proposition 6.1 is a little surprising in that both
P and each self-commutator are self-adjoint, which might
lead one to believe that one could solve P = A®A - AA¥

with A € K(H).

The Main Construction. We shall use an operator
B € K(H) which is the sum of a weighted shift operator
of multiplicity 1 and another operator whose nonzero
matrix entries occur along the ray which has slope -2
and starts from the (2,1) position. We shall then let
A = B*, The operator AB - EA will be a matrix whose
nonzero entries occur along two rays starting at the
(1,1) position, in which one has a slope of -1/2
and the other has a slope of -2, and whose diagonal
entries are the same as those of P,

Let v = (v_) be the decreasing sequence whose

-n/2

entries are 2 repeated n times. Let w = (w ) =
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{1,vl,vl.v2.v2.v3....}. Let U = U(0,v4,0,v,,...) and let
V be the operator defined by Ve = w e, for every n € £,
Choose B= U + V and A = B¥ = U* + V¥, Let us now describe

AB - BA (i.e. B*E - EB*¥),

2

Let W be the operator defined by WE2n+1 ok, T T

2n
Then by computing we see that P - (W + W¥) = AB - BA.

for every n € Z+, Wel = 0, and We = 0 for every n € Z+.

Since a picture is worth a thousand words, we sketch the
matrices B and AB-BA to get an idea in what sense P - (w+w*)

is close to F.

-5t
Lk

al- .

T
L

g
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Note. In the proof of Proposition 6.1 we saw
that no trace class operator with nonzero trace can be
a self-commutator of a compact operator. Therefore
BE*E - BB* cannot be in the trace class. Indeed, by inspect-
ion, since the sequence (1/2,1/4,1/4,1/8,...) = 2'1(1.
1/2,1/2,1/%,...) is equivalent to the sequence (1/n),
the remarks of Section 3 show us that these two sequences
are contained in precisely the same Calkin ideal sets,
and hence B*B-BE* is not a trace class operator. 1t

appears that this is no accident. The occurrence of a
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key sequence related to (1/n) has happened before.
Question 3.9 should be considered here, especially

if one replaces [1,1] by C(I) in the guestion.

This concludes Section 6.

7. Cases when {I.I]n = [1,1] for some n

One of the problems one encounters when considering
questions about the structure of [1,I]| is that some elements
of [I,I] may be represented only as the sum of a large
number of commutators of 1, We show that in the cases in

which we are most interested, this is not true.

Lemma 7.l1. If 0 is an infinite-dimensional operator,

then
LI, I]e 0 < [I!Ijj .

Proof. If {;HJ.is a sequence of operators, let
U(ﬁl.ﬂz....} denote the weighted shift operator acting on
the Hilbert space H@H®-:.: with operator entries {in} on
its lower diagonal and 0 elsewhere.

Let T € [I,I]. We shall show T @ O € [1.1]3.

T = £ (XY, - Y,X ) for some {x }} ) ana fr}N in 1.
Clearly T # 0= T ® O ® 0 &% -++-, Hence it suffices to show
that T® 0@ 0 @ ++« € [1,1]3. Not surprisingly, the trick

here is to add and subtract. Write
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(*) —=T@®O0@® 0@ *+* =
[= T@(X Y- X, JO(X Y =YX, )8 « s @ (XY =Y X )608 -« ]
— (08X Y -Y X (X Y - Y X, )8 - ~B(X Y\ -V, X )8 @:--],

The second operator in brackets on the right-hand side of
(#) is easily seen to be the commutator of naxli---exmanu---
and DﬁYlﬁ--*Efﬂﬁﬁﬁ--- , which are both in I since the
sequences of eigenvalues of their absolute values are
obviously in Calk(I). To see that the first operator

in brackets on the right-hand side of (*) is a linear

combination of 2 commutators of I, write

-Tﬁ(xlfl-?fl}tl} & o0 @ Ei‘iﬁ’f xﬁxﬁj @ 0@ o0 =

N

Y =Y. X

[- ReT®Re(X Y -Y X, )&+« -@Re (X Y\ -Y,

808+ -]

+ i[- ImT®Im(X, Y ~Y X, )@ "@Im(X Y, -Y X )808:--] ,

where for each operator X, HeX and ImX denote the real and

: : . R :
imaginary parts of X, respectively. Also T = En:llxnyn'ynjn}
. . o= . @
implies that ReT = En=lhe(hnYn-Ynxn} and ImT =

N

2
ngllmixnfn-Yan} » where HE{Kn:annKn} and Im{KnYn—Yan}EI

for 1 < n < N, Therefore the right-hand side of the previous

z

displayed equation is a linear combination of 2 operators

N

n=1 Sn :
S,5s44445, are self-adjoint and S_ € 1% for every 1. < n < N.

of the form -S @ slﬁ vee @ SHQ O@® *** where S = L

Hence it is enough to show that —Eﬂislﬂ i SNQ 0@ oo

is a commutator of I.

1/2

Denote by U = u( (L?‘. S ]lf‘lz'(zf‘] sn}ljzr-tr-t-SN ’

n=1l"n n=2
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0,...) ) the unilateral shift with operator entries

{E:;ksn}lfz for 1 < k < N occupying the first N entries

on the subdiagonal and 0 elsewhere. The square root of
~N

Ln.=1c5n
theorem since it is self-adjoint. Also [U| =

o (N IINRRIN R A A T lere v

exists (although it is not unique) by the spectral

use the diagonal operator notation with operator entries

N 2
n=k°n ¢ 1 for every 1l < k <N,

it follows that |U| € I, and so U € I. Finally, by

in the obvious way. Since L

computation, UU* - U%¥U = -5 @ Slﬁ AN Sﬂﬁ oe -+, Q.E.D.

Lemma 7.1 implies that the number of commutators
required to build a given operator need not be large,
as we see in the following theorem, which is the main

theorem of this section.

Theorem 7.2. Suppose 1 and J are ideals in L(H).
I-1FJ c[I1I,I] thenJ = [I.Ij8 .
2, If J = €, and J° = [1,1] then J° = [1,1]y, .

Proof. To prove the first part, let T € J, It is
well-known that T = T' where T' acts on H & H and has
a 2x2 matrix representation with operator entries. Let
M{Tll'le‘Tzl’TEE} denote the 2x2 matrix with operator
entries Tij in the (i,j) position. Then T' = M{Tll’le'
€ 56 1° 208 1.7 =ediia

For every operator A € J © Iz, if A = V|A| is the

T51:Tpp)s where T,

polar decomposition of A, then v|a|1/2, |A|1/2 € I and
M{D,A,G,G} -
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mvlalt’?,0,0,0) M(o, |41172,0,0)
o M{0‘|ﬁ!lf2’010} m(v|al/?,0,0,0) ,

whence M(0,A,0,0) € C(I). But then because TlE'TEl € I2
and the fact that M(0,0,X,0) = M(0,X,0,0) for every X € L(X),
we obtain M{D,le,D.D} and M{G,D,Tzl,o} € C(I). Furthermore,
for every operator A € J < [1,1], the operator
M(A,0,0,0) € [1,1]® 0 = [1.1]3, by Lemma 7.l. Therefore,
since 'M(X,0,0,0) = M(0,0,0,X) for every X € L(H) and
Ty1:T5; € J, we obtain M{Tll,D,G.DJ,M{D,G.D,TEE} € [1.113 :
Therefore T' = M(?T,,,0,0,0) + M(0,T,,,0,0) + %(0,0,T,,,0) +
M(0,0,0,T,,) € [1,1]g -

To prove the second part of the theorem, let T € -
and write T = - i.T2 where T, and T, are the real and
imaginary parts of T, respectively. We saw in Section 4
(in the proof of Lemma 4.4) that T € J° implies that

0
L U Stadiy,

It therefore suffices to show that every self-
adjoint operator S € J°, is contained in [I.I]? .

By the spectral theorem for compact, self-adjoint
operators and the unitary invariance of the trace, we have
that S = D((a,)) where (a ) € Calk(J) e 1, (a ) is a real
sequence, and Za = 0. Let {a;} and {a;} € Calk(J) denote
the subsequences of [an} of non-negative and negative real
numbers, respectively. Then Ea;==-za; > 0, Letting a = Ea;

= -Ea; we obtain (in the case both are infinite sums)

D((a,)) = D((a})) @ D((a]))

LD((a}))@(-aP)] + [ (-aP)é(aP)] + [(aP)eD((a]))] .
But D{(a;)}m{-aP} - D(-a.a{,ag,...)ao € J%o0 c [1,1]@0 <
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[1.'1]3 by Lemma 7.1, and the same holds for (aP)#D((a_)).
Also (-aP)®#(aP) = D(-a,a)®0 € C(F(H)) = C(1), as we have
seen before in Section 4 (in the proof of Lemma 4.4).

Hence D((a_)) € [I.I]? ..  RE.D;

The main point of this theorem is that it proves

the following corollary.

Corollary 7.3. Let I be an ideal of L(H). Then
12 = [1,1] if and only if I = [1,1]Jg = [I,I]. Furthermore,
if I < C,, then (12)° = [1,1] if and only if
(APl ot e

Proof. Apply Theorem 7.2 setting J = IE. Q@.E.D.

Let us point out some of the significant conseguences
of these results. Corollary 7.3 shows that Gi - LCE.CEJ
if and only if Cg = EEE'CE]lu - [UE'SEJ' what is more,
Gg = LGE'GEJ if and only if for every segquence (dnj
for which d ¥0, Zd = d < =, we have that the operator
D(=d,d;,dyy.es) @ 0 € [02.62]3 . This suggests that our
main construction of Section 4 may be the best possible
one with which to deal with D{-ﬁ.dl.dz....}-

Before we obtained these results, it had seemed
likely that there were operators which could only be
expressed as a linear combination of commutators of C,
if we employed a large number of such commutators.

Iln other words, one might have searched for a technique

N G ety )

Wt
for solving the commutator equation T = L _, a (X Y -Y X
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which depends on taking N large. However, this section
proves that there is essentially nothing to be gained

by doing so.

This concludes Section 7.

8. Related Commutator Problems

We shall devote this section to some results and
questions designed to develop a strategy for improving
the results of Section &4,

In Section 4, close examination of the operators
D(-d,d),d,,...) and D(d,d;,d,,...) & O where d 40 and
Edn= d < » was a paramount theme., The best results of
that section were due to our being able to represent some
of these operators as a single commutator or as a
linear combination of 3 commutators of Hilbert-Schmidt
operators. Our failure to solve the 'Ci = [CE,GEJ' problem
was due to our inability to express all such operaters as
a finite linear combination of commutators of Hilbert-
Schmidt operators. This difficulty is due to a key theme
in the main construction of Section 4 which first appears
in equation (4.6) together with Corollary 4.8, It
permeates the main parts of the construction, especially
equation (4,22) and the succeding computations regarding
the Hilbert-Schmidt norms of the special solution operators
Al.AE and AB introduced on page 79. Namely that

D[—d.dl.dz....J = X*) - XX* where “KH§2= Elndn. and that
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X € C, if and only if Ind < e, This theme is both
good and bad in that it gets us off the ground but
limits the power of our end results.

How could the technigues of Section 4 be improved?
We expressed D{-d.dl,dg....} € 0 as a linear combination
of 2 operators, the essential one of which was unitarily
equivalent to the countable direct sum of our canocnical
diagonal operators D(-x,X;,X,,...) where xn}ﬂ and'Ix = x < «
(see Summary 4.25-5 and 4.25-6). We then wrote these
diagonal operators as commutators using equation (4.6)
and the estimates of Corollary 4,8. There are two obvious
strategies to pursue in order to improve these techniques.
The first strategy is to try to make a better choice of
the set of real numbers that we added and subtracted and
then rearranged in order to obtain the diagonal operators
that appear in the countable direct sum in equation (&4,16),
This approach avoids looking for better ways than equation
(4.6) to write D(-x,X;,X,,...) as a commutator of Hilbert-
Schmidt operators, which is a difficult problem for us.
However, our work with John Conway proves that such an
improvement is impossible. The second strategy is to
actually look for better ways to write D{-x.xl,xz,...J or
D{-x,xl,xz....} & 0 as a commutator (or finite linear
combination of commutators) of Hilbert-Schmidt operators.

In particular, we should search for solutions X,Y
to the operator equation D(-d,dl.&z....l = XY-YX or
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norms of X and Y are smaller, in the sense that X,Y € EE
for more decreasing, positive sequences [&n} than just
those for which L ndn < e, It is natural to search for

a sufficient condition that X,Y € GE of the form

'L w d < «', where the sequence {wni is of slower growth
than the sequence (n)., This is because if w_ is of strictly
slower growth than n, then a larger class of decreasing,
positive sequences {dn} gatialy . E ”ndn < @ than deo satisfy
z ndn < oo,

In the preceding remarks we concentrated on the single
commutator problem for D(-d,dl,dg,...}. This is because the
problem seems easier with fewer wvariables. 0f course, our
main results depend heavily on the greater number of var-
iables inherent in the 'several' commutator protlem,

Also the single commutator problem is of interest in itself
in that it bears on the structure problems for E{CE}.

What are the ways in which an operator can be
explicitly written as a commutator of compact operators?

We know of only two techniques appearing in the literature
that lend themselves to modification in regard to
compactness.

The first method is the oldest and was used to prove
the original characterization of the commutator class
C(L(H)) when H is finite-dimensional. We used it earlier
(Theorem 4.2) to do just that. The method is as follows.,
Start with an operator T ¢ Eg . Then use the convexity of

its numerical range to show that there exists a basis with
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respect to which the diagonal entries of the matrix
representation of T are all 0. Then solve the operator

eguation

D(Y)X - XD(¥) = ( (yg-y5)xy5) = (t55) =T

for operators X and D(y) where X = {xiji. y = (y,) and

D(y) = D(y;+¥5s-++) with respect to this basis. The problem
with this method is that, as far as we know, there is no
workable method to determine whether or not the matrix

X = {xij} is contained in a particular ideal (we have some
results on this problem in Chapter 3, Section 2).

The only ideal for which there is a somewhat workable test
for containment is the Hilbert-Schmidt class. Another
problem is the following conflicting strategy. We need to
choose y € Calk(I), so y must be 'small'; but yet

(xij} = { tin{yi-yj) ) € I, so y must be 'large' in order
that x. .

J
gquite delicate if it could be made to work at all.

may be 'small'. Certainly this method would be

The second method involves our variation on Halmos's
identity: P = U*U-UU* (where U is the unilateral shift)
which is equation (4.6) and Corollary 4.8. It is especially
suited to writing diagonal operators as commutators.

Cur greatest hope for improving the techniques therefore

lies in looking for a variation of this method.

The first result actually gives new and better solution
operators X,Y for the equation D[—&.dl.dz....) = XY=-TXA.

