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1. Introduction. Let M(R) denote the collection of all subprobability distribution functions
on R. We say for {Fn} ⊂ M(R), Fn converges vaguely to F ∈ M(R) (written Fn

v−→ F ) if for all
[a, b], a, b continuity points of F , limn→∞ Fn{[a, b]} = F{[a, b]}. We write Fn

D−→ F , when Fn, F

are probability distribution functions (equivalent to limn→∞ Fn(a) = F (a) for all continuity points
a of F ).

For F ∈ M(R),

mF (z) ≡
∫

1
x − z

dF (x), z ∈ C+ ≡ {z ∈ C : =z > 0}

is defined as the Stieltjes transform of F .

Properties:

1. mF is an analytic function on C+.

2. =mF (z) > 0.

3. |mF (z)| ≤ 1
=z .

4. For continuity points a < b of F

F{[a, b]} =
1
π

lim
η→0+

∫ b

a

=mF (ξ + iη)dξ,

since the right hand side

=
1
π

lim
η→0+

∫ b

a

∫
η

(x − ξ)2 + η2
dF (x)dξ =

1
π

lim
η→0+

∫ ∫ b

a

η

(x − ξ)2 + η2
dξdF (x)
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=
1
π

lim
η→0+

∫ [
Tan−1

(
b − x

η

)
− Tan−1

(
a − x

η

)]
dF (x)

=
∫

I[a,b]dF (x) = F{[a, b]}.

5. If, for x0 ∈ R, =mF (x0) ≡ limz∈C+→x0 =mF (z) exists, then F is differentiable at x0 with
value ( 1

π )=mF (x0) (S. and Choi (1995)).
Let S ⊂ C+ be countable with a cluster point in C+. Using 4., the fact that Fn

v−→ F is
equivalent to ∫

fn(x)dFn(x) →
∫

f(x)dF (x)

for all continuous f vanishing at ±∞, and the fact that an analytic function defined on C+ is
uniquely determined by the values it takes on S, we have

Fn
v−→ F ⇐⇒ mFn(z) → mF (z) for all z ∈ S.

The fundamental connection to random matrices:

For any Hermitian n×n matrix A, we let FA denote the empirical distribution function (e.d.f.)
of its eigenvalues:

FA(x) =
1
n

(number of eigenvalues of A ≤ x).

Then
mF A(z) =

1
n

tr (A − zI)−1.
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So, if we have a sequence {An} of Hermitian random matrices, to show, with probability one,
FAn

v−→ F for some F ∈ M(R), it is equivalent to show for any z ∈ C+

1
n

tr (An − zI)−1 → mF (z) a.s.

The main goal of the lecture is to show the importance of the Stieltjes transform to limiting
behavior of certain classes of random matrices. We will begin with an attempt at providing a
systematic way to show a.s. convergence of the e.d.f.’s of the eigenvalues of three classes of large
dimensional random matrices via the Stieltjes transform approach. Essential properties involved
will be emphasized in order to better understand where randomness comes in and where basic
properties of matrices are used.

Then it will be shown, via the Stieltjes transform, how the limiting distribution can be numer-
ically constructed, how it can explicitly (mathematically) be derived in some cases, and, in general,
how important qualitative information can be inferred. Other results will be reviewed, namely the
exact separation properties of eigenvalues, and distributional behavior of linear spectral statistics.

It is hoped that with this knowledge other ensembles can be explored for possible limiting
behavior.

Each theorem below corresponds to a matrix ensemble. For each one the random quantities
are defined on a common probability space. They all assume:
For n = 1, 2, . . . Xn = (Xn

ij), n×N , Xn
ij ∈ C, i.d. for all n, i, j, independent across i, j for each n,

E|X1
1 1 − EX1

1 1|2 = 1, and N = N(n) with n/N → c > 0 as n → ∞.

Theorem 1.1 (Marčenko and Pastur (1967), S. and Bai (1995)). Assume:
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a) Tn = diag(tn1 , . . . , tnn), tni ∈ R, and the e.d.f. of {tn1 , . . . , tnn} converges weakly, with

probability one to a nonrandom probability distribution function H as n → ∞.

b) An is a random N × N Hermitian random matrix for which FAn
v−→ A where A is

nonrandom (possibly defective).

c) Xn, Tn, and An are independent.

Let Bn = An + (1/N)X∗
nTnXn. Then, with probability one FBn

v−→ F̂ as n → ∞ where for

each z ∈ C+ m = mF̂ (z) satisfies

(1.1) m = mA

(
z − c

∫
t

1 + tm
dH(t)

)
.

It is the only solution to (1.1) with positive imaginary part.
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Theorem 1.2 (Yin (1986), S. (1995)). Assume:

Tn n× n is random Hermitian non-negative definite, independent of Xn with FTn
D−→ H a.s.

as n → ∞, H nonrandom.

Let T
1/2
n denote any Hermitian square root of Tn, and define Bn = (1/N)T 1/2

n XX∗T 1/2
n .

Then, with probability one FBn
D−→ F as n → ∞ where for each z ∈ C+ m = mF (z) satisfies

(1.2) m =
∫

1
t(1 − c − czm) − z

dH(t).

It is the only solution to (1.2) in the set {m ∈ C : −(1 − c)/z + cm ∈ C+}.

Theorem 1.3 (Dozier and S. a)). Assume:

Rn n × N is random, independent of Xn, with F (1/N)RnR∗
n

D−→ H a.s. as n → ∞, H

nonrandom.

