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4/34

Problem Formulation Limit Theory Implicit Extreme Value Laws Domains of Attraction An Example

Setup

Let X1, . . . ,Xn be iid vectors in Rd .

They are hidden, i.e., unobserved.

Observed are
f (X1), . . . , f (Xn)

for some loss function f : Rd → [0,∞).

We want to know what is the behavior of the scenario that
maximizes the loss

Xk(n), where k(n) = Argmaxk=1,...,nf (Xk).

We refer to Xk(n) as to the implicit extreme relative to the
loss f .
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First observations

If the law of f (Xi ) is continuous, with probability one, there
are no ties among

f (X1), . . . , f (Xn)

In the case of ties (discontinuous L(f (Xi ))), k(n) is taken as
the smallest index maximizing the losses f (Xi ), i = 1, . . . , n.

The motivation stems from applications: We are interested in
the structure of the complex (multivariate) events modeled by
Xi ’s that lead to extreme losses.

These implicit extremes, depending on the loss function f ,
may or may not be associated with extreme values of the
Xi ’s...

General Perspective: We are interested in the structure of
events leading to extreme losses!
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The simple Lemma that started it all

Lemma

Suppose the cdf G (y) := P(f (X1) ≤ y) is continuous. Then, for
all measurable A ⊂ R,

P(Xk(n) ∈ A) = n

∫
A

G (f (x))n−1PX (dx)

Proof.

There are no ties, a.s., and by symmetry and independence:

P(Xk(n) ∈ A) = nP(X1 ∈ A, f (Xi ) ≤ f (X1), i = 2, . . . , n)

= n

∫
A

P(f (X2) ≤ f (x))n−1PX (dx).

Note: We can handle the general case of discontinuous G .
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Limit Theory
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Assumptions

Homogeneous losses: The loss is non-negative f : Rd → [0,∞) and

f (cx) = cf (x), for all c > 0.

This is not a terrible constraint, since

Argmax(f (X1), . . . , f (Xn)) = Argmax(h ◦ f (X1), . . . , h ◦ f (Xn)),

for any strictly increasing h : [0,∞)→ [−∞,∞).

Regular variation on a cone: PX ∈ RV ({an},D, ν), where D ⊂ Rd

is a closed cone, playing the role of zero. That is,

nP(a−1n X ∈ ·) v−→ ν, as n→∞,

in the space Rd

D := Rd \ D.

This is an important generalization of the usual RV on Rd

{0}.

Note RV ({an}, {0}, ν) ⊂ RV ({an},D, ν). However, the generalized
notion of RV allows us to handle cases that are asymptotically
trivial in the classical sense.

Similar (but not the same as) Sid Resnick’s hidden regular variation.
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RV on cones and generalized polar coordinates

Consider the compact space Rd
:= [−∞,∞]d .

Let τ : Rd → [0,∞] be a continuous and homogeneous
function.

Define D := {τ = 0} (necessarily) a compact in Rd .

Equip Rd
D := Rd \ D with the relative topology.

The compacts in Rd
D are closed subsets of Rd

that are

bounded away from D = {τ = 0}. That is, K ⊂ Rd
D is

compact if it is closed and K ⊂ {τ > ε}, for some ε > 0.

Polar coordinates: Let θ(x) := x/τ(x). Then

(τ, θ) : Rd
D → (0,∞]× S ,

is a homeomorphism (of topological spaces), where

S = {τ = 1} = {x ∈ Rd
: τ(x) = 1}

is equipped with the relative topology.
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Regular variation

Definition

A probability law PX ∈ RV ({an},D, ν), if there exists a regularly varying

sequence {an} and a non-trivial Radon measure ν on Rd

D , such that

nPX (a−1n X ∈ A) −→ ν(A), as n→∞,

for all measurable A, bounded away from D, i.e., A ⊂ {τ > ε}, for some
ε > 0, and such that ν(∂A) = 0.

Fact (Prop 3.8 in Scheffler & Stoev (2014))

PX ∈ RV ({an},D, ν), if and only if

nP(a−1n τ(X ) > x)→n→∞ Cx−α

and
P(θ(X ) ∈ ·|τ(X ) > u)

w−→u→∞ σ0(·),

where σ0 is a finite measure on S.
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Example

Cone and coors: Let

τ(x) = min{(x1)+, . . . , (xd)+}

so that
Rd

D = (0,∞]d .

