
Asymptotics of
orthogonal polynomials in normal

matrix ensemble

Seung-Yeop Lee (University of South Florida)

Cincinnati, September 20th 2014

1 / 32



Joint work with Roman Riser.

Many discussions with Marco Bertola, Robert Buckingham,
Maurice Duits, Kenneth McLaughlin, ...
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Main actors:

I Orthogonal polynomials

I Two dimensional Coulomb gas

I Hele-Shaw flow
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Orthogonal polynomials on C
Orthogonal polynomials: pn(z) = zn + ...∫

C
pj(z) pk(z) e−NQ(z)dA(z) = hjδjk .

Q : C→ R is the external field; N is a positive parameter.

Examples:

– When Q(z) = |z |2,
pn(z) = zn.

– When Q(z) = (1− t)(Re z)2 + (1 + t)(Im z)2,

pn(z) ∝ Hn

(√
2n

z

F0

)
; F0 = 2

√
t n

(1− t2)N
.
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2D Coulomb gas (Eigenvalues)

Using the same Q, probablity density function of n point particles,
{z1, · · · , zn} ⊂ C, are given by

PDF({zj ’s}) =
1

Zn
exp

[
− N

( n∑
j=1

Q(zj) +
2

N

∑
j<k

log
1

|zj − zk |︸ ︷︷ ︸
2D Coulomb energy

)]
.

For Q(z) = |z |2 − c log |z − a|.
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Droplet K (compact set in C)
– Support of the equilibrium measure.

– Throughout this talk, we assume that ∆Q = const.

– For logarhthmic/rational Hele-Shaw potential, the exterior of K c

is a quadrature domain.

– As T := n/N grows, K grows monotonically in T :

We call T := n/N the total charge or (Hele-Shaw) time. The
deformation of K under T follows Hele-Shaw flow.
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Exterior conformal map of K

For simplicity, we assume that K is simply connected so that we
can define the unique riemann mapping

f : K c → Dc

such that

f (z) =
z

ρ
+O(1), ρ > 0, as |z | → ∞.

Geometry of K is encoded in f .

For example, the curvature of the boundary of K is given by

κ = Re

(
1− f ′′f

(f ′)2

)
|f ′|

where the prime ′ stands for the complex derivative.
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Similar cases:

– Bergman orthogonal polynomials:∫
D
pn(z)pm(z)dA(z) = hnδnm.

pn(z) = ρn+1f ′(z) f (z)n(1 + (corrections)).

– Szegö orthogonal polynomials:∮
Γ
pn(z)pm(z)|dz | = hnδnm.

pn(z) = ρn
√
ρf ′(z) f (z)n(1 + (corrections)).

In both cases, if the relevant geometry has a smooth boundary,
the correction term is exponentially small in n.
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Conjecture

(If the potential Q is such that K has real analytic boundary,) the
strong asymptotics of pn(z) as n→∞ and N →∞ while
T := n/N is finite, is given by

pn(z) =
√
ρf ′(z) eng(z)

(
1 +

1

N
Ψ(z) +O

(
1

N2

))
, z /∈ K .

The function g (called g -function) is the complex logarithmic
potential generated by the measure 1K :

g(z) =
1

πT

∫
K

log(z − ζ)dA(ζ).

The function Ψ is in the next page.
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The function Ψ is given by

Ψ(z) =
i

2π

∮
∂K

Φ(ζ) df (ζ)

f (ζ)
(
f (z) f (ζ)− 1

) ,
where

Φ :=
κ2

12
+

1

2
κ(|f ′| − κ) +

1

4
Re

(
f ′′′f 2

f ′2
− 1

2

f ′′2f 2

f ′4

)
|f ′|2 +

i

2
∂‖|f ′|.

Remark. The method (that we will explain) can generate the
corrections in the arbitrary order in 1/N.
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Known examples of strong asymptotics:

Q(z) = |z |2: K is a disk

Q(z) = |z |2 + aRe z2: K is ellipse (Felder-Riser ’13)

Q(z) = |z |2 + aRe z3: K is a hypotrochoid (Bleher-Kuijlaars
’12)

Q(z) = |z |2 + aRe zp: (Kuijlaars - Lopez-Garcia)

Q(z) = |z |2 − c log |z − a|: K is a Joukowsky airfoil
(Balogh-Bertola-Lee-McLaughlin ’13)

*** The correction term is checked explicitly only for the first two
cases.
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Restating the conjecture...

Claim. If the following (WKB) expansion

(A1) pn(z) = exp

[
n g(z) + Ψ0(z) +

1

N
Ψ1(z) +O

(
1

N2

)]
,

holds (in some region around the boundary), and if the kernel
satisfies certain asymptotic behavior such that the density is given
by

(A2) ρ(z) =
1

π
+O

(
1

N2

)
,

(uniformly) inside (a compact subset of) K , then the conjecture is
true.
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Relation between OP and CG:

Several fundamental facts:

– OP = Average of characteristic polynomial:

pn(z) = E
( n∏

j=1

(z − zj)
)
.