It is a more difficult construction than equation (4.6)
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and we obtain |p3«:|if_122 = HYH{:EE = L [(n+1)/2] 4, which is
strictly less than E ndn « Unfortunately, although the
first sum is quantitatively smaller than the second sum,
it is not qualitatively smaller. That is, for each decreas-
ing, positive sequence (dnJ, 3 [{n+l}}2]dni e jif and only
ir & ndn < =, Even if we used these better solution
operators in the main construction of Section 4, namely

in equation (4.,20), then all our estimates would be
halved. This would be a quantitative improvement but not

a qualitative one. In any case, it is an important result
because it is the first commutator construction using
compact operators we know that involves more than a single
weighted shift and that makes use of more than one group

of cancellations in the computation.

Proposition 8,1, If dﬁLG and Zd = d < <, then
there exist operators X and Y for which
D(-d,d;,dy,sss) = XY - YX
and

uxHC; = HIHG; = 2 [(n+1)/2] 0.

Proof, Clearly
D{-d,dlrd2.--|} = D(-d'dl’djllli} ﬁ D(dz,dq‘pllt}-
The right-hand side of this relation acts on H & H.
Recall the notation H{Tll'TlE'Tzl‘TEEJ from the proof of
Theorem 7.2, which denotes the 2x2 matrix with operator

entries Tij (i,j=1,2) in the (i,j) position. Let

U= Ul (z e T L e

o0
n=1 &EH-l
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vV = U( (Ez=2 dznllfz.{E:=3 dznllfg....}. Furthermore, let

2 - 1/2 -
’l ik H{Ur "{En=l dzn} P ] Dl ? ]
and
o0 1/2
B = M(U*,0, (£, d,) piiggpe |
Then by computing we obtain
D{-d'dlld:a'l-'[} ‘ D{ﬂ‘a.dh.-tlj - AB - BA.
and
Il2 B Pt g Bl Gom
A e B ¢, = “n=1%n * “pe1¥p=n2x-1 n=2'*k=n92k
o0 o0
= Tpg oy g oLy Ndy
L]
= By (ndy,y + ndy)

Z [(n+1)/2]) @ .

Hence, via this unitary transformation and the unitary
invariance of the Hilbert-Schmidt norm, we see that
D{-d,dl,dg,...] is a commutator of two operators whose
Hilbert-Schmidt norms are both equal to & [(n+l)/2] d .
Q.E.D.

Note. This is the first single commutator construction

where Y # X%,

Related Commutator Froblems for Finite Matrices

Let us consider the following commutator problem,
which is the finite-dimensional version corresponding

to the problem of solving D(-d,d;,d5,...) = XY-YX for
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operators X,Y € E2 .

Problem 8.2. Let {dn}ﬂ=l denote a finite positive

sequence of length N where dn$ and Edn= d. For each of the
following equations, find solution matrices X,Y for which

x| = !Y is minimal.
©a | ‘cz

a) D{—d,dl....,dN} = XY - YX , where X and Y are
(N+1)x(N+1l) matrices.

b) Di-d.dl,....dﬁj @ 0 = XY - YX , where 0,X,Y are
finite matrices of sizes rxr,sxs, and sxs,
respectively, with s = (N+1) + r .

c) D{—d.dl....,dN} €@ 0= XY - YX , where 0,X,Y are

infinite matrices.

Why is Problem 8.2 important? For those who believe
that there is justice in the world, since
HD(-d,ﬂl,...,dN)lul= 2d, one would expect solutions X,Y
to exist to one of a,b or ¢ which are uniformly bounded
in their Hilbert-Schmidt norms independently of the size
of N and the choice of sequence {dnji=l' provided d is
held fixed. In other words, the trace norm of D{-d.dl.
....dNJ should perhaps be the only quantity that bears
on the Hilbert-Schmidt norms of the minimal solution
operators X,Y. If this were true in a or b, then it would
obviously be true for c. Also, if this were true for a,b
or ¢, then we would have 2 relatively easy proof that
Cg = EGE'CE]' We give the details of the proof in the

following remark.
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Remark 8,3. If there were to exist M > 0 such

that for every (dnJEEl for which d > 0 and Zd_=d,
there exist solution operators X,Y € CE of the equation
D(-d,dy,...,dy) 0 = XY - YX which satisfy ﬁxl{:;grlczfmlﬁ,
then Gg - LGE,GE]. The proof is as follows.

As usual, in order to show that Gg = LGE,EEJ, it

suffices to show that D(-d,d,,d ) & 0 € [C,,C ] for

2,--1
every Edn} for which dnLO and Zd =d and where 0 is infinite-
dimensional., Let [Ek} E/fi where € > 0 for every k. Since
{dn) E)El, we have that for each k, there exists n, for
which £°__ d_ < €, . Without loss of generality we may

n—nk n k
assume that (nk} is a strictly increasing sequence in k.

(= #] s |
Let ay = E _ d and let a = {ul.-al.az.-az,...J. Then

k Rn

D(-d,dy,d,,...) ® 0 = [D(-d,d;,d,,...) @ D(a) & 0]
-~ [0 @ D(a) & O] .
Furthermore,
D(a) = £ & a D(1,-1) = [z8 unlféu*{l,ﬂJ][Eﬁ unlféuil,ujj
~ [ 58 anlfzutl.GJ]Lza unl/zﬂ*{l,ﬂ}]

1/2 2 1/2
and |ze a, U[l,D}HC = |ze a,

2
Therefore 0 & D(a) & 0 € G{UE}.

= 2

Also
D(-d,dy,dy,...) & Dia) ® 0 = [D(-d,dy,...0d, _;,a;) @ O]
1

e [ze (D(-a,,d_ ,...,d e o) B0}
k' nk' nk+l'1 k+1



130

It is easy to verify that the matrices

D(-d,dlio--,dnl_l,u-l} '& G E!.ﬂ.ﬂ D(-ukpdn ,iil'dn ﬁﬂ

oy )
" k+l-l k+1
satisfy our hypothesis. Hence there exist operators XR,IR

1/2

for k = 0,1,..., where ”kaCE = ﬂ‘fklcz < May for

k=1,2,... , such that

D(-d'dl'...'dnl_l'ull} a D = KGIG" IGKG and.

Dl:-ﬁ. 'd lllrd a }EG=KY-YK .
e W e, <41 el Xk KK

Letting X = L& X, and ¥ = L& Ik , we obtain

2 2 2 2
Xl = Tiyle,? = Polc,? + & My < ol + ME €y < =

ﬂf'c2= Xjg. < = and

fil!'d
k et

@) © 0)]

g

[D(-d.dl.-...dnl_l.ml} @ 0] & (L& (D(-ay,d_

Hence, via the underlying unitary transformations,

D(-d,d;,d,...) & O € [EE,EEJ. The conjecture is proved.

Note that this proof resembles the main construction
of Section 4. The main construction is a more delicate
application of the same principle.

In this result we see a link between the infinite-
dimensional problem and its finite-dimensional counterparts.
It is not surprising to find such a link since finite-
dimensional operators are often used to solve problems
about compact, infinite-dimensional operators. A close

examination of the techniques of the main construction
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of Section 4 shows that we could have gotten away with
finite matrix approximations, but the arguments would have
needed to be more intricate and the results would not be

any more worthwhile.

Concrete Commutator Froblems for Finite Matrices

and The Computer

For what finite sequences [dn}ﬁ=l as above are the
known scolution operators the worst? That is, when is
Z nd_ or z [(n+l}/2](HIIargest (where we assume that the
sequence is arranged in decreasing order so as to minimize
the sum, See Lemma 4.28.). It is easy to show that if w %
i=l wndn is maximal for the sequence
dy= dy= ce = dy= d/N . Furthermore, if w, is strictly

and dn¢, then L

increasing, then this sequence is the unique sequence

which maximizes this sum. Therefore, for the sake of
concreteness and in order to be able to apply computer
techniques to our problem, we set d = 1 and ask the

following specialized questions concerning D(-1,1/N,...,1/N),
in which 1/N appears precisely N times. It is clear that

we lose no generality in assuming d = 1.

Problem 8.4. For each of the following equations,
find solution matrices X,Y for which IXHE2= ﬂrﬂcz is
minimal.

a) D(-1,1/N,...,1/N) = XY - YX , where X and Y are

(N+1)x(N+1l) matrices.
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b) D(-1,1/N,...,1/N) # 0 = XY - YX , where 0,X,Y
are finite matrices of sizes rxr, sxs, and sxs,
respectively, such that s = (N+1) + r .

e) D(-1,1/N,...,1/N) ® 0 = XY - YX , where 0,X,¥
are infinite matrices.

That ”x"cz= IYHEE cannot be too small is the content

of the next proposition.

Proposition 8.5. If X and Y satisfy any of the
equations in Problem 8.2, then ”I”E = "Y”E > dlfz.
2 2

Proof. If X,Y € EE and satisfy any one of the equations
in Problem 8.2, then

A
A

2d = ||xy-vx| Ixxl.. + l¥x]|
c e 5

R Ixle Ixlc, + ilrllﬁzjlxlluz

]

EHK“C; '

Therefore 4.-11’“’2

A

L. 0" X,
| "CZ Q

This result motivates the next question.

Question 8.6. Can solution operators X,Y be found

to the equations in Problems 8.2 or 8.4 which satisfy
xu = [¥ll. = 17
I¥e,= I¥le,

0f course, in any case for which the answer is yes,

Proposition 8.5 would solve the corresponding problem
in 8.2 or 8.4.

What is the role of the computer in our work?
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In joint work with Layne Watson, we programmed a computer,
using a crude search technigque invelving the use of

gradients, to minimize the function

D - (x¥-¥x)

2 -3 2 2
g 10 {"X"cz " ”Y”cz )

in which D was taken to be D(-1,1/N,...,1/N) or
D(-1,1/N,+..,1/N) @ 0O for the cases N = 1,2,3,4,5,6 ,
where 0 was taken to be finite-dimensional of wvarious
sizes, and where X,Y are the variables.

This problem is a non-trivial computer problem
since it is non-linear. Indeed, it is a "quadratic
programming problem" with {N+l}2 variables or more.

It is difficult to determine the absolute minimum

in this way. The main difficulty seems to lie in

the existence of many relative minima. In other words,
this method is not too reliable. In any case, we carried
out quite a few programs using different "initial points"
and obtained data whiech suggests that the following

conjectures seem likely to be true.

Conjectures.

I. The answer to Froblems 8.2-a and 8.4-a is
2 2 N
Hxlﬂz g “YIGE =L .4 [{n+l}f2]dh_ , where X and Y

may be taken to be A and B in the proof of Propo-

sition 8.1 by replacing {dn} by [dn}2=l (if N=2

then the (2,2) matrix position is the number 0).

Of course, X and Y are not unique.



134

II, No improvement is realized by considering

D(-d,dl,...,dﬂ} # 0 instead of D(-d.dl,....dN}.
In other words, the same minimum holds for each
of the Problems 8.2-b, 8.2-c, 8.4=-b, and 8.4-c¢,

provided we normalize to d = 1.

What are the ramifications of I and I17?
If I were true, then for N = 1 or 2, we have

N g
£ _,l(n*1)/2]a =2 _,d_

Question 8.6 is yes for N = 1,2, but the answer is no

d and so the answer to

if N > 2 (provided d3 > 0). (Equation 4.6 and Corollary 4.8

n=1
when d, > 0.). Furthermore, we believe that this provides

yield ﬂx“ci - Ixuci = £ ) nd_, which is greater than 1

evidence that CtCE) # Gi , although no completely deter-
mining link has actually been proven to exist between the
infinite matrices of our theory and these finite cones.

I and II together appear to suggest that our earlier
suspicion that very dense matrix forms (matrices with many
nonzero entries) would yield smaller solution operators X,Y
is wrong. The computer had produced some dense forms, but
their Hilbert-Schmidt norms were always roughly the sum
zﬂtl[(ml )/2]a_ .

The reader should keep in mind that we have no proofs
of these conjectures. One of the difficulties is that there
are too many variables to contend with. What the computer
definitely accomplished was its demonstration that the

finite-dimensional case of equation (4.6) with |X|, 2=
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Y 2 = EN
Iel,,

] ndn was not minimal., Previcusly, this had

been unknown and of interest to us.

If we allow D{-d.dl.d ) # 0 to be written as the

E'lil
sum of two commutators, then the main construction of
Section 4 could be made to conform to this problem.

In fact, a slight variation on the adding and subtracting

theme yields finite matrices A and X for which

D(-d,dj,eee,dy) ® 0 = -(A¥A-AA¥) + (X*X-XX¥)
and

N 2 Wl
Zp=1llogn]dy EHA“CE i HKMUE <2z _;llogynldy

This also holds if (ﬁnJ is an infinite sequence,
With respect to Question 8.4, if in b, the operator 0 is
of sufficiently large dimension, then
D(-1,1/N,...,1/N) ® 0 = -(A®A-AA*) + (X*X-XX*)
with

HAHC; + x| 2

1A

1G2 2{10g2e1{2ﬂ=1[1ng n))/N

Eilcgze)(log N!)/N O,

Proposition 8.1, in its finite matrix form, tells us
that D=1, I/ SN = TESYX with
R, =
Hxﬂﬂz = (2 ;L (n+1)/2])/N = o(N) .
But (log N!)/N = 0(log N) . Hence, the techniques of Section

4 also have a significant bearing on these problems, which

was to be expected.

We close this section by pointing out a well-known

problem which has close ties with the conjecture of
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Remark 8.3. Namely, 'Does there exist M > 0 such that for
any finite matrix T (of any size) for which |T|l=1 and Tr(T)
= 0, there exist matrices X,Y for which T = XY - YX and
Xl Y| < M, where this norm is the uniform operator norm
of L(H)?'(for reference see [ 26, reference 5]).

Note that the only difference between this problem
for T = D(-d,dl....,dﬂj and the hypothesis of the statement
in Remark 8.3 is that the relevant norms are different.
Also, in this case, the above problem is seolved in the

above reference.

This concludes Section 8.

9., An Interpretation of the Results

In this section, we close Chapter 1 with an interpre-
tation of the implications of our results in regard to the

structure theory of the commutator classes C(1) and | 1,1].

The results and comments of Section 8 indicate, with
gsome degree of likelihood, that the operators DE—l.dl,dz,...}
and D(-1,d;,d,,...) © O with dnifa and £d = 1 cannot
always be represented as a single commutator of 02. and
also that the operators D[—l,dl,...,dNJ and D{-l,dl,...,dﬁjﬁﬂ
cannot be represented as XY-YX if X,Y are chosen to have

Hilbert-Schmidt norms that are uniformly bounded, independ-

ently of the size of N and the non-negative sequence {dn}i:l

Indeed, we believe there is a considerable likelihood that
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Proposition 8.1 and its construction is the best possible
result that one can obtain in the affirmative direction to
the 'C{EEJ _ Eg‘ question, and hence that E{CEJ # Eg 5
Similarly we feel that there is some degree of likelihood
that Theorem 4.36 and its underlying construction is the
best possible qualitative result in the affirmative
direction to the 'LEE.EE] = Ci' question., Hence we believe
that [C,,c,] # ¢] .

