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Abstract Integration of land use and transportation plan-

ning with current and future spatial distributions of popula-

tion and employment is a challenge but critical to sustainable

planning outcomes. The challenge is specific to how sus-

tainability factors (e.g., carbon dioxide emission), and land

use and socioeconomic changes are considered in a stream-

lined manner. To address the challenge, this paper presents

an integrated modeling and computing framework for sys-

temic analysis of regional- and project-level transportation

environmental impacts for land use mix patterns and asso-

ciated transportation activities. A synthetic computing plat-

form has been developed to facilitate the scenario-based

quantitative analysis of cause-and-effect mechanisms

between land use changes and/or traffic management and

control strategies, their impacts on traffic mobility and the

environment. Within the integrated platform, multiple

models for land use pattern, travel demand forecasting,

traffic simulation, vehicle and carbon emission, and other

operation and sustainability measures are integrated using

mathematical models in a Geographical Information System

environment. Furthermore, a case study of the Greater

Cincinnati area at regional level is performed to test the

integrated functionality as a capable tool for urban planning,

transportation and environmental analysis. The case study

results indicate that such an integration investigation can

help assess strategies in land use planning and transportation

systems management for improved sustainability.

Keywords Integration � Land use � Socioeconomic factor �
Travel demand � Transportation environmental

sustainability � Carbon emission

1 Background and Research Motivation

Environmentally sustainable planning greatly relies on the

support of synthetic analysis by using models that integrate

land use and transportation planning, dwelling and
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employment-related spatial distributions, as well as other

related social economy factors. However, such an integration

is scarce in practice [1– 4]. The challenge appears specific to

the need of integrating sustainability factors (e.g., trans-

portation carbon emission), and land use and socioeconomic

factors into the development process. [3–6]. Some previous

studies revealed that core models to be incorporated in the

integration include the land use model, travel demand fore-

casting model, vehicle emission, and microscopic traffic

simulation model [3, 7, 8]. The best integration is to inter-

connect and imbed those models through data flows in a

Geographical Information System (GIS) environment

[3, 4, 9, 10].

Recent studies suggested that land use pattern and

associated economic changes influence travel behavior and

demand. Performance can be measured by vehicle miles

travelled (VMT), vehicle hours travelled (VHT), and

vehicle emissions over roadway networks. All these vari-

ables are impacted by travel patterns or travel behaviors

which are closely linked with land use density, diversity,

and accessibility [8, 11–15]. Land use density is measured

by the population and employment in a given geographical

unit (i.e., census tracts, traffic analysis zones, etc.). High

densities are often associated with high accessibility to

opportunity sites [16].

Strong mismatch between the locations of jobs and

houses possibly results in much longer commuting dis-

tances. To reduce commuting cost (measured by combined

travel distance and time), it is an ideal planning to layout

houses, working places, and services close to each other

(i.e., mixed-use development pattern). Accessibility is

usually measured as the distance of a location relative to

the regional urban center, or the number of jobs available

within a given travel distance or time. Accessibility was

found to exert a strong influence on per capita VMT

[17, 18]. Dispersing employment to suburban locations is

associated with increasing per capita vehicle travel

[5, 19, 21]. Cervero and Duncan [22] found that the

accessibility was negatively associated with the VMT and

VHT.

The activity-based travel demand forecasting (TDF)

approach views travel demand as a derived demand from

the need to pursue activities distributed in space and time

[23]. To date, some studies have been conducted to com-

pare the modeling results between the traditional four-step

TDF models and activity-based TDF models. Ferdous et al.

[24] evaluated the performance of those two models at

regional-level and project-level analyses using the data

collected in the Columbus metropolitan area, Ohio. The

results indicated that activity-based model outperformed

overall the four-step model in the region-level analysis.

Shan et al.’s study [25] using the data gained in Tampa Bay

Region indicated that the activity-based model is more

capable of capturing the non-home based trips than the

four-step model.

Emission factors are empirical functional relations

between the mass of vehicle emissions and the involved

vehicle activities [26–32]. The environmental effect of the

traffic management with advanced technologies (e.g., ramp

metering, connected vehicle technology) can be depicted

by environmental measures (e.g., emission rates and

inventories, fuel consumptions). A critical step of esti-

mating values of the measures is to obtain emission factors

of the concerned pollutants and apply them to vehicle

activities as estimated from traffic simulation. The MOVES

model is usually used to provide emission rates in the USA

[33].