The unit “sphere”, is now:

S := {x : τ(x) = 1} = ∪di=1[1,∞]i−1 × {1} × [1,∞]d−i

Distribution: Let X = (Xi )
d
i=1 with independent and Pareto Xi ’s

P(Xi > x) = x−αi , (αi > 0), i = 1, . . . , d .
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Example (cont’d)

The classic RV: In Rd
{0}, we have asymptotic independence and the

heaviest tail dominates:

nP(n−1/α∗X ∈ A) −→ µ(A), where α∗ := min
i=1,...,d

αi ,

and

µ(A) =
d∑

i=1

I{αi=α∗}νi,α∗(A),

where νi,α is concentrated on the positive part of the i-th axis and

νi,α(Ri−1 × [x ,∞)× Rd−i ) = x−α, x ≥ 0.

That is, the limit measure µ lives on the axes.
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Example (cont’d)

The cone Rd
D := (0,∞]d : Then, X ∈ RV ({n−1/α},D, ν), with

α = α1 + · · ·+ αd

and where now ν lives on (0,∞)d and now has a density!
Indeed, for A = (x1,∞]× · · · × (xd ,∞] ⊂ (0,∞]d ,

P(a−1n X ∈ A) ∼
d∏

i=1

P(Xi > anxi )

=
d∏

i=1

(anxi )
−αi =: a−αn ν(A).

By picking an := n−1/α, we obtain nP(a−1n X ∈ ·)→v ν(·), where

dν

dx
(x) =

d∏
i=1

αix
−αi−1
i , x = (xi )

d
i=1 ∈ (0,∞]d .
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Implicit Extreme Value Laws

Assumptions:

(RVα) X ∈ RVα({an},D, ν)

(H) f : Rd → [0,∞] is Borel, 1-homogeneous, f (0) = 0.

(F) For all ε > 0, the set {f > ε} is bounded away from D and

inf
x∈K

f (x) > 0, for all compact K ⊂ Rd

D .

(C) ν(disc(f )) = 0.

Theorem (3.13 in Scheffler & Stoev (2014))

Under the above assumptions, we have

1

an
Xk(n)

d−→ Y , as n→∞,

where PY (dx) = e−Cf (x)
−α

ν(dx) and C := ν{f > 1}.
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Sketch of the proof

By the above lemma, we have

P(Xk(n) ∈ anA) = n

∫
anA

P(f (X ) ≤ f (x))n−1PX (dx)

=

∫
A

P(f (X ) ≤ f (anz)n−1nPa−1
n X (dz) (change of vars)

=

∫
A

P(f (a−1n X ) ≤ f (z))n−1νn(dz) (homogeneity of f )

where
νn(dz) := nPa−1

n X (dz) ≡ nP(a−1n X ∈ dz).

Continuing...

P(Xk(n) ∈ anA) =

∫
A

(
1− nP(f (a−1n X ) > f (z)

n

)n−1
νn(dz).
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Sketch of the proof (cont’d)

P(Xk(n) ∈ anA) =

∫
A

(
1− nP(f (a−1n X ) > f (z)

n

)n−1
νn(dz)

=

∫
A

(
1− nP(a−1n X ∈ {f > f (z)}

n

)n−1
νn(dz).

The set Bz := {f > f (z)} is bounded away from D. If it is a continuity
set of ν, by the (RVα) and (H) assumptions:

nP(a−1n X ∈ Bz) = nP(a−1n X ∈ {f > f (z)} −→ ν({f > f (z)})
= ν(f (z) · {f > 1}) = f (z)−αν{f > 1}.

Since by (RVα), we also have νn →v ν, it can be shown that

P(Xk(n) ∈ anA) −→
∫
A

e−ν{f>1}f (z)−α

ν(dz),

for all ν-continuity sets A. 2
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Comments

The heuristic interchange of ‘lim’ and ‘
∫

’ in the proof has been
justified with some tedious lemmas.

The measure
e−ν{f>1}f (z)−α

ν(dz) (1)

is a probability measure on Rd
D .

That is,∫
Rd

D

e−ν{f>f (z)}ν(dz) =

∫
Rd

D

e−ν{f>1}f (z)−α

ν(dz) = 1.

This is amusing and somewhat non–obvious. For example, nothing
changes in the limit if ν := cν for c > 0, but∫

e−cν{f>f (z)}cν(dz) = 1!