Examining the constructions of equation (4.6) and
Proposition 8.1 reveals that a controlled, efficient process
of cancellation occurs. Peculiarly, equation (4.6) depends
on the fact that our infinite matrices have a 'beginning
edge' (i.e. the first row or first column) and the
improvement of Proposition 8.1 depends on the fact that
they have more than one 'beginning edge', indeed, they
have two of them. One hope for improving the constructions
is to construct, via some unitary equivalence, some sort of
matrix representation for operators which has more than
two beginning edges and which reproduces the same kind
of cancellation phenomenon more efficiently. The existence
of matrices which do not have two beginning edges is not
just speculation. The well-known bilateral shift of multi-
plicity one has no beginning edges. M.S. Ramanujan | 30]
considers matrices which are quadruply indexed acting on
basis vectors that are doubly indexed . Perhaps there is
a natural unitary transformation between L(H) and matrices

of this type together with some notion of 'beginning edge’
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which yields better commutator equations. Cn the one han:
we expected this to show up in the computer results, which
it did not. On the other hand, matrices with several edges
must necessarily have a large number of entries, and

this might not show up due to computer limitations. This
implies that there is hope that severally indexed matrices
may provide the improvements we are looking for. Also,
increasing the size of the solution matrices, contrary

to the evidence mentioned in Section 8, may provide

better solutions.

Another reason we believe [CE,GEJ o Gg is the results
of Section 7 which state that cg = [€,,C,] if and only if
D(-d,d,,dsy..s) € O € [Gz'czjj . That is, the technigues
of employing large numbers of commutators for represent-
ations are of no consequence, and so any improvements to
be found must be able to be formulated in a construction
of at most 3 commutators. This makes our resulis appear
a little closer to being the best possible ones.

It is natural to draw analogous conclusions about P,
especially in light of the similarity of P with D(-d.dl,
dz....} ® 0 . We believe P § C(K(H)), and thus C(K(H))

# K(H)., The one precise result we have in this direction
is that P is not a self-commutator of a compact operator
(Proposition 6.1).

However, we wish to impress upon the reader that we

are merely describing the pattern that is emerging from

the known facts. Any quantitative or qualitative improve-
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ment on any one of our results could, as likely as not,
give rise to complete solutions to one or all of the
open questions.

Let us note a theme of the known results and an
analogous theme in our results. Pearcy and Topping | 26],
and Salinas [31] try to obtain ideals I = C, as close to
C, as possible such that [ 1,1] = 12. It appears likely
that I((nflfz}} is the smallest ideal I = C, for which

o n
Pe€[1,I1], and U (EI((n’lXEJ}J is the smallest ideal I
n=1

such that [I.I] = IE. Analogously, we have tried to find
ideals IC=GE, as close to CE as we could get, for which
B 2 €l LR appears somewhat likely that the ideal
I, of Section 4 (p. 99) is the largest ideal I = C, for
which {IE]D c [GE.GZJ. As yet, we have no well-defined
candidate for the largest ideal I < CE such that

(%)% « [1,11.

This concludes Section 9 and Chapter 1.
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CHAFTER 2

IDEALS AND THE FUGLEDE COMMUTATIVITY THEOREM

In this chapter we introduce a generalization of
the Fuglede Commutativity Theorem which involves ideals
of operators. This generalization holds for some ideals
but fails to hold for others. We shall give cases where
it holds, one case where it fails, and cases where we do
not know. We shall also establish a link between this

property and the perturbation theory of normal operators.

Let us, for the sake of completeness, state and prove
the Fuglede-Putnam generalization in a general B¥*-algebra
setting using an ingenious proof due to Marvin Rosenblum
(for the reference see [18, p. 356]). We will then state
the Fuglede-Putnam generalization and the Fuglede Commuta-
tivity Theorem in a corollary. But first we need some

definitions.

Definitions 1. If X is a B*-algebra and a € X, then

2 is sald to be self-adjoint if a = a*, and a is said to

be normal if a%*a = aa¥,

Theorem 2. If X is a B¥-algebra with identity 1, and

if ayea, € X are normal, then for x € X, a1X = xa, implies
¥

»*
a;Xx = Xa, .
Proof. (Rosenblum). If a;x = xa, then induction shows

that alnx ==.xazn for every n € z¥. It is well-known that

140



141

a

for every a € X, e = T a''/n! converges in the norm of

a

the B*-algebra, and also that e 2 is the inverse of eZ.

iza
1y

iza
Therefore, e = Xe 2 for every complex number =z,

iza, -iEa2
and s0 x = e Xxe for every complex number z.
& * L *
1Z3 =l1lZa
2
lx

Define F(z) = e & , which maps the set

of complex numbers into X. 1t is clear that F(z) is
analytic in the entire complex plane. By the last remark

in the preceding paragraph,
o . ey S , *
iza ~-iza iza iza -iza, =iza
F{z) = e lxe 2'—‘& le lxe ze 2
. #* - . #* .
1{zal + zal) —1(za2 - zaz]
e X e M

= e
Note that za; + za; and —{za2 + za,) are self-adjoint.

We assert that if h € X is self-adjoint, then eih is
unitary (i.e. {eihl* = [eih)'l ) and Haih|’= T P ER

#* i
is unitary, that is, ifu = u 1, then

quz = ||u*ull = Nu-lu" = Hll Sy e

and so ﬂu|f= 1. Therefore all we need to show is that

eih is unitary. But by definition,

(e™* = (2 (1)"nN)" = £ (")t = £ (-in)/n! = e~ 10,
By multiplying the corresponding infinite series and using

the fact that they converge absolutely, one can easily show
o8 o e 3 o
that elhe S e lhelh . Hence [elh) = g~ih o {elh} l.

Therefore we obtain

i(za) + za,) o
“El za, za, —i{za2 + zaE}I

”F(z}"

X e

"Ei(zaI + Eallﬂ “ei{-{za; " Eag)}l

A

x|
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= x| .

Hence F(z) is bounded in the X-norm and analytic in the
entire plane. It is well-known that Liouville's Theorem
applies in this setting to yield F(z) = F(0) = x for

every'cnmplex number z. In ather words, we have that
+*
izal -15&2 izal 1232

e = x, thus e = xe for every

complex number z. leferentlatlng both sides wlth respect

lZﬂl 1532
to z, we obtain (ial e i X5 x:(132 e } . fae gll =,
Setting z = 0 and dividing by i, we obtain alx = xa; .

Q.E.D.

Corollary 3. If A,B € L(H) and A is normal, then
AB = BA implies A¥*B = BA¥* (the Fuglede Commutativity
Theorem). 1f Ay,A,,B € L(H) and Ay and A, are normal,
then A\B = BA, implies AyB = BA, (the Fuglede-Putnam

generalization).

Proof. Fuglede's Commutativity Theorem follows from
Theorem 2 by setting X = L(H), a;= a,= A and x = B,
The Fuglede-Putnam generalization follows from Theorem

2 by setting X = L(H), a;= 4;, a,= A, and x = B.

Note. Theorem 2 appears to be more general than the
Fuglede-Putnam generalization. This is not the case. Indeed,
the Gelfand-Naimark Theorem in the non-commutative case
tells us that if X is a B*-algebra with an identity,

then X ig *-isometrically isomorphic to a uniformly closed
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subalgebra of L(H), in which the Fuglede-Putnam general-
ization applies. Hence, Theorem 2 is equivalent to the
Fuglede-Putnam generalization.

Note also that these results and proofs hold in the

cases when H is non-separable.

We now introduce some possible generalizations of the
Fuglede Commutativity Theorem and the Fuglede-Putnam
generalization. Our idea 1is as follows. OUne way to state
the Fuglede Commutativity Theorem is: "If A,B € L(H) and
A is normal, then AE - BA € {0} implies A%B - Ba* € {0}",
It is then natural to ask whether or not the theorem
remains true if we replace {ﬁ} by some other ideal I,

That iz, does it hold true that 'If A,B € L(H) and A is
normal, then AB - BA = 0(modI) implies A*B - BA* = O{mod I)'?
It is also natural to ask whether or not one could replace
the normality of A in the hypothesis by the normality of

A modulo (I%) (i.e. A*A - AA* = O(mod (I°) ). Thus we make

the following definitions.

Definition 4. The operator A is said to be normal (I)

provided A*A - AA¥ € I,

Definitions 5. Let I be an ideal in L(H).

(1) I has the Generalized Fuglede Property (GFP)

if whenever A,B € L(H) and A is normal, then
AB - BA € 1 implies A*B - BA¥* € I,
(2) I has the GFP (1) if whenever A,B € L(H) and A is

nnrmal(lz}, then AB - BA € I implies A%*B - BA¥* € I.
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(3) I has the Generalized Fuglede-Putnam Property (GFPF)

if whenever Al,Ag,B € L(H) and Al and A, are
normal, then_ﬁlB - BA, € I implies A;B - Bﬂ; E 3
(4) I has the GFPP (I) if whenever AjsAy B € L(H) and

A, and A, are ncrmalflEJ. ﬂlE - Bﬁz € I implies

2
#*
B—BAEEI.

1

#*

Ay

These four properties are clearly related, as we shall
see in the next proposition. The GFP is the simplest and

most essential one, especially in view of this proposition.

Proposition 6, If I is an ideal in L(H), then

(2) <==> (4) ==> (3) <==> (1),

Proof., That (4) ==> (2) ==> (1) and (3) ==> (1) are
obvious. Therefore all we need show are that (2) ==> (4)
and (1) ==> (3).

To see that (1) ==> (3), let Ayrhy, B € L(H) for which
AyB - BA, € I and assume (1) holds. Let A = M(4A,,0,0,4,)
and B = M(0,B,0,0), so A,B € L(H & H). (Recall that
M(Tll'TlE’TEl’TEE} denotes the 2x2 matrix with operator
entries Tij in the (i,j) position.). 1t is easy to verify
that A is normal, and that AB - BA = M(0,A;B-BA,,0,0) € I
(considered as an ideal in L(H)} under our usual identifica-
tion) and A*B - BA* = M(O,A;B-BA,,0,0), But if (1) holds,
then I has the GFP, It follows that I, considered in L(H®H),
has the GFP, Therefore since AB - BA € I, we obtain
A*¥B - BA® = M{ﬂ.ﬂiB—BA;,D,G} € I, Therefore, AIE - Bﬁ; e 3,
considered as an ideal in L(H). That is, (3) holds.
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To see that (2) ==> (4), apply the same proof as in
the case (1) =>(3). Q.E.D.

Therefore we shall only consider the properties

GFP and GFP (I).

There is an interesting analogue to the GFP regarding
AB instead of AB-BA, and this analogous property holds for
every ideal and any Hilbert space of arbitrary dimension,
Certainly questions about AB should be considered before
the corresponding questions about AB-BA. Fortunately, the
answers in this case are elementary and complete. They are
given in the next theorem.

Also, this theorem indicates why we choose the hypo-
thesis "A is narmal{Iz}" instead of "A is normal (I)" in

Definitions 5-2 and 5-4 above.

Theorem 7. Let I be an ideal in L(H).

(a) If A,B € L(H) and A is normal, then AB € I implies
A*B € I, Furthermore, if I is a normed ideal such that
HTHI = " IT| “I for every T € 1, then AB € 1 implies
A*B € T and also |4B[, = [a*B];.

(b) If A,B € L(H) and A is normal (I%), then AB € I
implies A¥B € I,

Proof. Note that

|aB| [(AB)*(AB)]/? = [B*a*aB] /2 = [praa*p])}/?

[(A*B}*(A*B)]I/E = |A*B|,

since A is normal. That is, if A is normal and A,B € L(H),
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then |AB| = [A*B!. Therefore

AB € T <==> |AB| € I <==> |A*B| € I <==>4%B € I,

Also |AB|; = HIABi“I = | ja*B| |; = |a*Bl; . This proves (a).
If A,B € L(H) and A is normal (I2), then A*A - AA* = K

2

where K € I, Hence ]AE|2 - ]A*Eiz = B¥(A¥A - AA*)B =

2 2

B*KB € I°. Therefore |AB| € 1° if and only if [A*B|® € I

and so |AB| € I if and only if |A*B| € I. Q.E.D.

Note. Theorem 7-b becomes blatantly false if we replace
the hypothesis "A is normal (I°)" by "A is normal (I)".
Indeed, let I =C,, T € C\C; and let A = M(0,T*#,0,0) and
B = M(1,0,0,0) where 1 denotes the identity operator.
A simple computation yields A*A = M(0,0,0,TT*) € Cy
and AA* = M(T#*7,0,0,0) € Cy +» and so A%A - AA% € C, = I.
That is, A is nermal{ﬂlj. Also AB = 0 € C, but yet

A*B = M(0,0,T,0) ¥ C, , since T € C,\C,,

The next theorem states all that we know about which
ideals fully or partially have the GFF, except for a recent
advance mentioned in the remark following the theorem.

With minor modifications, the theorem holds true for any
Hilbert space of arbitrary dimension.
For one of the cases in the theorem, we need the

following definition.

Definition. An operator T is called a kernel operator
if it ecan be put into the form
(Pf£)(x) = J K(x,y) £(y) du(y),

where f € inu] and, for p-almost every x, K(x,+) € inu}.
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Theorem 8.

(a) {0} has the GFP ({0}) (Fuglede's Commutativit;
Theorem).

(b) K(H) has the GFF (K(H)).

(c) If A is diagonalizable and AE - BA € C, , then
A®B - BA*™ € CE
ular, if A is a compact, normal operator and B is a bounded

and |AB - BAHGE = |a*s - BA*HUE. In partic-

operator for which AB - BA € C,, then A¥B - BA%* € EE and

2
|aB - BAHG |a*B - Ba® EL
(da) If A is a multlpllcatlon operator on L (p) and
B is a kernel operator on L (r) for which AB - BA € Cou
then A¥B - BA* € C, and [AB - BAlg - |a*B - Bﬂ*ucz.
(8) If B € Ez and A is normal, then AB - BA and
A*B - BA* € C, such that |AB - BA|. = [A*B - BA¥|, .
2 GE GE
(f) The ideal F(H) of finite rank operators does not

have the GFP,.

Proof., (a). This is precisely the Fuglede Commutativity
Theorem.

(b). Apply Theorem 2 setting X = L(H)/K(H).

(e)s In some basis, A = D(z;,2,,...) where (z,) is a
bounded, complex-valued sequence., As we mentioned in

Section 8 (p. 125), by computing, we obtain AB - BA =

( (z, 3% )bla where B = (bij] is the matrix representa-
tion of B with respect to this basis. Hence

- = s 2 _ o - = 2
las - BA||CE = I}, J_l[(z -23) by 5|° = Ei,j=1f(zi'zj}bijf

|a*B - BA%|.? .
Therefore if |[AB - BA|, < =, then [|A*B - BA¥|, < =
2 2
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and these norms are equal.

