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� Application of data-driven, spatial regression and output optimization truck model (SPARE-Truck model).
� The bottom-up approach is used to calculate link level emissions.
� Useful to prepare truck category specific high-resolution emission inventory.
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a b s t r a c t

Air quality modelers often rely on regional travel demand models to estimate the vehicle activity data for
emission models, however, most of the current travel demand models can only output reliable person
travel activity rather than goods/service specific travel activity. This paper presents the successful
application of data-driven, Spatial Regression and output optimization Truck model (SPARE-Truck) to
develop truck-related activity inputs for the mobile emission model, and eventually to produce truck
specific gridded emissions. To validate the proposed methodology, the Cincinnati metropolitan area in
United States was selected as a case study site. From the results, it is found that the truck miles traveled
predicted using traditional methods tend to underestimate d overall 32% less than proposed modeld
truck miles traveled. The coefficient of determination values for different truck types range between 0.82
and 0.97, except the motor homes which showed least model fit with 0.51. Consequently, the emission
inventories calculated from the traditional methods were also underestimated i.e. �37% for NOx, �35%
for SO2, -43% for VOC, �43% for BC, �47% for OC and - 49% for PM2.5. Further, the proposed method also
predicted within ~7% of the national emission inventory for all pollutants. The bottom-up gridding
methodology used in this paper could allocate the emissions to grid cell where more truck activity is
expected, and it is verified against regional land-use data. Most importantly, using proposed method it is
easy to segregate gridded emission inventory by truck type, which is of particular interest for decision
makers, since currently there is no reliable method to test different truck-category specific travel-
demand management strategies for air pollution control.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Urban-scale air quality models require on-road gridded emis-
sion inventories and these accurate vehicle type-specific, high-
resolution emission inventories would be very critical for regula-
tion and sensitivity analyses (Bastien et al., 2015; McDonald and
McBride, 2014; Wang et al., 2009; Waygood et al., 2013). Devel-
oping the spatio-temporal, on-road emission inventory is a
Perugu).
multistep, data and resource-intensive process as explained in
Fig. 1. The process starts from the activity data estimation and
collection of other relevant inputs for emission model, and then
based on level of detail in activity data, proceeds towards selection
of appropriate method of processing. Finally, the gridded, tempo-
rally allocated and speciated emission inventories are created after
suitable factors are applied (Bai et al., 2007; Boriboonsomsin et al.,
2011; Enrique and Allende, 2015; Ireson, 2004; Niemeier et al.,
1999, 2004). As also shown in Fig. 1, there are two different
methods to process gridded inventory i.e. the top-down approach
and the bottom-up approach (D'Angiola et al., 2010; Enrique and
Allende, 2015; Hatzopoulou and Miller, 2010; Hicks and Niemeier,
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Fig. 1. Schematic diagram of gridded on-road emission inventory preparation process.
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2001; Hou et al., 2015). A comparison between these two ap-
proaches showed that the bottom-up approach is more represen-
tative of reality compared to top-down approach, as later one uses
spatial surrogates that may not be directly related to the emissions
(Hatzopoulou and Miller, 2010; Hicks and Niemeier, 2001;
Lindhjem et al., 2010; Niemeier et al., 1999, 2004; Puliafito et al.,
2015; Sierra Research, 2007). Even though, the bottom-up
approach requires very detailed activity data, it is often preferred
for its accuracy (Brondfield et al., 2012; Cook et al., 2006; Sanna
et al., 2014).

The heavy-duty trucks account for 60% of NOx and 40% of PM2.5
emissions from mobile sources and their corresponding emission
rates are tens of times higher than light duty vehicles (Milando
et al., 2016; Vijayaraghavan et al., 2012). Accordingly, the accurate
heavy-duty truck activity is very critical to estimate the heavy-duty
truck emission inventory more precisely (Brown-Steiner et al.,
2016; Kanaroglou and Buliung, 2008; Liu et al., 2014; Perugu
et al., 2016; Sandhu et al., 2016; Sierra Research, 2007; U.S. EPA,
2012; Yoon et al., 2015). Air quality modelers often rely on
regional travel demand models for the vehicle activity, however,
most of the current travel demand models can output the person-
travel activity more reliably rather than goods/service-travel ac-
tivity for the emission models (Lin, 1998; Liu et al., 2014; U.S. EPA,
2012). In the current practice, modelers estimate the local truck
activity fractioning the total vehicle activity obtained from the
travel demand models. Developing truck activity at same reliability
level as personal travel activity is very difficult task and it requires
lot of survey data (Borrego et al., 2016; Di et al., 2016). For example,
Kanaroglou and Buliung, 2008 had used large number of truck
survey/other data samples to estimate the contribution of trucks
urban emissions, unfortunately, those surveys are very expensive
(Kanaroglou and Buliung, 2008). In United States, other data sour-
ces like Freight Analysis Framework (FAF) data are potential alter-
natives for truck demand estimation, however those may not be
best suited for urban scale since their primary purpose of devel-
opment is not air quality modeling. Further, it would be difficult to
estimate different weight-based truck volumes for emission
models from previously mentioned data sources (Cambridge
Systematics, 2013; McDonald and McBride, 2014; Perugu et al.,
2012).

The appropriate choice between top-down or bottom-up
emission gridding methods is dependent on reliability of vehicle
or truck activity data. For bottom-up approach, there are some
readily available models like Direct Travel Impact Model, however,
they need accurate, detailed, reliable activity data (Niemeier et al.,
1999, 2004; Wang et al., 2009). To overcome this limitation, re-
searchers recommended application of statistical models that are
developed using observed count data (Hicks and Niemeier, 2001).
For example, a multivariate multiple regression model was pro-
posed by Liu et al. to predict traffic counts for on-road gridding (Liu
et al., 2014). Nevertheless, application of statistical models alone is
partially beneficial due to inherent problems associated with those
models such as instability associated with regression etc. In addi-
tion to that, the truck-specific gridded emission inventory prepa-
ration using such statistical models can be unreliable as those
models cannot distinguish among different truck types (Milando
et al., 2016; Shah et al., 2006; Sierra Research, 2007). As a result,
in order to prepare high-quality on-road gridded emission



Table 1
Truck classification used in current modeling approach.

Truck type Description

Refuse Truck Trucks primarily used to haul refuse to a central location.
Single Unit Short-haul Truck Single unit trucks with more than four tires with a range of operation of up to 200 miles.
Single Unit Long-haul Truck Single unit trucks with more than four tires with a range of operation of over 200 miles.
Motor Home Trucks whose primary functional design is to provide sleeping quarters.
Combination Short-haul Truck Combination tractor/trailer trucks with more than four tires with a range of operation of up to 200 miles.
Combination Long-haul Truck Combination tractor/trailer trucks with more than four tires with a range of operation of over 200 miles.

H. Perugu et al. / Atmospheric Environment 155 (2017) 210e230212
inventory from trucks alone, the truck-type based activity models
must be estimated empirically and should be coupled with tradi-
tional travel demand modeling techniques (Perugu et al., 2012).

Our main motivation for this research is, to develop a reliable
methodology for preparing truck-related gridded emission in-
ventory for photochemical models. To achieve this goal, we
designedmultiple research objectives in the process andwhich are:
(a) Developing a model to predict daily truck volumes by different
truck types (b) Estimating link level emissions and converting them
into grid level emissions and (c) Evaluating the emissions model
results. As mentioned earlier, to improve the reliability of truck
activity, we have used bi-level modeling approach in terms of
combining statistical model with traditional travel modeling
approach. In the first level, the spatial regression estimates truck
volumes using limited number of samples and then in the opti-
mization level recalculates the output with the help of gravity
model. We named this model as SPARE-Truck (Spatial Regression
and Output Optimization Truck) model as the spatial regression
output is optimized for better truck volume prediction (Perugu
et al., 2016, 2012). In this research, we used following truck clas-
sification as shown in Table 1 this truck classification is very specific
to the research's emission modeling needs as recommended by US-
EPA (U.S. EPA, 2010). Since, US-EPA regards motor home as a type of
truck, we followed the same definition.

