The normal matrix model with monomial potential and multi-orthogonality on a star

A.B.J. Kuijlaars ${ }^{1} \quad$ A. López-García ${ }^{2}$

${ }^{1} \mathrm{KU}$ Leuven

${ }^{2}$ University of South Alabama

Main ideas in the talk

- There is a natural connection between:

1) The global asymptotic distribution of eigenvalues in the normal matrix model with monomial potential.
2) The limiting zero distribution of a certain sequence of polynomials.

The limiting zero distribution of the sequence of polynomials is part of the solution to a (vector) equilibrium problem.

Main ideas in the talk

- There is a natural connection between:

1) The global asymptotic distribution of eigenvalues in the normal matrix model with monomial potential.
2) The limiting zero distribution of a certain sequence of polynomials.

The limiting zero distribution of the sequence of polynomials is part of the solution to a (vector) equilibrium problem.

- The polynomials are multi-orthogonal with respect to a system of weights defined on a star-like set.

Main ideas in the talk

- There is a natural connection between:

1) The global asymptotic distribution of eigenvalues in the normal matrix model with monomial potential.
2) The limiting zero distribution of a certain sequence of polynomials.

The limiting zero distribution of the sequence of polynomials is part of the solution to a (vector) equilibrium problem.

- The polynomials are multi-orthogonal with respect to a system of weights defined on a star-like set.
- The problem is investigated in a pre-critical regime (for a certain parameter in the model).

Normal matrix model

D : two-dimensional compact domain in \mathbb{C}.
\mathcal{V} : real-valued continuous function on D.

Normal matrix model

D : two-dimensional compact domain in \mathbb{C}.
\mathcal{V} : real-valued continuous function on D.
NMM: Probability measure on

$$
\left\{M \in \mathbb{C}^{n \times n}: M \text { normal, } \sigma(M) \subset D\right\}
$$

that induces on D^{n} (the space of eigenvalues) the probability distribution

$$
\frac{1}{z_{n}} \exp \left(-n \sum_{i=1}^{n} \mathcal{V}\left(z_{i}\right)\right) \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \mathrm{~d} A\left(z_{1}\right) \ldots \mathrm{d} A\left(z_{n}\right),
$$

where $\mathrm{d} A$ is area measure on D.

Normal matrix model

D : two-dimensional compact domain in \mathbb{C}.
\mathcal{V} : real-valued continuous function on D.
NMM: Probability measure on

$$
\left\{M \in \mathbb{C}^{n \times n}: M \text { normal, } \sigma(M) \subset D\right\}
$$

that induces on D^{n} (the space of eigenvalues) the probability distribution

$$
\frac{1}{z_{n}} \exp \left(-n \sum_{i=1}^{n} \mathcal{V}\left(z_{i}\right)\right) \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \mathrm{~d} A\left(z_{1}\right) \ldots \mathrm{d} A\left(z_{n}\right),
$$

where $\mathrm{d} A$ is area measure on D.
Wiegmann-Zabrodin '00
Elbau-Felder '05
Ameur-Hedenmalm-Makarov '11
Bleher-Kuijlaars '12

$$
\begin{equation*}
\frac{1}{Z_{n}} \exp \left(-n \sum_{i=1}^{n} \mathcal{V}\left(z_{i}\right)\right) \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \mathrm{~d} A\left(z_{1}\right) \ldots \mathrm{d} A\left(z_{n}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{Z_{n}} \exp \left(-n \sum_{i=1}^{n} \mathcal{V}\left(z_{i}\right)\right) \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \mathrm{~d} A\left(z_{1}\right) \ldots \mathrm{d} A\left(z_{n}\right) \tag{1}
\end{equation*}
$$

NMM is naturally tied with the study of (Bergmann) orthogonal polynomials associated with the inner product

$$
\begin{equation*}
\langle f, g\rangle_{D}=\iint_{D} f(z) \overline{g(z)} e^{-n \mathcal{V}(z)} \mathrm{d} A(z) . \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{Z_{n}} \exp \left(-n \sum_{i=1}^{n} \mathcal{V}\left(z_{i}\right)\right) \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \mathrm{~d} A\left(z_{1}\right) \ldots \mathrm{d} A\left(z_{n}\right) \tag{1}
\end{equation*}
$$

