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A spacially confined quantum mechanical system can only take on certain
discrete values of energy. Uranium-238 :

Quantum mechanics postulates that these values are eigenvalues of a
certain Hermitian matrix (or operator) H, the Hamiltonian of the system.

The matrix elements Hij represent quantum transition rates between
states labelled by i and j.

Wigner’s universality idea (1956). Perhaps I am too
courageous when I try to guess the distribution of the dis-
tances between successive levels. The situation is quite
simple if one attacks the problem in a simpleminded fa-
shion. The question is simply what are the distances of the
characteristic values of a symmetric matrix with random
coefficients.
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Wigner’s model : the Gaussian Orthogonal Ensemble,
(a) Invariance by H 7→ U∗HU , U ∈ O(N).
(b) Independence of the Hi,j ’s, i ≤ j.
The entries are Gaussian and the spectral density is

1

ZN

∏
i<j

|λi − λj |βe−β N
4

∑
i λ

2
i

with β = 1 (2, 4 for invariance under unitary or symplectic conjugacy).

• Semicircle law as N → ∞.

• Limiting bulk local statistics of
GOE/GUE/GSE calculated by
Gaudin, Mehta, Dyson.
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Dyson’s description of the first experiments.
All of our struggles were in vain. 82 levels were too
few to give a statistically significant test of the model.
As a contribution of the understanding of nuclear phy-
sics, random matrix theory was a dismal failure. By
1970 we had decided that it was a beautiful piece of
work having nothing to do with physics.

When N → ∞ and the nu-
clei statistics performed over a
large sample, the gap probabi-
lity agree (resonance levels of
30 sequences of 27 different nu-
clei).
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Fundamental belief in universality : the macroscopic statistics (like the
equilibrium measure) depend on the models, but the microscopic statistics
are independent of the details of the systems except the symmetries.

• GOE : Hamiltonians of systems with time reversal invariance

• GUE : no time reversal symmetry (e.g. application of a magnetic field)

• GSE : time reversal but no rotational symmetry

Correlation functions. For a point process χ =
∑

δλi :

ρ
(N)
k (x1, . . . , xk) = lim

ε→0
ε−k P (χ(xi, xi + ε) = 1, 1 ≤ i ≤ k) .

For deterministic systems, P is an averaging over the energy level in the
semiclassical limit.

Gaudin, Dyson, Mehta : for any E ∈ (−2, 2) then (β = 2 for example)

ρ
(N)
k

(
E +

u1

Nϱ(x)
, . . . , E +

uk

Nϱ(x)

)
−→
N→∞

det
k×k

sin(π(ui − uj))

π(ui − uj)
.
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Wigner matrix : symmetric, Hermitian (or symplectic), entries have
variance 1/N , some large moment is finite.

The Wigner-Dyson-Mehta conjecture. Correlation functions of
symmetric Wigner matrices (resp. Hermitian, symplectic) converge to the
limiting GOE (resp. GUE, GSE).

Recently universality was proved under various forms.
Fixed (averaged) energy universality. For any k ≥ 1, smooth F : Rk → R,
for arbitrarily small ε and s = N−1+ε,

lim
N→∞

1

ϱ(E)k

∫ E+s

E

dx

s

∫
dvF (v)ρ

(N)
k

(
x+

v

Nϱ(E)

)
dv =

∫
dvF (v)ρ

(GOE)
k (v)
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Johansson (2001) Hermitian class, fixed E,
Gaussian divisible entries

Erdős Schlein Péché Ramirez Yau (2009) Hermitian class, fixed E
Entries with density

Tao Vu (2009) Hermitian class, fixed E
Entries with 3rd moment=0

Erdős Schlein Yau (2010) Any class, averaged E

This does not include Jimbo, Miwa, Mori, Sato relations for gaps in
Bernoulli matrices, for example.

Key input for all recent results : rigidity of eigenvalues (Erdős Schlein
Yau) : |λk − γk| ≤ N−1+ε in the bulk. Optimal rigidity ?

Related developments : gaps universality by Erdős Yau (2012).

The gaps are much more stable statistics than the fixed energy ones :

⟨λi, λj⟩ ∼ log
N

1 + |i− j|
, almost crystal. ⟨λi+1−λiλj+1−λj⟩ ∼

1

1 + |i− j|2
.
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Theorem. Fixed energy universality holds for Wigner matrices from all
symmetry classes. Individual eigenvalues fluctuate as a Log-correlated
Gaussian field.

The Dyson Brownian Motion (DBM, dHt =
dBt√
N

− 1
2Htdt) is an essential

interpolation tool, as in the Erdős Schlein Yau approach to universality,
summarized as :

H0

↕
H̃0

(DBM)−→ H̃t

(DBM)−→ : for t = N−1+ε, the eigenvaues of H̃t satisfy averaged universality.

↕ : Density argument. For any t ≪ 1, there exists H̃0 s.t. the resolvents of

H0 and H̃t have the same statistics on the microscopic scale.