This paper is organized as follows. The details of the proposed
methodology including SPARE-Truck development, emissionmodel
and emission gridding process are described in the methods sec-
tion. In the case study section, we have described the data details
and application of series of models. The results and relevant anal-
ysis of results are presented in results section. The final section
concludes the paper with impact of proposed model and future
research direction.

2. Methods

Except CO other criteria pollutants like NOx, PM2.5, SO2, VOC
emission rates are very sensitive to truck activity, especially the
truck miles traveled mix. Using the spatial panel regression
methodology, we have proposed a model that can estimate the
standard six types of truck daily volumes for all links in the
modeling domain. The detailed specifications of spatial panel
regression, optimization and assignment models are explained
next in this section. As a next step, we adjust/optimize the truck
travel demand calculated from earlier step as it improves the
overall truck volume prediction. In this model, traffic data catego-
rized by vehicle types is used as input. To calibrate and validate the
overall truck volumes, an independent freight data source was
used.

2.1. Two-step modeling approach for Spare-Truck model: regression
model

The SPARE-Truck model was originally used in previous papers
by same author, however, to bring completeness to the present
paper it is briefly explained again (Perugu et al., 2012). Assuming
that the specific type truck volume on a particular highway link i (1
to N) and for a year t (1 to T) is denoted by yit , it can be modeled
using a set of independent variables xit and the corresponding
coefficients are given by b. It is also assumed that a spatial rela-
tionship exists among the variables. The spatial weighting matrix is
denoted as W , which has N � N dimensions and zero value diag-
onal elements. The spatial weights in spatial weight matrix are
normalized and this matrix does not change over the time horizon.
The spatial correlation among the data can be quantified by spatial
autoregressive parameter r. The unobserved effect can be
explained using the spatial weight matrix, spatial autoregressive
factor, and unexplained observation specific error ε. Thus, the
spatial panel model for specific truck type can be represented by
the following equation (Kapoor et al., 2007):

yit ¼ xitbþ
h
IT5ðI� rWÞ�1

i
εi (1)

where:

yit ¼ NT x 1 vector of observations on the time period t
xit ¼ NT x K matrix of observation on K exogenous variables.
b ¼ NT x K matrix of coefficients
IT ¼ Identity matrix of size T x T
5 ¼ tensor multiplication operator (used in the context of
vector multiplication)
I ¼ Identity matrix of size N x N
W ¼ spatial weight matrix of size N x N
r ¼ spatial autocorrelation
εi ¼NT x 1 vector of unexplained observation specific error for i

To estimate the parameter for the panel model, most of the
previous studies used Pooled Ordinary Least Square (OLS) estima-
tion. However, the observation-specific error induces correlation
across the composite error of panel. Consequently, the Feasible
Generalized Least Squares (FGLS) estimation is preferred over Or-
dinary Least Square (OLS) estimation. The FGLS estimation is
computationally simple and much more reliable compared with
OLS estimation (Kapoor et al., 2007).
2.2. Two-step modeling approach in Spare-Truck model: output
optimization

Application of spatial panel model can yield link-based truck
volumes by truck type. However, the volumes are insensitive to
travel demand. To predict optimized truck volumes, the model
needs to be calibrated thus the O-D matrices need to be estimated
based on link volumes. The truck O-D matrices need to be cali-
brated using other independent data. We have used the derived
demand optimization model to estimate truck travel demand Tjk
between TAZs j and k (Citi Labs Inc., 2010). This model is popular
in traditional travel demand modeling, and it is expressed by
following equation:
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Tjk ¼ aj bk cajk e�bcjk
Y
L

VL (2)

where:

aj;bk ¼ Model parameters that depend on productions at TAZ j
and attractions at TAZ k
cjk ¼ cost function between TAZs j and k
a;b ¼ Generalized cost function parameters between TAZs i
and j
V ¼ estimated truck traffic volume
L ¼ number of highway links between TAZs i and jQ
L
VL ¼ the product of all estimated link truck traffic volumes

between TAZs i and j

In the next step, the optimized/adjusted truck matrices are re-
assigned to the links using multi-class user equilibrium assign-
mentmethod. Finally, the SPARE-Truckmodel is validated using the
latest vehicle classified traffic data. To verify the reliability of results
from proposed SPARE-Truck model and also evaluate the impact of
new derived truck activity on truck related emissions we have
carried out a case study.

2.3. Emission model

Theoretically, the truck model output could be used in any
emission model as the most important inputs for emission model
like speed, truck miles traveled and activity mix was outputted
from the model. However, in this we chose US-EPA's MOVES model
for emission estimation in this study. In United States, it is
mandatory for all regional agencies outside California to use
MOVES as traffic emission model for their state implementation
plan and regional transportation conformity purposes (U.S. EPA,
2010). US-EPA developed this model based on “modal emission
rates” approach and it uses vehicle specific power data to match
those rates.

US-EPA also recommended the use of local activity related in-
puts for emission analysis (U.S. EPA, 2010). Applying MOVES
emission rates to link-level activity data required a substantial
revision to the emissions analysis approach previously used in its
processor model, MOBILE, because of the new requirements and
features of MOVES. For the bottom-up emission process, the
emission rate mode is the most suitable format and we can look up
the corresponding emission rates for each type truck activity.
MOVES model generates three separate lookup tables namely
“RatePerDistance,” “RatePerVehicle,” and “RatePerProfile.” They
collectively contain all the emission factors required for bottom-up
link-level emission estimation process (U.S. EPA, 2010).

We apply the SPARE-Truck model to obtain the input data at
required level of detail for theMOVESmodel. The emission rates are
specific to process, road type, vehicle type, link type, average speed
bin and temperature (Lindhjem et al., 2010; U.S. EPA, 2010). In
addition to rates per distance (consists of running emissions), rate
per vehicle (start and idling emissions) and rates per profile (con-
sists of evaporative emissions) are also obtained from the MOVES
model runs (U.S. EPA, 2010).

2.4. Emissions gridding process

Gridding is usually cumbersome as link based emissions are
converted into square shaped grid cells, which involves geometric
processing as link sizes may not match with grid cell size and
matching activity with emission rate detail level. As the truck ac-
tivity is already disaggregated to link and hour specific, the bottom-
up type spatial-temporal processing of running emissions is
straightforward. The links have been geo-processed such that the
longer links are divided into smaller links to fit within the cell
boundaries. Through this process, we have ensured that emissions
are allocatedwhere they belong. Sincewe have already summed up
the running and start emissions at link level, another extra step of
allocating starting emissions to the grid cells were not performed.
The day of month and day of week factors should be applied after
gridding process to get day specific gridded inventory.

