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Dynamical system (Ω,A, µ, T ) : (Ω,A, µ) is a probablity space, T : Ω → Ω a
bijective, bimeasurable, and measure preserving mapping.

The measure µ (or the transformation T ) is called ergodic if for any set A ∈ A,
T−1A = A implies that A or Ω \A is of measure 0.

We will suppose that A is countably generated.

For a measurable function f on Ω,

(f ◦ T i)i = (U if)i

is a (strictly) stationary sequence;
reciprocally, to each (strictly) stationary sequence of random variables (Xi)i there
exists a dynamical system and a function f such that (Xi)i and (f ◦T i)i are equally
distributed.

Bernoulli dynamical systems

Bernoulli: there exists a measurable partition A = {A1, A2, ...} such that T iA
are mutually independent and generate all σ-algebra A.

In a Bernoulli dynamical system there thus exists a sequence (ei)i, ei = e0 ◦ T i,
of iid which generates A, i.e. such that for any process (f ◦ T i)i there exists a
measurable function g such that

f = g(. . . , e−1, e0, e1, . . . ).

For a relatively long time, in probabilists community there existed a conjecture
saying that each (strictly) stationary process can be represented as a functional of
iid.

Another community was interested by existence of a zero entropy process for
which a CLT holds. A zero entropy process is not Bernoulli.
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An example of a non Bernoulli dynamical system is an irrational circle rotation.

We define
Ω = [0, 1),

A = B is the Borel σ-algebra and µ = λ is the Lebesgue measure. We define T = Tθ

by
Tx = x+ θ mod 1

where θ is an irrational number.

This dynamical system is of zero entropy and is not Bernoulli.

In particular, becuase for each x ∈ [0, 1), {T ix : i ∈ Z} is a dense set, there exist
a rigidity time, i.e. a sequence (nk) such that

Tnkx → x, k → ∞
hence for any measurable function f , the representation f = g(. . . , e−1, e0, e1, . . . )
with ei = e0 ◦ T i is impossible.

Zero entropy

Moreover, the dynamical system ([0, 1),B, λ, Tθ) is of zero entropy, i.e.
for any σ-algebra C ⊂ B with C ⊂ T−1C we have C = T−1C.

In a dynamical system of zero entropy we thus have no nontrivial martingale
difference sequence (m ◦T i)i and any process (f ◦ T i)i is deterministic in the sense
that f ◦ T is measurable w.r.t. the past σ-algebra generated by f ◦ T i, i ≤ 0.

It should be noted that even in a Bernoulli dynamical system we can find a
process (f ◦T i)i which is deterministic and at the same time, the process (f ◦T−i)i
is a sum of a martingale difference sequence and a coboundary.

In a (general) dynamical system (Ω,A, µ, T ) there exists a σ-algebra P ⊂ A such
that

- P = TP = T−1P and when restricting the measure µ on P, we get a zero
entropy dynamical system,

- P is maximal of that property.
Such a σ-algebra P is called Pinsker σ-algebra.

A process (f ◦ T i)i can in a unique way be represented using a sum

f =
(

f − E(f |P)
)

+ E(f |P)

into a zero entropy process and a process which is a sum of martingale difference
sequences.

Remark that for some time it was a question whether in a zero entropy dynam-
ical system there can exist a process (f ◦ T i)i for which a CLT takes place. In
1987, Bob Burton and Manfred Denker showed that in every “reasonable” (ape-
riodic) dynamical system we have an f ∈ L2 such that Sn(f)/‖Sn(f)‖2 converge
in distribution to N (0, 1) and later Volný in 1999 showed that the f can be found
such that we have the CLT for Sn(f)/

√
n and moreover we have both weak and

strong invariance principle. There is no general theorem-condition for zero entropy
processes, however.
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Fourier transforms

In 2010, M. Pelirad and W.B. Wu published a strikingly strong result:

Theorem (Peligrad, Wu). If (Xj)j is a (ergodic) stationary L2 process pro-
cess such that there exists a filtration of Fj ⊂ T−1Fj = Fj+1 ⊂ A, X0 is F∞-
measurable, and E(X0|F−∞) = 0 then for almost every (w.r.t. the Lebesgue mea-
sure) θ ∈ (0, 2π) (1/

√
n)

∑n
j=1

eijθXj converge to a normal law.