Let Bn = (1/N)(Rn + σXn)(Rn + σXn)∗ where σ > 0, nonrandom. Then, with probability

one FBn
D−→ F as n → ∞ where for each z ∈ C+ m = mF (z) satisfies

(1.3). m =
∫

1
t

1+σ2cm − (1 + σ2cm)z + σ2(1 − c)
dH(t)

It is the only solution to (1.3) in the set {m ∈ C+ : =(mz) ≥ 0}.

Remark: In Theorem 1.1 if An = 0 for all n large, then mA(z) = −1/z and we find that mF

has an inverse

(1.4) z = − 1
m

+ c

∫
t

1 + tm
dH(t).
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Since

F (1/N)X∗
nTnXn =

(
1 − n

N

)
I[0,∞) +

n

N
F (1/N)T 1/2

n XnX∗
nT 1/2

n

we have

(1.5) mF (1/N)X∗
nTnXn (z) = −1 − n/N

z
+

n

N
m

F (1/N)T
1/2
n XnX∗

nT
1/2
n

(z) z ∈ C+,

so we have

(1.6) mF̂ (z) = −1 − c

z
+ cmF (z).

Using this identity, it is easy to see that (1.2) and (1.4) are equivalent.

2. Why these theorems are true. We begin with three facts which account for most of
why the limiting results are true, and the appearance of the limiting equations for the Stieltjes
transforms.

Lemma 2.1 For n × n A, q ∈ Cn, and t ∈ C with A and A + tqq∗ invertible, we have

q∗(A + tqq∗)−1 =
1

1 + tq∗A−1q
q∗A−1

(since q∗A−1(A + tqq∗) = (1 + tq∗A−1q)q∗).
Corollary 2.1 For q = a + b, t = 1 we have

a∗(A + (a + b)(a + b)∗)−1 = a∗A−1 − a∗A−1(a + b)
1 + (a + b)∗A−1(a + b)

(a + b)∗A−1
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=
1 + b∗A−1(a + b)

1 + (a + b)∗A−1(a + b)
a∗A−1 − a∗A−1(a + b)

1 + (a + b)∗A−1(a + b)
b∗A−1.

Proof: Using Lemma 2.1 we have

(A + (a + b)(a + b)∗)−1 − A−1 = −(A + (a + b)(a + b)∗)−1(a + b)(a + b)∗A−1

= − 1
1 + (a + b)∗A−1(a + b)

A−1(a + b)(a + b)∗A−1

Multiplying both sides on the left by a∗ gives the result.
Lemma 2.2 For n × n A and B, with B Hermitian, z ∈ C+, t ∈ R, and q ∈ Cn, we have

|tr [(B − zI)−1 − (B + tqq∗ − zI)−1]A| =
∣∣∣∣tq∗(B − zI)−1A((B − zI)−1q

1 + tq∗(B − zI)−1q

∣∣∣∣ ≤ ‖A‖
=z

.

Proof. The identity follows from Lemma 2.1. We have∣∣∣∣tq∗(B − zI)−1A((B − zI)−1q

1 + tq∗(B − zI)−1q

∣∣∣∣ ≤ ‖A‖|t|‖ ‖(B − zI)−1q‖2

|1 + tq∗(B − zI)−1q| .

Write B =
∑

i λieie
∗
i , its spectral decomposition. Then

‖(B − zI)−1q‖2 =
∑

i

|e∗i q|2
|λi − z|2

and

|1 + tq∗(B − zI)−1q| ≥ |t|=(q∗(B − zI)−1q) = |t|=z
∑

i

|e∗i q|2
|λi − z|2 .
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Lemma 2.3. For X = (X1, . . . , Xn)T i.i.d. standardized entries, C n × n, we have for any

p ≥ 2

E|X∗CX − trC|p ≤ Kp

((
E|X1|4trCC∗)p/2 + E|X1|2ptr (CC∗)p/2

)
where the constant Kp does not depend on n, C, nor on the distribution of X1. (Proof given in

Bai and S. (1998).)

From these properties, roughly speaking, we can make observations like the following: for

n× n Hermitian A, q = (1/
√

n)(X1, . . . , Xn)T , with Xi i.i.d. standardized and independent of A,

and z ∈ C+, t ∈ R

tq∗(A + tqq∗ − zI)−1q =
tq∗(A − zI)−1q

1 + tq∗(A − zI)−1q
= 1 − 1

1 + tq∗(A − zI)−1q

≈ 1 − 1
1 + t(1/n)tr (A − zI)−1

≈ 1 − 1
1 + t mA+tqq∗(z)

.

Making this and other observations rigorous requires technical considerations, the first being

truncation and centralization of the elements of Xn, and truncation of the eigenvalues of Tn in

Theorem 1.2 (not needed in Theorem 1.1) and (1/n)RnR∗
n in Theorem 1.3, all at a rate slower than

n (a lnn for some positive a is sufficient). The truncation and centralization steps will be outlined

later. We are at this stage able to go through algebraic manipulations, keeping in mind the above

three lemmas, and intuitively derive the equations appearing in each of the three theorems. At

the same time we can see what technical details need to be worked out.

Before continuing, two more basic properties of matrices is included here.
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Lemma 2.4 Let z1, z2 ∈ C+ with max(= z1,= z2) ≥ v > 0, A and B n × n with A Hermitian,

and q ∈ Cn. Then

|trB((A − z1I)−1 − (A − z2I)−1)| ≤ |z2 − z1|N‖B‖ 1
v2

, and

|q∗B(A − z1I)−1q − q∗B(A − z2I)−1q| ≤ |z2 − z1| ‖q‖2‖B‖ 1
v2

.

Consider first the Bn in Theorem 1.1. Let qi denote 1/
√

N times the ith column of X∗
n. Then

(1/N)X∗
nTnXn =

n∑
i=1

tiqiq
∗
i .

