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Randomness means lack of pattern or predictability in events

according to Wikipedia

0 200 400 600 800 1000

-3
-1

1
2
3

tt

x

0 200 400 600 800 1000

-3
-1

1
3

tt

y

However: certain different patterns are present on the two plots.



The two plots are of two stationary stochastic processes with
the same marginals.

The second one has memory, while the first one does not.

Traditionally, in probability the notion of memory applies to
stationary stochastic processes

(
Xn, n = 0, 1, 2, . . .

)
: for every

h = 1, 2, . . .(
Xn, n = 0, 1, 2, . . .

) d
=
(
Xn+h, n = 0, 1, 2, . . .

)
.



“The memory” in a stochastic process: how observations far away
in time affect each other.

How does one measure memory?

It is obvious: use correlations!

Let
ρn = Corr

(
Xk ,Xk+n

)
, n = 0, 1, 2, . . . .



Four different correlation functions
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What do we see in these plots?



Covariances and correlations of a second-order stationary process
can be expressed through the spectral measure of the process:

ρn =
1

VarX0

∫
(−π,π]

e inx F (dx), n = 0, 1, 2, . . . ;

F is a finite symmetric measure on (−π, π]. If F has a density with
respect to the Lebesgue measure on (−π, π],

the density f is called the power spectral density of the process.



One can view the process as the sum of waves of different
frequencies with random and uncorrelated weights:

Xn =

∫
(−π,π]

e inx M(dx), n = 0, 1, 2, . . . ,

M a random measure governed by the spectral measure (density).

Such a process is also called a noise.



If the spectral density is constant, the noise is white.

If some frequencies have a larger weight than some other
frequencies, the noise is colored.

The common colors of the noise: pink, brown, blue, violet,
grey.

The different colors describe which frequencies are preferred
and by how much.



Long range dependence (long memory)

Long memory in a stochastic process:

when “the common wisdom goes wrong”, for example:

The ”square root of the sample size” rule is no longer valid;

Objects that used to be approximately normal are no longer
so.



In the second-order language:

either slowly decaying correlations

ρn ∼ n−dLn, n→∞ ,

0 < d < 1, Ln is slowly varying,

or spectral density has a pole at zero

f (x) ∼ xd−1L(1/x), x ↓ 0 .



Four different spectral densities
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Colored noise, short memory
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Colored noise, long memory
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Colored noise, negative memory

How much information is in the color of the noise?



Very different processes, the same color
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Both processes are white noises, with equally heavy tails



Conclusions:

the second order characteristics do not provide enough
information about the length of the memory;

long range dependence is far from being determined by
correlations;

with sufficiently heavy tails correlations do not even exist;

long memory as a phenomenon is a phase transition.



Examples of long memory as a phase transition

1 Suppose that
(
Xn, n = 0, 1, 2, . . .

)
is a stationary stochastic

process with a finite variance.

Let

Sn =
n∑

i=1

Xi , n = 1, 2, . . . .

We may say that the process has short memory if, as n→∞,

Sn − nEX0

n1/2
⇒ N(0, σ2), 0 < σ2 <∞ .



We may require that(
S[nt] − [nt]EX0

n1/2
, t ≥ 0

)
⇒
(
σB(t), t ≥ 0

)
in D[0,∞) in the Skorohod topology.

The limit
(
B(t), t ≥ 0

)
is the Brownian motion. It is

a Gaussian process,

has stationary increments,

is self-similar with H = 1/2.



We may say that the process has long memory if:

as n→∞, the normalization n1/2 is wrong:

Sn − nEX0

an
has a finite nonzero limit;

when an >> n1/2, the memory is long and positive;

when an << n1/2, the memory is long and negative
(also: medium memory).



Under long memory the limit Y in(
S[nt] − [nt]EX0

an
, t ≥ 0

)
⇒
(
Y (t), t ≥ 0

)
is a self-similar process with stationary increments, but
not a Brownian motion. It could be:

a Fractional Brownian motion (a Gaussian process);

a process in a higher order Wiener chaos:

Y (t) =

∫
R
. . .

∫
R

Qt(x1, . . . , xk) dW (x1) . . . dW (xk), t ≥ 0 .