If A were compact and normal, then the spectral
theorem would yield that A is diagonalizable,

(d). If A is a multiplication operator on LE(HJ- then
for some h(x)-€ L(u), Af = hf for every f € L3(u).
If B is a kernel operator on LE{uJ, then for some
K({x,y) € LE{u{yJ} p-almost everywhere we have that
(Bf)(x) = J K(x,y) f(y) duly) for every f € inu}. Therefore
(ABf)(x) = J K(x,y) h(x) f(y) du(y) and
(BAf)}(x) = J K(x,y)hiy) £f{y) du(y). Whence
((AB-BA) ) (x) = J K(x,y) (h(x) - h(y)) £f(y) du(y) . Similarly
((A#B-BA*) f) (x) = J K(x,y)(h(x) - hy)) £f(y) du(y).

It ig well-known that since AB-BA and A*B-EBA¥*® are themselves
kernel operators with kernels K(x,y)(h(x)-h(y)) and
K(x,y)(h(x)-h{y)), respectively, we must have

|aB - Bﬂﬂcz = JJ|K(x,y) (n(x) - h(y))|? dau(x) dn(y)

il

I % (x,y) (B(F) - B2 au(x) duly)

Jass = o]

The rest of the proof of (d) is clear,

(e)s If A is normal, it is well-known that there exists
a sequence {An} of diagonalizable operators for which
HA - ﬂnu-———} 0 as n —> =, where the norm is the uniform
operator norm. But then by part (c) above, we have

|43 - Bﬂnucz = |a)B - BA;"CE. This gives us the following

inequalities,



149

p.

IHAB - BA“C2 - [|a*B - BA*“GE

+

I“*B‘Bﬁhc - |AnB-3a, | H*nB’E*n”c ““*;B‘E*;uc
2 2 2 2

.3 C

” " -3 5k
Nanﬂ-mn"ﬂz-ua B-BA ﬂ Z

IA

| (am-a) - {AnB-BAn}uEE + 0+ |(A B-BA) - {A*B-BA*}HCE

[a-apie-sia-ap]c + [arnrs - sanx|g
< bi'ﬁ-ﬁn" “E“GE ——3 0. B n—= e,

Therefore [AB - Bﬂ"cz = |a*s - BA*"GE.

(f). To show that F(H) does not have the GFF is the
most difficult part of the theorem. It requires an intricate
construction. Our strategy is as follows.

We shall produce trace class diagonal operators Dl and
D, and a matrix BlE C, such that D;B, - B,D, has rank 1 and
DIBI - BIDE has infinite rank. Assuming that we can do this,
if we let A = M(D,,0,0,D,) and B = M(0,B,,0,0), we obtain

AB - BA = M{G,DlBl- B,D,,0,0) and

6 g 4

A*B - BA¥ = M(G.DIBl- B 0,0) |,

102
and clearly A is normal. It is obvious that for every T,
the rank of T is the same as the rank of M(0,T,0,0).
Therefore the rank of AB - BA is the same as the rank of
D;B,- ByD,, which is 1, but the rank of A*B - BA* is the
same as the rank of D;B,- B,D,, which is infinite.
Therefore the proof will be complete when we construct

D

l'D and B

2 : i
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Let Dy = D(1/2,1/%,1/8,...). Clearly D, € Cy.
Formally %e? D, ﬁ D{zl,zz,...} and B, = {bij} where
hij = #'(I+J)[2'l- zj}_l . We shall choose the sequence
(zn] inductively to satisfy several properties.
First of all, we want to be sure that 12'1 - zjl is large
: . .5 2
enough to insure that B, € C,, that is, hij € £7(41,3).
Secondly, we need to be sure that|=n|is small enough to
insure that D2 € Cl.
In the first place, if we can choose (zn) to be in the
closed, left half-plane, then 'E'i - zjl > E'i, and so
o {u-{i*'jji.: =i —jE 2-‘-
lblﬂ < 2 27y ﬂ (i,3)
In the second place, we can insure that D2 € Cl if we
-n
can choose (z, ) such that lzn1_5 255 &
In regard to the rank requirements on DlBl- BlD2 and
DIBl- Bln; , note that
(D}.Bl- BlDEJ (l.;}]

(=1 . zj}u"i+i’[z'i - zj}'l

(1))

and so the range of D BE,- B,D, is the l-dimensional subspace
spanned by the vector (1,1/4,1/16,...). Therefore, since
(D]B)- ByD3) (1,3) =43 (@t ot - 1)),
it is clear that D)B,- B,D, has an infinite dimensional
range provided that we choose the sequence [zn} with one
additional property. Namely, for each positive integer N,
the N vectors given by ( #‘{i+j}{{2'i—ij]f{2'i-zj}J }?;l
for 1 € j£ N form a linearly independent set. Clearly,

for this to hold, it is sufficient that the N vectors given

b ¢ 4_{i+j]{2'i-ij3f{2di-zj) ]izl for 1 €< j < N be linearly
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independent in ¢"; equivalently, that the determinant of
the NxN matrix ( #'{i+j]{{2-i z J/lﬁ_l Z; )) Jl s

be nonzero. Hence, it is sufficlent to prove that there
exists a sequence [zn} in the closed, left half-plane

for which |z | < 2"" for every n, and for which

aet ( (U ((ziz /278200 )Y L)) # 0 for every N.
We prove this by inductlnn.

The first possible case where this could hold is the
case N = 2, For this case, let 29= 0 and Z,= e
Then Zy and z, are in the closed, left half-plane; they
satisfy |z | < 2~™; and
get ( (¥ PV lznnziagg) )2

y 3= =1/
det (M(1/16,i/64,1/64,(1/256)((2+i)/(2-1)) )=

“*(1-1)/(2-1)) # 0.
For the general case, assume (z }n=l has been chosen

to satisfy the induction hypothesis, Let Zy denote the

]
free complex variable which ranges over the intersection
of the open, left half-plane and the open disc

[zl < 22M1)7 ppen

f(z ) = det ((4~ (*d)((2-iz gJf(eat=agdi Y

N+1'5N+1 1

N+1-1i - i+N+1) -i -i
= Tl (-1) D, 4 (U SR 2 om0 ))

where Di is the subdeterminant of the (i,N+1) entry which
: = i+N+ -i = =] "
O B l}({E 1-5N+l}/(2 l—zN+l}J . Clearly, by inspect-

ion and the induction hypothesis,

% -(i+j) (-1 = -1 N
D det ( ( &4 ((277-2,)/(2 “853) J§ 3q) # 0.

N+1
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then

% E_l}N+LmiDiuf(i+N+l} i

If we let a, N+l
it guffices to show that there exists a z contained in
the intersection of the open, left half-plane and the open

dgise [ 12] < 2~ ™1)] guen that
fis,8] = Ly a iz hnjAz i) £ 0,

To see that such a complex number z exists, suppose to the
contrary that f(z,z) = 0 in this region. Taking the
z derivative of both sides of this equation, we obtain

- N+ =
0= fE{z,z} 2 Ei=i -aiftz iz) .

for every z in this region., However, ay , = DN+14'2{N+1}?’G,

and so f_(z,z) = Z?ii -aif{E'inz} becomes unbounded in

the open gisc | d5l=% 2'(H+lj] near the point z = pr(N+1) :
Therefore f_(z,z) is not identically 0 in this open disc.
But f_(z,2) Es clearly analytic in the open disc, This
impli:s that since f_(z,E} = 0 throughout the intersection
of the open, left haif—plane and the open disc, we must
have that f (z,z) is identically 0 in this open disc,
which is a eﬁntradictian. This completes the proof of (f).

Q.E.DI

Note. Another proof of (e) follows from (d) because
every Hilbert-Schmidt operator is a kernel operator in
any LE{u]-representation of the Hilbert space.

Concerning (f), F(H) was, until recently (see the
next remark), the only ideal we knew which fails to have

the GFP, It is perhaps the most significant part of the
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theorem. When we originally discovered the proof of (f),

we had first asked and answered the following question.

Do there exist A,B € L(H) where A is normal and the

rank of AB - BA is 1, but the rank of A*B-BA* is 27

We found that if dimH < 3, then the rank of AB-BA

is the same as the rank of A¥*b-BA¥. However, in the

case when dimH= 4, the construction in the proof of (f)

answers this question in the affirmative (i.e. set

D, = D(1/2,1/4), D, = D(0,i/2), B, = M1 /8,12 /32(1+1),

1/16,1/128(1-2i)), A = D;& D,, and B = M(0,B,,0,0) ).
Also note that the proof might have been slightly

easier had we not insisted that A € Cl and B € uz,

but we preferred to give the most general counter-example

that our construction could reasonably provide.

Remark. We have also recently shown, independently of

this thesis,that uP (0 < p < 1) does not have the GFP,

Theorem 8 leaves the following questions open,

which are especially important teo this theory.
Question 9. Does EE have the GFP ?

Question 10. 1s there any ideal, other than the
uniformly closed ideals (in the case when H is separable,
other than L(H) and K(H)), which possesses the GFP 7
Are there any ideals, other than F(H) and Cp D p=1).

which fail to have the GFP ?

Question 11. If A is a diagonal operator and AB-BA € Cl'
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must A¥B-BA* € Cl?

Question 11 is the statement of Theorem B-c replacing
CE by Cl. Question 10 indicates how incomplete this theory
is, at present. One of the difficulties one encounters here
is in deciding when an operator is or is not in a particular
ideal. Question 9 is the one of most importance. It has an
interesting connection to an important unsclved problem
in perturbation theory due to I.D. Berg [3] and P.x. Halmos.
We shall describe the problem and the connection in the

following paragraphs.

*Does Ez have the GFF?' and a problem of Halmos and Berg.

In 1909 Hermann Weyl [ 37] proved that each bounded, self-
adjoint operator acting on a separable Hilbert space can
be written as the sum of a diagonalizable operator and a
compact operator. In 1935 J. von Neumann [36] proved that
the compact operator can actually be chosen to be Hilbert-
Schmidt and alsc observed that boundedness is unnecessary
(in fact, the theory can be used to show that for each

p > 1, the compact operator can chosen to be in GP}.

P.R. Halmos [19] inquired whether or not the Weyl result
and the von Neumann result can be extended to normal
operators. I.D. Berg [3] later proved that the Weyl result
can be so extended, but he left unsolved whether or not
the von Neumann result can be so extended. That is, Eerg
proved that every normal operator is the sum of a diagonal-

izable operator and a compact operator, but he left
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unsolved whether or not the compact operator can be chosen
to be Hilbert-Schmidt. Berg did show, however, that the
compact operator can be chosen to have arbitrarily small
uniform norm, and in some special cases (e.g. when its
gpectrum is contained in a rectifiable curve), the compact
operator can be chosen to be Hilbert-Schmidt with an
arbitrarily small Hilbert-Schmidt norm. It is interesting
to note that it has been known for some time that

not every self-adjoint cperator is the sum of a diagonal-
izable operator and a trace class operator. J.H. Anderson
gave a nice proof of this in [1], and we give a variation
of this as follows.

Let U be the unilateral shift of multiplicity 1 and
let S =U + U*, Clearly S is self-adjoint. We assert that
S is not the sum of a diagonalizable operator and a trace
class operator. To see this, suppose to the contrary that

S=D+ T where D is diagonalizable and T € Cl. A computat-

ion obtains
P = (U+U*)U - U(U+U*) = SU - US = (DU-UD) + (TU-UT) .

In a basis which diagonalizes D, the diagonal entries of
DU-UD are all 0 (see p. 125). But T € Dl implies that
Tr(TU-UT) = 0 (Chapter 1, Proposition 4.1). Therefore,

in the basis which diagonalizes D, the sum of the diagonal
entries of (DU-UD) + (TU-UT) is 0. But Tr(P) = 1 and

is independent of basis. Hence we have a contradiction.

The connection between the GFP with respect to EE.
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and the unsolved problem of whether or not every normal
operator is the sum of a diagonalizable operator and a
Hilbert-Schmidt operator, is described as follows.
We assert that if it is true that 'every normal operator
A=D+ T for some diagonalizable operator and some T € C,°',
then C, must have the GFP. Murthermore, if it is true that
this decomposition can be made with a T of arbitrarily
small Hilbert-Schmidt norm (as Berg [ 3] shows in special
cases), then if A is normal and AE-BA € C,, it follows that
A¥B-BA* € C, and ||hB-—Bﬂ[!G2 = uﬁ*B»-Bﬁ.*“GE. The proof goes
as follows.

If A is normal, then by assumption, A =D + T for some
diagonalizable operator D and some T € GE' Hence if
AB-BA € Cz, then DB-ED + TB-BT € EE' Since T € GE' we have
DB-BD € Ez. By Theorem &-c, D¥B-BD¥* € Gz, and so
A#B-BA¥ = D#B-BD* + T#B-BT#* € EE. This proves the first
asgsertion., If furthermore A = Dn + Tn where, for each n,
D is diagonalizable and T € C, such that nTn"c2 <%/,

and if AB-BA € C then DnB-BBn e g

2 2
HDHB-BDHHCE = 1|D:1B-Bﬁ:|l{;2. Therefore

#* %
DHB_BDH € GE’ and

| -l - assnac | <

T N R e
+ st - o,
< |ca-p)B - B{a-nn)ncz + 0+ [(a-D_)*B - B{a-nn]*ﬂcz
< bl 8] = ¥ I8l/n , for every n.
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Hence ||AB—BA||C2 = HA*B-—B!L*HEE.

Berg states in [3] that he believes that not every
normal operator is the sum of a diagonalizable operator
and a Hilbert-Schmidt operator, and he suggests a candidate
for such a normal operator. It is multiplication by z
operating on LE(p} where p is Lebesgue measure on the unit
square in the plane, If Berg is right in that not every
normal operator can be so decomposed, then a possible
strategy or test for showing this is to prove that GE
does not have the GFP. If he is right in that the multipli-
cation operator above cannot be so decomposed, then if
we call this operator A, perhaps one could find a B € L(H)
such that AB-BA € C,, but yet A*B-BA* ¢ C,. Then by a
preceding remark, A could not be the sum of a diagonalizable
and a Hilbert-Schmidt operator. The advantage of this test
is that for each A and B, it is almost purely computational,
and the Cz-norm is the easiest of norms to compute.
The difficult part is in locating a proper B which is
bounded.

One might suspect that instead of using AB-BA as a
test, one could use AB instead. That is, if A is normal
and A = D + T ags above, then AB € C, => A*B € Gz. This
can be proved from the fact that ”DE“GE = HD*BHCE. the
proof of which is similar to that of Theorem 8-c.
Hence, if A is normal, AR € C,, and A*B f‘uz, then we would

have A # D + T, However Theorem 7 will not allow the

gituation that AB € C, but yet A*B 4 CE. It is quite
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possible that there is a similar theorem for AB-EA.

In other words, C2 may have the GFP but still it may not
be true that every normal operator is decomposable as
above., In the next paragraphs, we show a curious fact

by an intricate computation which might be construed as
evidence that Cz possesses the GFP and has the cz-norm

preserving property.