What makes the Hermitian universality easier ? The
(DBM)−→ step is replaced

by HCIZ formula : correlation functions of H̃t are explicit only for β = 2.
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A few facts about the proof of fixed energy universality.

(i) A game coupling 3 Dyson Brownian Motions.

(ii) Homogenization allows to obtain microscopic statistics from
mesoscopic ones.

(iii) Need of a second order type of Hilbert transform. Emergence of new
explicit kernels for any Bernstein-Szegő measure. These include
Wigner, Marchenko-Pastur, Kesten-McKay.

(iv) The relaxing time of DBM depends on the Fourier support of the test

function : the step
(DBM)−→ becomes the following.

F̃ (λ,∆) =

N∑
i1,...,ik=1

F
(
{N(λij − E) + ∆, 1 ≤ j ≤ k}

)
Theorem. If suppF̂ ⊂ B(0, 1/

√
τ), then for t = N−τ ,

E F̃ (λt, 0) = E F̃ (λ(GOE), 0).
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First step : coupling 3 DBM. Let x(0) be the eigenvalues of H̃0 and
y(0), z(0) those of two indepndent GOE.

dxi/dyi/dzi =

√
2

N
dBi(t) +

1

N

∑
j ̸=i

1

xi/yi/zi − xj/yj/zj
− 1

2
xi/yi/zi

 dt

Let δℓ(t) = et/2(xℓ(t)− yℓ(t)). Then we get the parabolic equation

∂tδℓ(t) =
∑
k ̸=ℓ

Bkℓ(t) (δk(t)− δℓ(t)) ,

where Bkℓ(t) =
1

N(xk(t)−xℓ(t))(yk(t)−yℓ(t))
> 0. By the de Giorgi-Nash-Moser

method (+Caffarelli-Chan-Vasseur+Erdős-Yau), this PDE is
Hölder-continuous for t > N−1+ε, i.e. δℓ(t) = δℓ+1(t) + O(N−1+ε), i.e. gap
universality.

This is not enough for fixed energy universality.
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Second step : homogenization. The continuum-space analogue of our
parabolic equation is

∂tft(x) = (Kft)(x) :=

∫ 2

−2

ft(y)− ft(x)

(x− y)2
ϱ(y)dy.

K is some type of second order Hilbert transform.

Theorem. Let f0 be a smooth continuous-space extension of δ(0) :
f0(γℓ) = δℓ(0). Then for any small τ > 0 (t = N−τ ) thre exists ε > 0 such
that

δℓ(t) =
(
etKf0

)
ℓ
+O(N−1+ε).

Proof. Rigidity of the eigenvalues, optimal Wegner estimates (for
level-repulsion), and the Hölder regularity of the discrete-space parabolic
equation.
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Third step : the continuous-space kernel.

1. For the translation invariant equation

∂tgt(x) =

∫
R

gt(y)− gt(x)

(x− y)2
dy,

the fundamental solution is the Poisson kernel pt(x, y) =
ct

t+(x−y)2 .

2. For us, t will be close to 1, so the edge curvture cannot be neglected.
Fortunately, K can be fully diagonalized and (x = 2 cos θ, y = 2 cosϕ)

kt(x, y) =
ct

|ei(θ+ϕ) − e−t/2|2|ei(θ−ϕ) − e−t/2|2
.

Called the Mehler kernel by Biane in free probability context, never
considered as a second-order Hilbert transform fundamental solution.

3. Explicit kernels can be obtained for all Bernstein-Szego measures,

ϱ(x) =
cα,β(1− x2)1/2

(α2 + (1− β2)) + 2α(1 + β)x+ 4βx2
.
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Fourth step : microscopic from mesoscopic. Homogenization yields

δℓ(t) =

∫
kt(x, y)f0(y)ϱ(y)dy +O(N−1+ε)

The LHS is microscopic-type of statistics, the RHS is mesoscopic. This
yields, up to negligible error,

Nxℓ(t) = Nyℓ(t)−Ψt(y0) + Ψt(x0),

where Ψt(x0) =
∑

h(Nτ (xi(0)− E)) for some smooth h. We wanted to
prove

E F̃ (xt, 0) = E F̃ (zt, 0) + o(1).

We reduced it to

E F̃ (yt,−Ψt(y0) + Ψt(x0)) = E F̃ (yt,Ψt(y0) + Ψt(z0)) + o(1).

where Ψt(y0), Ψt(x0) and Ψt(z0) are mesoscopic observables and
independent.
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Fifth step and conclusion : CLT for GOE beyond the natural
scale. Do Ψt(x0) and Ψt(y0) have the same distribution ? No, their
variance depend on their fourth moment.

A stronger result holds : E F̃ (yt,−Ψt(y0) + c) does not depend on the
constant c.

We know that E F̃ (yt,−Ψt(y0) + Ψt(z0) + c) = E F̃ (yt,−Ψt(y0) + Ψt(z0))
for all c (why ?).

