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Problem Formulation

Setup

Let Xi,..., X, be iid vectors in RY.

They are hidden, i.e., unobserved.

Observed are

f(X1),...,f(Xn)

for some loss function f : RY — [0, o0).

We want to know what is the behavior of the scenario that
maximizes the loss

Xi(ny, Where k(n) = Argmax,_; ,f(Xk).

We refer to X, as to the implicit extreme relative to the
loss f.
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Problem Formulation

First observations

If the law of f(X;) is continuous, with probability one, there
are no ties among
f(X1),...,f(Xp)

In the case of ties (discontinuous L(f(X;))), k(n) is taken as
the smallest index maximizing the losses f(X;), i=1,...,n.

The motivation stems from applications: We are interested in
the structure of the complex (multivariate) events modeled by
X;'s that lead to extreme losses.

These implicit extremes, depending on the loss function f,
may or may not be associated with extreme values of the
X,"S...

General Perspective: We are interested in the structure of
events leading to extreme losses!
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Problem Formulation
The simple Lemma that started it all

Lemma

Suppose the cdf G(y) := P(f(X1) < y) is continuous. Then, for
all measurable A C R,

P(Xi(ny € A) = n /A G(f(x))""1Px(dx)

| A

Proof.
There are no ties, a.s., and by symmetry and independence:

P(Xk(n) € A) = nP(X1 € A, f(X,) < f(X1)7 i=2,..., n)

= n/AP(f(Xg) < f(x))""tPx(dx).

A\

Note: We can handle the general case of discontinuous -G. 6/34
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Limit Theory

Assumptions

@ Homogeneous losses: The loss is non-negative f : RY — [0, 00) and
f(ex) = cf(x), forall ¢ > 0.
@ This is not a terrible constraint, since
Argmax(f(X1),...,f(Xp)) = Argmax(ho f(X1),...,ho f(Xy)),
for any strictly increasing h : [0, 00) — [—o00, ).
@ Regular variation on a cone: Px € RV({a,}, D,v), where D C R’
is a closed cone, playing the role of zero. That is,

nP(a,*X €)% v, asn— oo,

in the space E‘Z, =R’ \ D.

@ This is an important generalization of the usual RV on R?O}.

@ Note RV({an},{0},v) C RV({an}, D,v). However, the generalized
notion of RV allows us to handle cases that are asymptotically
trivial in the classical sense.

@ Similar (but not the same as) Sid Resnick’s hidden regular variation. s
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Limit Theory

cones and generalized polar coordinates

: —d
o Consider the compact space R" := [—00, 00]“.
o Let 7:RY — [0, 00] be a continuous and homogeneous
function.

Define D := {7 = 0} (necessarily) a compact in R¢.
Equip R‘é —TR? \ D with the relative topology.

The compacts in Ro are closed subsets of R? that are
bounded away from D = {7 = 0}. Thatis, K C ﬁdD is
compact if it is closed and K C {7 > €}, for some € > 0.
Polar coordinates: Let 6(x) := x/7(x). Then

(r,6) : Rp — (0,00] x S,
is a homeomorphism (of topological spaces), where
S={r=1}={xeR?: 71(x) =1}

is equipped with the relative topology. o/



Limit Theory

Regular variation

A probability law Px € RV/({a,}, D,v), if there exists a regularly varying
. —d
sequence {a,} and a non-trivial Radon measure v on R, such that

nPx(a;'X € A) — v(A), asn— oo,

for all measurable A, bounded away from D, i.e., A C {7 > €}, for some
e > 0, and such that v(0A) = 0.

Fact (Prop 3.8 in Scheffler & Stoev (2014))

Px € RV({an}, D,v), if and only if
nP(a; t7(X) > x) =00 O

and
P(O(X) € -|7(X) > 1) ==y s00 00("),

where oq is a finite measure on S.
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Limit Theory

Example

@ Cone and coors: Let

7(x) = min{(x) . - (x0)-}

so that .
Rp = (0, 0]?.