In light of the above understanding, the paper presents a

scenario-based integrated approach to examine interactions

between land use development, transportation activities,

and mobile emission for sustainability analysis in an inte-

grated simulation platform. Within the platform, catego-

rized models—travel forecasting model, vehicle emission

model and microscopic traffic simulation model are inte-

grated heuristically mathematically with data flows via

input/output (I/O) interfaces. A case analysis is used to

demonstrate the functionality testing of the integrated

approach with the data obtained in the Greater Cincinnati

area, USA.

The paper is organized as follows: The background and

research motivation is followed by the literature review and

related work. Then, the research methodology is presented

with introduction of major associated mathematical models

to be involved in the integrated platform system. The case

study demonstrates major analysis functionality of the

system with the data obtained from the Greater Cincinnati

area. Finally, a summary of the research is presented.

2 Research Methodology

2.1 Methodological Framework

As shown by Fig. 1, the conceptual hierarchy of the cate-

gorized models includes the land use pattern, travel

demand forecasting, and carbon emission estimation and

they will be interconnected through input and output data

flows. In other words, each involved model will be

heuristically ‘‘assembled’’ through clarifying their I/O

relationships. For example, land use and social economic

data are input to travel demand forecasting model to esti-

mate travel trips, including VMT and VHT. The travel

forecasting outcomes provide some inputs to the emission

model. Some models may be ‘‘zoomed in’’ smaller parts,

which cannot be shown by Fig. 1. For example, vehicle

specific power (VSP) in KW/ton, the instantaneous tractive
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power per unit vehicle mass, is a well-acceptable explana-

tion variable in microscopic emission modeling to directly

relate it with the emission rate [29, 33–37]. VSP is sensi-

tive to speed and acceleration changes. The acceleration is

associated with grades of highways and vehicle masses,

and the grades are also associated with topography features

[6, 33, 38, 39]. All ‘‘Functions’’ as indicated by Fig. 1 are

mathematically developed, and all models are integrated

into GIS environment.

2.2 Land Use Pattern

The land use pattern is quantitatively depicted by mea-

surements of density, diversity, and accessibility. Density

is measured as the gross population rate of residents and

employment within designated geographical units over the

gross area [40, 41]. Traffic analysis zones (TAZs) is used as

the gross area unit in the study. The overall urban density is

calculated as the summation of urban population and

employment divided by the gross area of the urban area

[42], as expressed by Eq. (1).

Density ¼ Popþ Empð Þ=Area ð1Þ

where Pop is the number of residents in a TAZ, persons;

Emp is the number of jobs in a TAZ, jobs; and Area is the

TAZ area, mile2.

The land use diversity or land use mix is measured by

the job-population balance (jobpop) and degree of job

mixing (jobmix) to reflect the relative balance between jobs

and population and diversity of jobs, respectively [43]. Job-

population balance represents the degree of self-sufficiency

achieved in a community and is used to measure land use

mix in many studies and applications [8, 44, 45]. In a

compact land use development policy, it is hoped to make

jobs and housing distributions balanced by planning the

residential and employment areas within close

communities. Job-population balance at the regional level

is defined as the ratio of employment to population, as

expressed by Eq. (2) [46].

jobpop ¼
Xn

i¼0

1� Ji � JP� Pij jð Þ=ðJi þ JP� PijÞ

� BJi þ BPið Þ= TJþ TPð Þð Þ ð2Þ

where i is the TAZ number; n is the number of TAZs in the

study region; J is the number of jobs in the TAZ; P is the

number of residents in the TAZ; JP is the average job to

population ratio in the study area; TJ is the total jobs in the

county; TP is the number of total population in the study

are.

The degree of job mixing quantifies homogeneity of

employment land use (i.e., retail, service, industry). To

measure such mix degree, an entropy formula is applied,

and the degree of job mixing is computed as Eq. (3) [46].

jobmix ¼
Xn

i¼0

X

j

Pj � lnðPj

� �
Þ=ln mð Þ

� BJi þ BPið Þ= TJþ TPð Þð Þ ð3Þ

where j is the job category number; Pj is the proportion of

jth job category in a TAZ; m is the number of job

categories.

The degree of job mixing ranges from 0 to 1. A degree

of job mixing with a value more approximating to 1 indi-

cates a higher mix.