Bernoulli dynamical systems belong to the family of K-mixing systems, i.e. such
that

there exists a filtration Fj ⊂ T−1Fj = Fj+1 ⊂ A such that F−∞ is a trivial
σ-algebra and F∞ = A.

In such a dynamical system the assumptions of Peligrad-Wu’s theorem are thus
satisfied for any f ∈ L2 with Ef = 0 (as noticed J.-P. Conze and G. Cohen).

The theorem, however, does not extend to any dynamical system:

Proposition. There exists a dynamical system and a process of Xj = f ◦ T j,
f ∈ L2 and Ef = 0, such that for almost every (w.r.t. the Lebesgue measure)
θ ∈ (0, 2π) (1/

√
n)

∑n
j=1

eijθXj converge to no probability law.

Martingale differences

Historically, first central limit theorems were given for independent random vari-
ables. An important contribution to the limit theory for dependent random vari-
ables was the Billingsley-Ibragimov CLT for (stationary, ergodic) martingale differ-
ence sequences.

One can ask a question whether the CLT remains true for subsequences, i.e. if
the summation is done over more general sets Γn ⊂ Z.

It is probably not very surprising that there exists a dynamical system, a mar-
tingale difference sequence (f ◦T j)j and a sequence of Γn ⊂ Z with |Γn| → ∞ such
that

1
√

|Γn|

n
∑

j=1

f ◦ T j

converge to no probability law.

We can construct an example by a product of two dynamical systems taking

f ◦ T j = XjYj

where Xi = 1A◦T ′i for an irrational rotation T ′ and an interval A, (Yi) is a sequence
of iid with values −1, 1 (independent of (Xi)), Γn = {n1, . . . , nn} for a rigidity time
(nk).
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Bernoulli random fields

In the same way as we defined Bernoulli dynamical systems for a Z action, i.e.
for a family of transformations T i, i ∈ Z, we can define a Bernoulli dynamical
system for a family of measurable and measure preserving transformations Ti1,...,id ,
(i1, . . . , id) ∈ Z

d, where

Ti1,...,id ◦ Tj1,...,jd = Ti1+j1,...,id+jd .

For a measurable function f we thus get a random field of Xi1,...,id = f ◦ Ti1,...,id .
The dynamical system is Bernoulli if the σ-algebra A is generated by iid random

variables ei1,...,id , (i1, . . . , id) ∈ Z
d.

The random field is Bernoulli if f = g(ei : i ∈ Z
d).

In 2005, Wei Biao Wu introduced the “measure of physical dependence” for
stationary processes in Bernoulli dynamical systems and in 2013, the notion was
extended to Bernoulli random fields by El Machkouri, Volný and Wu.

It can be defined by

∆p =
∑

i∈Zd

‖f − g(e∗j : e∗j = ej if j 6= i, e∗j = e′j if j 6= i, j ∈ Z
d)‖p

where e′j is a copy of ej independent of all ei.
For ∆2 < ∞ El Machkouri, Volný and Wu proved that
If |Γn| → ∞ then the Levy distance of SΓn

/
√

|Γn| and N (0, σ2
n/|Γn|) converge

to zero (σn = ‖SΓn
‖2).

In the same paper, a weak invariance principle was proved for ∆ρ < ∞ where ρ
is an Lp or a Luxemburg norm.

The results were proved using an inequality

∥

∥

∥

∑

i∈Γ

aiXi

∥

∥

∥

p
≤

(

2p
∑

i∈Γ

a2i

)1/2

∆p,

Xi = f ◦ Ti, and approximation by m-dependent random fields.
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Hannan’s condition

One of most useful assumptions guaranteeing CLT and WIP for stationary pro-
cesses is the Hannan’s condition. The condition can be used for random arrays as
well.

One dimensional case :
We are given a filtration (Fi)i with

Fi ⊂ T−1Fi = Fi+1,

for f ∈ L2 define
Pif = E(f |Fi)− E(f |Fi−1).

The Hannan’s condition is satisfied if

f =
∑

i∈Z

Pif

(the process (f ◦ T i)i is regular) and

∑

i∈Z

‖Pif‖2 < ∞.

The condition implies CLT and WIP.