Heuristicse. There are some quantities in the theory
of infinite matrices which, when formally computed (in the
sense that the order of summation of doubly infinite series
are reversed without regard to validity), behave exactly
age one would naively expect. A prime example of this is the
following.

If A = {aiJJ and B = (bijJ in a particular basis,
then (AB-BA)(i,i) = zk(aikbki' bikaki]'
But then the formal trace of AB-BA is given by

EiB (85 byey = Bypayy) = Ij B oag b, - Iy B oaybsy

Bi By agpbrg = B Iy apsbyy

= Ly By a5y by - DieZpeag.pebyage

where the first equality is treated as a formal difference,
the second equality followe formally by reversing the order
of summation in the second sum, the third equality follows
rigorously by substituting i*' = k and k" = i in the second
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sum, and the last equality is obvious. In other words,
formally the trace of AB-BA is always 0. Of course this is,
in fact, blatantly false. A good example to see what is
going on is to analyze this argument in regard to the
equation P = U*U - UU* where U is the unilateral shift of
multiplicity 1.

A more involved argument of the same kind can be used
to formally show that if A is normal and AB € Gz. then
A*B € C, and ”AB“CE = ﬂA*B”cz. However we already know
that this is true by Theorem 7.

We shall now formally show that if AB-BA € GE. then
A¥B-BA* € C, and ]|M;-1amr[{:2 = H“-*B'B**ﬂcz'

Let A = (aij} and B = [hij) in some basis. Then

(A-B‘Bl}{irj} - Ek (Eikbkj. - bikak:]-)' Then

2
H*—B-B*"c: = Iy, 5l B (agbyy - bygayy)|
= E1, 55 B1xPe Pinticy) ) (Bplasnbp = Dyyan )
=

1,5 Zi,m (BgxPisPixeyy) (BypBy 5= Bypdy )

21,3 *k,m ‘aikiimbksf‘mj* D5 Pimey 52y 5
23 48m 3Pk $Pin PixPmi2kiRim)

where the first equality follews by definition, the second

follows easily by substituting k = m in Ekilikhkj-hikakj)'
the third equality holds since Lz, = Ein and also,

for each fixed (i,3), {Eikhkj'bikakj) EJQI{kJ, and so

(B (243PxyPixis)) (B (Bypbp s~Biplyy)) =
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Zye,m (B1xPrsPixlyy) (BypPrs=Bipns) o

and the fourth equality is obvious. Note that, thus far,
our argument is rigorous. If we use the same argument

together with the fact that A* = {ijiJ. we obtain

2 & 2
l‘”"“"l‘:E =I5 Ze,m PxifniPeiPaj * PikPin® kP im
B3840 iPin = PiyPpiBitny) -

That A is normal gives us the series identity
(A*A)(1,]) = Ly E’ki‘kj = (AA®*)(4,]) = I, aikijk'

From thie point on we use some formal, but sometimes invalid
identities. From an above equality,

2 X X
JAB-BAflc = (Z; 3%, m® P im®esng) * (B4, Pk, uP1xPin ik sBm )

= (25 5%, n®1x®niPkiPim) = (24, 5%k, mPikPni®kiRin’ -

If in the first two double sums, we use the normality of A
and interchange the orders of summation, we obtain

Zi,5 iom 20®imPk %3 = %5 Di,m B4 24k®inPk3Pnj

= L3Iy o (Zg e @00 By = B3I o (25 85,0, 0050

= Iy Iy (B e R )0sbys = Iy By o By AgangbyiBg

= Z4,3 Zx,m 2k1%niPkiPng

and
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4,3 Beym PixPin®i®ng = Zi Ziom By PixcBim®yjing

= Iy Iyom PuxPim(By opglyg) = Ep By g, by By (Fs Ega )

1,3 Px,m PixPin®ixtim ¢

Note that these last double sums are the first two double
sume in our expression for “L*B—:&L*Hc: « We assert further
that the sum of the last two double sume in the expression
for ||J.B-BAHE;3 is the same (formally) as that for

jA*B-BAY u:' Namely,

B3 Bxom (R0xBnsPysPym * PyyBpjoysdyy)

= Iy,3 Zx,m (Bgi®gnPesPyy * DyyBpsdgan:) .

That this holds follows from the following equations:

if we make the substitutions i —>m—> j—> k—> i,

we obtain

24,3 Zeom ik®miPkiPim = Zm,k B4, PixPmi®ikmi

if we make the substitutions i —=> k—> j—> m—> 1,

we obtain

24,1 Zxom P0xPni®ifim = Zx,m Zj,i 2ki®imPriPim ¢

Hence the expression for i]AB-BA"cz is the same 'formally’

as the expression for I[A*B—BL*HGE « This demonstrates what
2

we wish to shew.

In summary, we have seen that such a heurkstic argu-
ment shows something which is actually falme (i.e.

Tr(AB-BA) = O for every A,B € L(H)); it shows something
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that is true (i.e. if A is normal and AB € C,, then A*B € C,
and "*B"GZ = ﬂL*Bﬂczlt and it leaves Question 9 unsolved,

as far as we know. We tend to believe that C, does not have
the GFP, However if C, does have the GFP, then our formal
argument might play a role in a rigorous proof.

We wish to suggest another possible strategy for showing
that not every normal operator is the sum of a diagonal-
izable operator and a Hilbert-Schmidt operater.

1. Choose an operator S € C, such that the diagonal
of 8 in any basis is not contained injfl. The diagonal
operator D((1/m)) is an example of such an operator
(see Chapter 3, Section 2). (Note that Deckard and Pearcy
have an opposite result, namely, that for each operator in
ﬂi. there exists a basis in which its diagonal emtries are
all 0.).

2, Pind a normal operator N and an operator X € C,
such that NX-XN = 3,

3. Concluaiont N ¥ D + T where D is diagonalizable
and T € C,. This holds because if N = D + T as above,
then 8 = NX=XN = DX-XD + TX-XT and the diagonal of the
right-hand side, in that basis which diagonalizes D
and hence in which the diagonal entries of DX-XD are all 0,
ias contained 1n’£1. This gives a contradiction to 1 above.

Note that by [3, Corollary %] N must necessarily have

some pure centimious spectrum of positive planar area,

Thie concludes Chapter 2,
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CHAPTER 3
IDEALS, INDECOMPOSABLE OPERATORS, AND DIAGONALS

1. Indecomposable Operators and a Problem of Brown, Douglas,
Elﬂ Fillmore.

Let H be a separable, infinite-dimensional, complex
Hilbert space. Let (N) denote the class of normal operators
in L(H). For each bounded operator A, let uE(A} denote
the essential spectrum of A,

L.G. Brown, R.G. Douglas, and P,A. Fillmore
[8, Theorem 11,2] characterized (N) + K(H) by proving that
an operator A is decomposable into the sum of a normal
operator and a compact operator (i.e., A € (N) + K(H))
if and only if A*A - AA* € K(H) and index (A=AI) = 0 for
every A £ o (4).

One then asks under what circumstances the ideal of
compact operators can be replaced by the ideal Gl in this
result. Indeed, if A € (N) + C,, then A not only satisfies
the two conditions: (1) A*A - AA* € C, and
(2) index (A-AI) = 0 for every A f’uE(AJ, but in addition,
the trace of A*A - AA* is clearly 0, In fact, more must be
true, If A € (N) + C,» then the Helton and Howe trace
invariant [20] vanishes for A. This follows since if
A =N+ C where N is normal and C € C,+ then the trace
invariant for N + C is the same as that for N, and the

" trace invariant of a normal operator vanishes. One then asks:

163
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Question 1,1. Is it true that 'A € (N) + C, if and
only if (1) A*A - AA* € C,, (2) index (A-AI) = 0 for every
A g o (A), and (3) A has vanishing Helton and Howe trace

invariant'?

Brown, Douglas and Fillmore conjectured that this is
not the case, and in this connection they posed the follow-
ing question in [8, pp. 123-124] and at the 1973 Wabash
International Conference on Banach Spaces.

Question 1,2. Prove that not every Hilbert-Schmidt
operator is decomposgable inte the sum of a normal operator

and a trace class operator (i.e. C, # (N) + C,).

An affirmative solution to Question 1.2 answers Question 1.1
in the negative. This follows from the facts that any
Hilbert-Schmidt operator A for which A4 & (N) + Gl neverthe-
less satisfies conditions (1), (2) and (3) in Question 1,1,
That conditions (1) and (2) hold for every Hilbert-Schmidt
operator is well-known. That condition (3) holds for every
Hilbert=-Schmidt operator follows from the fact every compact
operator with a trace class self-commutator has a vanishing
Helton and Howe trace invariant.

The authors alsc asked the following related question.

Question 1.3, If A is a Hilbert~-Schmidt operator, does
there exist a normal operator N such that A ® N € (N) + cl?

In what follows, we answer all three gquestions and

generalize the results, In particular, we answer Question
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1.1 in the negative by proving that ¢, & (N) + C,» thereby
solving Question 1.2. For this we produce a large class of
operators A in C, that are not contained in (N) + Cye
Furthermore we show that each such A in C, leads to a
solution, in the negative, of Question 1.3. In fact, we show
that for each such A in C, and every Q € L(H) (Q need not

be normal) we obtain A ® Q £ (N) + C;. Our techniques

apply to more general ideals and not merely to CE and cl.

We shall state and prove our results in this more general
setting.

Let us recall some facts. Any ideal contained in L(H),
or L(H ® H), or L(H @ K ® H) is thought of as simultaneously
lying in L(H), L(H @ H), and L(H & H @ H),

As usual, M(Ty,,Ty,,T5;,T,,) denotes the operater in
L(H @ H) which is represented by the 2x2 matrix with oper-
ator entries T1j in the (i,j) position, for i,j = 1,2, Also
as usual, if I is an ideal of L(H), and so, under our ident-
ification, I is an ideal in L(H @ H), then I, considered to
be in L(H @ H) is precisely

We now state and prove our resultis.

Theorem 1,4. (The Main Theorem), If I is an ideal
in L(H) and A £ I, then

M(0,0,A,0) = (ﬁ g) g (N) + 1.
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Proof. Suppose to the contrary that A I and yet
M(0,0,A,0) € (N) + I, Then M(0,0,A,0) = N - M(X,Y,S,T)
for some normal operator N € L(H @ H) and operators
X,Y,S,T € I where I is considered to be in L(H). Then
N = M(X,Y,A+S,T) and N* = M(X%,6 (A+S)* Y* T*), Since N ie
normal, N*N = NN*, Substituting and computing using the
last two eguations, we obtain the equation

M(X*X + (A+S)*(A+8),°,+,*) = M(XX*YY*, ¢+, ¢,*),

Therefore, X*X + (A+S)*(A+S) = XX* + YY* or, equivalently,
|a+s| 2 = |x*#{2 +|x*|2 - |x|%, Since X,Y € I, and eince
every ideal is closed under the operation of taking adjeints,

2, and therefore !J.+S|2 & 12,

we obtain |x*|2,|v*|%, |x|% € 1
Hence |A+S| € I, A+S € I, and finally A € I, which centra-

dicts our assumption that A § I, Q.E.D.

Corollary 1,5. If I and J are ideals in L(H) for which
J¢# I, thenJ ¢ (N) + I, In particular c, # (N) + Cye

Proof. For every A € J\I, M(0,0,A,0) € J and by
Theorem 1.4, M(0,0,A,0) € (N) + I. Therefore J ¢ (N) + I.
Q.E.D.

Theorem 1,6. If I ie an ideal in L(H) and A £ I, then
M(0,0,A,0) ® Q £ (N) + I for every Q € L(H).

Proof. Use the proof of Theorem 1.4, using 3x3 matrices
with operator entries to represent operators in L(H € H # H)

in place of the 2x2 matrices. As in the proof of Theorem 1.4,
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apply the equation N*N = NN* and after computing, consider
only the (1,1) position. Q.E.D.

Co 1.7. If A € C,\C,, then M(0,0,4,0) € C

1'
tut for every Q € L(H), M(0,0,4,0) @ Q ¢ (N) + C,,

2!‘

Proof. This follows trivially from Theorem 1.6. Q.E.D.

Let us now reformulate Question 1.1 for an arbitrary

ideal I and ask another related question,

Question 1,8a. Is it true that 'A € (N) + I if and
only if A*A-AA* € I and index (A-AI) = 0 for every
A u‘{AJ' ?

Question 1,8b, If I = ﬂl. is it true that 'A € (N) + I
if and only if A®*A-AA®* € I, index (A -AI) = 0 for every
4 Ua(.l.}, and the Helton and Howe trace invariant for A

vanighee' 7

We stated earlier that I = K(H) solves Question 1.8a
in the affirmative. It is the only ideal we know that solves
Question 1.8a in the affirmative. However, the next corol=
lary yields many ideals which solve Question 1.8a in the
negative,

Corellary 1,9. If I is an ideal for which I ¥ I%/2,
then it ie false that 'A € (N) + I if and only if

A*A-AA* € T and index (A=AI) = 0 for every A § u.{.l)' 5

Proof. Choose A € 11/2\1 and let A, = M(0,0,4,0),
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1/2 * * i
and 80 AA, - A,A; € I and index (51-11} = 0

Then 11 €I
for every A § a.{ilJ. But by Theerem 1.4, Ay g (N) + 1.

Q.E.D,

A Point of View. The point of view which led to these
solutions motivates the following question, which may be
important in decomposition theory. Is every Hilbert-Schmidt
weighted shift operator of finite multiplicity decomposable
inte the sum of a normal operator and a trace class operator?
Note that our Hilbert-Schmidt operator M(0,0,4,0) seems
*far' from a weighted shift operator of finite multiplicity
in that its nonzero entries lie 'far®' from the diagonal.
There appears to be an important theme arising here. Loosely
speaking, some operators whose nonzere entries are near or
on the diagonal are not unitarily equivalent to operators
whose diagonal entries are far from the diagonal, and some
are., Which ones are and which ones are not appears, at times,
to be the central issue. This theme has arisen in regard to
commutators, Often in Chapter 1, diagonal operators were
not commutators, oxr they presented difficult commutator
problems, whereas operators of the form M(0,0,A,0) were
easlly written as the right kind of commutators. It is
becoming well-known that entries on the diagonal are harder
to handle than entries off the diagonal, in some contexts.
J.H. Anderson makes some of the same observations in
[1, Remark 4.4],

The next theorem answers the previous gquestion in the

negative, but leads to two other questions. We give
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two proofs of this theorem. The first one is a technique
which can be used tc obtain a more general result. The
second one cannot, but it is shorter and depends on

Theorem 1.4,

Theorem 1,10. If U is the unilateral weighted shift
-3/
operator with weights (wnJ where w, , = n and w, =0
for every n, then U € C, and U g (N) + Cye
Proof I, Clearly U € GE' Suppose tes the contrary
that U = N + C where N is a normal operator and C € C
Then N= U - C and

0 = N*N-NN* = (U*U=UU#*) = (U*C=CU*) = (C*U-UC*) + (C*C-CC*),

ll

and hence U*U-UU#* = (U#C=-CU%*) + (C*U-UC*) - (C*C-CC*),
It is well-known that the product of an operator in Gz and
an operator in Gl is an operator in GEKE‘ Therefore the
right-hand side of the previous eguation is in GE/B'
and so U*U-UU#* € 62/3. However, by computing we see that
U*U=-UU* ig the diagonal cperator with entries [w1|2,
{w2|2 - ‘w1|2. |w3[2 - I"EIE""' Hence, if we choose
Wor 1 ™ n~ /% ana Wy, = 0 for every n, then by computing
we see that U*U-UU* is the diagonal operator with diagonal
entries (1,-1,27%/2,-273/2 5-3/2 _373/2 ..}, which is not
contained iniﬁz/j. Therefore U*U-UU* & 02/3' which is a
contradiction,

Proof II. It is easy to show that since Wy, = 0 for
every n, U is unitarily equivalent to M(0,0,D,0) where D is

the diagonal matrix whose entries are the numbers Wor1°
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Hence D f’cl. Therefore, by Theorem 1.4, U ¢ (N) + Cye
Q-E-D-

The following two questions are concerned with char-

acterizing (N) + Cye

Quegtion 1,11, Whieh Hilbert-Schmidt weighted shift

operators are contained in (N) + cl?