Let B(i) = Bn − tiqiq
∗
i . For any z ∈ C+ and x ∈ C we write

Bn − zI = An − (z − x)I + (1/N)X∗
nTnXn − xI.

Taking inverses we have

(An − (z − x)I)−1

= (Bn − zI)−1 + (An − (z − x)I)−1((1/N)X∗
nTnXn − xI)(Bn − zI)−1.

Dividing by N , taking traces and using Lemma 2.1 we find

mF An (z − x) − mF Bn (z) = (1/N)tr (An − (z − x)I)−1

( n∑
i=1

tiqiq
∗
i − xI

)
(Bn − zI)−1
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= (1/N)
n∑

i=1

tiq
∗
i (B(i) − zI)−1(An − (z − x)I)−1qi

1 + tiq∗i (B(i) − zI)−1qi

− x(1/N)tr (Bn − zI)−1(An − (z − x)I)−1.

Notice when x and qi are independent, Lemmas 2.2,2.3 give us

q∗i (B(i) − zI)−1(An − (z − x)I)−1qi ≈ (1/N)tr (Bn − zI)−1(An − (z − x)I)−1.

Letting

x = xn = (1/N)
n∑

i=1

ti
1 + timF Bn (z)

we have

mF An (z − xn) − mF Bn (z) = (1/N)
n∑

i=1

ti
1 + timF Bn (z)

di

where

di =
1 + timF Bn (z)

1 + tiq∗i (B(i) − zI)−1qi
q∗i (B(i) − zI)−1(An − (z − xn)I)−1qi

− (1/N)tr (Bn − zI)−1(An − (z − xn)I)−1.

In order to use Lemma 2.3, for each i, xn is replaced by

x(i) = (1/N)
n∑

j=1

tj
1 + tjmF

B(i) (z)
.
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An outline of the remainder of the proof is given. It is easy to argue that if A is the zero
measure on R (that is, almost surely, only o(N) eigenvalues of An remain bounded), then the
Stieltjes transforms of FAn and FBn converge a.s. to zero, the limits obviously satisfying (1.1) .
So we assume A is not the zero measure. One can then show

δ = inf
n

=(mF Bn (z))

is positive almost surely.
Using Lemma 2.3 (p = 6 is sufficient) and the fact that all matrix inverses encountered are

bounded in spectral norm by 1/=z we have from standard arguments using Boole’s and Chebyshev’s
inequalities, almost surely

(2.1) max
i≤n

max[| ‖qi‖2 − 1|, |q∗i (B(i) − zI)−1qi − m
F

B(i) (z)|,

|q∗i (B(i) − zI)−1(An − (z − x(i))I)−1qi − (1/N)tr (B(i) − zI)−1(An − (z − x(i))I)−1|]
→ 0 as n → ∞.

Consider now a realization for which (2.1) holds, δ > 0, FTn
D−→ H, and FAn

v−→ A. From Lemma
2.2 and (2.1) we have

(2.2) max
i≤n

max[|mF Bn (z) − m
F

B(i) (z)|, |mF Bn (z) − q∗i (B(i) − zI)−1qi|] → 0,

and subsequently

(2.3) max
i≤n

max
[∣∣∣∣ 1 + timF Bn (z)

1 + tiq∗i (B(i) − zI)−1qi
− 1

∣∣∣∣ , |x − x(i)|
]
→ 0.
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Therefore, from Lemmas 2.2,2.4, and (2.1) -(2.3), we get maxi≤n di → 0, and since∣∣∣∣ ti
1 + timF Bn (z)

∣∣∣∣ ≤ 1
δ
,

we conclude from (4.1) that
mAn(z − xn) − mBn(z) → 0.

Consider a subsequence {ni} on which mF Bni
(z) converges to a number m. It follows that

xni → c

∫
t

1 + tm
dH(t).

Therefore, m satisfies (1.1). Uniqueness (to be discussed later) gives us, for this realization
mF Bn (z) → m. This event occurs with probability one.

3. The other equations. Let us now derive the equation for the matrix Bn = (1/N)T 1/2
n XnX∗

nT
1/2
n ,

after the truncation steps have been taken. Let cn = n/N , qj = (1/
√

n)X·j (the jth column of
Xn), rj = (1/

√
N)T 1/2

n X·j , and B(j) = Bn − rjr
∗
j . Fix z ∈ C+ and let mn(z) = mF Bn (z),

mn(z) = mF (1/N)X∗
nTnXn (z). By (1.5) we have

(3.1) mn(z) = −1 − cn

z
+ cnmn.

We first derive an identity for mn(z). Write

Bn − zI + zI =
N∑

j=1

rjr
∗
j .
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Taking the inverse of Bn − zI on the right on both sides and using Lemma 2.1 we find

I + z(Bn − zI)−1 =
N∑

j=1

1
1 + r∗j (B(j) − zI)−1rj

rjr
∗
j (B(j) − zI)−1.

Taking the trace on both sides and dividing by N we have

cn + zcnmn =
1
N

N∑
j=1

r∗j (B(j) − zI)−1rj

1 + r∗j (B(j) − zI)−1rj
= 1 − 1

N

N∑
j=1

1
1 + r∗j (B(j) − zI)−1rj

.

Therefore

(3.2) mn(z) = − 1
N

N∑
j=1

1
z(1 + r∗j (B(j) − zI)−1rj)

.