Accessibility reflects the ability of people to access to

different destinations. Many factors affect accessibility,

including mobility, quality and affordability of trans-

portation service options, transportation system connec-

tivity, and land use patterns. The accessibility index is

constructed from a very popular functional form for the

gravity model [18], in which the accessibility is measured

as the ratio of jobs to transportation cost to all possible

TAZs expressed as Eq. (4).

CATEGORIZED MODELS SOCIETY WE LIVE AND SERVE

Travel Forecasting Trips =Modeling (land use patterns, social economy, transportation network & 
infrastructures)

Hotspot Identification =Modeling (traffic demand, vehicle composition)

Micro Traffic Simulation =Modeling (hotspot corridor, control scheme, traffic demand, etc.)

Regional Vehicle Emission =Modeling (network, speed profile, VSP, 24-hr/peak-hr volume, vehicle composition
in flow, vehicle age distribution, VMT, VHT, link geometry feature, fuel 
parameter, inspection,  maintenance, meteorology, etc.)

Micro Traffic Simulation =Modeling (hotspot corridor, control scheme, traffic demand, etc.)

Sustainability =Modeling (travel time cost, fuel consumption cost, carbon emission cost, travel 
operation cost)

Fig. 1 Conceptual hierarchy of

integrated categorized models
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acce ¼
Xn

s¼0

Js=f trsð Þ ð4Þ

where f ðtrsÞ is the impedance function between two TAZs,

r and s; Js is the number of jobs in the TAZ s.

For ease of interpretation, accessibility values are nor-

malized on a scale from 0 to 1 by dividing the computed

accessibility index for each TAZ by the highest accessi-

bility value in a region [42].

2.3 Regional Travel Demand Estimation Through

Activity-Based Modeling

The activity-based model is validated with the Household

Travel Survey (HTS) data that was conducted in

2009–2010 Cincinnati GPS-based Household Travel Sur-

vey [47]. And the model is embedded into the VISUM

simulation environment via it external coding module. The

structure of the activity-based travel demand model is

illustrated by Fig. 2. Activity patterns can be identified

based on travelers’ socioeconomic status. Then, the tour

destinations and modes are predicted by possibility of

choosing each destination and mode, respectively. The

probabilities are calculated with nested multinomial logit

(NML) model [48]. Next, a trip table containing number of

trips between TAZs is generated, and then used as the input

to the traffic assignment process. Finally, trips between

TAZs are loaded to the roadway network.

In the activity-based travel demand model, a person’s

daily activities are grouped into a set of tours (or trip

chains). A tour is assumed to have a primary activity and

destination that is the major motivation for the journey

[49]. Those tours are tied together by an overarching

activity pattern while being constrained by the choice of

activity pattern. The structure of the activity patterns can

be illustrated by Fig. 3. Discrete choice models based on

the principle of utility maximization have become the

primary method for modeling activity and travel choices

[48]. The utility is assumed to consist of a systematic

component that can be estimated as a function of

explanatory variables [50–52]. The variables include: (1)

socioeconomic variables, i.e., household size, income, car

ownership, and personal status (employed, students,

unemployed), lifecycle, etc.; (2) land use variables, i.e.,

area type, employment (number of jobs by job type, i.e.,

industry, service, and retail), and number of households,

etc.; and (3) transportation system variables, i.e., travel

Tour destination and mode choice

Population with personal & 
household characteristics

Activity pattern

Destination choice 

Mode choice

Network assignment

Probabilities of activity 
patterns  

Probabilities of 
modes  

Trip table

Activity patterns 

Mode choices

Number of trip 
between zones

Network attributes

Expected mode 
choice utilities 

Probabilities of 
destinations 

Destination 
choices

Fig. 2 Structure of developed

activity-based TDF modeling

procedure
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time, and travel cost of a transportation system, etc. With

the utility of activity pattern, destination, and transporta-

tion mode, the travel choices are often modeled by

structured logit models such as multinomial logit (MNL),

nested logit (NL) [48].

Activity pattern probabilities (P
njm
actp) structured as a NL

model [48, 49] are calculated by Eqs. (5) through (7).

P
njm
actp ¼ Pm

touc � Pn
actc ð5Þ

Pm
touc ¼ exp Um

touc

� �
=
X

n

exp Um
touc

� �
ð6Þ

Pn
actc ¼ exp Un

actc

� �
=
X

n

exp Un
actc

� �
ð7Þ

where Um
touc and Pm

touc are the utility and probability of mth

tour combination, respectively; Un
toua and Pn

toua are the

utility and probability of nth activity chain combination,

respectively; P
njm
actp is the probability to choose nth activity

chain combination under mth tour combination.