The unit “sphere”, is now:
S:={x:7(x)=1} = UL, [1,00) "t x {1} x [1, 009"
@ Distribution: Let X = (X,~);’:1 with independent and Pareto X;'s

P()(,'>X):X_O”7 (Oé,'>0)7 i=1,...,d.
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Limit Theory

Example (cont'd)

The classic RV: In Rf{’o}, we have asymptotic independence and the
heaviest tail dominates:

nP(nY X € A) — pu(A), where a,, ;= min a,

I=1,..
and
d
/’(‘(A) = Z H{ai:a*}yi,a* (A)a
i=1
where v; , is concentrated on the positive part of the i-th axis and
Via(R™1 x [x,00) x RI71) = x= x > 0.

That is, the limit measure p lives on the axes.
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Limit Theory

Example (cont'd)

The cone R := (0,00]% Then, X € RV({n~Y/*}, D, v), with
a = + -4 Qg

and where now v lives on (0,00)? and now has a density!
Indeed, for A = (xq,00] x - - x (xg,00] C (0, 00]9,

—.

Il
-

P(a,'X € A) ~ P(X; > apxi)

d
= H(a,,x,-)*a" =:a, “v(A).

i

Il
AN

By picking a, := n~ /%, we obtain nP(a;'X € ) =" v(-), where

d

dv i

L0 = [Lan ™ x = ()i € (0,01,
i=1
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Limit Theory

Implicit Extreme Value Laws

Assumptions:
(RVy) X € RV,y({an}, D,v)
(H) f: R? - [0, o] is Borel, 1-homogeneous, f(0) = 0.

(F) For all € > 0, the set {f > €} is bounded away from D and

iml‘( f(x) >0, for all compact K C K‘Z,.
Xx€

(C) v(disc(f)) = 0.

Theorem (3.13 in Scheffler & Stoev (2014))

Under the above assumptions, we have

where Py (dx) = e~ )" y(dx) and C := v{f > 1}.
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Limit Theory

Sketch of the proof

By the above lemma, we have

P(Xi(n) € anA) = n/AP(f(X) < F(x))"1Px(dx)

/ P(F(X) < F(an2)" 2P, 15(dz)  (change of vars)
A

/ P(F(a=1X) < F(2))"lvn(dz)  (homogeneity of f)
A
where
n(dz) == nP,-1,(dz) = nP(a; X € dz).
Continuing...

nP(f(a;1X) > f(z)

P(Xi(my € anA) = /A (1- )Hun(dz).
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Limit Theory

Sketch of the proof (cont'd)

P(Xk(n) € anA) = /A(l_ nP(f(a;llj() > f(z)>n_1yn(dz)
_ / (1 _nP(atX € {f > f(z)})”flyn(dz).

The set B, := {f > f(z)} is bounded away from D. If it is a continuity
set of v, by the (RV,,) and (H) assumptions:

nP(a,'X € B,) = nP(a,'X € {f > f(z)} — v({f > f(2)})
= u(f(z)-{f >1}) =f(z)"*v{f > 1}.

Since by (RV,), we also have v, —" v, it can be shown that

P(Xk(n) c a,,A) SN / e—l/{f>l}f(2)7al/(dz),
A

for all v-continuity sets A. O
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Limit Theory

Comments

@ The heuristic interchange of ‘lim’ and ‘[ in the proof has been
justified with some tedious lemmas.