Write Bn − zI − (−zmn(z)Tn − zI
)

=
∑N

j=1 rjr
∗
j − (−zmn(z))Tn. Taking inverses and using

Lemma 2.1, (3.2) we have

(−zmn(z)Tn − zI)−1 − (Bn − zI)−1

= (−zmn(z)Tn − zI)−1

[ N∑
j=1

rjr
∗
j − (−zmn(z))Tn

]
(Bn − zI)−1

=
N∑

j=1

−1
z(1+r∗j (B(j)−zI)−1rj)

[
(mn(z)Tn + I)−1rjr

∗
j (B(j) − zI)−1

− (1/N)(mn(z)Tn + I)−1Tn(Bn − zI)−1

]
.
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Taking the trace and dividing by n we find

(1/n)tr (−zmn(z)Tn − zI)−1 − mn(z) =
1
N

N∑
j=1

−1
z(1 + r∗j (B(j)− zI)−1rj)

dj

where

dj = q∗j T 1/2
n (B(j) − zI)−1(mn(z)Tn + I)−1T 1/2

n qj

− (1/n)tr (mn(z)Tn + I)−1Tn(Bn − zI)−1.

The derivation for Theorem 1.3 will proceed in a constructive way. Here we let xj and rj

denote, respectively, the jth columns of Xn and Rn (after truncation). As before mn = mF Bn ,
and let

mn(z) = mF (1/N)(Rn+σXn)∗(Rn+σXn)(z).

We have again the relationship (3.1) . Notice then equation (1.3) can be written

(3.3) m =
∫

1
t

1+σ2cm − σ2zm − z
dH(t)

where
m = −1 − c

z
+ cm.

Let B(j) = Bn − (1/N)(rj + σxj)(rj + σxj)∗. Then, as in (3.2) we have

(3.4) mn(z) = − 1
N

N∑
j=1

1
z(1 + (1/N)(rj + σxj)∗(B(j) − zI)−1(rj + σxj))

.
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Pick z ∈ C+. For any n × n Yn we write

Bn − zI − (Yn − zI) =
1
N

N∑
j=1

(rj + σxj)(rj + σxj)∗ − Yn.

Taking inverses, dividing by n and using Lemma 2.1 we get

(1/n)tr (Yn − zI)−1 − mn(z)

1
N

N∑
j=1

(1/n)(rj + σxj)∗(B(j) − zI)−1(Yn − zI)−1(rj + σxj)
1 + (1/N)(rj + σxj)∗(B(j) − zI)−1(rj + σxj)

− (1/n)tr (Yn − zI)−1Yn(Bn − zI)−1.

The goal is to determine Yn so that each term goes to zero. Notice first that

(1/n)x∗
j (B(j) − zI)−1(Yn − zI)−1xj ≈ (1/n)tr (Bn − zI)−1(Yn − zI)−1,

so from (3.4) we see that Yn should have a term

−σ2zmn(z)I.

Since for any n × n C bounded in norm

|(1/n)x∗
jCrj |2 = (1/n2)x∗

jCrjr
∗
j C∗xj
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we have from Lemma 2.3

(3.5) |(1/n)x∗
jCrj |2 ≈ (1/n2)trCrjr

∗
j C∗ = (1/n2)r∗j C∗Crj = o(1)

(from truncation (1/N)‖rj‖2 ≤ lnn), so the cross terms are negligible.
This leaves us (1/n)r∗j (B(j) − zI)−1(Yn − zI)−1rj . Recall Corollary 2.1

a∗(A + (a + b)(a + b)∗)−1

=
1 + b∗A−1(a + b)

1 + (a + b)∗A−1(a + b)
a∗A−1 − a∗A−1(a + b)

1 + (a + b)∗A−1(a + b)
b∗A−1.

Identify a with (1/
√

N)rj , b with (1/
√

N)σxj , and A with B(j). Using Lemmas 2.2, 2.3 and (3.5)
, we have

(1/n)r∗j (Bn − zI)−1(Yn − zI)−1rj

≈ 1 + σ2cnmn(z)
1 + 1

N (rj + σxj)∗(B(j) − zI)−1(rj + σxj)
(1/n)r∗j (B(j) − zI)−1(Yn − zI)−1rj .

Therefore

1
N

N∑
j=1

(1/n)r∗j (B(j) − zI)−1(Yn − zI)−1rj

1 + 1
N (rj + σxj)∗(B(j) − zI)−1(rj + σxj)

≈ 1
N

N∑
j=1

(1/n)r∗j (Bn − zI)−1(Yn − zI)−1rj

1 + σ2cnmn(z)
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= (1/n)
1

1 + σ2cnmn(z)
tr (1/N)RnR∗

n(Bn − zI)−1(Yn − zI)−1.

So we should take
Yn =

1
1 + σ2cnmn(z)

(1/N)RnR∗
n − σ2zmn(z)I.

Then (1/n)tr (Yn − zI)−1 will approach the right hand side of (3.3).
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4. Proof of uniqueness of (1.1). For m ∈ C+ satisfying (1.1) with z ∈ C+ we have

m =
∫

1

τ −
(
z − c

∫
t

1+tmdH(t)
)dA(τ)

=
∫

1

τ −<
(
z − c

∫
t

1+tmdH(t)
)
− i

(
=z + c

∫
t2=m

|1+tm|2 dH(t)
)dA(τ)

Therefore

(4.1) =m =
(
=z + c

∫
t2=m

|1 + tm|2 dH(t)
)∫

1∣∣∣τ − z + c
∫

t
1+tmdH(t)

∣∣∣2 dA(τ)

Suppose m ∈ C+ also satisfies (1.1). Then

(4.2) m − m = c

∫ [∫
t

1+tm − t
1+tm

]
dH(t)(

τ − z + c
∫

t
1+tmdH(t)

)(
τ − z + c

∫
t

1+tmdH(t)
)dA(τ)

(m − m)c
∫

t2

(1 + tm)(1 + tm)
dH(t)

×
∫

1(
τ − z + c

∫
t

1+tm dH(t)

) (
τ − z + c

∫
t

1+tmdH(t)

)dA(τ).