2.4.1. Link level running emissions
The link-level total daily emissions are calculated using the link

truck miles traveled (TMT) and corresponding emissions rates for
hourly temperatures t and relative humidity h.

revij ¼ TMTvijs x rdvjsrht (3)

where,

revij ¼ link level running emission in grams for truck type v, for
link i and for hour j
rdvsjrth ¼ running emission rate for truck type v, for hourly
speed s, for hour j, for road type r, for temperature t and for
relative humidity h
TMTvijs ¼ The truckmiles traveled of v type on link i during hour
j with average hourly speed of s, estimated using proposed
models.
2.4.2. Link level non-running emissions
Usually, non-running emissions are treated as point sources;

however, this assumption complicates spatial-temporal emission
processing. In this research, an alternative method was proposed to
allocate start and idling emissions to links, which is re-distributing
traffic analysis zone level start, idling and brake/tire wear emissions
to links TMT surrogates. Since, link-level emissions include both
running and non-running emissions and they are non-running
emissions are assigned to surrounding links, these are more accu-
rate compared to other methodology that allocate non-running
emissions to traffic analysis zone centroids.

sevij ¼
TMTtij

TMTtj

�
Sj þ Ej

�
(4)

where,

sevij ¼ Non running emission inventory for link i at hour j
TMTvij ¼ vehicle miles traveled by truck type t on link i during
hour j
TMTvj ¼ vehicle miles traveled by truck type t in the traffic
analysis zone (TAZ) during hour j
Sj ¼ Total start and idling emission inventory in the traffic
analysis zone (TAZ) during hour j
Ej ¼ Total brake wear and tire wear emission inventory in the
traffic analysis zone (TAZ) during hour j . This quantity is zero for
pollutants other than PM2.5

To get the total link level PM2.5 emissions eij, we add link level
running and non-running emissions

eij ¼
X
v

revij þ
X
v

sevij (5)

The proposed workaround not only saves the air quality model
run time but also simplifies the mobile spatial temporal processing.
Generally, in photochemical models the speciated criteria
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pollutants (i.e. NOx, SOx, PM2.5 and Volatile Organic Compounds)
are used as input, so, in the present study we have also developed
the truck related gridded inventory for criteria pollutants. Accord-
ing to US-EPA's NEI data, heavy-duty trucks contribute 60% of on-
road NOx and PM2.5 emissions, heavy-duty diesel trucks
contribute 75% SO2 emissions (U.S. EPA, 2012). Even though, major
portion of VOCs are not from tail-pipe exhaust, long idling activity
causes significant emissions. The steps in developing gridded
emission inventory and the detailed analysis of gridded emission
inventory follows.

Multiple issues such as selecting optimum grid cell size, handling
of the highway links those are curved and extended beyond the grid
cell boundaries pose challenges to modelers. In this paper, all those
issues were properly addressed to create the ground-truth gridded
emission inventory. For country-level modeling, US-EPA uses
12kmx12 km cell size whereas for state-level modeling domain,
California Air Resources Board uses 4 km � 4 km grid cell size
(Sierra Research, 2007). For the regional level, it is very common to
use 1 km � 1 km cell size. However, finer than 1 km grid cell size
poses lot of problems in terms processing and modeling. Further, it
would be ideal to have Traffic Analysis Zones (TAZ) and grid cells a
comparable size for easier grid processing.

To convert link-level emissions to gridded format and also to
take care earlier mentioned geometrical issues associated with
gridding process, a geo-processing script has to be developed solely
for this step. Using the script, the longer links are divided into
smaller links to fit within the cell boundaries and at the same time
the links’ actual geometric lengths are recalculated. Through this
process, modelers can ensure that emissions are allocated where
they actually belong. Since the running and start emissions were
already summed up at link level, no extra step of allocating starting
emissions to the grid cells was performed. To obtain different day-
specific emission inventories in the modeling time period, the day-
of- week factors must be applied after gridding process.

3. Case study

3.1. Data description

To validate proposed methodology, we have applied SPARE-
Truck and emission models to Cincinnati, one of major urban
areas in United States. The Ohio-Kentucky-Indiana Regional Council
(OKI) maintains comprehensive traffic count geo-databases for
Cincinnati area for the purpose of travel-demand validation and
supplying input to the Highway Performance Monitoring System.
The Average Annual Daily Traffic (AADT) data in the geo-database
was generated for Greater Cincinnati area using a combination of
Automatic Traffic Recorder (ATR) station traffic data and the short
period traffic counts. The data is classified according to Federal
Highway Administration's (FHWA) 13-vehicle classes at hourly
time resolution. Since the short period traffic counts are typically
collected during only a single week (Monday�Thursday), the AADT
values are factored through applying day-of-week, month-of-year,
and other factors, developed by state department of transportation.
Following Fig. 2 shows the spatial coverage of traffic counts. The
rectangle designates modeling domain and the traffic data samples
within the domain are used in this study.

In the current study, we have used only the traffic count data
between the years 2004e2009. Moreover, not every counting site
offers a complete panel of estimated AADT values for the specified
time period. Even though large data sample is available, only 900
randomly selected counts are used in the analysis to test whether
proposed model can reliably predict truck activity with such a
limited number of counts. Socio-economic data, land-use data, and
highway network data are part of different databases and, for
model-estimation purposes; all these databases were geo-
processed. Table 5 (annexure) provides the descriptive statistics
of these traffic counts over different years, and these data are the
basis for the spatial regression modeling pursued in the present
study, as described in the following sections.

As mentioned earlier, to model the emission model ready truck
activity, we need to process the FHWA type vehicle classifications
into US-EPA's MOVES truck classification. Unfortunately, until now,
we have not found relevant literature to convert FHWA classes into
MOVES types. To work around this, we have used FHWA versus
MOBILE and MOBILE versus MOVES crosswalk tables to come up
with a crosswalk between FHWA andMOVES classifications (Perugu
et al., 2012). Although both the classifications are axle based, there is
no direct corresponding truck type for US-EPA's motor home type
trucks in the FHWA classification. For this purpose, we have devel-
oped a corresponding fraction using MOVES default data.

After processing the traffic data, it was observed that the auto-
mobile fractional split is highest, followed by the fraction of pick-
ups and vans. The average regional percentage of trucks is be-
tween 3 and 5 percent. However, at an individual link level, the
truck percentage is as high as 26.3 percent. The percentage of ob-
servations for which the fractional mix of trucks, buses, and mo-
torcycles is at or very close to the boundary value of zero is rather
high. In particular, the truck fraction is less than 0.01 for 33 percent
of observations. The single unit and combination short-haul trucks
are the most prevalent truck types in the region and comprise
about 60 percent of total trucks found on the highways in a day.
Motor homes are the least prevalent trucks in the region and they
comprise of only 2 percent of total trucks on highways.

The demographic information is developed from Public Use
Micro Data Sample database and land-use data collected from
different counties. As part of travel demand model maintenance,
the metropolitan planning organization, OKI, also collects latest
roadway attribute data. Following is the final list of predictor var-
iables used in the spatial regression modeling with their designa-
tion name in the database in parentheses. All of the predictor
variables are selected based on travel demandmodeling theory and
the OKI travel demand model guidelines (Ortúzar and Willumsen,
2011; Tsai, 2010).

3.1.1. Population (POPDEN)
In this study PUMS and American Community Survey data are

used for population data and the data is aggregated to traffic
analysis zone (TAZ) level to facilitate the trip generation in the
travel demand modeling practice. During covariance analysis, we
observed that the correlation between population and other
important variables like employment is significant whereas the
population density and employment density variables are inde-
pendent. Thus, we have chosen population density as a predictor
variable. The TAZ-level employment density is geo-processed so
that those are joined to link-specific traffic counts.

3.1.2. Employment (EMPDEN)
Similar to population density, employment is a critical de-

mographic variable which is directly proportional to total trips in a
TAZ. The employment data also extracted fromACS and PUMS data;
it is projected for future years based past trends. The population
and employment in a TAZ are auto correlated, thus, we have chosen
employment density as predictor variable. Further, from other
regression based truck models it is evident that employment in a
zone is positively correlated to the truck inflow and out flows of the
zones.

3.1.3. Accessibility (ACCS)
Some of the earlier truck regression models used TAZ



Fig. 2. Location of the case study area Cincinnati, modeling domain and the traffic count data locations used in the case study.
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accessibility as a predictor variable. However, they have used
nominal values for these variables. In this research, we have
calculated accessibility of zone using TAZ area and total highway
network length in the zone. To estimate this variable, the data from
two different geo-databases were used. The first one is de-
mographic geo-database, which provided the TAZ/zonal area, and
second one is highway network geo-database, which provided
highway link length in the corresponding TAZ.
3.1.4. Speed (SPD)
The posted speed limits or free flow speeds on links used for the

regression modeling are extracted from the highway network geo-
Table 2
Results from spatial regression step in SPARE-Truck model.