@ The measure
e—y{f>1}f(z)”ly(dz) (1)

is a probability measure on RdD.
That is,

J

This is amusing and somewhat non—obvious. For example, nothing
changes in the limit if v := cv for ¢ > 0, but

/e*C”{f>f(z)}cz/(dz) =1!

efu{f>f(z)}l/(dz) _ / efv{f>1}f(z)—ay(dz) —1

d d
D RD

@ The limit laws in (1) will be referred to as (f, v)-implicit extreme

value laws.
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Implicit Extreme Value Laws
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Implicit Extreme Value Laws

Spectral measure

Let X € RV,({an}, D,v). The homogeneity of v:
v(cA) = ¢ “v(A), forall ¢ >0,

implies the disintegration formula
U(A) / / T 1a6) 297 5 (a0)
= A e )
sJo Totl

where (7,6) are any polar coordinates for R‘Z) and
o(B) :=v{(r,0) € [1,0] x B}, BCS.

is the spectral measure of v relative to (7, §).
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Implicit Extreme Value Laws

A stochastic representation

Recall the limit (f,v)-implicit EV law is
Py (dz) = e~ @) "y (dz).
In polar coordinates z = 76, we have

—cr(ro)—= QdT o
Ta+1

Py(dro(df)) =e (d0).

This yields the stochastic representation:

Fact (Prop 3.17 in Scheffler & Stoev (2014))
Y is (f,v)-implicit EV if and only if

d © -1/
Y=7Z——, whereg(f)=C (0
e (6) Q
(i) Z and © are independent
(i) P(Z < x) = e ", x>0 is standard a-Fréchet
(iii) © has distribution g(0)*c(df) o f(0)*c(d6) on the unit sphere S.
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Implicit Extreme Value Laws

Implicit Max—Stability

@ For simplicity, let C = v{f > 1} = 1. Then,

y = 72-2_ with © ~ £(6)°o(d0).

f(©)’
@ Let Yi,...,Y, be independent copies of Y. By homogeneity:
O; Z;
flZi—=) = —<f(©) = Z,
(% 76n) = 72y

and hence

k(n) = argmax;_; ,,nf(Y,-) = argmax;_; ,Z.

@ Clearly, by the max-stability of Z
Zimy =\ Z £ oz
i=1
and by the independence of the Z;'s and ©;’s, we have

@k(n) d 1 ©
Y = Z Ent/ez_— =n'/y.
K = K F @) ~ " TF@)
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Implicit Extreme Value Laws

Implicit Max—Stable Laws: Definition and Characterization.

Definition

A rvec X in RY is (strictly) f-implicit max—stable if for all n, exists
a, > 0, such that

a;le(n) 4 X, with k(n) = argmax;_,

where X;'s are independent copies of X.

N

We have shown that for non-negative homogeneous f.

Fact (Theorem 4.2 in Scheffler & Stoev (2014))

The (f,v)-implicit EV laws are f-implicit max-stable. Conversely, if f is
continuous, non—negative and 1-homogeneous, then any f-implicit
max—stable law is also an (f,v)-implicit EV, for some Radon measure v
on R4\ {f = 0} such that for some o > 0,

v(cA) = c “v(A), forall c> 0.

22/34



Domains of Attraction

Implicit Max—Stable Laws and their DoA
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Domains of Attraction

Implicit Max—Stable Laws: Definition and Characterization.

Definition

A rvec X in RY is (strictly) f-implicit max—stable if for all n, exists
a, > 0, such that

a;le(n) 4 X, with k(n) = argmax;_,

where X;'s are independent copies of X.

N

We have shown that for non-negative homogeneous f.

Fact (Theorem 4.2 in Scheffler & Stoev (2014))

The (f,v)-implicit EV laws are f-implicit max-stable. Conversely, if f is
continuous, non—negative and 1-homogeneous, then any f-implicit
max—stable law is also an (f,v)-implicit EV, for some Radon measure v
on R4\ {f = 0} such that for some o > 0,

v(cA) = c “v(A), forall c> 0.
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Domains of Attraction

Characterization of the DoA

We write X € DOA¢(Y) for an f-implicit max—stable rvec Y if

a;le(,,) 4, Y, asn— . (2)

<

Fact (Theorem 4.4 in Scheffler & Stoev (2014))

Iff:RY - [0, o0] is continuous and 1-homogeneous, then
X € DOA¢(Y) if and only if X € RV, ({f = 0},v), for some o > 0.