Using Cauchy-Schwarz and (4.1) we have
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∣∣∣∣c ∫
t2

(1 + tm)(1 + tm)
dH(t)

×
∫

1(
τ − z + c

∫
t

1+tm dH(t)

)(
τ − z + c

∫
t

1+tmdH(t)

)dA(τ)
∣∣∣∣

≤

c

∫
t2

|1 + tm|2 dH(t)
∫

1∣∣∣τ − z + c
∫

t
1+tm dH(t)

∣∣∣2 dA(τ)


1/2

×

c

∫
t2

|1 + tm|2 dH(t)
∫

1∣∣∣τ − z + c
∫

t
1+tmdH(t)

∣∣∣2 dA(τ)


1/2

=

c

∫
t2

|1 + tm|2 dH(t)
=m(

=z + c
∫

t2=m
|1+tm|2 dH(t)

)
1/2

×
c

∫
t2

|1 + tm|2 dH(t)
=m(

=z + c
∫

t2=m
|1+tm|2 dH(t)

)
1/2

< 1.

Therefore, from (4.2) we must have m = m.
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5. Truncation and Centralization. We outline here the steps taken to enable us to assume
in the proof of Theorem 1.1, for each n, the Xij ’s are bounded by a multiple of lnn. The following
lemmas are needed.

Lemma 5.1. Let X1, . . . , Xn be i.i.d. Bernoulli with p = P(X1 = 1) < 1/2. Then for any

ε > 0 such that p + ε ≤ 1/2 we have

P

( n∑
i=1

Xi − p ≥ ε

)
≤ e−

nε2
2(p+ε) .

Lemma 5.2. Let A be N ×N Hermitian, Q, Q both n×N , and T , T both n× n Hermitian.

Then

a) ‖FA+Q∗TQ − FA+Q
∗
TQ‖ ≤ 2

N
rank(Q − Q)

and

b) ‖FA+Q∗TQ − FA+Q∗TQ‖ ≤ 1
N

rank(T − T ).

Lemma 5.3. For rectangular A, rank(A) ≤ the number of nonzero entries of A.

Lemma 5.4 For Hermitian N × N matrices A, B

N∑
i=1

(λA
i − λB

i )2 ≤ tr (A − B)2.
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Lemma 5.5 Let {fi} be an enumeration of all continuous functions that take a constant 1
m

value (m a positive integer) on [a, b], where a, b are rational, 0 on (−∞, a − 1
m ] ∪ [b + 1

m ,∞), and

linear on each of [a − 1
m , a], [b, b + 1

m ]. Then

a) for F1, F2 ∈ M(R)

D(F1, F2) ≡
∞∑

i=1

∣∣∣∣∫ fidF1 −
∫

fidF2

∣∣∣∣ 2−i

is a metric on M(R) inducing the topology of vague convergence.

b) For FN , GN ∈ M(R)

lim
N→∞

‖FN − GN‖ = 0 =⇒ lim
N→∞

D(FN , GN ) = 0.

c) For empirical distribution functions F, G on the (respective) sets {x1, . . . , xN}, {y1, . . . , yN}

D2(F, G) ≤
 1

N

N∑
j=1

|xj − yj |
2

≤ 1
N

N∑
j=1

(xj − yj)2.

Let pn = P(|X11| ≥
√

n). Since the second moment of X11 is finite we have

(5.1) npn = o(1).
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Let X̂ij = XijI(|Xij |<
√

n) and B̂n = An + (1/N)X̂∗
nTnX̂n, where X̂ = (Xij). Then from Lemmas

5.2 a) 5.3, for any positive ε

P(‖FBn − F B̂n‖ ≥ ε) ≤ P

(
2
N

∑
ij

I(|Xij |≥
√

n) ≥ ε

)

= P

(
1

Nn

∑
ij

I(|Xij |≥
√

n) − pn ≥ ε

2n
− pn

)
.

Then by Lemma 5.1, for all n large

P(‖FBn − F B̂n‖ ≥ ε) ≤ e−
Nε
16 ,

which is summable. Therefore
‖FBn − F B̂n‖ a.s.−→ 0.

Let B̃n = An + (1/N)X̃nTnX̃∗
n where X̃n = X̂n − EX̂n. Since rank(EX̂n) ≤ 1, we have from

Lemma 5.2 a)

‖F B̂n − F B̃n‖ −→ 0.

For α > 0 define Tα = diag(tn1 I(|tn
1 |≤α), . . . , tnnI(|tn

n|≤α)), and let Q be any n × N matrix. If α

and −α are continuity points of H, we have by Lemma 5.2 b)

‖FAn+Q∗TnQ − FAn+Q∗TαQ‖

≤ 1
N

rank(Tn − Tα) =
1
N

n∑
i=1

I(|tn
i
|>α)

a.s.−→ cH{[−α, α]c}.
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It follows that if α = αn → ∞ then

‖FAn+Q∗TnQ − FAn+Q∗TαQ‖ a.s.−→ 0.

Let Xij = X̃ijI(|Xij |<ln n) − EX̃ijI(|Xij |<ln n), Xn = ((1/
√

N)Xij), Xij = X̃ij − Xij , and

Xn = ((1/
√

N)Xij). Then, from Lemmas 5.5 c) and 5.4 and simple applications of Cauchy-
Schwarz we have

D2(FAn+X̃nTαX̃∗
n , FA+XnTαXn

∗
) ≤ 1

N
tr (X̃nTαX̃∗

n − XnTαXn
∗
)2

≤ 1
N

[tr (XnTαX
∗
n)2 + 4tr (XnTαX

∗
nXnTαX

∗
n)

+ 4(tr (XnTαX
∗
nXnTαX

∗
n)tr (XnTαX

∗
n)2)1/2].