Utilities of the activity chain combinations are

defined as a linear function of personal and household

attributes and tour activities combination constant;

similarly, utilities of tour combinations are defined as a

linear function of the natural logarithm sum of utilities

of activity chain combinations and tour combination

constant [49].

Utilities of tour combinations are defined as a linear

function of the natural logarithm sum of utilities of activity

chain combinations LOGSUMm and tour combination

constant CONSTANTm.

Um
touc ¼ bm � LOGSUMm þ CONSTANTm ð8Þ

LOGSUMm ¼ ln
X

njm
exp Un

actc

� �
ð9Þ

Un
actc ¼ a1� HHSIZEþ a2� TOTVEHþ a3� INCOME

þ CONSTANTn ð10Þ

where HHSIZE is the number of person in a household;

TOTVEH is the number of vehicle owned by a household;

INCOME is the household income, 1 = Less than $25,000,

2 = $25,000 to $49,999, 3 = $50,000 to $74,999, and

4 = $75,000 or above; CONSTANTn is the constant of nth

activity chain combination.

The probability of choosing destination i (Pi
des) is cal-

culated with a MNL model [50]:

Pi
des ¼ exp Ui

des

� �
=
X

i

exp Ui
des

� �
ð11Þ

Ui
des ¼ c1� HHþ c2� INDUSTRYþ c3� SERVICE

þ c4� RETAILþ c5� SCENROLLþ c6

� AREATYPEþ c7� LOGSUM ð12Þ

LOGSUM ¼ ln
X

j

exp U
j
mod

� �
ð13Þ

where HH is the number of household; INDUSTRY is the

number of industry jobs; SERVICE is the number of ser-

vice jobs; RETAIL is the number of retail jobs; SCEN-

ROLL is the school enrollment; AREATYPE is the area

type: 1 = CBD&urban, 2 = suburban, 3 = rural; LOG-

SUM is defined as expected mode choice utilities, as the

natural logarithm sum of the mode choice utility.

The mode choice probability of alternative transporta-

tion mode j is calculated with the MNL model [50]:

P
j
mod ¼ exp U

j
mod

� �
=
X

j

exp U
j
mod

� �
ð14Þ

U
j
mod ¼ d1� Timeþ Constan tj ð15Þ

where U
j
mod is the utility of the mode choice; Ti is the travel

time, min; Constantj is the constant of transportation mode

j.

The above models are embedded into a travel demand

simulation environment. In this study, it is implemented in

VISUM by coding the associated algorithm into the com-

puting programs via COM open source function. The

simulated network traffic assignment and other derived

variable from the simulation will be merged into the per-

formance system.

In addition to the travel trips resulting from running the

TDF model, other mobility performance measurements

such as average demand/capacity (D/C) ratio, total delay,

daily VMT, daily VHT will be derived from the TDF

outcomes to measure the effectiveness of the traffic oper-

ation. The VMT is defined by the US government as a

measurement of miles travelled by vehicles in a specified

region for a specified time period. VHT is the total vehicle

hours expended traveling on the roadway network in a

specified area during a specified time period. In general,

smaller VMT per capita reflects decreased travel demand.

High VHT per capita mean longer travel time to be needed,

thus reflects lower mobility efficiency. Therefore, a good

planning is supposed to result in both smaller VMT and

VHT per capita.

2.4 Integrated Evaluation of Environmental

Conservation Related Sustainability

Regional-level sustainable analysis involves the estimate of

the travel patterns and equivalent vehicle carbon dioxide

(CO2) emission in the context of changes in land use,

population, employment, and school enrollment distribu-

tions under a given scenario. With the base sociodemo-

graphics, the target land uses are derived from the

sociodemographic projection under a certain land use
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development alternative. The target land use and associated

sociodemographics, together with geographical TAZ

information and transportation infrastructure, are used as

inputs to the TDF model. The TDF process estimates travel

behaviors, and roadway traffic information. Then, the cal-

culated roadway traffic data are used as input of trans-

portation activities for the emission estimation model (i.e.,

MOVES in the study) to simulate regional CO2 emission.