A\

Notes:

@ Satisfying result — the generalized notion of RV is the right one for
implicit Max-DOA!

@ The ‘if’ part is our first implicit limit theorem.

@ We will sketch the proof of the ‘only if’ part.
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Domains of Attraction

Characterization of the DoA: Proof of the ‘only if’ part

Suppose (2) holds, i.e., a7 X(m > Y, n— oo. Then, by CMT

3  f(Xu(m) = 3,1 max_£(X;) L5 £(Y).

1,...,n
Since f(X;)'s are iid random variables, the classic EVT says:
@ f(Y) must be a-Fréchet for some v > 0.
@ {a,} is RV(1/«) sequence.
@ Thus, for some C >0 and all y > 0,
gnly) == P(a, ' (X)) < y)"t s e @ "
@ But recall the first Lemma:

P(a;le(n) €A = /A P(a,*f(X) < f(x))" tnPx(dx)

/A gn(F(2))nP, 1 (dz)
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Domains of Attraction

@ Thus, for some C > 0 and all y > 0,

gly) =P, (X)) <y)"t e @ (3)

@ But recall the first Lemma:

P(ay X € A) = / P(a F(X) < £(0)" P ()

[ () P, (02)
A ———
=:w,(dz)
Goal: Show RV of X, i.e,,
vo(dz) = nPx(a; ' X € dz) =¥ v
We have:
° P(a;le(n) €A = fA gn(f(2))vn(dz) — Py(A).
—Cyfa.

@ From (3), gu(y) = g(y) == 27/34



Domains of Attraction

Finishing the sketch of the proof...

Thus, a type of Radon-Nikodym inversion yields

— # 371 z
= O €89

/Ag(fl(z))Py(dz) =:v(A),

where in the last relation we used that
e P(a, Xk( = [ gn(f(2))pn(dz) =" Py (-).
e From (3), gi(y) » g(y) :==e "

Note: | am glossing over details about justifying the Radon-Nikodym
“inversion” .
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An Example

An Example
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An Example

Pareto—Dirichlet Implicit Max—Stable Laws

@ Let X = (X;)¢_, where X; ~ Pareto(c;), i =1,...,d are
independent.

@ Recall X € RV, (D, v) with R = (0, 00]“.

@ Consider the 1-homogeneous function

Fact (Example 5.1 in Scheffler & Stoev (2014))

The f-implicit max-stable law attracting X is:

V4 ZN\T
Y =70 = (7 7) :
&1 £d
where Z ~ a—Fréchet independent of ¢ = ©~! ~ Dirichlet(ay, ..., aq).

30/34



An Example

Why Dirichlet?

WLOG, let 7(x) := f(x) be the radial and 6(x) := x/f(x) the angular
components of polar coordinates in (0, o0]¢.
Then, by the representation of the (f,v)-implicit EV laws:

©
Y = Z@, where © ~ f(0)%c(d0).

Since f(0) = 1, the distribution of © is Uniform w.r.t. the spectral
measure o.
We have

dv o — _

a(x)mxl R a—Za,
and thus

d
a(B) =v((f,0) € [1,00) x B) x / HXi_ai_ldX'
(f,0)€[1,00)x B

i=1
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An Example

By making the change of variables x; = f /u;, i =1,--- ,d, where
d—1
ug=1-> i1 Ui, we get

d—1
dx = 7971 H u,_Zdeul <o dug_1.
i=1

Which gives

d

oo
o8) o [ [ e e tardn dus
1 {u*leB}

i=1

/ Hua’ Yarduy - - dug_q
{u=teB} ;_
x P(¢&” GB),

for & = (& -+ &4) ~ Dirichlet(ay, .. . , ag).
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An Example

Thank you!
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