We have
tr (XnTαX

∗
n)2 ≤ α2tr (X X

∗
)2

and
tr (XnTαX

∗
nXTαX

∗
) ≤ (α4tr (X X

∗
)2tr (X X

∗
)2)1/2.

Therefore, to verify
D(FA+X̃TαX̃ ∗

, FA+XTαX ∗
) a.s.−→ 0

it is sufficient to find a sequence {αn} increasing to ∞ so that

α4
n

1
N

tr (X X
∗
)2 a.s.−→ 0 and

1
N

tr (X X
∗
)2 = O(1) a.s..
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The details are omitted.
Notice the matrix diag(E|X1 1|2tn1 , . . . ,E|X1 1|2tnn) also satisfies assumption a) of Theorem 1.1.

Just substitute this matrix for Tn, and replace Xn by (1/
√

E|X1 1|2)Xn. Therefore we may assume

1) Xij are i.i.d. for fixed n,
2) |X11| ≤ a lnn for some positive a,
3) EX11 = 0, E|X11|2 = 1.
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6. The limiting distributions. The Stieltjes transform provides a great deal of information
to the nature of the limiting distribution F̂ when An = 0 in Theorem 1.1, and F in Theorems 1.2,
1.3. For the first two

z = − 1
m

+ c

∫
t

1 + tm
dH(t)

is the inverse of m = mF̂ (z), the limiting Stieltjes transform of F (1/N)X∗
nTnXn . Recall, when Tn is

nonnegative definite, the relationships between F , the limit of F (1/N)T 1/2
n XnX∗

nT 1/2
n and F̂

F̂ (x) = 1 − cI[0,∞)(x) + cF (x),

and mF and mF̂

mF̂ (z) = −1 − c

z
+ cmF (z).

Based solely on the inverse of mF̂ the following is shown in S. and Choi (1995):

1. For all x ∈ R, x 6= 0
lim

z∈C+→x
mF̂ (z) ≡ m0(x)

exists. The function m0 is continuous on R − {0}. Consequently, by property 5. of Stieltjes
transforms, F̂ has a continuous derivative f on R−{0} given by f̂(x) = 1

π=m0(x) (F subsequently
has derivative f = 1

c f̂). The density f̂ is analytic (possess a power series expansion) for every x 6= 0
for which f(x) > 0. Moreover, for these x, πf(x) is the imaginary part of the unique m ∈ C+

satisfying

x = − 1
m

+ c

∫
t

1 + tm
dH(t).
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2. Let xF̂ denote the above function of m. It is defined and analytic on B ≡ {m ∈ R : m 6=

0,−m−1 ∈ Sc
H} (Sc

G denoting the complement of the support of distribution G). Then if x ∈ Sc
F̂

we have m = m0(x) ∈ B and x′
F̂
(m) > 0. Conversely, if m ∈ B and x = x′

F̂
(m) > 0, then x ∈ Sc

F̂
.

We see then a systematic way of determining the support of F̂ : Plot xF̂ (m) for m ∈ B.

Remove all intervals on the vertical axis corresponding to places where xF̂ is increasing. What

remains is SF̂ , the support of F̂ .

Let us look at an example where H places mass at 1, 3, and 10, with respective probabilities

.2, .4, and .4, and c = .1.
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Figure (b) is the graph of

xF̂ (m) = − 1
m

+ .1
(

.2
1

1 + m
+ .4

3
1 + 3m

+ .4
10

1 + 10m

)
.

We see the support boundaries occur at relative extreme values. These values were estimated and
for values of x ∈ SF̂ , f(x) = 1

cπ=m0(x) was computed using Newton’s method on x = xF̂ (m),
resulting in figure (a).

It is possible for a support boundary to occur at a boundary of the support of B, which would
only happen for a nondiscrete H. However, we have

3. Suppose support boundary a is such that mF̂ (a) ∈ B, and is a left-endpoint in the support
of F̂ . Then for x > a and near a

f(x) =
(∫ x

a

g(t)dt

)1/2

.

where g(a) > 0 (analogous statement holds for a a right-endpoint in the support of F̂ ). Thus,
near support boundaries, f and the square root function share common features, as can be seen
in figure (a).

It is remarked here that similar results have been obtained for the matrices in Theorem 1.3.
See Dozier and S. b).

Explicit solutions can be derived in a few cases. Consider the Mařcenko-Pastur distribution,
where Tn = I. Then m = m0(x) solves

x = − 1
m

+ c
1

1 + m
,
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resulting in the quadratic equation

xm2 + m(x + 1 − c) + 1 = 0

with solution

m =
−(x + 1 − c) ± √

(x + 1 − c)2 − 4x

2x

=
−(x + 1 − c) ± √

x2 − 2x(1 + c) + (1 − c)2

2x

=
−(x + 1 − c) ±

√
(x − (1 −√

c)2)(x − (1 +
√

c)2)
2x

We see the imaginary part of m is zero when x lies outside the interval [(1−√
c)2, (1 +

√
c)2], and

we conclude that

f(x) =

{ √
(x−(1−√

c)2)((1+
√

c)2−x)

2πcx x ∈ ((1 −√
c)2, (1 +

√
c)2)

0 otherwise .