NMM is naturally tied with the study of (Bergmann) orthogonal polynomials associated with the inner product

$$
\begin{equation*}
\langle f, g\rangle_{D}=\iint_{D} f(z) \overline{g(z)} e^{-n \mathcal{V}(z)} \mathrm{d} A(z) . \tag{2}
\end{equation*}
$$

(1) is a determinantal point process with correlation kernel

$$
K_{n}(z, w)=\exp \left(-\frac{n}{2}(\mathcal{V}(w)+\mathcal{V}(z))\right) \sum_{k=0}^{n-1} q_{k, n}(z) \overline{q_{k, n}(w)},
$$

where $\left(q_{k, n}\right)_{k=0}^{\infty}$ are the orthonormal polynomials associated to (2), i.e.,

$$
\left\langle q_{k, n}, q_{l, n}\right\rangle_{D}=\delta_{k l}, \quad q_{k, n}(z)=\gamma_{k} z^{k}+\cdots, \quad \gamma_{k}>0
$$

Global asymptotic distribution of eigenvalues

$$
\begin{aligned}
\mathcal{V}(z) & :=\frac{1}{t_{0}}\left(|z|^{2}-V(z)-\overline{V(z)}\right), \quad t_{0}>0, \\
V(z) & :=\sum_{k=1}^{d+1} \frac{t_{k}}{k} z^{k}, \quad\left\{t_{k}\right\}_{k=1}^{d+1} \subset \mathbb{C},
\end{aligned}
$$

D : compact domain with $0 \in \operatorname{int}(D)$.

Global asymptotic distribution of eigenvalues

$$
\begin{aligned}
& \mathcal{V}(z):=\frac{1}{t_{0}}\left(|z|^{2}-V(z)-\overline{V(z)}\right), \quad t_{0}>0, \\
& V(z):=\sum_{k=1}^{d+1} \frac{t_{k}}{k} z^{k}, \quad\left\{t_{k}\right\}_{k=1}^{d+1} \subset \mathbb{C},
\end{aligned}
$$

D : compact domain with $0 \in \operatorname{int}(D)$.

Theorem (Elbau-Felder '05)

Under certain assumptions on \mathcal{V} and D, for all $t_{0}>0$ small enough,

$$
\frac{1}{n} K_{n}(z, z) \mathrm{d} A(z) \underset{n \rightarrow \infty}{*} \lambda_{\Omega}, \quad \lambda_{\Omega}: \text { normalized area measure on } \Omega,
$$

where $\Omega \subset D$ is a Jordan domain with $0 \in \operatorname{int}(\Omega)$.

Global asymptotic distribution of eigenvalues

$$
\begin{aligned}
\mathcal{V}(z) & :=\frac{1}{t_{0}}\left(|z|^{2}-V(z)-\overline{V(z)}\right), \quad t_{0}>0, \\
V(z) & :=\sum_{k=1}^{d+1} \frac{t_{k}}{k} z^{k}, \quad\left\{t_{k}\right\}_{k=1}^{d+1} \subset \mathbb{C},
\end{aligned}
$$

D : compact domain with $0 \in \operatorname{int}(D)$.

Theorem (Elbau-Felder '05)

Under certain assumptions on \mathcal{V} and D, for all $t_{0}>0$ small enough,

$$
\frac{1}{n} K_{n}(z, z) \mathrm{d} A(z) \xrightarrow[n \rightarrow \infty]{*} \lambda_{\Omega}, \quad \lambda_{\Omega}: \text { normalized area measure on } \Omega,
$$

where $\Omega \subset D$ is a Jordan domain with $0 \in \operatorname{int}(\Omega)$. Moreover, area $(\Omega)=\pi t_{0}$ and

$$
\frac{1}{2 \pi \mathrm{i}} \oint_{\partial \Omega} \bar{z} z^{-k} \mathrm{~d} z= \begin{cases}t_{k}, & k \in\{1, \ldots, d+1\} \\ 0, & k \in \mathbb{N} \backslash\{1, \ldots, d+1\}\end{cases}
$$

Dynamics of $\Omega=\Omega\left(t_{0}\right)$: Laplacian growth, Hele-Shaw flow (work of Wiegmann, Zabrodin, Teodorescu, Lee, Bettelheim, Elbau, Ameur, Makarov and others).

Problem: Relation between the eigenvalue asymptotic distribution in the NMM and the zero asymptotic distribution of the orthogonal polynomials $q_{n, n}$.

Elbau, 2007: Unless $V(z)=0$, if σ is a limiting distribution of the zeros of $q_{n, n}$, then σ is determined by the Schwarz function associated with $\partial \Omega$.