Variable Truck types

Refuse
trucks

Motor
homes

Single unit short-haul
trucks

Sin
tru

CONSTANT 3.71e þ 01 1.14e þ 01 �9.10e þ 01 �2
LANES 6.75e þ 01 7.47e þ 00 1.00e þ 02 5.2
CAP 1.73e � 01 1.25e � 02 6.19e � 01 8.4
SPD �2.88e þ 00 1.91e � 01 �4.11e � 01 1.3
EMPDEN 1.95e � 04 �5.07e � 05 �1.70e � 03 �5
POPDEN 8.87e � 03 �1.19e � 03 �2.64e � 02 �5
ACCS 6.70e þ 04 6.97e þ 03 1.48e þ 05 1.5
RMSE 1.74 1.78 1.78 1.8
Rho 0.608 0.494 0.556 0.6
Time-specific variance 1.03e þ 05 5.94e þ 02 2.99e þ 05 1.6
Observation-specific

variance
1.47e þ 05 2.49e þ 03 8.00e þ 05 6.6
database. It has been observed from initial analysis that trucks use
the highway facilities that have higher posted speed limits. Typi-
cally, posted speed limits in the region range between 15 mph and
70 mph. Forty percent of the total links have posted speed limits
less than 35 mph At least 25 percent of links have coded speeds
greater than or equal to 55 mph.
3.1.5. Capacity (CAP)
From a traffic engineering point of view, it is anticipated that

trucks may be using the highway facilities with higher capacities.
During covariance analysis, we also observed that there is no auto
correlation between speed and capacity. This information is also
gle unit long-haul
cks

Combination short-haul
trucks

Combination long-haul
trucks

.28e þ 01 2.97e þ 02 �1.01e þ 00
3e þ 01 6.71e þ 01 3.51e þ 01
5e � 02 4.61e � 01 3.43e � 02
8e þ 00 �1.47e þ 00 4.04e � 01
.37e � 04 �8.80e � 04 �2.91e � 04
.16e � 03 �2.07e � 02 �4.28e � 03
4e þ 04 �1.61e þ 05 3.03e þ 04
3 1.74 1.77
03 0.312 0.431
0e þ 04 1.26e þ 06 9.95e þ 03
6e þ 04 2.61e þ 06 4.23e þ 04



Fig. 3. Scatter plots with trend line of different truck types modeled in the current research (a) Combination Long-haul and Short-haul Trucks (b) Motor Homes and Refuse Trucks (c) Single Unit Long-haul and Short-haul Trucks.
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Table 3
SPARE-Truck model validation results.

Model R square t-value Standard error

Refuse Trucks 0.8197 59.46 0.01685
Single Unit Short-Haul 0.9665 149.93 0.00771
Single Unit Long-Haul 0.8732 73.19 0.01438
Motor Homes 0.5103 28.47 0.02493
Combination Unit Short-Haul 0.9281 119.31 0.008075
Combined Unit Long-Haul 0.9718 163.1 0.005938
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obtained from the highway network geo-database. Link capacity is
estimated based on various factors like area type, facility type,
control type, lane width, etc. The capacity values for links range
between 480 and 2000.

3.1.6. Number of lanes (LANES)
Intuitively, trucks need more room for better maneuverability

thus the link physical attributes like the numbers of lanes are
important determinants of truck volumes on the link. The highway
network database also contains the link's number of lanes data. The
link information is by direction. Amajority of links (54.6 percent) in
the sample have two lanes; 10.2 percent of links have one lane; 24.2
percent have three lanes; and 11 percent have four lanes.

4. Results and discussion

4.1. Spatial regression results

In the first level SPARE-Truck model, six different spatial panel
models were developed for six truck types using different predictor
variables mentioned above. Table 2 summarizes the model esti-
mates for all truck types. The model parameters were estimated
using Stata® software through a user-developed program (Prucha,
2007). We have observed that there is strong dependency among
covariates as the spatial auto-correlation parameter ranges
0.312e0.608, however due to application of FGLS method such
auto-correlation is removed, thus, the model is better fitted. The
present analysis also showed that the proposed FGLS estimation
procedure is much better than the standard OLS estimation pro-
cedure as the latter showed lower RootMean Square Errors (Kapoor
et al., 2007). Even though, some predictor variables like “speed”
and “capacity” suggest correlation, actually, they are not; as the
“speed” used in this study is posted speed limit which is based on
functional class of roadway, so, it may not be directly dependent on
highway capacity. The table also enumerates observation-specific
and time-specific variances (s12; sv2) for different models. From
the comparison of observation-specific variances (s12) with time-
specific variances (sv2) of different truck models, it can be
concluded that these models are adjusted for time-related fixed
effects as time-specific variances are quantitatively less. This
adjustment would imply the model's robustness in time horizon,
thus, the models are reliable for future year predictions. As dis-
cussed in methodology d to minimize if any kind of endogenous
unreliability exists d the second step of optimization used.

As part of the optimization step, the model parameters are
calibrated using independent data from TRANSEARCH database,
which contains county-level freight flow data. Another useful
feature of this database is that it also includes empty truck trips.
The calibration step is an iterative procedure that starts with model
parameter values of 1 and continues until the difference between
consecutive demand matrices is less than a specified value of 0.1.
We have used Cube Analyst® for the demandmatrix estimation.We
have derived six different O-D matrices based on truck types for
Cincinnati area. These O-D matrices are assigned to the highway
links based on multiclass equilibrium assignment (Citi Labs Inc,
2010). In this assignment procedure, it is imperative that auto
trips were also used as a separate matrix.

4.2. SPARE-Truck model validation results

To validate the proposed SPARE-Truck model, we have
compared the model estimated truck volumes with the traffic
count data collected for the year 2010. The United States National
Co-operative Highway Research Program Report No. 255 recom-
mends comparing individual link-level assigned truck volumes to
observed counts for highway assignment validation (Highway
Traffic Data for Urbanized Area Project Planning and Design,
1982). This step checks the assigned volume and the correspond-
ing traffic count's disparity for each individual link by magnitude of
volume. As part of this validation step six different scatter plots for
all six types of trucks were plotted as shown in Fig. 3. The modeled
truck volumes are pretty well correlated with observed truck
counts. However, the link-level motor home volumes are much
higher compared to the number of registered motor homes in the
region. This may be because of most of these vehicles pass through
the region. On the contrary, the combination long-haul trucks
registered in the county are much higher than average link volumes
and may be due their pattern of traveling to external destinations.
The comparison for different truck types shows that the model
performs at a satisfactory level and all the points are falling near the
trend line. The motor homes that are fewer than 250 vehicles/day
are mostly under predicted with an error of 10e15 percent by the
model. After threshold 250 vehicles/day, the model performed very
well and consistently. We assume this discrepancy due to incon-
sistent conversion from FHWA class to MOVES class, however, as of
now there is no proper lookup between these two types. In the case
of refuse trucks, the model is consistent between 300 and 1100
values. For smaller and larger volumes, the model is pretty incon-
sistent. The reason for this discrepancy may be the schedule of
refuse trucks, which is not taken into account in the model. Overall,
the truck miles traveled, for all of the truck types except combined
long-haul trucks, in the base case has been under estimated (overall
32% less than traditional model) since our new truck miles traveled
mix actually matches with observed traffic counts in comparison.

The single unit long-haul trucks were predicted accurately
enough by the model as the values were scattered along the trend
line and as well as prediction for single unit short-haul trucks. The
observed combination short-haul trucks are mostly null values for
minor arterials and local streets. If we ignore zero volumes, both
types of combination truckswere predicted reasonablywell from the
model. Based on the “Model Validation and Reasonableness Check-
ing Manual,” the data points on the regression plots should be close
to the 45� line and the R2 should be greater than 0.8. Except for
motor-home- type trucks, for all other truck types the data points
were close to 45� line. We have also verified the R2 values for all
types of trucks as shown in Table 3. As previously mentioned, the
motor homes have the least fit and their corresponding R2 value is
0.5103 and t-statistic is 28.475. The regression statistics showed that
the model is somewhat unstable. For the rest of the models, the
coefficient of determination values range between 0.82 and 0.97,
which are well above the FHWA and Ohio Department of Trans-
portation (ODOT) standards. Again, the motor homes model has the
highest standard error in predicted values when compared to other
models.