– Density of the CG = Sum of the absolute square of OPs:

ρ(z) =
1

N

n−1∑
j=0

|pj(z)|2e−NQ(z).

(
Kn(z ,w) =

1

N

n−1∑
j=0

pj(z)pj(w)e−
N
2

(
Q(z)+Q(w)

)
.

)
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Hele-Shaw potential

The density of the Coulomb gas is given by

ρ(z) :=

∫
PDF(z , z2, · · · , zn)

n∏
j=2

dA(zj)→
∆Q

4π
when z ∈ K .

Q(z) = |z |2 Q(z) = |z |2 − tRe(z2)
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Quantum Hele-Shaw flow

The plot of |pn(z)|2e−NQ(z): (Left: single; Right: several
consecutive)

Gaussian peak along the boundary is from

e−N
(
Q(z)−Tg(z)−Tg(z)

)
.
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D-bar approach

From the orthogonality we have

1

π

∫
C

pn(w) e−NQ(w)

z − w
dA(w) = O

(
1

zn+1

)
.

Again by the orthogonality, we have

1

π

∫
C

pn(w) e−NQ(w)

z − w
dA(w) =

1

π

1

pn(z)

∫
C

pn(w) pn(w) e−NQ(w)

z − w
dA(w).

The numerator in RHS has the following property.

Theorem (Ameur-Hedenmalm-Makarov)

|pn(z)|2e−NQ(z)dA(z)→ Harmonic measure on K c
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1/N-expansion of Cauchy transform
For a smooth test function f ,∫

C
f (ζ) e−N

(
Q(ζ)−g(ζ)−g(ζ)+`

)
dA(ζ)

=

√
π

2N

∮
∂K

(
f (ζ) +

1

N

(
κ2

12
f (ζ) +

3κ

8
∂nf (ζ) +

1

8
∂2

nf (ζ)

)
+O

(
1

N2

))
|dζ|.

(This is obtained by using Schwarz function.)

We take

f (ζ) =
|p̂n(ζ)|2

ζ − z

where p̂n is all the subleading parts of pn:

p̂n(z) := pn(z) e−ng(z) = eΨ0

(
1 +

1

N
Ψ1 +O

(
1

N2

))
.
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1/N-expansion of Cauchy transform
(cont.)

One obtains the following.

Ĉn(z) =
1

p̂n(z)

√
π

2N

∮ [
|p̂n(w)|2

z − w

+
1

N

(
κ2

12
+

3κ

8
∂n +

1

8
∂2

n

)
|p̂n(w)|2

z − w
+O

(
1

N2

)]
|dw |.

– Note that this is the “electric force” from the measure
|pn|2e−NQdA.

– By using the “convergence to harmonic measure” the leading
term of Ĉ (z) must vanish inside K .
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Therefore, in the leading order,

|p̂n(w)|2 ≈ |e2Ψ0 | ∝ |f ′|.

And this leads to
eΨ0(z) =

√
ρf ′(z).

(This is not the main point.)

To calculate the next order, we claim that Ĉn vanishes even at the
second order. This is not proven in general, however it follows from
certain asymptotics of the kernel (which is also not proven in
general).
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Kernel → Cauchy transform

Recall

ρ
(1)
n (z) :=

∫
PDFn({z , z2, · · · , zn}) dA(z2) · · · dA(zn).

=
1

N
Kn(z , z).

ρ
(2)
n (z ,w) :=

∫
PDFn({z ,w , z3, · · · , zn}) dA(z3) · · · dA(zn).

=
1

N(n − 1)

(
Kn(z , z)Kn(w ,w)− |Kn(z ,w)|2

)
.
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Taking ∂z on the first equation:

∂ρ
(1)
n (z) =

∫ (
− NQ ′(z) +

n∑
j=2

1

z − zj

)
ρn({z , z2, · · · , zn})

n∏
j=2

dA(zj)

= −NQ ′(z)ρ
(1)
n (z) + (n − 1)

∫
dA(w)

z − w
ρ

(2)
n ({z ,w , z3, · · · , zn})

n∏
j=3

dA(zj)

= −NQ ′(z)ρ
(1)
n (z) +

1

N

∫
dA(w)

z − w

(
Kn(z , z)Kn(w ,w)− |Kn(z ,w)|2

)
.

Divide the whole equation by ρ
(1)
n (z) = 1

NKn(z , z). Obtain the

same equation for ρ
(1)
n+1 and take the difference of the two.

We obtain∫
|pn(w)|2e−NQ(w)dA(w)

z − w
=

1

Kn(z , z)

∫
|Kn(z ,w)|2dA(w)

z − w

+(terms with ∂ρ
(1)
n (z))
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Asymptotics of kernel

Theorem [Riser] For ellipse case, Q(z) = |z |2 − tRe(z2),

|Kn(z ,w)|2 =
N

π
e−N|z−w |

2
(1 +O(N−∞)),

when z and w are both inside the ellipse and sufficiently close to
each other.