Dynamics of $\Omega=\Omega\left(t_{0}\right)$: Laplacian growth, Hele-Shaw flow (work of Wiegmann, Zabrodin, Teodorescu, Lee, Bettelheim, Elbau, Ameur, Makarov and others).

Problem: Relation between the eigenvalue asymptotic distribution in the NMM and the zero asymptotic distribution of the orthogonal polynomials $q_{n, n}$.

Elbau, 2007: Unless $V(z)=0$, if σ is a limiting distribution of the zeros of $q_{n, n}$, then σ is determined by the Schwarz function associated with $\partial \Omega$.

In the case

$$
V(z)=\frac{t_{d+1}}{d+1} z^{d+1}, \quad t_{d+1}>0
$$

we establish a relation between the eigenvalue asymptotic distribution in the NMM and the zero asymptotic distribution of a sequence of multi-orthogonal polynomials $P_{n, n}$ associated with weights supported on a star-like set. The zero asymptotic distribution solves a (vector) equilibrium problem. This generalizes work of Bleher-Kuijlaars '12 for $d=2$.

The approach of Bleher-Kuijlaars to the NMM

Inner product

$$
\begin{aligned}
\langle f, g\rangle_{D} & =\iint_{D} f(z) \overline{g(z)} e^{-n \mathcal{V}(z)} \mathrm{d} A(z) \\
\mathcal{V}(z) & =\frac{1}{t_{0}}\left(|z|^{2}-V(z)-\overline{V(z)}\right) .
\end{aligned}
$$

Applying Green's formula on D, for polynomials p and q,

$$
t_{0}\left\langle p, q^{\prime}\right\rangle_{D}-n\langle z p, q\rangle_{D}+n\left\langle p, V^{\prime} q\right\rangle_{D}=\frac{t_{0}}{2 i} \oint_{\partial D} p(z) \overline{q(z)} e^{-n \mathcal{V}(z)} \mathrm{d} z .
$$

The approach of Bleher-Kuijlaars to the NMM

Inner product

$$
\begin{aligned}
\langle f, g\rangle_{D} & =\iint_{D} f(z) \overline{g(z)} e^{-n \mathcal{V}(z)} \mathrm{d} A(z) \\
\mathcal{V}(z) & =\frac{1}{t_{0}}\left(|z|^{2}-V(z)-\overline{V(z)}\right) .
\end{aligned}
$$

Applying Green's formula on D, for polynomials p and q,

$$
t_{0}\left\langle p, q^{\prime}\right\rangle_{D}-n\langle z p, q\rangle_{D}+n\left\langle p, V^{\prime} q\right\rangle_{D}=\frac{t_{0}}{2 i} \oint_{\partial D} p(z) \overline{q(z)} e^{-n \mathcal{V}(z)} \mathrm{d} z .
$$

Bleher-Kuijlaars neglect the boundary term on the right-hand side and this leads to the study of sesquilinear forms $\langle\cdot, \cdot\rangle$ satisfying the structure relation

$$
t_{0}\left\langle p, q^{\prime}\right\rangle-n\langle z p, q\rangle+n\left\langle p, V^{\prime} q\right\rangle=0 .
$$

$$
\begin{equation*}
t_{0}\left\langle p, q^{\prime}\right\rangle-n\langle z p, q\rangle+n\left\langle p, V^{\prime} q\right\rangle=0 \tag{3}
\end{equation*}
$$

Bleher-Kuijlaars conjecture: For any polynomial

$$
V(z)=\sum_{k=1}^{d+1} \frac{t_{k}}{k} z^{k}
$$

there is a suitable choice of a sesquilinear form $\langle\cdot, \cdot\rangle$ satisfying (3) such that, for t_{0} small enough, the orthogonal polynomials associated with the sesquilinear form and the Bergmann orthogonal polynomials in the NMM will have the same asymptotic behavior.

The monomial case $V(z)=\frac{t_{d+1}}{d+1} z^{d+1}, t_{d+1}>0$

D : simply-connected, Jordan domain with 0 in its origin, invariant under $z \mapsto \exp \left(\frac{2 \pi \mathrm{i}}{d+1}\right) z$ and $z \mapsto \bar{z}$.