Environmental conservation is one of the important

goals in building sustainable transportation systems. It is

referred to the natural resources saved or expended. The

transportation sector has been reported to contribute more

than 25% of GHGs emissions in the United States, which is

a looming threat of climate change [53]. It is necessary to

target the reduction of vehicle related CO2 emission and

decreasing the use of fossil fuels through reducing travel

demand as objectives of the environment conservation.

Besides the environmental objectives, social equity and

economic development are two another goals need to be

considered in transportation planning. The social equity

goal aims to improve the mobility and accessibility to

allow travelers to save money. The total travel time is an

aggregate measurement of mobility and accessibility,

which are concerned in the social equity. Economic

development reflects direct economic impacts of trans-

portation systems in operation, or management, and rele-

vant environmental impact. Therefore, associated costs of

CO2 equivalent, fuel consumption, and total travel time are

adopted as the measurements to evaluate the transportation

sustainability. Calculations of these costs are represented

through Eqs. (16)–(19). Based on these measurements, a

link-based traffic operation cost (Travel operation cost, $)

is developed to synthesize the monetary value derived from

travel time, fuel consumption, and carbon cost, as shown

by Eq. (20).

Travel timecosti ¼ VOT � VO � Volumei � Timei ð16Þ
Fuel consumption costi ¼ Volumei � Li � FEi � PriceGas

ð17Þ

FEi ¼ �0:0066� Speed2i þ 0:823� Speedi þ 6:01577

ð18Þ
Carbon costi ¼ CO2 equivalenti � c ð19Þ

Travel operation cost ¼
X

i

ðTravel time costi

þ Fuel consumptioni
þ Carbon costiÞ ð20Þ

where i is the number of a roadway link; Travel time costi
is the cost associated with total travel time of all travelers

traversing on link i, $; VO is the vehicle occupancy;

Volumei is the number of vehicle on ith link, pcu; VOT is

the average value of time, $; Timei is the average vehicle

travel time on ith link, h; Fuel consumption costi is the cost

associated with the total fuel consumption of all vehicles

traversing on link i, $; Li is the length of link i, mile; FEi is

the average fuel economy calculation, mpg, which is used

to estimate the difference in fuel consumption of the

vehicles and is calculated by the regression equation from

the fuel efficiency data provided from the MOVES model

[6]; Speedi is the average vehicle speed on ith link, mph;

PriceGas is the gas price, $/gallon; Carbon costi is the cost

associated with the CO2 equivalent emitted by all vehicles

traversing on link i, $; CO2 equivalenti is the total amount

of vehicle CO2 equivalent on link i, US ton, which is

calculated by MOVES using link-based traffic volume,

speed, and geometry, etc., as inputs; c is the unit cost of

CO2 equivalent, US$/US ton.

3 Case Study

3.1 Regional-Level Scenarios of Land Use

Development Given Increased Population

and Employment

The Great Cincinnati area is a metropolitan area with a

total of almost 2 million population geographically resid-

ing in eight counties in state of Ohio, Kentucky and Indi-

ana, respectively. The Great Cincinnati area is chosen as

the case study area. Year 2010 is used as the baseline year.

Scenarios are developed by introducing projected changes

in population and employment of the study area compared

with the baseline year. To investigate the travel demand

impact of land use due to such socioeconomic changes, we

use density, land use mix, one-center and multi-center

urban structure to depict land use pattern. The land use

pattern, sociodemographics, and transportation infrastruc-

tures for year 2010 are used as the baseline datasets. Based

on consulted information from the local metropolitan

planning organization, it is implicated that 15% increase in

population, employment, and school enrollment by year

2030 is a reasonable assumption for the scenario-based

analysis. Based on this assumption, three scenarios are

devised, as shown in Fig. 6:

• Planning for single employment-oriented-center devel-

opment (S1),

• Planning for single mixed-center-oriented development

(S2), and

• Two-mixed-center-oriented development (S3).

In S1, only single center is developed, and the majority

of the increase employment is allocated to the center while

increased population is dwelled beyond the center area. In

S2, compared with S1, both increased employment and

population and school enrollment as well are assumed to
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locate within the center area. Similar to S2, the mixed-use

center schema is adopted in S3, but two different centers

are planned.

The following steps are involved in developing a

regional-level scenario. First, the incentive boundaries

need to be determined to define the boundaries of the future

centers in the study area. In S1 and S2, a single center—

Center 1 (C1) is developed in the traditional downtown

area. In S3, two centers are developed—C1 and Center 2

(C2) which is located in Mason and West Chester areas.