Question 1,12, Does there exist a Hilbert-Schmidt
weighted shift operator which is not contained in Gl but
which is contained in (N) + Cy?

The answer to Question 1,12 is yes. I1I.D. Berg solved
this, and we give a simple version of his proof.

Let Un be the unilateral shift on the n-dimensional
Hilbert space H = {ek}E=1 . Let K be the nxn matrix for
which K e, = 0 if 1 < k < n-1, and K e = -e;. It is clear
that ?n = ﬂn - ig an nxn matrix in which every row and
every column has précisely one nonzerc entry, and that entry
is 1. It follows that V_ is unitary. Also the Ep-nnrm
(1 < p < =) of K, = U "-F

o is 1 and that of Un = ?n + Kn

is (n—l}lfp. Letting N = L@ n'z?n , S =18 e U, and
K = Z@ n'zxn , we see that N is normal and S € C,\C, and

is a weighted shift, Also S = N + K and ”K”cl =L % < =,

Question 1.11 remains unsolved. To this end

Theorem 1,10 and the affirmative solution to Question 1.12
may be a beginning,

This concludes Section 1.



171
2, D of Operators in Ideals

The problem of deciding whether or not a particular
operator lies in a specific ideal is often difficult. We
have already encountered this problem in Chapter 2,
Question 11, where given a matrix representation for a
particular operator A, we would like to determine whether
or not A is contained in C, or some other specific ideal.
In Chapter 2, the theory was carried only as far as this
problem could be solved., We wish to find new criteria
which make the problem more tractable.

Our approach is matricial, being motivated by the
well-known precise and complete solution to the problem
in the case of the Hilbert-Schmidt class., We shall deter-
mine, for several important ideals, necessary and sufficient
conditione on the entries of the matrices representing an
operator which will place that operator inside the ideal.
We begin with some definitions that are motivated by a
known fact [14] that a positive operator T € Cl if and only
if, in each basis, the sequence of its diagonal entries is
contained in ﬂl-. '-

Definition 2,1.
(a) If T is the operator with matrix representation

(tij} with respect to a fixed basis, let Diag(T) denote the

diagonal operator D{{tii}}, which has the same diagonal as T.
(b) An ideal I is said to have property D if

T € I <==> in each basis, Diag(T) € I,
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(e) An ideal I is said to have_g;ggg;ﬂg_gf 1z
for every operator T > 0, T € I <==> in each basis,

Diag(T) € I.

Note that 'Diag' depends on the basis.

The following two results are concerned with property D
and linking property D with property ﬂ+. and the first one
provides sufficient conditions on the matrices' entries

to insure membership in an ideal.

Lemma 2,2, If I is any ideal, then
Diag(T) € I for each basis =====> T € I,

Proof. We shall prove the contrapositive, Suppose
T & 1. Let T =Ty + 1T, where T, is the real part and T,
is the imaginary part of T. For every self-adjeint operator
S and any basis {Fﬂ}' (Se_,e ) = (e ,8e ) = (Se,e,) for

every n, and so the diagonal entries of any matrix repre-

sentation of S are real numbers, Therefore if {}ﬁ}is any
basis, {Tlen.anJ and (T,e_,e ) are real for every n, and
thuse l{Ten,gn}l > max {I{Tlen.en}].|{T2en,anJ|} for every n.
Since T ¢ I, either 7, or T, # I, If T; ¢ I and {%n}.is a
basis which diagonalizes T,, then |(Tan,an}{ > ]{Tlen.en][
for all n., But then D((Tye ,e )) = Diag(T,) £ I and there-
fore Diag(T) = D{(Ten.en)} g I. On the other hand, if

T, ¥ I, then similarly, in some basis, Diag(T) ¢ I. Q.E.D.

Proposition 2,3. If I is an ideal in L(H), then
I has property D if and only if I has property D+.
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Proof. It is clear that if I has property D, then
I has property D', and so it suffices to show that if I
has property D+. then I has property D.

Suppose I has property D'. By Lemma 2.2, in order to
show that I has property D, it suffices to shoew that T € 1
implies that Diag(T) € I for each basis. Hence, suppose
T € I and let {?ﬁ} be an arbitrary basis. We need to show
that D((Te ,e )) € I. If T = U|?| is the polar decomposition
of T, where |T| is the positive part, and U is a partial
isometry, then for each f € H,

(Wi 2,0 = [(|2| 22, 213/ 20ss)|
el

= (Ir1£,2) 2 |n|use, £)1/2

(z£,2)|

A

Since T € I, we have |T| € I and U|T|U* € I, Also [T > O,

and since (U[T|U*2,2) = [[2|*/2us2|? > 0 for every f ¢ H,

we have U|P|U* > 0, If I has property D', then

Diag(|?]) = D((|T|e ,e )) € I and also

Diag(U|T|U*) = D((U|T|U*e_,e )) € I. Therefore

D((|T|e, e, )(U|T|U*e ,e ) = D((|T|e ,8,))D((U|T|U*e ,e ))
@rée:

and so {n(]{Ten,an)|))2 = D{rtrnn,un)|2) € 1%, Hence

D{l{Tan.un}|} € I, and this implies D((Te_,e )) € I. Q.E.D.

Corollary 2,4, An ideal I has property D if and only
if, for every positive operator T € I, Diag(T) € I in each

basis,
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Proof. Use Lemma 2.2 and Proposition 2.3. Q.E.D.

Let us examine property D in the context of some

specific ideals.

Quegtion 2,5. Which ideals have property D7

A complete ligt of the ideals that we have determined
do or do not have property D appears in the main theorem of
this section, However we need to develop some preliminaries
first. The next lemma contains basic inequalities and
appears in [22].

Lemma 2,6, Let T € L(H), T> 0, £ € H, and p > 0. Then
(1) if 0<p<1, (Pe,1) < (2£,0)P)2)202P)

Furthermore if p ¥ 1, then equality in (1) or (2) implies

v

that f is an eigenvector of T.

Proof, If T € L(H) and T > 0, then by the spectral
theorem for positive operators, there exists a measure
space (X,u) and a function h € L™(X,u) such that h > 0
p -~ almost everywhere and T :;Hh, where My denotes the
multiplication operator of multiplication by h acting on
LEIK,p). This unitary equivalence implies an underlying
unitary transformation from H onto thx.;}. and so if f € H,
we may denote the image of f under this unitary transform-
ation again by f. The quantities referred to in (1), (2)
and the last statement in the lemma are invariant if we

replace T by My » and the inner preduct on H by the usual
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integral type inner product on LZ(X,uJ. etc.. It therefore

suffices to prove Lemma 2.6 for operators Mh acting on

Lz{x,p), where h > 0 p-almost everywhere and h € L*(X,pn).
First we shall prove (2)., Let 1 < p < =, Then

(M £, ) =S n|f|%an =J‘h1f|2/P|f|3fqdu

(/nP 2] 2 ap) /P (5|22 an)P/0

1A

(P £,£) /P |2 %/a

where q is the conjugate of p (i.e. p’l + q-l = 1 or
gq=p/(p-1)) and the inequality follows from Holder's
inequality. Therefore

I N

which proves (2).

Now (1) follows easily from (2)., Let 0 < p < 1.

=3

Ifr=p , then 1 <r<w, rp =1, and (2) applies to

r and M p° producing
h

a 2(1-r)
(M,2,2) = (WL 1,5) 2 (0, £,0)7 2|17

0 2,007 220,
and so
MR 2£,2) < (2,00 /TP 1)/7 o (g, )| 202-P)

which proves (1),
If equality holds in (1) or (2) when p ¥ 1, then the



176

corresponding Holder's inequality becomes an equality.
But we know that Holder's inequality for p # 1 becomes
an equality if and only if one of the two functions in
the equation is p-almost everywhere equal to a scalar
multiple of the other. Hence Tf = cf p~-almost everywhere

for some complex number c, Q.E.D.

With this lemma we can prove an interesting result
about Gp which is concerned with thefp—nom of the sequence
of/fz—nomn of the columns of a matrix. This result is
stronger than property D in certain ways. In particular,
it introduces a criterion which depends upon only one

basis instead of every basis as in property D.

Theorem 2,7. Let {En} be an arbitrary basis for H,
(1) If 0<p< 2, then (“TenH] ERP w—P0E C .
(2) If 2<p<w, thenT € C ==> (|re |) € QP .

Proof., Recall that T € 0 ol || € B —

D
|z|? € c,.

To prove (1), suppose that for some basis @n}'

(||Te, ||J E/Q’P where 0 < p < 2, Then E |Te_|? < = and

nl
0 < p/2 <1, Hence, by Lemma 2.6-1,

Ie [P = (IT1%e e )P/2 > (TP e ).

Therefore | F'I'qucl = tr(|7|P) = £ (|7|Pep,0,) < zfre P < «,
and so |T|P € c,, |T]e€ C,» and finally T € cp
To prove (2), suppose 2 < p<® , T € G and { }

is an arbitrary basis, Then |T| € C |T|P € Cl, and

Pl
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1l < p/2 < », Hence, by Lemma 2.6-2,
|Te, IP = (IT,Een.en}Pf? = (|2|Fe re)

and so E|rren“P <o {|T|Pen,en} < =, Whence (”Ten"J Exp.
Q.E.D.

We shall use this theorem to prove the main result
that will settle Question 2.5 for GP' It can be stated in
a stronger form than we shall need, but for the sake of

completeness, we give the stronger form in the following.

Corollary 2.8. Let (ng ) and (m. ) be two strictly
increasing sequences of positive integers, let {%é} be
an arbitrary basis for H, and let 1 < p<ww, IfTE€ G
then {Tenk mk}}k-l E,f . In particular, if P € C - then

Diag(T) € cp

Proof. If 1< p<wandT€C,, then |T| € C, and
|T‘lf2 € CEp' where 2 < 2p < «, Then Theorem 2,7-2
applies to 1T]l/2 and 1TTIXEU** where T = U|T| is the
polar decomposition of T in which |T| is the positive part
and U is a partial isometry, and where U*U|T| = |T|,

. 3 1/2 E 1/2 2
This gives {“[T| en") and lJIT| Ure ”J EJE i
Therefore
R & 1/2 1/2
|(Te ” |C|2] ™ e, siT] U*emkﬂp
1/2
] /' Cq .P
kS

max {“ﬂ|l/ze

my '

iA

R b

1A

7 [ )
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But both [“1T|l/Eenk”) and (

1.
jITI U emk

of sequences in‘izp and hence, are themselves sequences

) are subsequences

infﬁzp. Therefore, by the above inequality,
1/2 2p 1;”2 P
E‘(TE e }lp - 2‘“T| e u + E‘“T U*e < o,
nk’ My Ty I m,

To prove Diag(T) € Gp, use the first part of the
corollary letting n =m =k, Q.E.D.

We now have the preliminaries to state and prove the

main theorem.

Theorem 2,9. (The Main Theorem).
(1) K(H) has property D.

(2) If 1 < p < =, then C_ has property D.

r
(3) If an ideal I has property D, then C, = I. That is,
C, is the minimal ideal possessing property D, In particular,
F(H) and CP for 0 < p < 1 fail to have property D.
(%) The union and intersection of ideals that have

property D themselves have property D. In particular,
ifq > 1, then N CP
Prq

VU C_ has property D. Also U C_ has property D.
p<q P p>0 P

Proof., In light of Corollary 2.4, for each ideal I

has. property D, and if q > 1, then

above, it suffices to determine whether or not Diag(T) € I
for every positive operator T € I and every basis,

To prove (1), note that if {%é} is any basis for H
and T € K(H), then HTen"-———> 0 as n —> =, Therefore
J(Ten.en)‘ < "Ten“ —> 0 as n ——> =, In other words,

((Ten,en}} € ¢ and so Diag(T) € K(H).

n!
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To prove (2), apply Corollary 2.8.

To prove (3), it clearly suffices to show that if
Cy ¢ I, then I fails to have property D. If Cq o B
thenJRi = Calk{ﬁl) & Calk(I). Therefore there is some
positive sequence x = [xn) for which x € Calk(cll*\ﬂalkili.
and so D(x) € El\ul. Multiplying the sequence x by a
positive scalar does not alter its membership in Calkin
ideal sets. Therefore, without loss of generality, we may
assume that Ix = 1.

The rank one orthogonal projection operator P € F(H),
and so P is contained in every ideal. It is easy to verify
that if we set A = (a;;) where a,; = xilfz xj1/2 and Ix_ = 1,
then P = A, This implies that there is a basis in which
Diag(P) = D(x) € C;NI, and so P € I, P > O, Diag(P) # I,
and therefore I fails to have property D.

The rest is clear. Q.E.D.

Remark. In the introduction to Chapter 1 we mentioned
that we would make attempts to generalize the concept of
the trace, Strictly speaking, the trace is a numerical
quantity. However, in Chapter 1 and in this chapter, an
important theme is implied which is that the character
of the diagonals of matrices often play a crucial reole in
the study of a particular problem. It is this character,
or different aspects of it, that we have tried to under-
stand and exploit. In other words, the 'trace' of a matrix

is more than just a numerical quantity.
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Aside. In the proof of Theorem 2.9-3 we took notice
of a matrix that was unitarily equivalent to P. Since P
has been central to our work, we shall state some useful
facts about P which are not difficult to prove, but whose
proofs we shall omit,

(1) Every matrix A = (aij) for which P.= A is given
by the equation aij
XV 5 = J'cjiri for all i,j,and Lx;y; = 1.