Let $\Sigma=\left\{z \in D: z^{d+1} \in \mathbb{R}^{+}\right\}$, the $(d+1)$-star.
Green's theorem applied on the sectors of D gives

See also Balogh-Bertola-Lee-McLaughlin'12.

$$
2 \mathrm{i} \iint_{D} Q(z) \bar{z}^{j} e^{-\frac{n}{t_{0}}\left(|z|^{2}-v(z)-\overline{v(z)}\right)} \mathrm{d} A(z)=\int_{\Sigma} Q(z) w_{j, n}(z) \mathrm{d} z+\oint_{\partial D} Q(z) \widetilde{w}_{j, n}(z) \mathrm{d} z
$$

For $z \in \Sigma$,

$$
w_{j, n}(z)=\int_{\Gamma(\ell)} s^{j} e^{-\frac{n}{t_{0}}(s z-V(s)-V(z))} \mathrm{d} s, \quad \arg z=\frac{2 \pi}{d+1} \ell
$$

for $z \in \partial D$,

$$
\widetilde{w}_{j, n}(z)=\int_{\infty(\ell)}^{\bar{z}} s^{j} e^{-\frac{n}{t_{0}}(s z-V(s)-V(z))} \mathrm{d} s, \quad \frac{2 \pi}{d+1} \ell<\arg z<\frac{2 \pi}{d+1}(\ell+1) .
$$

$$
2 \mathrm{i} \iint_{D} Q(z) \bar{z}^{j} e^{-\frac{n}{t_{0}}\left(|z|^{2}-v(z)-\overline{v(z)}\right)} \mathrm{d} A(z)=\int_{\Sigma} Q(z) w_{j, n}(z) \mathrm{d} z+\oint_{\partial D} Q(z) \widetilde{w}_{j, n}(z) \mathrm{d} z
$$

For $z \in \Sigma$,

$$
w_{j, n}(z)=\int_{\Gamma(\ell)} s^{j} e^{-\frac{n}{t_{0}}(s z-V(s)-V(z))} \mathrm{d} s, \quad \arg z=\frac{2 \pi}{d+1} \ell
$$

for $z \in \partial D$,

$$
\widetilde{w}_{j, n}(z)=\int_{\infty(\ell)}^{\bar{z}} s^{j} e^{-\frac{n}{t_{0}}(s z-V(s)-V(z))} \mathrm{d} s, \quad \frac{2 \pi}{d+1} \ell<\arg z<\frac{2 \pi}{d+1}(\ell+1) .
$$

Definition

Let $d \geq 2$, and $\widehat{x}, t_{0}, t_{d+1}>0$. Then for every $k, n \in \mathbb{N}$, we let $P_{k, n}(z)=z^{k}+\cdots$ be the monic polynomial that satisfies

$$
\int_{\Sigma} P_{k, n}(z) w_{j, n}(z) \mathrm{d} z=0, \quad j=0, \ldots, k-1
$$

where $\Sigma=\bigcup_{\ell=0}^{d} \omega^{\ell}[0, \widehat{x}], \omega=\exp (2 \pi \mathrm{i} /(d+1))$.

The orthogonality conditions

$$
\int_{\Sigma} P_{k, n}(z) w_{j, n}(z) \mathrm{d} z=0, \quad j=0, \ldots, k-1
$$

can be written in the form

$$
\left\langle P_{k, n}(z), z^{j}\right\rangle=0, \quad j=0, \ldots, k-1,
$$

with the sesquilinear form $\langle\cdot, \cdot\rangle$ defined by

$$
\langle p, q\rangle=\sum_{\ell=0}^{d} \int_{0}^{\omega^{\ell} \hat{x}} \mathrm{~d} z \int_{\Gamma(\ell)} \mathrm{d} s p(z) q(s) e^{-\frac{n}{t_{0}}(s z-V(s)-V(z))}
$$

which also satisfies the structure relation

$$
t_{0}\left\langle p, q^{\prime}\right\rangle-n\langle z p, q\rangle+n\left\langle p, V^{\prime} q\right\rangle=0 .
$$

Multi-orthogonality on a star

$$
\Sigma:=\bigcup_{\ell=0}^{d} \omega^{\ell}[0, \widehat{x}], \quad \widehat{x}>0, \quad \omega=\exp \left(\frac{2 \pi \mathrm{i}}{d+1}\right)
$$

Consider the d analytic weights $w_{0, n}(z), \ldots, w_{d-1, n}(z)$ defined on Σ.