Figure 4 illustrates the locations of C1 and C2. Table 1

enlists assumed changes of the population, employment,

and school enrollment in the incentive area and non-in-

centive area. The incentive area is the area where the future

development is planned to satisfy the addressed demand.

The non-incentive area refers to the areas outside the

defined incentive boundaries.

Figures 5 and 6 present projected population and

employment changes in each scenario compared with the

background data. The population and employment growth

rates in the affected TAZs are assumed to remain static.

Population/employment growth rate is calculated as the

ratio of the total number of increased population/employ-

ment to the total number of population/employment of the

baseline. In S1, the increased population is widely dis-

tributed in the study area, and majority of increased

employment are located in the defined center C1. S2 adopts

the same employment project schema as S1, but S2

develops a mixed-use center and allocates most of the

increased population in the C1 area. S3 develops two

centers C1 and C2 with the mixed-use development

strategy.

With the projected land use under the given changes in

population and employment, some statistics of land use

characteristics in terms of land use density, diversity, and

design are calculated for S1, S2, and S3 (listed in Table 2).

Results indicate that S1 and S2 have the same high

employment density in C1. The major difference between

S1 and S2 is that S2 has a much higher population density

in the C1. Compared with S2, S3 has two centers devel-

oped. Unlike S1 and S2, in S3 the majority of the increased

population and employment are allocated into two centers,

i.e., C1 and C2, rather than one center only. In S1, C1 has a

high job/population ratio of 1.563. That is much higher

than the average ratio 0.502 of the entire study area and

could results in longer commuting distances. In S2 and S3,

the job-population ratio is 0.636 and 0.726, respectively.

The job-population ratio of C2 is 0.262 in S2 and 0.427 in

S3. With respect to the job mix, in S3, the C2 has a higher

degree of mix of jobs, which obtains a value of 0.482 and is

increased by 0.171 compared to that in S1 and S2. For the

accessibility, it can be concluded that the high-density, and

well-mixed land use pattern provides an improved acces-

sibility for travelers to destinations, such as C1 in S2 (with

Fig. 4 Incentive boundary of each assumed scenario in the case study

Table 1 Assumed changes in

land use for each scenario
Scenarios Growth within the center(s) Growth outside the center(s)

POP (%) EMP (%) SCENROLL (%) POP (%) EMP (%) SCENROLL (%)

S1 2 13 2 13 2 13

S2 13 13 13 2 2 2

S3 13 13 13 2 2 2
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a value of 0.825), and C2 in S3 (with a value of 0.671).

According to the discussion in the previous section, the

high-density, mixed-use, and easier-accessible land use

development tends to reduce travel distance, thus reduces

total vehicle miles travelled, and consequential vehicle

CO2 emission and fuel consumption.

3.2 Result Analysis of Running Activity-Based TDF

Modeling with Local Data

The activity-based TDF model is developed following the

structures as discussed in methodology section and cali-

brated using the 2009–2010 household travel survey data

Fig. 5 Projected changes in population density compared with baseline data

Fig. 6 Projected changes in employment density compare with baseline data
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[47] and traffic data at typical permanent traffic monitoring

stations at major highways in the Cincinnati area. Since

that activity pattern choice behaviors are different among

workers, students, and others, the activity pattern utility

function is then calibrated separately for these three cate-

gorized users. Tables 3 and 4 show the calibrated models

for activity pattern unity, destination choice, and mode

choice for categorized users and modes with difference trip

purposes. As a result of running the TDF model, the total

number of trips, percentage of intra-center trip, and average

trip length of each scenario are summarized in Table 3. A

intra-center trip is referred to a trip with both origin and

destination located within the same center. S1 is developed

with one single-use center, while S2 and S3 are developed

with denser and mixed-use center(s). With the mixed and

multi-center development, the number of trips increases

slightly. Since the mixed-use, compact development can

bring closer origins and destinations, the average travel

distances are shorter in S2 and S3 than that in S1. The

multi-center development strategy in S3 produces shortest

average trip length. In the wake of the increasing of land

use intensity and diversity, more intra-center trips are

generated in each center of S3.

Figure 7a visualizes VMT and VHT by scenario.