= x;y; where (x) and (y,) E;EE-

(2) For every rank one operator T (not necessarily
a projection operator), the following identity holds:
T = (Tr(T)) T . Such an operator T is similar to P if and
only if Tr(T) = 1.

This concludes Section 2 and Chapter 3.



CHAPTER 4
INFINITE SERIES REARRANGEMENTS OF A NEW TYPE

A new type of rearrangement problem for infinite ser-
ies has arisen in connection with the results of Chapter 1,
Section 4 which has appeal to other areas of mathematics
and is reminiscent of Riemann's theorem on rearrangements
of conditionally convergent series. We present here
the problems, the known results and their applications
to commutator structures. (W.A.J. Luxembourg has recently
pointed out to us the existence of related work in this area
(see [10] and [11]) which deals with related questions
in a similar setting.)

In Chapter 1, Section 4, equation 4.6 together with
Corollary 4.8 states that (if d = 1) D(-1,d,,d,,...)=XY-YX
with ||x||ﬂ;" . ||‘I“c22 = End , and by Summary 4.24 of that
section, we obtain D{-l.dl,dz,...} @ 0 = (XY-YX) + (ST-TS)
where "x"gz - ”Y”CE' ”S”cz " “T”czi and “chzz + "5”522 =
Z bd , where {bn} (see p. 89) is related to the Fibonacci
numbers. Both the infinite series L ndn and £ bndn are of
the form I a X where aﬁfu and xniﬂ. In Chapter 1, Section &,
Problem II and Lemma 4,28 concern themselves with the first
agpects of this theory. We now expand our view in the
following way.

Let us examine different solutions to the equation
D(-1,dy,d5,+.4) = XY-YX. Our original construction
(Chapter 1, Section 4, equation 4.6) did not actually

181
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need that {dn) be decreasing, but Lemma 4,28 of that section
indicated that the best chance that ”X“czz = HYHCEE = L nd,
has to be finite is when [dn} is arranged in decreasing
order (hence we might as well have assumed it). However,
if we rearrange [dn] and call the rearranged sequence [dﬁ}.
then equation 4.6 can be used to yield D(—l,di,dé,...) =
XY-YX with Hxnc22 " Hrﬂczz = £ nd; . But this diagonal
matrix has exactly the same entries as D{-l,dl.dz....), only
rearranged, and hence is unitarily equivalent to it. Hence
we can solve D(-1,d;,dy,ee.) = XY-YX with NXNCEE - HIHEEE "
) 2 ndﬁ , Wnich is greater than or equal to I ndn « It is
then natural to ask what values can arise for L n&ﬁ .
That is, what size Hilbert-Schmidt norms can be realized
by solution operators X,Y in the framework of this
construction. The same gquestion can be asked of L bndn
and Z[(n+l1)/2] d_ (see Chapter 1, Proposition 8.1). This
is one of the basic motivations for this chapter.

It appears that examining the different solutions to
the commutator equations via their Hilbert-Schmidt norms
in this way is not crucial to the study of the structure
of commutator classes. Although, Lemma 4,28 of Chapter 1
was crucial in that it identiflied the direction that we
needed to take in order to obtain our results. In any case,
thig theory leads into some interesting and perhaps impor-

tant questions on infinite series.

We shall first introduce a definition which in part

occurred in Problem II of Chapter 1, Section 4 in a less
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general setting,

Definition 1., Let a = (a ) and x = (x_ ) be two non-
negative sequences of real numbers. Let S(a,x) be the set
of non-negative real numbers defined by the following

equation.

- & +
S{a,x) = {% a X (n) ! T is any permutation of z:}.
The general problem is as follows,

Problem 2. For each fixed pair of non-negative
sequences a and x, what is the structure of S(a,x)?
Also, what sets in the positive real line are realizable

as of the form S(a,x) for some such a and x?

Various obvious facts about S(a,x) may now be stated.
Let a and x be two arbitrary non-negative sequences.

(1) s(a,x) = [0,»2]. The values 0 and * may be attained.

(2) If a and x are strictly positive sequences (or
contain at most a finite number of 0 entries), then
S(a,x) = (0,%=].

(3) There are 2° subsets of [0,%], but only c subsets
of the form S(a,x), because there are only c¢ pairs (a,x).
Therefore only ¢ of the 2° subsets of [0,%] are realizable

as of the form S(a,x). (Observed by Paul Erdos)

The first of the following two examples is a non-
trivial case where the structure of S(a,x) is known.

We omit the details.
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Examples.

Let a = (0,2,0,2,...) and x = (3™®). Then S(a,x) ic
precisely the Cantor set except for those non-negative real
numbers whose ternary expansion consists of a tail of 0's
or a tail of 2's,

If a or x is only finitely nonzero, then S(a,x) is a

countable set.

Problem 2 is too broad for us to say much more about
with our present knowledge. For this reason, in what follows
we specialize to the cases when a is a non-decreasing
sequence and x is a non-increasing sequence,

If a = 0 or x = 0, the problem is trivial and S(a,x)={\
If a # 0 and X, —4=> 0, the problem is trivial and S(a,x)=f
Furthermore if a is bounded by M, then S(a,x) [a,uthj.
In any case, hereafter we shall assume anG and aﬁfu,
unless otherwise specified.

Note that Lemma 4.28 and its proof remain valid even

if as > = or xn-—/-?-* 0.

Proposition 3. If an‘f‘ and an" and if m=a-.x= Eanxn g
then S(a,x) © [m,»], where m is attained.

If aﬁ?w and X > 0 for infinitely many values of n
{xn need not be decreasing), then = € S(a,x).

Proef. The first assertion follows from Lemma L, 28
(without the inessential hypotheses that P g

xn e u}i
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To prove the second assertion, if aﬁ?m and _ >0
for infinitely many n, then for each k we can choose
n > 2k-1 such that a xzk_l_g-l. Let m be any permutation
of z* for which m(n) = 2k-1 (e.g. map Z'\ {nl} arbitra-

rily one-to-one onto {?h}). Then L 84X (n) 2 Ekankxak-l i
Q-Elnl

In view of Proposition 3, we ask the main question

of this section.

Question 4. For which a,x with a;_?w and an'D is
S(a,x) = [a*x,»2] 7

On first sight, one might think that it is never the
case that S(a,x) = [a-x,ﬂ] or that it is quite rare,
However, our investigations began with the surprising
fact that, with regard to E ndn. it dn > 0 for every n and
dndw, then S((n),(d ) ) = [£ nd_, =]. After this it
appeared that there was a possibility that S(a,x) = [a«x,=]
for every such a,x, However, this was ruled out by an

n
example due to Robert Young. Namely, let a_ = 22

_ont+l L
3 Ny

« We omit the proof since a more general result
due to Paul Erdosg is forthcoming with a proof that proceeds

and let

along the same lines. Nevertheless, if a is any of the
sequences (n), ([(n*1)/2]), the Fibonacci sequence, (log n),
and if d_ ;I; 0, then s(a,(d )) =[Z ad ,=].

Hugh Montgomery discovered a general sufficient
condition on the sequence a that implies that *'S(a,x) =

[a*x,»] for every x for which xnfﬁ 0', namely that
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an+1/hn remain bounded. Paul Erdos proved that this condi-
tion is also necessary. Note the similarity between this
condition and the well-known ratio test for power series.
What we really want to know is what determines whether or
not S(a,x) = [a+*x,»]. However, the above condition is the
only complete characterization we have of any aspect of
the theory. We develop the results in both of these direc-

tions simultaneously, giving our own proofs in what follows,

Theorem 5. (The Main Theorem). Let a = (a ) where
a, > 0 for every n, and a, ——> ® g n —> «, Consider
the following conditions.

(1) an+1/an is bounded.

(2) For the non-negative sequence x = (1n], there

exist subsequences (a ) and {xmkj of a and x, respectively,

k
such that

a) a —_—> ) ag kK —> = and
my '

h) a = o0
"% My
(3) s(a,x) = [a-x,»].
Then (1) implies that (2) holds for every strictly positive

sequence X = (xn) that tends to 0, Furthermore, if aﬁTm and
zn‘lfﬂ where a_,x > 0 for all n, then (2) ===>(3).

Proof. To prove that (1) implies that (2) holds for
every strictly positive sequence x = (xn} that tends to O,
suppose an+1fan‘§ M for all n. We assert that for every
positive integer k, there exist arbitrarily large positive

. -1 -1
integers n, and m, for which (k+1)" " < a < Mk ~ .
Sag xS
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If this assertion were true, then clearly we could choose
two strictly increasing subsequences of positive integers
[nk} and (mk) such that a ——> 0 as k —> = and
:ka“kxmk > Ek[lﬁl J'l = =, and (2) would be proved. Therefore
it suffices to prove the assertion.

Por each fixed positive integer k, {k+l}-l < ax, jli"l
if and only if x_ ¢ {{an{kﬂ})'l.m {ank}'l]. All we need
show is that there exist arbitrarily large n,m for which
x, € [(a,(k+1))7%, M (a k)10,

Suppose to the contrary that there exists a positive
integer N for which x 4 [(an(k+1})"l.l {ank}"l} for every
n,m > N. (In other words, for every m > N,

X g v [(an(HlJJ"l,H (anli‘.]'l] » It is interesting to note
n>N
that this would imply that U [(an(k+1}}'l. M {ank}'l:l
n>N
cannot contain any interval of the form (0,€) for some € >0,
gince X —> 0 ag m —> o, However, this is not the case,
Indeed, the forthcoming proof can be used to show that
for every N, there exists € > 0 such that (0,€) =
v [(a, (+1))71, m (2 1)"1]0).
n>N

For each m > N, let n, denote the least positive inte-
ger n such that M (amlki-l €K, 0 which exists since
a, —> «@ ag n —> « and hence M {amlk}_l —> 0 as
n ——> e, Except for a finite number of positive integers m

-1 -1
for which x > M (alkJ , we have Il[anm+1k} L
H{anmk)-l' AlEﬂ. since M (lrkm_'_lkj-l < :{m and xn—} 0 as
m ——> c, We have m ——>% implies ah‘+l ——> =@ and hence

n, —> «. Therefore n > N for all but a finite number of
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integers m, and for these m, X 4 [(a%{k-l-lJJ*l.H {annk}'l].
Hence, for infinitely many m, we have x < M {ahmk}"l and
Xy 4 [(anm{k+1}}"l, M [anmkj'l:i. Therefore, for infinitely
many m, we have M (ETLIn+lkJ-1 i (anm[k-f-l.'lj"l . This
implies that M (E%+

many m, or equivalently, anm"‘lfa% > M(k+1)/k > M for

infinitely many m, which contradicts our assumption that

=1 -1
1k] < (anm{k+l]] for infinitely

amlfan < M for all n., Hence (2) is proved.

To prove (2) ===> (3) whenever anTm and x ! 0, suppose
(2) holds for a and x, so that there exist Euhse:uences
(ank) and (xmkl such that ankxmk —> 0 as k —> =, and
Eka"kx‘t = , We first assert that without loss of gener-
ality we may assume that a.x =1L a x <=, To see this,
gsuppose a+Xx =L a x. = . Then by Lemma 4,28 of Chapter 1,
we have that S(a,x) = {ﬂj , and hence (3) holds,

Assuming that I a X, < =, we next assert that without
loss of generality we can assume that ne > m for every k.
To see this, let Z, denote the set {k: n, > m);}' and let
Z. denote the set {k: n, < mk} « Then

w =L x =X = + a
kahk m, ke 3} nkxhk k€ %f nkxmk

But a < =< E x <o, Therefore
g e Zg nymy = Yxez < *m'my = “n ®n’n
DI, % a“kxmk = o , Let Z, determine subsequences of (nk}

and {nk). which for simplicity we again call {nk) and [ka,
respectively, by taking only these entries My s Ty (in inc-
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reasing order) for which k € Z, . This gives us subsequen-
ces (ank} and {xlk} of a and x which satisfy conditions a
and b in the End condition of the theorem, and in addition
satisfy n, > m for all k.

Next we assert that without loss of generality we may
agssume n, and m, can be chosen so that n, # ms forall i,j.
The proof is as follows.

We shall use induction to partition the set of ordered
pairs ({nk"kb‘;nl into 3 disjoint sets, each having the
property that no integer appears more than once as an entry.
We induct on k. Let Sq» 52 and 33 denote the sets to be
determined. Put (nl,mlj € 8y, (nz,mzj € S,, and {nj.mj} € 33.
Since, by hypothesis, (ank] and (xmki are subsequences of
a and x, the subsequences {nk} and {mk} must be strictly
increasing. Therefore n, can appear as an entry in at most
1l of the 3 sets 51,32,53. The same holds true for my.
Therefore the ordered pair {nh.mu) can have an entry in
common with an entry of an ordered pair in at most 2 of
the sets 31,52.53. Hence put {nq,mu] into that set whose
ordered pair does not have either n, or m, as an eniry.
Inducting on k, assume that 31.32 and 33 are determined
for the ordered pairs (ni.mii where dl = 1.2, vae:K 5
and so0 no entry of any ordered pair in any of these sets
appears as an entry in any other ordered pair in that set.
Then, as in the case of (ny,m,), the entry [nk+l'mk+l)
can have an entry in common with an entry of an ordered

pair in at most 2 of the sets 51,52,53. Hence put
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{nk+1.mk+1) into that set whose ordered pairs do not have
either N4y Orm ., as an entry. This completes the induct-
ion.

Each set 51. 52 and 53 determines a subset of Z' as
follows, Let 2, = {ki (ny,m) €5,}, for i =1,2,3.
Clearly 2, U 2, U 2, = z¥ . Hence we obtain

w =3 a = L + L a + L a .
*n. fm, * “xez,%n fm T k€2 e k€Z 4 n, m
Therefore one of these sums is infinite, say zkizlankxmk = =™
(we omit the cases for Z, and 23 as the proofs are identical).
Using Z,, we can choose subsequences of {nk} and {mk} which,
for simplicity, we again call {nk} and {ka, respectively,

and which satisfy ahkxmk —2 0, Ekankxit T %, N > m, and

ny # mj for all k,j. This proves the assertion.

Now consider the series L. ( - M - X ) .
k ank amk xmk n,

Since n > m , we have 0 < and

o SR L
0 < xmk - xhk.j xmk , and so 0 < {ank—aka(xmk-xnk} <
ank%n’k ——> 0 ags k —> o, Furthermore, since Ekankxmkzw 4
a‘kxnkfz o, Ekankxnk_f a*x <, and Ekamkxmk_g asx < o,

we have

Ly {ahkfamk}{xmk-xnki

%k {a“kx”‘; p e Ny W S amkxmkj

We shall now show that for every € > 0, there exists a

subsequence (knJ of positive integers such that
€=% (a. -a_ )(x. =x_ ) . This follows from the
kE{Fé} n, amk xﬁk xnk
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following more general fact.

