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"memory”



Randomness means lack of pattern or predictability in events

according to Wikipedia
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However: certain different patterns are present on the two plots.



@ The two plots are of two stationary stochastic processes with
the same marginals.

@ The second one has memory, while the first one does not.

Traditionally, in probability the notion of memory applies to
stationary stochastic processes (Xn, n=20,1,2,.. ) for every
h=1,2,...

(Xp n=0,1,2,..) L (X4, n=0,1,2,...).



“The memory"” in a stochastic process: how observations far away
in time affect each other.

How does one measure memory?
It is obvious: use correlations!

Let
Pn = Corr(Xk,Xk+n), n=20,1,2,....
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Four different correlation functions

rho_n=2"(-n) rho_n=1.57(-n)

tho2

00 02 04 08 08 10

10 15 20 o s 10 15

MA(S5) AR(infty), a_j=j~(-0.75)
2 5
10 15 20 o s 10 15 20
n n

What do we see in these plots?




Covariances and correlations of a second-order stationary process
can be expressed through the spectral measure of the process:

1 in
n = "™ F(d s =0,1,2,...;
P Var Xp /(_Wm]e (ck),

F is a finite symmetric measure on (—m, ). If F has a density with
respect to the Lebesgue measure on (—m, ],

the density f is called the power spectral density of the process.



One can view the process as the sum of waves of different
frequencies with random and uncorrelated weights:

x,,:/ e™ M(dx), n=0,1,2,...,
(_ﬂ'vﬂ—]

M a random measure governed by the spectral measure (density).

Such a process is also called a noise.



o If the spectral density is constant, the noise is white.

@ If some frequencies have a larger weight than some other
frequencies, the noise is colored.

@ The common colors of the noise: , , blue, violet,
grey.

@ The different colors describe which frequencies are preferred
and by how much.



Long range dependence (long memory)

Long memory in a stochastic process:

when “the common wisdom goes wrong”, for example:

@ The "square root of the sample size” rule is no longer valid;

@ Objects that used to be approximately normal are no longer
so.



In the second-order language:

o either slowly decaying correlations
_dL
Pn~n ny, N — 00,

0 <d <1, L,isslowly varying,

@ or spectral density has a pole at zero

f(x) ~x?71L(1/x), x 1 0.
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Four different spectral densities
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Very different processes, the same color
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Both processes are white noises, with equally heavy tails



Conclusions:

@ the second order characteristics do not provide enough
information about the length of the memory;

@ long range dependence is far from being determined by
correlations;

e with sufficiently heavy tails correlations do not even exist;

@ long memory as a phenomenon is a phase transition.



Examples of long memory as a phase transition

1 Suppose that (X,,, n=20,1,2,.. ) is a stationary stochastic
process with a finite variance.

Let ,
5,,:2)(,-, n=12,....
=1

We may say that the process has short memory if, as n — oo,

Sn - nEXO

7 = N(0,0°), 0<o0®<o00.



We may require that

(S[nt] — [nt] EXp

17 ,t20>:>(aB(t),t20)
n

in D[0, c0) in the Skorohod topology.

The limit (B(t), t > 0) is the Brownian motion. It is
@ a Gaussian process,
@ has stationary increments,
@ is self-similar with H =1/2.



We may say that the process has long memory if:
1/2

@ as n — oo, the normalization n is wrong:
5 — nEXo .. ..
= """ has a finite nonzero limit;
an

@ when a, >> n!/2, the memory is long and positive;

@ when a, << n/2, the memory is long and negative
(also: medium memory).



Under long memory the limit Y in

<S[nt] - [nt] EXp

. ,tZO)é(Y(t),tZO)

is a self-similar process with stationary increments, but

not a Brownian motion. It could be:

@ a Fractional Brownian motion (a Gaussian process);

@ a process in a higher order Wiener chaos:

Y(t’)_/]R.../]RQt(Xl,...,Xk)dW(Xl)...dW(Xk)7 t>0.



2 Suppose that X = (X,, n=0,1,2,...) is a stationary
stochastic process with infinite variance.

For simplicity: asssume the process to be symmetric: —X 4x.
Assume that the observations have regularly varying tails:
P(|Xn| > x) =x"%L(x), x>0, 0<a<2,

where L is a slowly varying at infinity function.



If the memory is short, then

<5lnfl, e> o) = (La(2), £20);

dn

o a, = n'*Ly(n), Ly is slowly varying;
@ L, is a symmetric a-stable Lévy motion;

e L, is self-similar with H = 1/a.



If the memory is long, one starts getting, as limits, processes such
as Linear Fractional Stable Motions:

Y(t):/(!t—XIHl/a—!le/“) Lo(dx) t>0.
R

@ Therange of H: 0 < H < 1;
@ the process Y is H-self-similar, and has stationary increments.

@ The memory can be even longer.



The stationary process X

We consider infinitely divisible processes of the form
Xn = / fa(x)dM(x), n=1,2,....
E

@ M is a homogeneous symmetric infinitely divisible random
measure on a (E,€).

@ M has an infinite, o-finite, control measure p and local Lévy
measure p: for every A € £ with p(A) < oo, u € R,

Ee™M(A) _ exp {—,L(A) /R (1 - cos(ux)) p(dx)} .



The functions f,, n =1,2,... are deterministic functions of the
form

fa(x)=foT"(x)=f(T"x), x€ E, n=1,2,... :

o f: E — R is a measurable function, satisfying certain
integrability assumptions;

o T : E — E a measurable map preserving measure p.



We assume that the local Lévy measure p has a regularly varying
tail with index —a, 0 < o < 2:

p(-,00) € RV_, at infinity.
With a proper integrability assumption on the function f:

the process X has regularly varying finite-dimensional
distributions, with the same tail exponent —a.



The key assumption:

@ the map T is conservative and pointwise dual ergodic: there
is a sequence of positive constants a, — oo such that

1 =
—E ka—>/fdu a.e.
an E

k=1

for every f € L1(u).

@ The dual operator T satisfies the relation

/?f-gduz/f.gonu
E E

for f € LY (1), g € L®(p).



Theorem

Assume that the normalizing sequence (a,) in the pointwise dual
ergodicity is regularly varying with exponent 0 < 8 < 1 and that
p(f) = [ fdp#0. Then for some sequence (c,) that is regularly
varying with exponent 5+ (1 — )/«

Ln-]
L3 X = )] Yoy in D[, o).
" k=1



The limiting process

Let 0 < B < 1. We start with inverse process

Mg(t) = S5 (t) =inf{u>0: Sg(u) >t}, t >0.

° ( ), ) is a (strictly) [-stable subordinator.
°o (M ( ) > 0) is called the Mittag-Leffler process.



The Mittag-Leffler process has a continuous and non-decreasing
version.

@ It is self-similar with exponent S3.

@ Its increments are neither stationary nor independent.

@ All of its moments are finite.

(6t%)"

E exp{6Mp(t)} = Z FL s nB)" 0 € R.



Define

Yo 5(t) —/Q/ o )Mg((t—x)+,w’)dZa”3(w',x), t > 0.
x[0,00

e Z, 3 is a SaS random measure on ' x [0, 00) with control
measure P’ x v.

o v a measure on [0, 00) given by v(dx) = (1 — B)x ¥ dx.
e Mjg is a Mittag-Leffler process defined on (', 7', P').



Conclusions

@ The length of memory should not be measured by correlations
or a similar simple measure.

@ Deeper features of the process affect the limiting distributions
of the partial sums, partial maxima, etc.

@ In each given application it is important to use a model that
“fits”, and not only the spectrum of the noise.