Highway Performance Monitoring Systems (HPMS) is a federal
data management system where they collect traffic data for major
highways in the nation. To get the perspective of the predicted
truck volumes, we have compared them against HPMS data as
shown in Fig. 4a. From the plots, it is clearly evident that the



Fig. 4. Comparison of Truck Miles Traveled from two different cases (a) Highway Performance Monitoring System and (b) SPARE-Truck model.

H. Perugu et al. / Atmospheric Environment 155 (2017) 210e230218



Fig. 5. Regional Heavy Duty Truck PM2.5 and NOx emission totals from two different sets of truck activity inputs compared with US-EPA's National Emission Inventory data.

Table 4
Emission model inputs and how they were obtained.

Inputs Details

Daily Truck Miles Traveled The activity is obtained from SPARE-Truck model which takes traffic counts, socio-economic data and highway network data as inputs
Speed Distribution Using the SPARE-Truck we have obtained average link-level truck speeds which are processed and then aggregated into 13 different speed

bins.
Road type distribution Using the SPARE-Truck model truck miles traveled and corresponding road type information, the road type distribution is developed.
Fuel Mix/Fuel Usage The Ohio State Environmental Protection Agency has provided us the county specific fuel mix information
Truck Age Distribution We have obtained Vehicle Identification Number data with year and make information from Ohio Department of Motor Vehicles. The data is

processed to make age distribution factors for all six types of trucks.
Temperature/Relative

Humidity
The meteorology data collected at Lunken Airport in Cincinnati is obtained from airport authorities.
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proposed method predictedmore truck movement along Interstate
75 which is similar to HPMS data that represents reality (see
Fig. 4b).

As part of this case study, we have analyzed emission output at
different levels and compared with the output at same level of de-
tails produced using the local default output. The details of emission
results are discussed in next part of this section (see Fig. 5).
4.3. Emission model results

To generate emission rates for themodeling domain, the US-EPA
MOVES model was used. The model requires lot of different input
data. The detail description of each input data items and how it was
generated/processed was explained in the following Table 4. As
mentioned in the methodology section, emission quantities are



Fig. 6. Regional Heavy Duty Truck SO2 and VOC emission totals from two different sets of truck activity inputs compared with US-EPA's National Emission Inventory data.
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obtained using emission rates and corresponding emission activity.
Even though, applying corresponding emission rates to activity

data is straightforward it requires a little bit of care since the
emission rates are by bins. The individual link activity cannot be
directly related to that bin as it has range and for more accurate
emission estimation, we need to perform appropriate interpolation
as rates applied. For example, to calculate the total emissions from
100 truck miles/hr. with an average speed of 37 mph, a simplistic
approachwould be tomultiplyall of the activity (i.e.100 truckmiles)
with the emission rate for speed bin 7 (32.5 mphe37.5 mph).
However, this approach is too sensitive to even small changes in
speed. To reduce these boundary issues, instead interpolate emis-
sion rates between speed bins (in this example, between the rates
for speed bin 7 (32.5 mphe37.5 mph) and speed bin 8 (37.5
mphe42.5 mph)). After the link level emissions are calculated, we
have aggregated the entire link-level PM2.5 running and non-
running emission inventories for the whole study area using a set
of MySQL queries. Figs. 6e8 contains the daily aggregated emission
quantities generated using the default inputs used in the regional
transportation conformity analysis and the new input data prepared
using proposed models in the MOVES model; the table also shows
US-EPA's National Emission Inventory (NEI) totals for the region.
Overall, the emission quantities estimated for those truck types
were also under estimated and the annual total discrepancies as
following: 37% for NOx, 35% for SO2, 43% for VOC,�43% for BC,�47%
for OC and 49% for PM2.5. Further, the proposed method also pre-
dicted within ~7% of national emission inventory for all pollutants.

Using different truck volumes estimated from SPARE-Truck
model and link lengths, we were able to calculate truck VMT mix
for each link in the modeling domain. Typically, the current emis-
sion models also need hourly distribution factors as separate input
since they use them for diurnal vehicle activity disaggregation and
adjusting proportions of vehicle starts during a typical day for
emission rate calculation. We have estimated emission inventory
for the modeling domain keeping all auto and transit-related ac-
tivity inputs the same and using newly developed truck activity
input in the MOVES model. Application of default input has yielded
fewer daily emission totals for most source use types, since the



Fig. 7. Regional Heavy Duty Truck BC and OC emission totals from two different sets of truck activity inputs compared with US-EPA's National Emission Inventory data.
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default truck VMT was also smaller. However, the emissions from
combined long-haul trucks were estimated lower than default re-
sults and this is due to corresponding less activity.

Generally, preparing gridded emissions from link level emis-
sions is cumbersome process as links cross grid cell boundaries and
they need to be summarized. For this purpose, a geo-processing
script is developed which would calculate spatial and temporal
PM2.5 emission inventory for photochemical modeling. The link-
level emissions need to be summarized based on grid cell size,
and care should be taken about the links that extend beyond the
cell boundaries. We have geo-processed the links such that the
longer links are divided into smaller links to fit within the cell
boundaries. Through this process, we have ensured that emissions
are allocated where they belong. Since the running and start
emissions are summed up at link level already, we did not perform
another extra step of allocating starting emissions to the grid cells.
To process day specific gridded inventory, the day of month and day
of week factors were applied after gridding process. Until now as
part of the case study, the SPARE-Truck and US-EPA's MOVESmodel
were applied sequentially to estimate link-level emissions,
however, processing grid-level emission process is the last and
most important step in on-road emission processing.

In the Cincinnati region, 85 percent of TAZs are about same area
as 1 km � 1 km grid cell. Therefore, the 1 � 1 km grid cells are
reasonable in terms of resolution, and, accordingly, emissions at
this grid level are generated. In summary, the modeling domain is
divided into 575 (¼25 � 23) grid cells at a 1 km � 1 km resolution,
in the Universal Transverse Mercator (UTM) coordinate system. The
UTM coordinates of southwest corner of modeling domain, i.e.
domain origin are 185,825 m east and 432,6795 m north.

To ensure the quality of gridded emission inventory, very
detailed checks were carried out. As a primary step, we have
extracted the peak hour emission inventory and calculated grid
level proportions of truck emissions with total emissions. Since,
during peak hours the highways are occupied by commuter traffic,
the truck emissions were less i.e. around 15e35% as expected. As a
next step, we have plotted two sets of pollutant specific daily
gridded emissions (for July 17, 2010) one set using our proposed
SPARE-Truck model output with MOVES emission rates another set
using regional travel demand model output and truck factors with



Fig. 8. NOx tile plots showing distribution of emissions from all types heavy-duty trucks (a) Spatial distribution using SPARE Truck Model and proposed emission processing (b)
Base case distribution developed using Travel Demand model out with truck factors.
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Fig. 9. PM2.5 tile plots showing distribution of emissions from all types heavy-duty trucks (a) Spatial distribution using SPARE Truck Model and proposed emission processing (b)
Base case distribution developed using Travel Demand model out with truck factors.
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Fig. 10. SO2 tile plots showing distribution of emissions from all types heavy-duty trucks (a) Spatial distribution using SPARE Truck Model and proposed emission processing (b)
Base case distribution developed using Travel Demand model out with truck factors.
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Fig. 11. VOC tile plots showing distribution of emissions from all types heavy-duty trucks (a) Spatial distribution using SPARE Truck Model and proposed emission processing (b)
Base case distribution developed using Travel Demand model out with truck factors.
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Fig. 12. BC tile plots showing distribution of emissions from all types heavy-duty trucks (a) Spatial distribution using SPARE Truck Model and proposed emission processing (b) Base
case distribution developed using Travel Demand model out with truck factors.
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Fig. 13. OC tile plots showing distribution of emissions from all types heavy-duty trucks (a) Spatial distribution using SPARE Truck Model and proposed emission processing (b) Base
case distribution developed using Travel Demand model out with truck factors.
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MOVES emission rates. The patterns are consistent with the
regional industrial pattern and truck transportation networks.