Compared with S1, there are 7.39 and 18.74% decrease in

VMT and VHT, respectively, in S2, and 7.58 and 24.68%

Table 2 Statistics of land use

patterns for each scenario
Land use variables Subareas by scenario

S1 S2 S3

C1 C2 Other C1 C2 Other C1 C2 Other

Densitya 16,026 2747 1902 25,139 2495 1751 17,263 10,119 1751

Job-population 1.563 0.262 0.426 0.636 0.262 0.480 0.726 0.427 0.480

Job mix 0.672 0.311 0.411 0.672 0.311 0.411 0.563 0.482 0.411

Accessibility 0.791 0.317 0.524 0.852 0.317 0.524 0.821 0.671 0.524

a The unit of the density is (persons ? jobs)/mile2

Table 3 Number of trips,

average trip length, and

percentage of intra-center trips

Scenarios Trips Average trip length (mile) Percentage of intra-center trip (%)

C1 C2

S1 5.9023 9 106 5.56 7.91 0.87

S2 5.9065 9 106 5.14 12.19 0.78

S3 5.9067 9 106 5.13 7.66 4.78

Table 4 Comparison of scenario costs

Scenario Travel time cost (103 $) Fuel consumption cost (103 $) Carbon cost (103 $) Travel operation cost (103 $)

S1 17,832 3988 702 22,522

S2 14,498 3691 660 18,849

S3 13,446 3683 637 17,766

S1 S2 S3
VHT 1,094 889 824
VMT 32,789 30,365 30,305
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decrease in VMT and VHT, respectively, in S3. While the

number of trips increases slightly in S2 and S3, the overall

trip length is reduced as a result of the compact land use

development. In other words, the increasing of the trip

number is not big enough to offset the reduction of VMT

and VHT as a result of the reduced trip distances.

Figure 7b visualizes the values of CO2 emission and

fuel consumption of each scenario. Compared with S1,

there is a reduction of 7.44 and 9.33% in CO2 in S2 and S3

accordingly. The shorter travel distance in S2 compared

with S1 results in a salient fuel consumption reduction.

There is a 6.04 and 9.25% of fuel consumption reduction in

S2 and S3, respectively, compared with S1.

Table 4 demonstrates the cost-related estimation results

for scenarios S1, S2, and S3 with the list of travel time cost,

fuel consumption cost, carbon cost, and total travel oper-

ation cost. Compared with S1, S2, and S3 achieve a 16.31

and 21.11% reduction in the travel operation cost, respec-

tively. The results show that mixed-use, compact devel-

opment patterns produce less cost than the single-used,

sprawl development pattern. Furthermore, the multi-center

development strategy can help to reduce the travel opera-

tion cost compared with the single-center scenario.

4 Summary and Conclusion

The methodology involved in the development of the

integrated system is reflective of a scientific approach and

synthetic analysis system to facilitate the exploration and

disclosure of the cause-and-effect mechanism between the

land use or relevant planning with projected socioeconomic

changes, and their impact on transportation operation and

carbon emission. The activity-based model has been

adapted into the regional-level transportation emission

analysis. The scenario development function in the system

is designed to provide the functionality for addressing

‘‘what-if’’ transportation emission impacts pertinent to

traffic situations that are forecasted from affected future

land use changes. This method has been viewed by far as

the best way to deal with uncertainty related to decision-

making factors for future forecasts that cannot be predicted

from modeling. A case study is conducted to demonstrate

the functionality and application of the integrated system in

the Great Cincinnati area. In the case study, the impact of

land use pattern on travel demand and vehicle emissions is

examined. Compared with single-use development, the

mixed land use pattern is capable of reducing the total

vehicle travel, CO2 emissions, and fuel consumption.

Meanwhile, the multi-center based compact development

can bring closer origins and destinations. As the conse-

quence, less VMT and VHT, vehicle CO2 emissions and

fuel consumption could be resulted. The case study results

indicate that such an integration approach can facilitate the

process of assessing land use planning alternatives with

respect to not only travel demand impact, but also traffic-

source emission based sustainability.

This synthetic computing platform will be ultimately

developed to facilitate the scenario-based quantitative

analysis of cause-and-effect mechanisms between land use

changes and/or traffic management and control strategies,

their impacts on traffic mobility and the environment. For

example, with the integrated system, a set of ‘‘what-if’’

analyses can be performed to evaluate transportation sys-

tem performances with the promotion of transit system,

increased investment in bicycle facilities, and improvement

of community walkability. The measured performances can

help planners and policy-makers to assess strategies and/or

policies for improved transportation mobility and sustain-

ability. The application of this functionality will be pre-

sented in other publications in the future.
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