2 Suppose that X =
(
Xn, n = 0, 1, 2, . . .

)
is a stationary

stochastic process with infinite variance.

For simplicity: asssume the process to be symmetric: −X
d
= X.

Assume that the observations have regularly varying tails:

P(|Xn| > x) = x−αL(x), x > 0, 0 < α < 2 ,

where L is a slowly varying at infinity function.



If the memory is short, then(
S[nt]

an
, t ≥ 0

)
⇒
(
Lα(t), t ≥ 0

)
;

an = n1/αL1(n), L1 is slowly varying;

Lα is a symmetric α-stable Lévy motion;

Lα is self-similar with H = 1/α.



If the memory is long, one starts getting, as limits, processes such
as Linear Fractional Stable Motions:

Y (t) =

∫
R

(
|t − x |H−1/α − |x |H−1/α

)
Lα(dx) t ≥ 0 .

The range of H: 0 < H < 1;

the process Y is H-self-similar, and has stationary increments.

The memory can be even longer.



The stationary process X

We consider infinitely divisible processes of the form

Xn =

∫
E

fn(x)dM(x), n = 1, 2, . . . .

M is a homogeneous symmetric infinitely divisible random
measure on a (E , E).

M has an infinite, σ-finite, control measure µ and local Lévy
measure ρ: for every A ∈ E with µ(A) <∞, u ∈ R,

Ee iuM(A) = exp

{
−µ(A)

∫
R

(
1− cos(ux)

)
ρ(dx)

}
.



The functions fn, n = 1, 2, . . . are deterministic functions of the
form

fn(x) = f ◦ T n(x) = f
(
T nx

)
, x ∈ E , n = 1, 2, . . . :

f : E → R is a measurable function, satisfying certain
integrability assumptions;

T : E → E a measurable map preserving measure µ.



We assume that the local Lévy measure ρ has a regularly varying
tail with index −α, 0 < α < 2:

ρ(·,∞) ∈ RV−α at infinity.

With a proper integrability assumption on the function f :

the process X has regularly varying finite-dimensional
distributions, with the same tail exponent −α.



The key assumption:

the map T is conservative and pointwise dual ergodic: there
is a sequence of positive constants an →∞ such that

1

an

n∑
k=1

T̂ k f →
∫
E

f dµ a.e.

for every f ∈ L1(µ).

The dual operator T̂ satisfies the relation∫
E

T̂ f · g dµ =

∫
E

f · g ◦ T dµ

for f ∈ L1(µ), g ∈ L∞(µ).



Theorem

Assume that the normalizing sequence (an) in the pointwise dual
ergodicity is regularly varying with exponent 0 < β < 1 and that
µ(f ) =

∫
f dµ 6= 0. Then for some sequence (cn) that is regularly

varying with exponent β + (1− β)/α,

1

cn

bn·c∑
k=1

Xk ⇒ |µ(f )|Yα,β in D[0,∞) .



The limiting process

Let 0 < β < 1. We start with inverse process

Mβ(t) = S←β (t) = inf
{

u ≥ 0 : Sβ(u) ≥ t
}
, t ≥ 0 .

(
Sβ(t), t ≥ 0

)
is a (strictly) β-stable subordinator.(

Mβ(t), t ≥ 0
)

is called the Mittag-Leffler process.



The Mittag-Leffler process has a continuous and non-decreasing
version.

It is self-similar with exponent β.

Its increments are neither stationary nor independent.

All of its moments are finite.

E exp{θMβ(t)} =
∞∑
n=0

(θtβ)n

Γ(1 + nβ)
, θ ∈ R.



Define

Yα,β(t) =

∫
Ω′×[0,∞)

Mβ

(
(t − x)+, ω

′)dZα,β(ω′, x), t ≥ 0.

Zα,β is a SαS random measure on Ω′ × [0,∞) with control
measure P ′ × ν.

ν a measure on [0,∞) given by ν(dx) = (1− β)x−β dx .

Mβ is a Mittag-Leffler process defined on (Ω′,F ′,P ′).



Conclusions

The length of memory should not be measured by correlations
or a similar simple measure.

Deeper features of the process affect the limiting distributions
of the partial sums, partial maxima, etc.

In each given application it is important to use a model that
“fits”, and not only the spectrum of the noise.