For example, the grids along Interstate highway 75 have the
highest SO2, NOx, PM2.5 emissions because of a lot of freight
(combination trucks) movement through the region. As expected
BC and OC distribution is very similar to PM2.5. On the other hand,
the base case plot showed more of these emissions along Interstate
71 highway, which is predominantly commuter corridor. This
anomaly may be because of using factoring method used in the
default methodology as it might have overestimated trucks from
total vehicles output from travel demandmodel. Based on proposed
method, the PM2.5 emission proportion of all Interstate highway 75
grids in the region is around 55%, which is consistent with Highway
PerformanceMonitoring Systems data, which confirms that around
45e50% of truck miles traveled are accounted for this interstate
highway.

Even though very few single unit long-haul trucks are registered
in the region, more emission quantities are estimated due to the
external-external activity of this truck type. The combination long-
haul trucks use restricted highways since they tend to haul freight
longer distances compared to other types of trucks, thus the related
hourly emissions are also high. All of the combination trucks are
diesel fueled thus SO2 emissions are higher (Shah et al., 2006).
However, the emission output due to default hourly distribution
showed that they emit the same amount of emissions on both types
of roadways. Most interestingly, the default emissions were higher
during evening peak hour, but the proposed model output was
almost flat during midday, which is more reasonable since truck
drivers try to avoid congested hours in major cities when their trips
are longer (Nyhan et al., 2016).

In next level we have compared specific location level emission
inventory. City of Sharonville, Ohio is part of Cincinnati urban area
and it is mostly industrial land use type. In this area, major factories
like GE Aerospace and other related industries generate lot of single
unit truck traffic and consequently the surrounding grid cells
should have more single unit truck related emissions. Single unit
trucks on average emits more PM2.5 compared to other trucks. In
Fig. 8-b (proposedmethod) it is clearly evident Sharonville which is
south of Woodlawn area has very high PM2.5 emissions of
12.5e15.5 kg/day/km2. Contrarily, in the base case scenario (in
Fig. 8-a), those emissions were predicted around 3.6e5.8 kgs/day/
km2, that clearly shown they are under predicted.

The University of Cincinnati area has combined employment
and enrollment of around 50,000, thus, generates lot of commuter
traffic. Even though, the area attracts moderate truck traffic, their
proportion compared to commuter traffic is feeble. As expected in
the base case, this area is one of high emission concentration area.
Similarly, grid cells near Rookwood and Kenwood were under
allocated in the base case whereas proposed moderately allocated
to those areas as they have significant truck activity due to shop-
ping centers (See Figs. 8e11). We suspect this inconsistent alloca-
tion of emissions may be due to the drawback in truck activity
prediction, which is based on auto travel activity (Milando et al.,
2016). The comparative analysis of spatial distribution provided
us much confidence in the proposed methodology as it predicted
high emissions near truck-activity-dominant areas (see Fig. 12).

From spatial distribution of emissions plots it has been observed
that there are considerable emissions in suburban areas that are
away from central business district. These emissions can be
attributed to the motor homes and refuse trucks activity. As
mentioned emission model results, since there is some discrepancy
in truck count conversion between FHWA highway axle based
classification and motor homes type used in this study, motor
homes have been over estimated. This may have caused some of
motor home emissions in residential land use type. However,
intermittent activity of refuse truck may also have caused some
inconsistent emission sin these areas. Further, the NOx and PM2.5
emissions are sensitive to grades and the proposed method pre-
dicted high emissions along Interstate highway 75 at locations at
Brent Spence Bridge. Overall, the gridded emissions predicted using
proposed are distributed in the areas where more truck traffic is
observed. However, the spatial emission distribution is somewhat
similar for all pollutants, this may be limitation to current link level
processing of combing running and non-running emissions. Most
importantly, using proposed method it easy to segregate gridded
emission inventory by truck-type, this is of particular interest for air
quality modelers, to provide reliable results to decision makers
(Milando et al., 2016) (see Fig. 13).

5. Conclusions

This paperhas presented the successful applicationof data-driven
modeling methodologies to develop truck-related input for any
emission model. Application of optimization/demand adjustment
model as second step of SPARE-Truck model, is actually an
advancement over using simple regressionmodels, which are pretty
unstable due to large unexplained effects exist in explanatory vari-
ables. The truck miles traveled, for all of the truck types except
combined long-haul trucks, in the base case has been under esti-
mated (overall 32% less than traditional model) since our new truck
miles traveled mix actually matches with observed traffic counts in
comparison. Thus, the emission quantities estimated for those truck
types were also under estimated and the annual total discrepancies
as following: 37% for NOx, 35% for SO2, 43% for VOC, �43% for
BC,�47% forOCand49% for PM2.5. Further, the proposedmethodalso
predictedwithin~7%ofnational emission inventory forall pollutants.

The significant contribution of this study is that the emission
inventory using proposedmethodology is higher than the base case
emission quantities which used default aggregated input. This is
very important improvement for regional planning agencies in
United States since it would affect their emission budget revisions
for future years. The methodology used in the case study is easily
adoptable by any other metropolitan area in the United States for
updating their current inputs for US-EPA's MOVES model.

Most importantly, using proposed method it is easy to segregate
gridded emission inventory by truck type, which is of particular
interest for decision makers, since currently there is no reliable
method to test different truck-category specific travel-demand
management strategies for air pollution control. However, the
proposed modeling methodology may not be appropriate if policy
makers are particularly interested in curbing certain types of pol-
lutants in the region, as from the present analysis results, it seems
that the urban-scale spatial emission distribution is somewhat
similar for all pollutants. This limitation is anticipated well in
advance as part of proposed link based processing which combines
the running and non-running emissions at highway link level,
however, in reality most of the non-running emissions may not
happen on links, but, rather at parking and fueling locations. The
solution for this problem is going to be pursued as part of future
research.

In spite of the lot of effort put in the present study, we could only
improve the truck miles traveled and its mix. The other major input
that would affect mobile emission output is the truck speed dis-
tribution. Using current methods, we can estimate only daily or
peak time period speeds; whereas to predict accurate emission
rates, we need to provide actual link level congested speed to the
emission model. It would be very relevant to process the hourly
truck volumes we obtained from the present model to get new
congested speeds through hourly assignment. This improvement is
also considered as part of future work.
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Appendix
Table 5
Summary statistics of explanatory and modeling variables.

Variable Mean Standard deviation Minimum Maximum

Number of Lanes 1.66 0.8415 1 5
Capacity 876.22 276.94 480 2000
Speed 29.56 8.62 15 69
Population 7893.94 39,501.81 0 45,803
Employment 3551.98 3483.36 0 17,752
Accessibility 0.00021 0.00026 1.00E-05 0.00216
Refuse Trucks 277.21 306.57 1 966
Single Unit Short Haul Trucks 480.10 822.86 15 10,361
Single Unit Long Haul Trucks 135.32 219.31 1 2287
Motor Homes 24.45 39.65 1 377
Combination Short Haul Trucks 450.62 1357.40 1 8563
Combination Long Haul Trucks 56.88 157.85 1 2167
References

Bai, S., Chiu, Y.C. (Ethan), Niemeier, D.A., 2007. A comparative analysis of using trip-
based versus link-based traffic data for regional mobile source emissions esti-
mation. Atmos. Environ. 41, 7512e7523.