Multi-orthogonality on a star

$$
\Sigma:=\bigcup_{\ell=0}^{d} \omega^{\ell}[0, \widehat{x}], \quad \widehat{x}>0, \quad \omega=\exp \left(\frac{2 \pi \mathrm{i}}{d+1}\right)
$$

Consider the d analytic weights $w_{0, n}(z), \ldots, w_{d-1, n}(z)$ defined on Σ.
They depend on parameters $t_{0}, t_{d+1}>0$, and are constructed in terms of solutions of

$$
p^{(d)}(z)=(-1)^{d} z p(z)
$$

Multi-orthogonality on a star

$$
\Sigma:=\bigcup_{\ell=0}^{d} \omega^{\ell}[0, \widehat{x}], \quad \widehat{x}>0, \quad \omega=\exp \left(\frac{2 \pi \mathrm{i}}{d+1}\right)
$$

Consider the d analytic weights $w_{0, n}(z), \ldots, w_{d-1, n}(z)$ defined on Σ.
They depend on parameters $t_{0}, t_{d+1}>0$, and are constructed in terms of solutions of

$$
p^{(d)}(z)=(-1)^{d} z p(z)
$$

$d=2 \longrightarrow$ Airy differential equation.

$$
p(z):=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \exp \left(\frac{s^{d+1}}{d+1}-s z\right) \mathrm{d} s,
$$

where $\Gamma: e^{-\frac{\pi \mathrm{i}}{d+1}} \infty \longrightarrow e^{\frac{\pi \mathrm{i}}{d+1}} \infty$.

$$
p(z):=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \exp \left(\frac{s^{d+1}}{d+1}-s z\right) \mathrm{d} s,
$$

where $\Gamma: e^{-\frac{\pi i}{d+1}} \infty \longrightarrow e^{\frac{\pi i}{d+1}} \infty$.

Orthogonality weights $w_{0, n}(z), \ldots, w_{d-1, n}(z)$

$$
w_{j, n}(x):=\exp \left(\frac{n V(x)}{t_{0}}\right) p^{(j)}\left(c_{n} x\right), \quad x \in[0, \widehat{x}],
$$

where

$$
V(x)=\frac{t_{d+1}}{d+1} x^{d+1}, \quad c_{n}=\left(\frac{n^{d}}{t_{0}^{d} t_{d+1}}\right)^{\frac{1}{d+1}} .
$$

$$
p(z):=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \exp \left(\frac{s^{d+1}}{d+1}-s z\right) \mathrm{d} s,
$$

where $\Gamma: e^{-\frac{\pi i}{d+1}} \infty \longrightarrow e^{\frac{\pi i}{d+1}} \infty$.

Orthogonality weights $w_{0, n}(z), \ldots, w_{d-1, n}(z)$

$$
w_{j, n}(x):=\exp \left(\frac{n V(x)}{t_{0}}\right) p^{(j)}\left(c_{n} x\right), \quad x \in[0, \widehat{x}]
$$

where

$$
V(x)=\frac{t_{d+1}}{d+1} x^{d+1}, \quad c_{n}=\left(\frac{n^{d}}{t_{0}^{d} t_{d+1}}\right)^{\frac{1}{d+1}} .
$$

The definition of $w_{j, n}(z)$ is extended to the whole star Σ so that

$$
w_{j, n}(\omega z)=\omega^{d-j} w_{j, n}(z), \quad z \in \Sigma, \quad \omega=\exp \left(\frac{2 \pi \mathrm{i}}{d+1}\right)
$$

Proposition

Fix $t_{0}, t_{d+1}, \hat{x}>0$. Then the polynomial $P_{n, n}(z)=z^{n}+\cdots$ is multi-orthogonal with respect to the system of weights $w_{0, n}(z), w_{1, n}(z), \ldots, w_{d-1, n}(z)$. We have for each $j=0, \ldots, d-1$,

$$
0=\int_{\Sigma} P_{n, n}(z) z^{k} w_{j, n}(z) \mathrm{d} z, \quad k=0, \ldots, \frac{n}{d}-1 .
$$

Proposition

Fix $t_{0}, t_{d+1}, \hat{x}>0$. Then the polynomial $P_{n, n}(z)=z^{n}+\cdots$ is multi-orthogonal with respect to the system of weights $w_{0, n}(z), w_{1, n}(z), \ldots, w_{d-1, n}(z)$. We have for each $j=0, \ldots, d-1$,

$$
0=\int_{\Sigma} P_{n, n}(z) z^{k} w_{j, n}(z) \mathrm{d} z, \quad k=0, \ldots, \frac{n}{d}-1 .
$$

Connection between the polynomials $P_{n, n}$ and the NMM?