For fields : Let
Fi = σ(ej : j ≤ i)

where i ∈ Z
d and j ≤ i means inequality for all coordonates.

For a Bernoulli random field, the σ-algebras Fi commute in the sense that for f
integrable

E
(

E(f |Fi)
∣

∣Fj

)

= (E(f |Fi ∩ Fj).

Similarly as in the one dimensional case we can define orthogonal projection oper-
ators Pi.

If f = P0f we say that the random field (f◦Ti)i is a field of martingale differences.

While in the one dimensional case, Billingsley-Ibragimov theorems guarantees
a CLT for martingale difference sequences, in dimension 2 and higher there are
counterexamples. If the random field is Bernoulli, the CLT, nevertheless, takes
place.

In 2013 (Statistica Sinica), Y. Wang and M. Woodroofe got a central limit theo-
rem and invariance principle for Bernoulli random field under Maxwell-Woodroofe’s
condition; the summation was over rectangles.

In 2014, D. Volný and Y. Wang got the results under Hannan’s condition. They
also showed that L2 Hannan’s condition is a weaker assumption than ∆2 < ∞. The
result of Volný and Wang is stronger than the result of Wang and Woodroofe in
the sense that for the WIP, only finite second moments are needed.
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When passing to a summation over general sets Γn ⊂ Z
d, some problems occur.

Already in dimension 1, the constructions of zero entropy processes are based on
summation over segments and for general Γn the problem opens anew.

The variance plays important role.

Already in dimension one, the Hannan’s condition guarantees a CLT for Sn/
√
n

but if σn = ‖Sn‖2 = o(
√
n), Sn/σn can converge to no limit. Nevertheless, we have:

Proposition. Let (e ◦ Ti) be a (Bernoulli) random field of martingale differences,

f =
∑

i∈Zd

aie ◦ T−i

where
∑

i∈Zd a2i < ∞. Let Γn ⊂ Z
d, σn = ‖∑i∈Γn

f ◦ Ti‖2 → ∞.

Then (1/σn)
∑

i∈Γn
f ◦ Ti converge in distribution to N (0, 1).

Proposition. Let (f ◦Ti) be a (Bernoulli) random field which satisfies the Hannan
condition, Γn ⊂ Z

d, σn = ‖∑i∈Γn
f ◦ Ti‖2 → ∞. If

lim inf
n→∞

σn/
√

|Γn| > 0

then (1/σn)
∑

i∈Γn
f ◦ Ti converge in distribution to N (0, 1).

Proposition. Let (f ◦Ti) be a (Bernoulli) random field which satisfies the Hannan
condition,

lim
n→∞

|∂Γn|
|Γn|

= 0, |Γn| → ∞.

Then (1/
√

|Γn|)
∑

i∈Γn
f ◦ Ti converge in distribution to N (0, σ2) where σ2 =

∑

k∈Zd fUkf .

Under Hannan’s condition we get also the WIP like in El Machkouri, Volný and
Wu, replacing the assumption ∆p < ∞ by

∑

i ‖Pif‖p < ∞.
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Martingale-coboundary decomposition

In the one-dimensional case an important tool for proving limit theorems has
been the martingale-coboundary decomposition

(*) f = m+ g − g ◦ T

where (m ◦ T i)i is a martingale difference sequence. The decomposition was in-
troduced by M.I. Gordin in 1969. For simplicity let us consider adapted processes
(and random fields) only with a filtration (Fi)i. Gordin showed that (*) holds in
L2 if

∞
∑

i=0

‖E(U if |F0)‖2 < ∞.

The condition becomes necessary and sufficient if we consider convergence of the
series

∑

∞

i=0
E(U if |F0) (Volný 1993); the result (convergence) taking place in Lp

with 1 ≤ p < ∞.
D. Giraudo and M. El Machkouri generalised this condition to random fields proving
an Lp martingale-coboundary decomposition for a Z

d random field (Uif)i if

d
∑

j=1

∞
∑

k=1

kd−1‖E(Uk
ej
f |F0)‖p < ∞

where Uej = U0,...,1,..., the 1 being on j-th place.

For L2 this can be improved and a necessary and sufficient condition can be
given.

The martingale-coboundary decomposition can bring estimates of probabilities
of large deviations.