Bastien, L. a J., McDonald, B.C., Brown, N.J., Harley, R.A., 2015. High-resolution
mapping of sources contributing to urban air pollution using adjoint sensitivity
analysis: benzene and diesel black carbon. Environ. Sci. Technol. 49,
7276e7284. http://dx.doi.org/10.1021/acs.est.5b00686.

Boriboonsomsin, K., Scora, G., Wu, G., Barth, M., 2011. Improving Vehicle Fleet,
Activity, and Emissions Data for On-road Mobile Sources Emissions Inventories
Acknowledgments 166.

Borrego, C., Amorim, J.H., Tchepel, O., Dias, D., Rafael, S., S�a, E., Pimentel, C.,
Fontes, T., Fernandes, P., Pereira, S.R., Bandeira, J.M., Coelho, M.C., 2016. Urban
scale air quality modelling using detailed traffic emissions estimates. Atmos.
Environ. 131, 341e351. http://dx.doi.org/10.1016/j.atmosenv.2016.02.017.

Brondfield, M.N., Hutyra, L.R., Gately, C.K., Raciti, S.M., Peterson, S.A., 2012. Modeling
and validation of on-road CO2 emissions inventories at the urban regional scale.
Environ. Pollut. 170, 113e123. http://dx.doi.org/10.1016/j.envpol.2012.06.003.

Brown-Steiner, B., Hess, P., Chen, J., Donaghy, K., 2016. Black carbon emissions from
trucks and trains in the Midwestern and Northeastern United States from 1977
to 2007. Atmos. Environ. 129, 155e166. http://dx.doi.org/10.1016/
j.atmosenv.2015.12.065.

Cambridge Systematics, 2013. Freight Transportation Demand: Energy-efficient
Scenarios for a Low-carbon Future. Transp. Energy Futur. Ser. Prep. by Cam-
bridge Syst. Inc., Natl. Renew. Energy Lab. (Golden, CO) U.S. Dep. Energy,
Washington, DC, p. 82. DOE/GO-102013e3711.

Citi Labs Inc, 2010. Cube Analyst User Guide (Tallahasse, FL).
Cook, R., Touma, J.S., Beidler, a., Strum, M., 2006. Preparing highway emissions in-

ventories for urban scale modeling: a case study in Philadelphia. Transp. Res.
Part D. Transp. Environ. 11, 396e407. http://dx.doi.org/10.1016/
j.trd.2006.08.001.

D'Angiola, A., Dawidowski, L.E., G�omez, D.R., Osses, M., 2010. On-road traffic
emissions in a megacity. Atmos. Environ. 44, 483e493. http://dx.doi.org/
10.1016/j.atmosenv.2009.11.004.

Di, Q., Koutrakis, P., Schwartz, J., 2016. A hybrid prediction model for PM2.5 mass
and components using a chemical transport model and land use regression.
Atmos. Environ. 131, 390e399. http://dx.doi.org/10.1016/
j.atmosenv.2016.02.002.

Enrique, S., Allende, D., 2015. High Resolut. inventory GHG Emiss. road Transp. Sect.
Argentina 101, 303e311. http://dx.doi.org/10.1016/j.atmosenv.2014.11.040.

Hatzopoulou, M., Miller, E.J., 2010. Linking an activity-based travel demand model
with traffic emission and dispersion models: transport's contribution to air
pollution in Toronto. Transp. Res. Part D. Transp. Environ. 15, 315e325. http://
dx.doi.org/10.1016/j.trd.2010.03.007.

Hicks, J., Niemeier, D.A., 2001. Improving the resolution of gridded-hourly mobile
emissions: incorporating spatial variability and handling missing data. Transp.
Res. Part D. Transp. Environ. 6.

Highway Traffic Data for Urbanized Area Project Planning and Design, 1982.
Washington D.C.

Hou, X., Strickland, M.J., Liao, K.-J., 2015. Contributions of regional air pollutant
emissions to ozone and fine particulate matter-related mortalities in eastern
U.S. urban areas. Environ. Res. 137, 475e484. http://dx.doi.org/10.1016/
j.envres.2014.10.038.

Ireson, R.G., 2004. Mobile Source Gridded Inventory Modeling, pp. 1e11.
Kanaroglou, P.S., Buliung, R.N., 2008. Estimating the contribution of commercial

vehicle movement to mobile emissions in urban areas. Transp. Res. Part E
Logist. Transp. Rev. 44, 260e276. http://dx.doi.org/10.1016/j.tre.2007.07.005.

Kapoor, M., Kelejian, H.H., Prucha, I.R., 2007. Panel data models with spatially
correlated error components. J. Econom. 140, 97e130. http://dx.doi.org/10.1016/
j.jeconom.2006.09.004.

Lin, K., 1998. Temporal disaggregation of travel deamand for high resolution
emissions inventories. Transp. Res. Part D. Transp. Environ. 3, 375e387.

Lindhjem, Christian E., DenBleyker, Allison, Jimenez, Michele, Haasbeek, John,
Pollack, Alison K., Li, Z., 2010. Use of MOVES2010 in link level on-road vehicle
emissions modeling using CONCEPT-MV. In: 19th Annual International Emis-
sion Inventory Conference. US-EPA, San Antonio, TX, pp. 1e16.

Liu, Y.L.L., Ge, Y.E.E., Gao, H.O., 2014. Improving estimates of transportation emis-
sions: modeling hourly truck traffic using period-based car volume data.
Transp. Res. Part D. Transp. Environ. 26, 32e41. http://dx.doi.org/10.1016/
j.trd.2013.10.007.

McDonald, B., McBride, Z., 2014. High-resolution mapping of motor vehicle carbon
dioxide emissions. J. Geophys. Res. Atmos. 5283e5298. http://dx.doi.org/
10.1002/2013JD021219.Received.

Milando, C., Huang, L., Batterman, S., 2016. Trends in PM2.5 emissions, concentra-
tions and apportionments in Detroit and Chicago. Atmos. Environ. http://
dx.doi.org/10.1016/j.atmosenv.2016.01.012.

Niemeier, D.A., Lin, K., Utts, J., 1999. Using observed traffic volumes to improve fine-
grained regional emissions estimation. Transp. Res. Part D. Transp. Environ. 4,
313e332.

Niemeier, D.A., Zheng, Y., Kear, T., 2004. UCDrive: a new gridded mobile source
emission inventory model. Atmos. Environ. 38, 305e319. http://dx.doi.org/
10.1016/j.atmosenv.2003.09.040.

Nyhan, M., Sobolevsky, S., Kang, C., Robinson, P., Corti, A., Szell, M., Streets, D., Lu, Z.,
Britter, R., Barrett, S.R.H., Ratti, C., 2016. Predicting vehicular emissions in high
spatial resolution using pervasively measured transportation data and micro-
scopic emissions model. Atmos. Environ. http://dx.doi.org/10.1016/
j.atmosenv.2016.06.018.

Ortúzar, J. de D., Willumsen, L.G., 2011. Modelling Transport.
Perugu, H., Wei, H., Rohne, A., 2012. Modeling roadway link PM2.5 emissions with

accurate truck activity estimate for regional transportation conformity analysis.
Transp. Res. Rec. J. Transp. Res. Board 2270, 87e95. http://dx.doi.org/10.3141/
2270-11.

Perugu, H., Wei, H., Yao, Z., 2016. Integrated data-driven modeling to estimate
PM2.5 pollution from heavy-duty truck transportation activity over metropol-
itan area. Transp. Res. Part D. Transp. Environ. 46, 114e127. http://dx.doi.org/
10.1016/j.trd.2016.03.013.

Prucha, I.R., 2007. Panel Data Models with Spatially Correlated Error Components -
STATA Programs.