The Stieltjes transform in the multivariate F matrix case, that is, when Tn = ((1/N ′)XnX∗
n)−1,

Xn n × N ′ containing i.i.d. standardized entries, n/N ′ → c′ ∈ (0, 1), also satisfies a quadratic
equation. Indeed, H now is the distribution of the reciprocal of a Marčenko-Pasur distributed
random variable which we’ll denote by Xc′ , the Stieltjes transform of its distribution denoted by
mXc′ . We have

x = − 1
m

+ cE

( 1
Xc′

1 + 1
Xc′

m

)
= − 1

m
+ cE

(
1

Xc′ + m

)
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= − 1
m

+ cmXc′ (−m).

From above we have

mXc′ (z) =
1 − c′

c′z
+

−(z + 1 − c) +
√

(z + 1 − c)2 − 4z

2zc′

=
−z + 1 − c′ +

√
(z + 1 − c′)2 − 4z

2zc′

(the square root defined so that the expression is a Stieltjes transform) so that m = m0(x) satisfies

x = − 1
m

+ c

(
m + 1 − c +

√
(−m + 1 − c)2 + 4m
−2mc′

)
.

It follows that m satisfies

m2(c′x2 + cx) + m(2c′x − c2 + c + cx(1 − c′)) + c′ + c(1 − c′) = 0.

Solving for m we conclude that, with

b1 =
(

1 − √
1 − (1 − c)(1 − c′)

1 − c′

)2

b2 =
(

1 − √
1 − (1 − c)(1 − c′)

1 − c′

)2

f(x) =

{
(1−c′)

√
(x−b1)(b2−x)

2πx(xc′+c) b1 < x < b2

0 otherwise.
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7. Other uses of the Stieltjes transform. We conclude this lecture with two results

requiring Stieltjes transforms.

The first concerns the eigenvalues of matrices in Theorem 1.2 outside the support of the

limiting distribution. The results mentioned so far clearly say nothing about the possibility of

some eigenvalues lingering in this region. Consider this example with Tn given earlier, but now

c = .05. Below is a scatterplot of the eigenvalues from a simulation with n = 200 (N = 4000),

superimposed on the limiting density.
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Here the entries of Xn are N(0, 1). All the eigenvalues appear to stay close to the limiting support.
Such simulations were the prime motivation to prove
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Theorem 7.1 (Bai and S. (1998)). Let, for any d > 0 and d.f. G, F̂ d,G denote the limiting

e.d.f. of (1/N)X∗
nTnXn corresponding to limiting ratio d and limiting FTn G.

Assume in addition to the previous assumptions:
a) EX11 = 0, E|X11|2 = 1, and E|X11|4 < ∞.

b) Tn is nonrandom and ‖Tn‖ is bounded in n.

c) The interval [a, b] with a > 0 lies in an open interval outside the support of F̂ cn,Hn for all

large n, where Hn = FTn .

Then
P( no eigenvalue of Bn appears in [a, b] for all large n ) = 1.
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Steps in proof:

1. Let Bn = (1/N)X∗
nTnXn mn = mF B

n and m0
n = mF̂ cn,Hn . Then for z = x + ivn

sup
x∈[a,b]

|mn(z) − m0
n(z)| = o(1/Nvn) a.s.

when vn = N−1/68.
2. The proof of 1. allows 1. to hold for Im(z) =

√
2vn,

√
3vn, . . . ,

√
34vn. Then almost surely

max
k∈{1,... ,34}

sup
x∈[a,b]

|mn(x + i
√

kvn) − m0
n(x + i

√
kvn)| = o(v67

n ).

We take the imaginary part of these Stieltjes transforms and get

max
k∈{1,2... ,34}

sup
x∈[a,b]

∣∣∣∣∫ d(FB
n(λ) − F̂ cn,Hn(λ))

(x − λ)2 + kv2
n

∣∣∣∣ = o(v66
n ) a.s.

Upon taking differences we find with probability one

max
k1 6=k2

sup
x∈[a,b]

∣∣∣∣∫ v2
n d(FB

n(λ) − F̂ cn,Hn(λ))
((x − λ)2 + k1v2

n)((x − λ)2 + k2v2
n)

∣∣∣∣ = o(v66
n )

max
k1,k2,k3
distinct

sup
x∈[a,b]

∣∣∣∣∫ (v2
n)2 d(FB

n(λ) − F̂ cn,Hn(λ))
((x−λ)2+k1v2

n)((x−λ)2+k2v2
n)((x−λ)2+k3v2

n)

∣∣∣∣=o(v66
n )

...
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sup
x∈[a,b]

∣∣∣∣∫ (v2
n)33 d(FB

n(λ) − F̂ cn,Hn(λ))
((x−λ)2+v2

n)((x−λ)2+2v2
n) · · · ((x−λ)2+34v2

n)

∣∣∣∣=o(v66
n ).

Thus with probability one

sup
x∈[a,b]

∣∣∣∣∫ d(FBn(λ) − F̂ cn,Hn(λ))
((x − λ)2 + v2

n)((x − λ)2 + 2v2
n) · · · ((x − λ)2 + 34v2

n)

∣∣∣∣ = o(1)

Let 0 < a′ < a, b′ > b be such that [a′, b′] is also in the open interval outside the support of
F̂ cn,Hn for all large n. We split up the integral and get with probability one

sup
x∈[a,b]

∣∣∣∣∫ I[a′,b′]c(λ) d(FB
n(λ) − F̂ cn,Hn(λ))

((x − λ)2 + v2
n)((x − λ)2 + 2v2

n) · · · ((x − λ)2 + 34v2
n)

+
∑

λj∈[a′,b′]

v68
n

((x−λj)2+v2
n)((x−λj)2+2v2

n) · · · ((x−λj)2+34v2
n)

∣∣∣∣=o(1).