Suppose (d(k)) is a non-negative sequence for which
d(k) —> 0 as k —> @ and I d(k) = =, We assert that
for every € > 0, there exists a subsequence (k_) of the
increasing sequence of all positive integers such that
€=L ¢ k d(k) . The proof of this fact proceeds along
the same lines as the proof of Riemann's theorem on
rearrangements of conditionally convergent series, Fix € > 0
and choose n; > N, so that d(k) < € for every k > N,,

and so that n is the greatest integer greater than Nl

By By
such that Ek_Hld(k} < €, Hence Ekhﬂld[k} < €< z (k]
Thig can be done since d(k) —> 0 ag kK —> = and

£ d(k) = =, Choose N, > n; so that d(k) < (e—n d(k)]fE
for every k 2 N, and then choose n, to be the 1argest

n n
integer greater than Hz such that 2\ d(k) < eI, 1 a(x).
1

n, n2+l2
Hence Ek=N2d(kJ < E-Ek=ﬂld{k) < Ek—N d(k) . Proceeding

inductively in this way, we obtain sequences {HPJ and (np)
of positive integers for which np > Hp > “p-l and

0 < d(k) < (€ - Eg:i Ekq“ a(x) )/2P1, for every p and
q

every k > N_ , and

P
+1
Ny p-1
zk=N d(k) < € - E s’y kgﬂqd(kl < Zk_ﬂpd(kl ;
This implies that

n
0% ¢ £ i Ty 4K 5 dlnghl) < (2271 219, a(k) )/2P-1
Q

<€/Pl—>0asp—>m,

_
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n
Therefore € = E -1 kﬁN d(k) . Hence, if we choose (k)

to be the strictly increasing sequence of positive integers
oo
k, where k is taken to range over the set U <k: HPE k< np}.

h € =5 d(k) =
we nave = x € {ir} .

Applying this result to the sequence
(a, - Mx_ - ) , since it is non-negative, tends to 0
lnk a‘k x‘k xnk ] | ] ]
and sumg to %, we obtain that for every € > 0, there exist

subsequences of {nkJ and {mk}. which we shall again denote
(n,) and (m,.), £ hich € = E_ (a_ = ) - S
by (ny) and (m), for whic c (8 - 8y )%, - X,

Now recall that we wish to show that S(a,x) = [a.x,=].
We already know a+*x and « € S(a,x)., Suppose a*x < r < =,
It suffices to show r € S(a,x). Let € = r - a*x and

choose subsequences (n,) and (m, ) so that

=L (a - Nx - ' S
k ank ank xmk xnk
We now choose w, the requisite permutation on Z+, as follows.
Let ﬂ{nk} =m, -and ﬂ{mk} = n, for each k, and let n fix
all other integers n (i.e. for which n # n, , m for every k).

The permutation w is well-defined since ny td m for every

i,j+ Let Z, denote the set {nl n=n, or n=m, for some E}.

Hence w(n) = n for all n £ Z_, « Then

Zn %n%(n) = Engz %% * Ex (3n % * % %n )

" Enge e T (0, Xt a, X0
(ank- E“k“ﬁ“x- Jr.nkJ}
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=Zax +I, {ahk- aka(xmk- xnkJ
= asx+€ = r ,
and so r € S(a,x), which proves (3). Q.E.D.

Theorem 6. Let a = (ani where a, > 0 and aéfﬂ.
Then “n+lf“n is bounded if and only if, for every x = (x )
for which x_ i_u , S(a,x) = [ax,=].

Proof, 1If an+lfhn ie bounded, then by Theorem 5,

1]

g i 0, then x = (x ) satisfies condition (2) of the
theorem. Also by Theorem 5, since aﬁTn and a; > 0, condition
(3) of the theorem is satisfied by x. That is, S(a,x) =
[asx,=],

Conversely, if S(a,x) = [a+x,»] for every x = {an
for which x # 0, we claim that an+l/hn must remain
bounded. This result and its forthcoming proof are due
to Paul Erdos.

Suppose to the contrary that an+1/hn is not bounded.
Let h(n) denote the least positive integer k for which
k > n and ak+lfhk > 47 . Clearly h(n) is a non-decreasing
function of n., Define x = (ah(nJBnJ-l . Then x_ § 6.
Letting x = (x_ ), we claim that S(a,x) # [asx,#]., In fact,
we claim that a.x <1 but 1 & S(a,x). Indeed,
a*sx = Lax =L an(ah(nﬁn}"l P g P 3 o
Furthermore, letting m be any permutation of 27,
if o L(x) > h(k) for some k, then

%=1
L aXi(n) 2 ® 1™k 2 k)% 2y (x)+1 (3 (x)3)
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= #53°F > 2
On the other hand, if = (k) < h(k) for every k, then
T = La
a‘nxﬁ{n) “-l(n)
In any case, La X (. #'1, hence 'l ¥ S(a,x). Q.E.D.

x, S ey )X, = TP elfec 1,

Note. In regard to Theorem 5, each time we constructed
a permutation m to solve the equation % an*ﬂ{n) =r,
it sufficed to use only disjoint 2-cycles. That is,
each such w that we constructed was the product of disjoint
2-cycles, This seems odd and leads us to ask if there are
any circumstances in which the use of infinite-cycles or
n-cycles yields more. In other words, is it always true
that S(a,x) is the same as {E 8, X (n) ! T is a permutation

of z¥ which is a product of disjoint 2—cyc1eé}?

The following question seems likely to have an affir-
mative answer. If so, this would give a characterization
for those sequences a and x where aﬁFM, a, > 0, and xn-i o,
which satisfy S(a,x) = [a+x,=].However, it remains

unsolved.

Quegtion 7. If a and x are as above, does (3) ===> (2)
in Theorem 57

Finally, we wish to point out that Theorems 5 and 6
imply analogous theorems in which a and x switch roles.
Indeed, the following two corollaries follow easily by
getting a; = l/&h and x; e 1fan and applying Theorems 5 and
6 to the sequences [a;} and {x;).
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Corpllary 8., Let x = (an where x> 0 for all n,

and W 0 as n ——> =, Consider the following conditions.
(1) xnfxn+1 is bounded below.
(2) For the non-negative sequence a = (ah). there

exist subsequences (a_ ) and [xmk) of a and x, respectively,

"
such that

a) ankxmk.——“} 0 ag k ——> =, and

e %, T

Then (1) implies that (2) holds for every strictly
positive sequence a = [an} that tends to =,

Corollary 9. Let x = [xn} be a non-negative sequence,
Then xn/xn+l is bounded below if and only if, for every
a= {an} for which anfw and a; > 0, S(a,x) = [aex,],

This concludes Chapter 4.
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CHAPTER 5
MISCELLANEOUS TOPICS

l., Sparse Matrices for Two Special No 10

In Chapter 2, we mentioned that the Halmos and Berg
question E3] asking whether or not every normal operator
is the sum of a diagonalizable operator and a Hilbert-
Schmidt operator is related to our question on whether or
not the ideal Gz possesses the generalized Fuglede property.
Indeed, any normal operator A for which there exisgts a
bounded operator B so that AB-BA € Gz but yet A*B-BA* ¢ Gz
must necessarily fail to be the sum of a diagonalizable
and a Hilbert-Schmidt operator.

The results in Berg's paper imply that if such a
normal operator exists, then it must necessarily have
some pure continuous spectrum of positive planar area.

He also conjectures that every normal operator which has
gome pure continuous spectrum of positive planar area

fails to be decompoeable into the sum of a diagonalizable
and a Hilbert-Schmidt operator. For this reason, and

gince the techniques of Chapter 2 related to the GFP are
essentially matricial, it appears that the next step in

the strategy (to find A € (N), B € L(H) so that AB-BA € C,
but A*B-BA* ﬂ'cz] is to produce a normal operator with

some pure continuous spectrum of positive planar area which
has a sparse enough matrix to make the necessary calcula-

tions possible.

196
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In what follows, we exhibit two normal operators which
have some pure continuous spectrum of positive planar area,
and for each one, we give a matrix representation which is
sparse. For one of them, the matrix we exhibit is as sparse
as we could hope for (this can be proven, but we shall not
do it here).

To exhibit the matrices, we first need some notation.
Let LE(!EJ denote the Hilbert space of square Lebesgue
integrable functions on the torus, where here T2 denotes
the torus. Let L2([-w, w]x[-m, n]) denote the square Lebesgue
integrable functions on the square [—ﬂ.ﬂ]x[-ﬂ.iﬂ. Let U
denote the bilateral shift of multiplicity 1 acting on
12{2) where Z denotes the set of all integers. Let T denote
the two-way infinite Toeplitz matrix whose entries are
congtant along the diagonal as well as every subdiagonal
and superdiagonal, which is given by T = {tij} where
tyy = (-1)%3/(1-3) i1 # 3, and ty3 = 04if 1 = j.

In both Hilbert spaces above, it is well-known that
the functions en,n = ei{nx+my) for n,m € Z, form a basis.
By calculating the Fourier coefficients and carefully
grouping them, we obtain the next proposition. We omit

the details,

Proposition 1,1.
(1) For Hz+w acting on LE{TE), H=+“,§'IIU + UNI .,
(2) For M, ., acting on LE{[-w,ﬂ]z[-ﬂ,I]},

H=+' = IET + i(TEI) .
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Remark. Note the sgimilarity between the forms IEU + UEI
and IRT + i(TEI)., Note that T is pure imaginary (i.e, T*=-T),
Note the degree of sparseness of IBT + i(TEI). Finally,
note the degree of sparseness of IBU + UEI which, in some
sense, has only two nonzero subdiagonals, and has 0 entries

elsewhere.

Note, We mentioned earlier that we proved elsewhere
that GP (0 < p < 1) fails to have the GFP, It is IEU + UBI

which is the normal operator we used to prove this.
This concludes Section 1.

2+ The " tch™ Axiom for ldea

In this section, we introduce a new axiom for the
characteristic set of an ideal, Recall axiom 3 of a char-
acteristic set C (see p. 58) which states that {xn} €C
implies [xl.xl,xz.xz,xB,...} € C., In other words,
"stretching” the sequence so that each original entry
appears twice keeps the stretched sequence inside C.
Often, stretching a sequence more than this chases it out
of C. For example, one can show that if C = {Exn}l xﬁL and
> ﬂ{l/hi}, which we already know is a characteristic
gset (see p, 58), then (1/n) € C, but yet (1,1/2,1/2,
1/3,1/3,1/3,1/%,...) ¥ C.

A precise way to formulate this idea 1s as follows,

Let m (InJ be an arbitrary sequence of positive integers.

Let x (an .
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Definition 2,1.
(a) x{m] = (xl....,xl,xz.....xz.xj,...i where each

X0 is repeated m times.
(b) {mn}. when used in this way, is called a frequency

sequence.
(c) C is closed with respect to the frequency seguence

(m ) provided x € C ====> xm e g,

(d) F, denotes the set of all frequency sequences

with respect to which C is closed.

Note. Axiom 3 of characteristic sets implies that all
constant positive integer sequences are contained in FC
for every characteristic set C. In fact, F, contains all
bounded frequency sequences. Sometimes FG contains no more
than these frequency-sequences, as is the case for the
characteristic set C = {?xnlt xﬁi and Ky = n{l/hi}{ﬂe leave
the proof to the reader). On the other hand, sometimes Fc
is quite full., For example, FE is the set of all positive
integer sequences if C is the characteristic set correspon-
ding to the Calkin ideal set c; , alias corresponding to
the ideal K(H).

The following proposition gives some of the properties

that Fﬂ inherits from C, We omit the proof,

Propogition 2,2. Let C be a characteristic set. Then

FG satisfies the following closure laws.

tl}n;lfn“farnllnami {%]EF{:M} (u;l)EFc.
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(2) (m)), () € Fy ===> (m’ +m) € Fy .

(3) (mn) € F, =m==> [mn+P} € F, for each fixed

positive integer p.

Note. For a characteristic set C, ?C contains all the
positive integer sequences if and only if the ideal corres-

ponding to C is K(H).

Remark. Independently of this thesis, in joint work
with Andreas Blass, we use related ideas to solve a problem
of Brown, Pearcy, and Salinas [7] that is central to the
theory of operator ideals. Namely, we prove that K(H) = I+J
for two ideals of L(H) for which I,J = K(H). The proof uses
these ideas to establish an entirely z;w characterization
of operator ideals which is quite different from Calkin's
ideal sete and from Salinas's characteristic sets. It also
requires that we assume the continuum hypethesis (or a
weaker version of it) as well as the axiom of choice and
transfinite induction. This part of the argument is due to

Andreas Blass.

This concludes Section 2.

3. Admissible Functions and a Problem of Brown, Pearcy,
and Salinag

Central to the work of Brown, Pearcy, and Salinas [7]
is their concept of "admissible function". An admissible
function is a non-decreasing real-valued function f(t)

defined on [0,%) satisfying (1) £(0) = 0; (2)1lim f(t)=10}
t— 0+
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and (3) £(t) > 0 for t > 0, They prove [7, Theorem 4.2
that a necessary and sufficient condition on f(t) so that
{“"n) € =: 1 :n £( ln} < 9 is a Calkin ideal set

is that there exists @ > 1 so that f(at)/f(t) is bounded
on (0,€) for some € > O,

Then they asked a question [7, p. 377] which, by their
results, is equivalent to the following question. If f(t)
is an admissible function for which f(at)/f(t) is bounded
on (0,€) for some a > 1 and some € > 0, does there exist
a continuous admissible function g(t) so that f(t)/g(t)
and g(t)/f(t) are bounded on (0,€) for some € > 07
Simultaneously with and independently of Salinas [32] we
answered this question in the affirmative., The result is

as follows,

Propesition 3.1. Let f(t) be an admissible function
where, for some a > 1, f(at)/f(t) is bounded on (0,€)

for some € > 0, Define g(t) as follows:
g(t) = ¢ J$F 2(u) au = I £(tx) ax ,

where the integration is Lebesgue integration. Then g(t)
is contirnuous, admissible, and g/f and f/g are bounded on

(0,€) for some € > 0,

Proof. The above equality between the integrals
follows from the substitution u = tx, which is a valid
technique in real variable theory since f(t) is a monotone
function.
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Using the first integral, it is clear that g(t) is
continuous. Using the second integral, it is clear that

(e-1) £(t) < g(t) < (a-1) f(at) .
Therefore f/g is bounded, and since f(at)/f(t) is bounded,
we obtain that g/f is bounded (that is, on the appropriate
intervals). Therefore it suffices to show that g(t) is
admissible.

Clearly g(0) = 0 and 1lim g(t) = 0. Hence all we need
show is that g(t) is nan—d:;;:;ZEHg. The second integral

yields this easily. Q.E.D.

Remark. If we define g,(t) = fg g(tx) dx , then the
gsame proof shows that gl{t) is also a solution to the above
question, In addition, & is clearly differentiable. Pro-
ceeding in this way we can obtain solutions that are n-
differentiable, However, we do not know if one can obtain
golutions that are infinitely differentiable on (0,€) for

gsome € > 0,

This concludes Section 3 and Chapter 5.
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