Puliafito, S.E., Allende, D., Pinto, S., Castesana, P., 2015. High resolution inventory of
GHG emissions of the road transport sector in Argentina. Atmos. Environ. 101,
303e311. http://dx.doi.org/10.1016/j.atmosenv.2014.11.040.

Sandhu, G.S., Frey, H.C., Bartelt-Hunt, S., Jones, E., 2016. Real-world activity, fuel use,
and emissions of diesel side-loader refuse trucks. Atmos. Environ. http://
dx.doi.org/10.1016/j.atmosenv.2016.01.014.

Sanna, L., Ferrara, R., Zara, P., Duce, P., 2014. GHG emissions inventory at urban
scale: the Sassari case study. Energy Procedia 59, 344e350. http://dx.doi.org/
10.1016/j.egypro.2014.10.387.

Shah, S.D., Johnson, K.C., Wayne Miller, J., Cocker, D.R., 2006. Emission rates of
regulated pollutants from on-road heavy-duty diesel vehicles. Atmos. Environ.
http://dx.doi.org/10.1016/j.atmosenv.2005.09.033.

Sierra Research, 2007. Toxic Air Contaminant Emissions Inventory and Dispersion
Modeling Report for the Oakland Rail Yard. Oakland, California 95814, p. 286.

Tsai, C.-I., 2010. Ohio-Kentucky-Indiana Travel Demand Model.
U.S. EPA, 2012. Technology Transfer Network Clearinghouse for Inventories &

Emissions Factors [WWW Document]. U.S.EPA. http://www.epa.gov/ttnchie1/
trends/.

U.S. EPA, 2010. MOVES User Guide. Research Triangle Park, North Carolina 27711.
Vijayaraghavan, K., Lindhjem, C., DenBleyker, A., Nopmongcol, U., Grant, J., Tai, E.,

http://refhub.elsevier.com/S1352-2310(17)30090-0/sref1
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref1
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref1
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref1
http://dx.doi.org/10.1021/acs.est.5b00686
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref3
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref3
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref3
http://dx.doi.org/10.1016/j.atmosenv.2016.02.017
http://dx.doi.org/10.1016/j.envpol.2012.06.003
http://dx.doi.org/10.1016/j.atmosenv.2015.12.065
http://dx.doi.org/10.1016/j.atmosenv.2015.12.065
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref7
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref7
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref7
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref7
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref7
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref8
http://dx.doi.org/10.1016/j.trd.2006.08.001
http://dx.doi.org/10.1016/j.trd.2006.08.001
http://dx.doi.org/10.1016/j.atmosenv.2009.11.004
http://dx.doi.org/10.1016/j.atmosenv.2009.11.004
http://dx.doi.org/10.1016/j.atmosenv.2016.02.002
http://dx.doi.org/10.1016/j.atmosenv.2016.02.002
http://dx.doi.org/10.1016/j.atmosenv.2014.11.040
http://dx.doi.org/10.1016/j.trd.2010.03.007
http://dx.doi.org/10.1016/j.trd.2010.03.007
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref15
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref15
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref15
http://dx.doi.org/10.1016/j.envres.2014.10.038
http://dx.doi.org/10.1016/j.envres.2014.10.038
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref18
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref18
http://dx.doi.org/10.1016/j.tre.2007.07.005
http://dx.doi.org/10.1016/j.jeconom.2006.09.004
http://dx.doi.org/10.1016/j.jeconom.2006.09.004
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref21
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref21
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref21
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref22
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref22
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref22
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref22
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref22
http://dx.doi.org/10.1016/j.trd.2013.10.007
http://dx.doi.org/10.1016/j.trd.2013.10.007
http://dx.doi.org/10.1002/2013JD021219.Received
http://dx.doi.org/10.1002/2013JD021219.Received
http://dx.doi.org/10.1016/j.atmosenv.2016.01.012
http://dx.doi.org/10.1016/j.atmosenv.2016.01.012
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref26
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref26
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref26
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref26
http://dx.doi.org/10.1016/j.atmosenv.2003.09.040
http://dx.doi.org/10.1016/j.atmosenv.2003.09.040
http://dx.doi.org/10.1016/j.atmosenv.2016.06.018
http://dx.doi.org/10.1016/j.atmosenv.2016.06.018
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref29
http://dx.doi.org/10.3141/2270-11
http://dx.doi.org/10.3141/2270-11
http://dx.doi.org/10.1016/j.trd.2016.03.013
http://dx.doi.org/10.1016/j.trd.2016.03.013
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref32
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref32
http://dx.doi.org/10.1016/j.atmosenv.2014.11.040
http://dx.doi.org/10.1016/j.atmosenv.2016.01.014
http://dx.doi.org/10.1016/j.atmosenv.2016.01.014
http://dx.doi.org/10.1016/j.egypro.2014.10.387
http://dx.doi.org/10.1016/j.egypro.2014.10.387
http://dx.doi.org/10.1016/j.atmosenv.2005.09.033
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref37
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref37
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref38
http://www.epa.gov/ttnchie1/trends/
http://www.epa.gov/ttnchie1/trends/
http://refhub.elsevier.com/S1352-2310(17)30090-0/sref40


H. Perugu et al. / Atmospheric Environment 155 (2017) 210e230230
Yarwood, G., 2012. Effects of light duty gasoline vehicle emission standards in
the United States on ozone and particulate matter. Atmos. Environ. http://
dx.doi.org/10.1016/j.atmosenv.2012.05.049.

Wang, G., Bai, S., Ogden, J.M., 2009. Identifying contributions of on-road motor
vehicles to urban air pollution using travel demand model data. Transp. Res.
Part D. Transp. Environ. 14, 168e179. http://dx.doi.org/10.1016/j.trd.2008.11.011.

Waygood, E.O.D., Chatterton, T., Avineri, E., 2013. Comparing and presenting city-
View publication statsView publication stats
level transportation CO2 emissions using GIS. Transp. Res. Part D. Transp. En-
viron. 24, 127e134. http://dx.doi.org/10.1016/j.trd.2013.06.006.

Yoon, S., Quiros, D.C., Dwyer, H.A., Collins, J.F., Burnitzki, M., Chernich, D.,
Herner, J.D., 2015. Characteristics of particle number and mass emissions during
heavy-duty diesel truck parked active DPF regeneration in an ambient air
dilution tunnel. Atmos. Environ. 122, 58e64. http://dx.doi.org/10.1016/
j.atmosenv.2015.09.032.

http://dx.doi.org/10.1016/j.atmosenv.2012.05.049
http://dx.doi.org/10.1016/j.atmosenv.2012.05.049
http://dx.doi.org/10.1016/j.trd.2008.11.011
http://dx.doi.org/10.1016/j.trd.2013.06.006
http://dx.doi.org/10.1016/j.atmosenv.2015.09.032
http://dx.doi.org/10.1016/j.atmosenv.2015.09.032
https://www.researchgate.net/publication/313688450

	Developing high-resolution urban scale heavy-duty truck emission inventory using the data-driven truck activity model output
	1. Introduction
	2. Methods
	2.1. Two-step modeling approach for Spare-Truck model: regression model
	2.2. Two-step modeling approach in Spare-Truck model: output optimization
	2.3. Emission model
	2.4. Emissions gridding process
	2.4.1. Link level running emissions
	2.4.2. Link level non-running emissions


	3. Case study
	3.1. Data description
	3.1.1. Population (POPDEN)
	3.1.2. Employment (EMPDEN)
	3.1.3. Accessibility (ACCS)
	3.1.4. Speed (SPD)
	3.1.5. Capacity (CAP)
	3.1.6. Number of lanes (LANES)


	4. Results and discussion
	4.1. Spatial regression results
	4.2. SPARE-Truck model validation results
	4.3. Emission model results

	5. Conclusions
	Appendix
	References