The limit laws in (1) will be referred to as (f , ν)-implicit extreme
value laws.
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Implicit Extreme Value Laws
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Spectral measure

Let X ∈ RVα({an},D, ν). The homogeneity of ν:

ν(cA) = c−αν(A), for all c > 0,

implies the disintegration formula

ν(A) =

∫
S

∫ ∞
0

1A(τθ)
αdτ

τα+1
σ(dθ),

where (τ, θ) are any polar coordinates for Rd

D and

σ(B) := ν{(τ, θ) ∈ [1,∞]× B}, B ⊂ S .

is the spectral measure of ν relative to (τ, θ).
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A stochastic representation

Recall the limit (f , ν)-implicit EV law is

PY (dz) = e−Cf (z)
−α

ν(dz).

In polar coordinates z = τθ, we have

PY (dτσ(dθ)) = e−Cf (τθ)
−α αdτ

τα+1
σ(dθ).

This yields the stochastic representation:

Fact (Prop 3.17 in Scheffler & Stoev (2014))

Y is (f , ν)-implicit EV if and only if

Y
d
= Z

Θ

g(Θ)
, where g(θ) = C−1/αf (θ)

(i) Z and Θ are independent

(ii) P(Z ≤ x) = e−x
−α

, x > 0 is standard α-Fréchet
(iii) Θ has distribution g(θ)ασ(dθ) ∝ f (θ)ασ(dθ) on the unit sphere S.
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Implicit Max–Stability

For simplicity, let C = ν{f > 1} = 1. Then,

Y = Z
Θ

f (Θ)
, with Θ ∼ f (θ)ασ(dθ).

Let Y1, . . . ,Yn be independent copies of Y . By homogeneity:

f
(

Zi
Θi

f (Θi )

)
=

Zi

f (Θi )
f (Θi ) = Zi ,

and hence

k(n) = argmaxi=1,...,nf (Yi ) = argmaxi=1,...,nZi .

Clearly, by the max-stability of Z

Zk(n) =
n∨

i=1

Zi
d
= n1/αZ

and by the independence of the Zi ’s and Θi ’s, we have

Yk(n) = Zk(n)

Θk(n)

f (Θk(n))
d
= n1/αZ

Θ

f (Θ)
= n1/αY .
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Implicit Max–Stable Laws: Definition and Characterization.

Definition

A rvec X in Rd is (strictly) f -implicit max–stable if for all n, exists
an > 0, such that

a−1n Xk(n)
d
= X , with k(n) = argmaxi=1,...,nf (Xi ),

where Xi ’s are independent copies of X .

We have shown that for non-negative homogeneous f .

Fact (Theorem 4.2 in Scheffler & Stoev (2014))

The (f , ν)-implicit EV laws are f -implicit max–stable. Conversely, if f is
continuous, non–negative and 1-homogeneous, then any f -implicit
max–stable law is also an (f , ν)-implicit EV, for some Radon measure ν
on Rd \ {f = 0} such that for some α > 0,

ν(cA) = c−αν(A), for all c > 0.
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Implicit Max–Stable Laws and their DoA
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Implicit Max–Stable Laws: Definition and Characterization.

Definition

A rvec X in Rd is (strictly) f -implicit max–stable if for all n, exists
an > 0, such that

a−1n Xk(n)
d
= X , with k(n) = argmaxi=1,...,nf (Xi ),

where Xi ’s are independent copies of X .

We have shown that for non-negative homogeneous f .

Fact (Theorem 4.2 in Scheffler & Stoev (2014))

The (f , ν)-implicit EV laws are f -implicit max–stable. Conversely, if f is
continuous, non–negative and 1-homogeneous, then any f -implicit
max–stable law is also an (f , ν)-implicit EV, for some Radon measure ν
on Rd \ {f = 0} such that for some α > 0,

ν(cA) = c−αν(A), for all c > 0.
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Characterization of the DoA

Definition

We write X ∈ DOAf (Y ) for an f -implicit max–stable rvec Y if

a−1n Xk(n)
d−→ Y , as n→∞. (2)

Fact (Theorem 4.4 in Scheffler & Stoev (2014))

If f : Rd → [0,∞] is continuous and 1-homogeneous, then
X ∈ DOAf (Y ) if and only if X ∈ RVα({f = 0}, ν), for some α > 0.

Notes:

Satisfying result – the generalized notion of RV is the right one for
implicit Max–DOA!

The ‘if’ part is our first implicit limit theorem.