Proof) Based on the Christoffel-Darboux identity:

1

N
∂w
(
Kn(z ,w) e

N
2

(|z|2+|w |2−2zw)
)

=

√
n

N

t pn(z) pn−1(w)− pn−1(z) pn(w)√
hnhn−1

√
1− t2

e
N
2

(−2zw+tRe(z2)+tRe(w2)).

When z and w are inside the bulk (and close to each other), the
polynomials in the right hand side peak on the boundary.
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QUESTION: For real analytic potential of the type:

Q(z) = |z |2 + (harmonic)

the kernel inside the bulk is asymptotically given by

|Kn(z ,w)|2 =
N

π
e−N|z−w |

2
(1 +O(N−∞)).

This observation shows that the term

1

Kn(z , z)

∫
|Kn(z ,w)|2dA(w)

z − w

and ∂ρ
(1)
n are both exponentially small in N inside the bulk of

the ellipse.
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Let us come back to Ĉn and use the expansion with:

p̂n(z) =
√
ρψ′(z)

(
1 +

1

N
Ψ(z) + ...

)
and we define Φ(z) such that

ρ|ψ′(w)|Φ(w)

z − w
dA(w) :=

∮
∂K

(
κ2

12
+

3κ

8
∂n +

1

8
∂2

n

)
ρ|ψ′(w)|
z − w

dA(w).

Using Plemelj-Sokhotski relation, we get, at the second order in
1/N, the following identity:[

Ĉn(z)|in − Ĉn(z)|out

]
1/N

= −
√

2π3

N

√
ρψ′(z)

ψ(z)

(
Ψ(z) + Φ(z)

)
.
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Therefore we get the following analytic-anti-analytic
decomposition problem:

Φ(z) = −Ψ(z) +

√
N

2π3

ψ(z)√
ρψ′(z)

Ĉn(z)|out

outside the set K .

This is WienerHopf decomposition on the Schottky double.

The end.
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Kernel calculation using the sum

Plot of |pj |2e−NQ along the major axis of the ellipse, for j from 10
to 30 for N = 30.

0.5 1.0 1.5 2.0

0.05

0.10

0.15

Since each |pj(z)|2eNQ(z) spreads over 1/
√
N, and since the

center moves with the velocity 1/N, at a single point there are√
N of the polynomials that contribute (upto exponentially small

correction) to the density (and kernel).
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One can calculate the kernel by (upto exponentiall correction)

n0+N1/2+ε∑
j=n0−N1/2+ε

|pj(z)|2e−NQ(z) =

n0+N1/2+ε∑
j=n0−N1/2+ε

exp

[
NΨ−1 + Ψ0 +

1

N
Ψ1 + ...

]

Above, n0 is chosen such that pn0 is centered at z .

Each term Ψj is a function of the set K hence of the time T . And
it has the taylor expansion in T :

Ψj = Ψj(T0) +
j − n0

N
Ψ̇j(T0) +

(j − n0)2

2N2
Ψ̈j(T0) + ...
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Poisson summation formula

One can perform the summation using Poisson summation
formula: defining r = j − n0

∞∑
r=−∞

exp

(
− A1

N
r2 + A2r

)[
1 +

A3

N2
r3 +

A4

N3
r4 +

1

2

A2
3

N4
r6

]
=
√

4πα eα
2A2

2

{
1 + i

A3

N2
α3H3(iαA2) +

A4

N3
α4H4(iαA2)

− A3

2N2
α6H6(iαA2)

}
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Known universality results

Unpublished calculation by Bertola and McLaughlin shows that the
following can be obtained by direction summation using only the
leading asymptotics of polynomials.

lim
n,N→∞

1

N
Kn

(
z0 +

ξ√
N
, z0 +

η√
N

)

=


1

π
e−

1
2
|ξ−η|2ei=(ξη)+i

√
N =(z0(ξ−η)) (bulk,Berman′08)

(the same)× 1
2erfc

(
1√
2

(ξn + ηn)
)

(boundary, Ameur-Kang-Makarov ’1?)

ξn + ηn = ξ⊥ + η⊥ + i(ξ‖ − η‖).

erfc(z) =
2√
π

∫ ∞
z

e−t
2
dt.
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Further correction

Taking any boundary point z0 ∈ ∂K , we define the zooming
normal coordinate y ∈ R by

z = z0 +
y√
N

n.

Then the following is true on a smooth part of ∂K :

ρn

(
1 +

y√
N

)
=

1

2π
Erfc(

√
2y) +

1√
N

κ(z0)

3
√

2π3/2
(y2 − 1) e−2y2

+O
(

1

N

)
.
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From kernel to orthogonal polynomial

If we use the second assumption (A2) then the correction terms of
the density in each order or 1/N must vanish. Using Poisson
summation formula, this gives another recursive method to obtain
higher order corrections of OP (work in progress with Roman
Riser).
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Plot of |pn|2e−NQ

THANK YOU FOR YOUR ATTENTION
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