Exercise : let X be a random variable. If E g(X + c) = 0 for all c, is it true
that g ≡ 0 ?

Not always. But true if X is Gaussian (by Fourier).

Lemma. E
(
eiλΨt(z(0))

)
= e−

λ2

2 τ logN +O(N−1/100).

The proof uses algebraic ideas of Johansson and rigidity of β-ensembles.

By Parseval, proof when the support of F̂ has size 1/
√
τ . This is why DBM

needs to be run till time almost 1.
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What is the optimal rigidity of eigenvalues ?

Theorem (Gustavsson, O’Rourke). Let λ be the ordered eigenvalues of
a Gaussian ensemble, k0 a bulk index and ki+1 ∼ ki +Nθi , 0 < θi < 1.
Then the nornalized eigenvalues fluctuations

Xi =
λki − γki√

logN
N

√
β(4− γ2

ki
)

converge to a Gaussian vector with vovariance

Λij = 1−max{θk, i ≤ k < j}.

In particlar, λi − γi has fluctuations
√
logN
N .

Proof : determinantal point processes a la Coston-Lebowitz (GUE) +
decimation relations (GOS, GSE).
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Theorem. Same log-correlated Gaussian limit for any Wigner matrix.

Proof. By homogenization we have

N(xℓ(t)− γℓ)√
logN

=
N(yℓ(t)− γℓ)√

logN
+

Ψt(y(0))√
logN

− Ψt(x(0))√
logN

.

The fluctuations of Ψt(y(0)) are of order
√
τ logN . The fluctuations of

Ψt(x(0)) are of the same order
√
τ logN . Take arbitrarily small τ and the

result follows.

Other eigenvalues possible applications of homogenization of DBM :

1. Largest gap amongst bulk eigenvalues of Wigner matrices is universal.

2. Extreme deviation from typical location is universal.

Unexpected applications for eigenvectors.
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The Dyson vector flow

Coupled eigenvalues/eigenvectors dynamics when the entrie of H are
Brownian motions :

dλk =
dBkk√

N
+

 1

N

∑
ℓ̸=k

1

λk − λℓ

 dt

duk =
1√
N

∑
ℓ ̸=k

dBkℓ

λk − λℓ
uℓ −

1

2N

∑
ℓ̸=k

dt

(λk − λℓ)2
uk

Let ckℓ =
1
N

1
(λk−λℓ)2

. If all ckℓ’s were equal, U = (u1, . . . , uN ) would be the

Brownian motion on the unitary group.

Such eigenvector flows were discovered by Norris, Rogers, Williams
(Brownian motion on GLN ), Bru (real Wishart), Anderson, Guionnet,
Zeitouni (symmetric and Hermitian).
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A random walk in a dynamic random environment

Definition of the (real)
eigenvector moment flow.

The eigenvalues trajectory is a
parameter (ci,j(t) =

1
N

1
(λi(t)−λj(t))2

).

Configuration η of n points onJ1, NK. Number of particles at x : ηx.
Configuration obtained by moving a
particle from i to j : ηij .
Dynamics given by ∂tf = B(t)f
where

B(t)f(η)

=
∑
i ̸=j

cij(t)2ηi(1+2ηj)
(
f(ηi,j)− f(η)

)
1 2 i N

6
N(λi−λ2)2

18
N(λi−λi+1)2

30
N(λi−λN−3)2
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Properties of the eigenvector moment flow

Let zk =
√
N⟨q, uk⟩, random and time dependent. For a configuration η

with jk points at ik, let

ft,λ(η) = E

(∏
k

z2jkik
| λ

)
/E

(∏
k

N 2jk
ik

)
.

Fact 1 : ∂tft,λ(η) = B(t)ft,λ(η).

QUE+Normality of the eigenvectors is equivalent to fast relaxation to
equilibrium of the eigenvector moment flow.
This PDE analysis is made possible thanks to an explicit reversible
measure for B

Fact 2 :

• GOE : π(η) =
∏N

x=1 ϕ(ηx) where ϕ(k) =
∏k

i=1

(
1− 1

2k

)
• GUE : π is uniform
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Perturbative analysis in non-perturbative regime.

Let (MN )N≥0 be deterministic with eigenvalues satisfying the local
semicircle law, eigenvectors (ek)k. What do the eigenvectors (uk(t))k of
MN +

√
tGOE look like ?

If 1/N ≪ t ≪ 1, neither perturbative regime nor free-probability regime.

Theorem. The coordinates (⟨uk(t), ej⟩)j are independent Gaussian with
variance

E
(
⟨uk(t), ej⟩2

)
∼ 1

(Nt)2 + (γk − γj)2

Proof : the eigenvector moment flow describes the evolution of the
variances : ft(k) = E(|⟨uk(t), ej⟩|2 | λ(·)) satisfies

∂tft(k) =
1

N

∑
j ̸=k

ft(j)− ft(k)

(λj(t)− λk(t))2
.

Then use homogenization for DBM.
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