Proposition

Fix $t_{0}, t_{d+1}, \hat{x}>0$. Then the polynomial $P_{n, n}(z)=z^{n}+\cdots$ is multi-orthogonal with respect to the system of weights $w_{0, n}(z), w_{1, n}(z), \ldots, w_{d-1, n}(z)$. We have for each $j=0, \ldots, d-1$,

$$
0=\int_{\Sigma} P_{n, n}(z) z^{k} w_{j, n}(z) \mathrm{d} z, \quad k=0, \ldots, \frac{n}{d}-1 .
$$

Connection between the polynomials $P_{n, n}$ and the NMM?
Kuijlaars-L.: In a precritical regime for t_{0}, for a suitable choice of \widehat{x} we will have

$$
\frac{1}{n} \sum_{P_{n, n}(z)=0} \delta_{z} \longrightarrow \mu_{1}^{*}
$$

where μ_{1}^{*} is a rotationally invariant probability measure with $\operatorname{supp}\left(\mu_{1}^{*}\right)=\Sigma^{*} \subset \Sigma$, one has $\Sigma^{*}=\Sigma^{*}\left(t_{0}\right) \subset \Omega\left(t_{0}\right)$ and $\Omega\left(t_{0}\right)$ is a harmonic quadrature domain for μ_{1}^{*}.

Moreover, in the pre-critical regime for t_{0}, the curve $\partial \Omega\left(t_{0}\right)$ is a hypotrochoid:

$$
\partial \Omega\left(t_{0}\right)=\psi([|w|=1]), \quad \psi(w)=r w+\frac{t_{d+1} r^{d}}{w^{d}}
$$

where r is the smallest positive root of $t_{0}=r^{2}-d t_{d+1}^{2} r^{2 d}$.
The Schwarz function $S(z)$ associated with $\partial \Omega\left(t_{0}\right)$ is the function

$$
S(z)=t_{d+1} z^{d}+\int_{\Sigma^{*}} \frac{\mathrm{~d} \mu_{1}^{*}(\boldsymbol{s})}{z-\boldsymbol{s}} .
$$

The measure μ_{1}^{*} is the first component of the solution to a vector equilibrium problem for logarithmic potentials.

Vector equilibrium problem

$$
\Sigma_{1}:=\bigcup_{\ell=0}^{d} \omega^{\ell}\left[0, x^{*}\right], \quad x^{*}>0, \quad \omega=\exp \left(\frac{2 \pi i}{d+1}\right)
$$

for $k=2, \ldots, d$,

$$
\Sigma_{k}:= \begin{cases}\left\{z \in \mathbb{C}: z^{d+1} \in \mathbb{R}_{-}\right\}, & \text {for } k \text { even }, \\ \left\{z \in \mathbb{C}: z^{d+1} \in \mathbb{R}_{+}\right\}, & \text {for } k \text { odd. }\end{cases}
$$

Figure : The stars Σ_{k} in the case $d=3$.

$$
I(\mu)=\iint \log \frac{1}{|x-y|} \mathrm{d} \mu(x) \mathrm{d} \mu(y), \quad I(\mu, \nu)=\iint \log \frac{1}{|x-y|} \mathrm{d} \mu(x) \mathrm{d} \nu(y) .
$$

Vector equilibrium problem

Fix $x^{*}, t_{0}, t_{d+1}>0$. Minimize the energy functional

$$
\begin{aligned}
& E\left(\mu_{1}, \mu_{2}, \ldots, \mu_{d}\right) \\
= & \sum_{k=1}^{d} I\left(\mu_{k}\right)-\sum_{k=1}^{d-1} I\left(\mu_{k}, \mu_{k+1}\right)+\frac{1}{t_{0}} \int\left(\frac{d}{d+1} \frac{1}{t_{d+1}^{1 / d}}|z|^{\frac{d+1}{d}}-\frac{t_{d+1}}{d+1} z^{d+1}\right) \mathrm{d} \mu_{1}(z)
\end{aligned}
$$

among all positive Borel measures μ_{1}, \ldots, μ_{d} satisfying:
(1)

$$
\left\|\mu_{k}\right\|=\frac{d-k+1}{d}, \quad k=1, \ldots, d
$$

(2)

$$
\operatorname{supp}\left(\mu_{k}\right) \subset \Sigma_{k}, \quad k=1, \ldots, d
$$

This VEP is weakly admissible, see Hardy-Kuijlaars '12, so it admits a unique minimizer $\left(\mu_{1}^{*}, \ldots, \mu_{d}^{*}\right)$.

