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e Wigner matrices ('55, '58).

@ Heavy tailed matrices have i.i.d. entries (up to symmetry)
with infinite variance. Cizeau, Bouchaud, Soshnikov, Ben
Arous, Guionnet (08); Bordenave, Caputo, Chafai ('11).

@ Adjacency matrices of Erdés-Rényi graphs with p = 1/n.
Rogers, Bray, Zakharevich ('06), Bordenave and Lelarge ('10).

@ General symmetric matrices with symmetric i.i.d. entries:
Sum of a row converges weakly as n — oo.
Limits are infinitely divisible ID(c?, d, v).
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(d’mnaknnhu values) of cortain sets of real symmetric matrices of very
high dimensionality. Jts purpose is to point out that the distribution law
obtained before' for a very special set of matrices is valid for much more
general seta. The dimension of the matrices will be denoted by N, the
‘matrix clements by v,,. These are real. The condition of symmetry is
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(®) The aetion Pufou) of the v, for i & 5 are indopendont. In
other wards, there are o stati rrelations between the mateix ele-
‘ments, except for the condition of symmetry.

(b) The distribution law for each v, is symmetric.

(c} The disteibution laws far all v, are such that all moments of v, ex-
ist and have an upper bound which is independent of i and 7. Because
of (b) the 0dd moments all vanish.

(@) The second moment of all v, is the same and will be denoted by

Actually, the last condition can be relaxed considerably so that it holds
onl for the large majority f the matri elements. Tlowever, his point
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The heutistic proof given for the special case considered before'
applies zqunlly ‘under the more general conditions here specified.
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We considx that the distribution functions p, are defined for allé, jand
that the bound B, is independent of  and J. All integrals are to be ex-
tended from — e to o,

Under the condtions enumerated, :mdely speaking, the fraction of
roots within unit interval at  becor
P

(3) a(z):@' k. for = < AN
and
@) =0 for 2> 4Nwe

as N grows beyond 2} Jimits, The distribution Jaw (3) was stated before
only for the case in which all p,, for 1 < j are equal and gave the proba-
bilty 172 to the valies m and — m of i, for § % 3 and the probability 1
to the value 0 of v,. Note that condition (d) is not fulfitled in this case
except in the sense of the remark after the statement of that condition.

‘The theorem can be stated more accurately as follows. Denote by

S,.4(r, N} (where v, N is an abbreviation for all v, with i £ j £ N) the
number of roots of the N dimensional symmetric matrix || vy, |l which Jie
betwieen aV/N and AN Then, if the distribution P of the v, satisfies
the conditions given, the fraction of the roots between aV/ N and

@y wof-
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Neveoif ~2m < a<A< 2m. f € <B< —2m or if Im <a <, the
feft side of (4) tends to zero as N~ «o. Note that the theorem gives the
distribution of the roots of sequences of sets of matrices, the matrices
of suecessive sets of the sequence being abtained, from the matrices of
the preceding set, by augmenting the matrices with further rows and
colnmns, The distribution of the eloments in these added columns is sub-
ject, apat from the tuio conditions of symmetry (1) and (2b), only to the
conditions (2c) aod (2d). This shows that the distribution of roots de-
pends, under the conditions stated, only on the second moment of the
matrix elements.
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Normalization for Wigner matrices

e Empirical (normalized) measure of eigenvalues ej(w) € R:
1 n
= E de; = ESD,.
n
=il

@ To normalize the entries note that

1 1
E(Second Moment(ESD,)) = EE Tr(A2) = EE %: ajjaj — nEa,?j.

4/18



Normalization for Wigner matrices

e Empirical (normalized) measure of eigenvalues ej(w) € R:
1 n
= E de; = ESD,.
n
=il

@ To normalize the entries note that

1 1 5
E(Second Moment(ESD,)) = EE Tr(A2) = EE %: ajaji = nEaj;.
@ So we need
@ Instead of normalizing, change the distribution as n varies:

aj = aji ~ Bernoulli(\/n) so that Ea,?j = \/n.
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Main results

Suppose each A, has i.i.d. entries up to self-adjointness
satisfying:

liMpsoe X0y An(iyj) £ 1D(02, d, v).

e ESD, a.s. weakly converge to a symm. prob. meas. fio.

@ [l is the expected spectral measure for vector d,.0; Of a
self-adjoint operator on L?(G).

(Spectral measure for v is defined as d(v, E(t)v))

e Wigner matrices: G =N
e Sparse matrices: G is a Poisson Galton-Watson tree
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Erdés-Rényi random graphs (rooted at 1)

o We need Eai- ~ %

o Adjacency matrices of Erdos-Rényi graphs
2
3

4

= O O O O
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O O = O O

'O o o r o
O OO -
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Idea of proof

(1) As rooted graphs, Erdés-Rényi(A/n) locally converge to a
branching process with a Poiss(\) offspring distribution.

(2)

Bordenave-Lelarge (2010)

If Gp[1] = Go[1], then one has strong resolvent convergence:
for all ze Cg,

(zl = An)it = (2l — As)it

(3)

A -1
E(zl — Ayt = E1NH = AT /1dE(ESD,,)

n zZ— X
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e = 1/6-close graphs
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Local weak limits of Erdos-Rényi graphs
@ ajj ~ Bernoulli(A/n) so the number of offspring is Poisson(\).

@ Fix k, an offspring in generation bigger than 1, the probability
that it's also a direct offspring (genereation 1) is:
P(1~k)=1/n—0.

Local weak convergence to a Poiss(\) branching process
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Weighted-edges case when 02 = 0, d = 0: Aldous’ PWIT

Root @

Figure 2: Each R represents a copy of the PWIT.
Weights on offspring edges from any vertex

are determined by a Poisson process.
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Free probability: existence under exponential moments

o By Lévy-Ito decomposition, write A, = G, + L,

o Local weak convergence implies strong resolvent
convergence when o2 = 0 [handles (L,)].

o Voiculescu's theorem says (G,) and (L,) are
asymptotically free.

o The LSD of (A,) is the free convolution of the
LSDs of (G,) and (L,).
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What about o2 and d?

@ Interlacing handles drift (rank one perturbation).

@ For the step in the proof where LWC = Strong resolvent

conv. we need

2 —
!I\H‘B lim Z:l |31j| 1{|31j|2§€} =0.
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Problem: edges diverging to infinity
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The Poisson weighted infinite skeleton tree
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Figure 3: Each ft.. represents a copy of the PWIST.
Weights on cords to infinities are deterministic. All other weights

are random and determined by Poisson processes as before.
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Cords to infinity: o2 > 0

@ Distance = resistance on electric networks,
and resistance = 1/conductance

@ The conductance of each parallel edge is “zero”; however,
their collective effective conductance is o and the effective
resistance is 1/o.

@ ldentifying all edges with small conductance to one single
point we get that

n

a o 2 _

Jim fim, 1207 ja<ey = O
J:
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Wigner matrices: vacuum state of the free Fock space

We can handle infinite second moments in the Gaussian domain of

Root @ ’//////////////////

When there is no Levy measure, the PWIST is the half-line N.

. It is well-known that the spectral measure at the root is semi-circle.
attraction.
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emicircle Pictures
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Schur complement formula

Corollary (J. 2014): For z € C4, Rj(z) 2 (A (Aw — 2I)7] satisfies

j>2

-1
Roo(z) £ — (z +0°Ru(z)+ > aR )

where {a;} are arrivals of an independent Poisson() process.
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Thanks for your attention!
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