Now if, for each term in a subsequence satisfying the above, there is at least one eigenvalue
contained in [a, b], then the sum, with x evaluated at these eigenvalues, will be uniformly bounded
away from 0. Thus, at these same x values, the integral must also stay uniformly bounded away
from 0. But the integral MUST converge to zero a.s. since the integrand is bounded and with
probability one, both FBn and F̂ cn,Hn converge weakly to the same limit having no mass on
{a′, b′}. Contradiction!
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The last result is on the rate of convergence of linear statistics of the eigenvalues of Bn, that
is, quantities of the form ∫

f(x)dFBn(x) =
1
n

n∑
i=1

f(λi)

where f is a function defined on [0,∞), and the λi’s are the eigenvalues of Bn. The result establishes
the rate to be 1/n for analytic f . It considers integrals of functions with respect to

Gn(x) = n[FBn(x) − F cn,Hn(x)]

where for any d > 0 and d.f. G, F d,G is the limiting e.d.f. of Bn = (1/N)T 1/2
n XnX∗

nT
1/2
n

corresponding to limiting ratio d and limiting FTn G.

Theorem 7.2. Under the assumptions in Theorem 7.1, Let f1, . . . , fr be C1 functions on R
with bounded derivatives, and analytic on an open interval containing

[lim inf
n

λTn

minI(0,1)(c)(1 −√
c)2, lim sup

n
λTn

max(1 +
√

c)2].

Let m = mF̂ . Then

(1) the random vector

(7.1)
(∫

f1(x) dGn(x), . . . ,

∫
fr(x) dGn(x)

)
forms a tight sequence in n.
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(2) If X11 and Tn are real and E(X4
11) = 3, then (7.1) converges weakly to a Gaussian vector

(Xf1 , . . . , Xfr ), with means

(7.2) EXf = − 1
2πi

∫
f(z)

c
∫ m(z)3t2dH(t)

(1+tm(z))3(
1 − c

∫ m(z)2t2dH(t)
(1+tm(z))2

)2 dz

and covariance function

(7.3) Cov(Xf , Xg) = − 1
2π2

∫∫
f(z1)g(z2)

(m(z1) − m(z2))2
d

dz1
m(z1)

d

dz2
m(z2)dz1dz2

(f, g ∈ {f1, . . . , fr}). The contours in (7.2) and (7.3) (two in (7.3), which we may assume to

be non-overlapping) are closed and are taken in the positive direction in the complex plane,

each enclosing the support of F c,H .

(3) If X11 is complex with E(X2
11) = 0 and E(|X11|4) = 2, then (2) also holds, except the means

are zero and the covariance function is 1/2 the function given in (7.3) .

(4) If the assumptions in (2) or (3) were to hold, then Gn, considered as a random element in

D[0,∞) (the space of functions on [0,∞) right-continuous with left-hand limits, together with

the Skorohod metric) cannot form a tight sequence in D[0,∞).
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The proof relies on the identity∫
f(x)dG(x) = − 1

2πi

∫
f(z)mG(z)dz

(f analytic on the support of G, contour positively oriented around the support), and establishes
the following results on

Mn(z) = n[mF Bn (z) − mF cn,Hn (z)].

a) {Mn(z)} forms a tight sequence for z in a sufficiently large contour about the origin.

b) If X11 is complex with E(X2
11) = 0 and E(X4

11) = 2, then for z1, . . . , zr with nonzero imaginary
parts,

(ReMn(z1), ImMn(z1), . . . , ReMn(zr), ImMn(zr))

converges weakly to a mean zero Gaussian vector. It follows that Mn, viewed as a random
element in the metric space of continuous R2-valued functions with domain restricted to a
contour in the complex plane, converges weakly to a (2 dimensional) Gaussian process M .
The limiting covariance function can be derived from the formula

E(M(z1)M(z2)) =
m′(z1)m′(z2)

(m(z1) − m(z2))2
− 1

(z1 − z2)2
.

c) If X11 is real and E(X4
11) = 3 then b) still holds, except the limiting mean can be derived from
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EM(z) =
c
∫ m3t2dH(t)

(1+tm)3(
1 − c

∫ m2t2dH(t)
(1+tm)2

)2

and “covariance function” is twice that of the above function.
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The difference between (2) and (3), and the difficulty in extending beyond these two cases,
arise from

E(X∗
·1AX·1 − trA)(X∗

·1BX·1 − trB)

= (E(|X11|4) − |E(X2
11)|2 − 2)

∑
i

aiibii + |E(X2
11)|2trABT + trAB,

valid for square matrices A and B.

Can show

(7.2) =
1
2π

∫
f ′(x) arg

(
1 − c

∫
t2m2(x)

(1 + tm(x))2
dH(t)

)
dx

and

(7.3) =
1
π2

∫∫
f ′(x)g′(y) ln

∣∣∣∣m(x) − m(y)
m(x) − m(y)

∣∣∣∣ dxdy

=
1

2π2

∫∫
f ′(x)g′(y) ln

(
1 + 4

mi(x)mi(y)
|m(x) − m(y)|2

)
dxdy

where mi = =m.
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For case (2) with H = I[1,∞) we have for f(x) = lnx and c ∈ (0, 1)

EXln =
1
2

ln(1 − c) and VarXln = −2 ln(1 − c).

Also, for c > 0

EXxr =
1
4
((1 −√

c)2r + (1 +
√

c)2r) − 1
2

r∑
j=0

(
r

j

)2

cj

and

Cov(Xxr1 , Xxr2 ) = 2cr1+r2

r1−1∑
k1=0

r2∑
k2=0

(
r1

k1

)(
r2

k2

)(
1 − c

c

)k1+k2

×
r1−k1∑
`=1

`

(
2r1−1−(k1 + `)

r1 − 1

)(
2r2−1−k2 + `

r2 − 1

)

(see Jonsson (1982)).
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