We will sketch the proof of the ‘only if’ part.
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Characterization of the DoA: Proof of the ‘only if’ part

Suppose (2) holds, i.e., a−1n Xk(n)
d→ Y , n→∞. Then, by CMT

a−1n f (Xk(n)) = a−1n max
i=1,...,n

f (Xi )
d−→ f (Y ).

Since f (Xi )’s are iid random variables, the classic EVT says:

f (Y ) must be α-Fréchet for some α > 0.

{an} is RV(1/α) sequence.

Thus, for some C > 0 and all y > 0,

gn(y) := P(a−1n f (X1) ≤ y)n−1 → e−Cy
−α

.

But recall the first Lemma:

P(a−1n Xk(n) ∈ A) =

∫
anA

P(a−1n f (X ) ≤ f (x))n−1nPX (dx)

=

∫
A

gn(f (z))nPa−1
n X (dz)
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Cont’d

Thus, for some C > 0 and all y > 0,

gn(y) := P(a−1n f (X1) ≤ y)n−1 → e−Cy
−α

. (3)

But recall the first Lemma:

P(a−1n Xk(n) ∈ A) =

∫
anA

P(a−1n f (X ) ≤ f (x))n−1nPX (dx)

=

∫
A

gn(f (z)) nPa−1
n X (dz)︸ ︷︷ ︸

=:νn(dz)

Goal: Show RV of X , i.e.,

νn(dz) = nPX (a−1n X ∈ dz)→v ν

We have:

P(a−1n Xk(n) ∈ A) =
∫
A

gn(f (z))νn(dz)→ PY (A).

From (3), gn(y)→ g(y) := e−Cy
−α

.
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Finishing the sketch of the proof...

Thus, a type of Radon-Nikodym inversion yields

νn(A) =

∫
A

1

gn(f (z))
P(a−1n Xk(n) ∈ dz)

−→
∫
A

1

g(f (z))
PY (dz) =: ν(A),

where in the last relation we used that

P(a−1n Xk(n) ∈ ·) =
∫
· gn(f (z))µn(dz)→w PY (·).

From (3), gn(y)→ g(y) := e−Cy
−α

.

Note: I am glossing over details about justifying the Radon-Nikodym
“inversion”.
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An Example
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Pareto–Dirichlet Implicit Max–Stable Laws

Let X = (Xi )
d
i=1 where Xi ∼ Pareto(αi ), i = 1, . . . , d are

independent.

Recall X ∈ RVα(D, ν) with Rd

D = (0,∞]d .

Consider the 1-homogeneous function

f (x) =
( 1

x1
+ · · ·+ 1

xd

)

Fact (Example 5.1 in Scheffler & Stoev (2014))

The f -implicit max-stable law attracting X is:

Y = Z Θ ≡
( Z

ξ1
· · · Z

ξd

)>
,

where Z ∼ α−Fréchet independent of ξ = Θ−1 ∼ Dirichlet(α1, . . . , αd).
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Why Dirichlet?

WLOG, let τ(x) := f (x) be the radial and θ(x) := x/f (x) the angular
components of polar coordinates in (0,∞]d .
Then, by the representation of the (f , ν)-implicit EV laws:

Y = Z
Θ

f (Θ)
, where Θ ∼ f (θ)ασ(dθ).

Since f (θ) = 1, the distribution of Θ is Uniform w.r.t. the spectral
measure σ.
We have

dν

dx
(x) ∝ x−α1−1

1 · · · x−αd−1
d , α =

d∑
i=1

αi .

and thus

σ(B) = ν((f , θ) ∈ [1,∞)× B) ∝
∫
(f ,θ)∈[1,∞)×B

d∏
i=1

x−αi−1
i dx .
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By making the change of variables xi = f /ui , i = 1, · · · , d , where

ud = 1−
∑d−1

i=1 ui , we get

dx = τd−1
d−1∏
i=1

u−2i dτdu1 · · · dud−1.

Which gives

σ(B) ∝
∫ ∞
1

∫
{u−1∈B}

τ−α
d∏

i=1

uαi−1
i dτdu1 · · · dud−1

∝
∫
{u−1∈B}

d∏
i=1

uαi−1
i dτdu1 · · · dud−1

∝ P(ξ−1 ∈ B),

for ξ = (ξ1 · · · ξd) ∼ Dirichlet(α1, . . . , αd).
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Thank you!
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