This VEP is weakly admissible, see Hardy-Kuijlaars '12, so it admits a unique minimizer $\left(\mu_{1}^{*}, \ldots, \mu_{d}^{*}\right)$.

Theorem (Kuijlaars-L.)

Let $d \geq 2$ be an arbitrary integer. Fix $t_{d+1}>0$ and set

$$
t_{0, \text { crit }}=t_{d+1}^{-\frac{2}{d-1}}\left(d^{-\frac{2}{d-1}}-d^{-\frac{d+1}{d-1}}\right)>0 .
$$

Let $0<t_{0}<t_{0, \text { crit }}$ and define

$$
x^{*}=(d+1) d^{-\frac{d}{d+1}} \frac{1}{d+1}_{\frac{1}{d+1}} r^{\frac{2 d}{d+1}},
$$

where r denotes the smallest positive solution of the equation

$$
t_{0}=r^{2}-d t_{d+1}^{2} r^{2 d}
$$

This VEP is weakly admissible, see Hardy-Kuijlaars '12, so it admits a unique minimizer $\left(\mu_{1}^{*}, \ldots, \mu_{d}^{*}\right)$.

Theorem (Kuijlaars-L.)

Let $d \geq 2$ be an arbitrary integer. Fix $t_{d+1}>0$ and set

$$
t_{0, \text { crit }}=t_{d+1}^{-\frac{2}{d-1}}\left(d^{-\frac{2}{d-1}}-d^{-\frac{d+1}{d-1}}\right)>0 .
$$

Let $0<t_{0}<t_{0, \text { crit }}$ and define

$$
x^{*}=(d+1) d^{-\frac{d}{d+1}} \frac{1}{d+1}_{\frac{1}{d+1}} r^{\frac{2 d}{d+1}},
$$

where r denotes the smallest positive solution of the equation

$$
t_{0}=r^{2}-d t_{d+1}^{2} r^{2 d}
$$

Under these assumptions on $t_{d+1}, t_{0}, x^{*}>0$,
(1) μ_{1}^{*} has full support, i.e., $\operatorname{supp}\left(\mu_{1}^{*}\right)=\Sigma_{1}=\bigcup_{\ell=0}^{d} \omega^{\ell}\left[0, x^{*}\right]$.
(2) The density of μ_{1}^{*} vanishes like a square root at x^{*}.

The spectral curve

The Schwarz function

$$
\xi=S(z)=t_{d+1} z^{d}+t_{0} \int \frac{\mathrm{~d} \mu_{1}^{*}(t)}{z-t} .
$$

associated with the curve $\partial \Omega\left(t_{0}\right)$ satisfies an algebraic equation of the form

$$
P(z, \xi)=\xi^{d+1}+z^{d+1}-\sum_{k=1}^{d} c_{k} z^{k} \xi^{k}+\beta=0
$$

where $c_{k}>0$ for all $k=1, \ldots, d$, and $\beta>0$.

The spectral curve

The Schwarz function

$$
\xi=S(z)=t_{d+1} z^{d}+t_{0} \int \frac{\mathrm{~d} \mu_{1}^{*}(t)}{z-t} .
$$

associated with the curve $\partial \Omega\left(t_{0}\right)$ satisfies an algebraic equation of the form

$$
P(z, \xi)=\xi^{d+1}+z^{d+1}-\sum_{k=1}^{d} c_{k} z^{k} \xi^{k}+\beta=0
$$

where $c_{k}>0$ for all $k=1, \ldots, d$, and $\beta>0$.
The Schwarz function admits analytic continuation to a $(d+1)$-sheeted compact Riemann surface \mathcal{R} of genus zero with sheets

$$
\mathcal{R}_{1}=\overline{\mathbb{C}} \backslash \Sigma_{1}, \quad \mathcal{R}_{k}=\overline{\mathbb{C}} \backslash\left(\Sigma_{k-1} \cup \Sigma_{k}\right), \quad 2 \leq k \leq d, \quad \mathcal{R}_{d+1}=\overline{\mathbb{C}} \backslash \Sigma_{d}
$$

