Universality results for the Cauchy-Laguerre chain matrix model

Thomas Bothner

Centre de recherches mathématiques, Université de Montréal

September 21st, 2014

Cincinnati Symposium on Probability Theory and Applications, Cincinnati, OH, USA

This talk discusses joint work (BB 14 [6]) with Marco Bertola on the Cauchy matrix chain, the space $\mathcal{M}_{+}^{p}(n), p, n \in \mathbb{Z}_{\geq 2}$ of p-tuples $\left(M_{1}, \ldots, M_{p}\right)$ of $n \times n$ positive definite Hermitian matrices with joint probability density function

$$
\begin{equation*}
\mathrm{d} \mu\left(M_{1}, \ldots, M_{p}\right) \propto \frac{e^{-\operatorname{tr} \sum_{j=1}^{p} U_{j}\left(M_{j}\right)}}{\prod_{j=1}^{p-1} \operatorname{det}\left(M_{j}+M_{j+1}\right)^{n}} \mathrm{~d} M_{1} \cdot \ldots \cdot \mathrm{~d} M_{p} \tag{1}
\end{equation*}
$$

The density depends on p potentials $U_{j}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ which we specify later on.

This talk discusses joint work (BB 14 [6]) with Marco Bertola on the Cauchy matrix chain, the space $\mathcal{M}_{+}^{p}(n), p, n \in \mathbb{Z}_{\geq 2}$ of p-tuples $\left(M_{1}, \ldots, M_{p}\right)$ of $n \times n$ positive definite Hermitian matrices with joint probability density function

$$
\begin{equation*}
\mathrm{d} \mu\left(M_{1}, \ldots, M_{p}\right) \propto \frac{e^{-\operatorname{tr} \sum_{j=1}^{p} U_{j}\left(M_{j}\right)}}{\prod_{j=1}^{p-1} \operatorname{det}\left(M_{j}+M_{j+1}\right)^{n}} \mathrm{~d} M_{1} \cdot \ldots \cdot \mathrm{~d} M_{p} \tag{1}
\end{equation*}
$$

The density depends on p potentials $U_{j}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ which we specify later on. Several key features ("Integrability") of the model allow us to

- Reduce (1) to a density function defined on the eigenvalues

This talk discusses joint work (BB 14 [6]) with Marco Bertola on the Cauchy matrix chain, the space $\mathcal{M}_{+}^{p}(n), p, n \in \mathbb{Z}_{\geq 2}$ of p-tuples $\left(M_{1}, \ldots, M_{p}\right)$ of $n \times n$ positive definite Hermitian matrices with joint probability density function

$$
\begin{equation*}
\mathrm{d} \mu\left(M_{1}, \ldots, M_{p}\right) \propto \frac{e^{-\operatorname{tr} \sum_{j=1}^{p} U_{j}\left(M_{j}\right)}}{\prod_{j=1}^{p-1} \operatorname{det}\left(M_{j}+M_{j+1}\right)^{n}} \mathrm{~d} M_{1} \cdot \ldots \cdot \mathrm{~d} M_{p} \tag{1}
\end{equation*}
$$

The density depends on p potentials $U_{j}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ which we specify later on. Several key features ("Integrability") of the model allow us to

- Reduce (1) to a density function defined on the eigenvalues
- Rewrite correlation functions in determinantal form and connect to orthogonal polynomials

This talk discusses joint work (BB 14 [6]) with Marco Bertola on the Cauchy matrix chain, the space $\mathcal{M}_{+}^{p}(n), p, n \in \mathbb{Z}_{\geq 2}$ of p-tuples $\left(M_{1}, \ldots, M_{p}\right)$ of $n \times n$ positive definite Hermitian matrices with joint probability density function

$$
\begin{equation*}
\mathrm{d} \mu\left(M_{1}, \ldots, M_{p}\right) \propto \frac{e^{-\operatorname{tr} \sum_{j=1}^{p} U_{j}\left(M_{j}\right)}}{\prod_{j=1}^{p-1} \operatorname{det}\left(M_{j}+M_{j+1}\right)^{n}} \mathrm{~d} M_{1} \cdot \ldots \cdot \mathrm{~d} M_{p} \tag{1}
\end{equation*}
$$

The density depends on p potentials $U_{j}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ which we specify later on. Several key features ("Integrability") of the model allow us to

- Reduce (1) to a density function defined on the eigenvalues
- Rewrite correlation functions in determinantal form and connect to orthogonal polynomials
- Express orthogonal polynomials in terms of a Riemann-Hilbert problem

This talk discusses joint work (BB 14 [6]) with Marco Bertola on the Cauchy matrix chain, the space $\mathcal{M}_{+}^{p}(n), p, n \in \mathbb{Z}_{\geq 2}$ of p-tuples $\left(M_{1}, \ldots, M_{p}\right)$ of $n \times n$ positive definite Hermitian matrices with joint probability density function

$$
\begin{equation*}
\mathrm{d} \mu\left(M_{1}, \ldots, M_{p}\right) \propto \frac{e^{-\operatorname{tr} \sum_{j=1}^{p} U_{j}\left(M_{j}\right)}}{\prod_{j=1}^{p-1} \operatorname{det}\left(M_{j}+M_{j+1}\right)^{n}} \mathrm{~d} M_{1} \cdot \ldots \cdot \mathrm{~d} M_{p} \tag{1}
\end{equation*}
$$

The density depends on p potentials $U_{j}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ which we specify later on. Several key features ("Integrability") of the model allow us to

- Reduce (1) to a density function defined on the eigenvalues
- Rewrite correlation functions in determinantal form and connect to orthogonal polynomials
- Express orthogonal polynomials in terms of a Riemann-Hilbert problem
- Derive strong asymptotics for the orthogonal polynomials and thus prove universality results for specific potentials

This talk discusses joint work (BB 14 [6]) with Marco Bertola on the Cauchy matrix chain, the space $\mathcal{M}_{+}^{p}(n), p, n \in \mathbb{Z}_{\geq 2}$ of p-tuples $\left(M_{1}, \ldots, M_{p}\right)$ of $n \times n$ positive definite Hermitian matrices with joint probability density function

$$
\begin{equation*}
\mathrm{d} \mu\left(M_{1}, \ldots, M_{p}\right) \propto \frac{e^{-\operatorname{tr} \sum_{j=1}^{p} U_{j}\left(M_{j}\right)}}{\prod_{j=1}^{p-1} \operatorname{det}\left(M_{j}+M_{j+1}\right)^{n}} \mathrm{~d} M_{1} \cdot \ldots \cdot \mathrm{~d} M_{p} \tag{1}
\end{equation*}
$$

The density depends on p potentials $U_{j}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ which we specify later on. Several key features ("Integrability") of the model allow us to

- Reduce (1) to a density function defined on the eigenvalues
- Rewrite correlation functions in determinantal form and connect to orthogonal polynomials
- Express orthogonal polynomials in terms of a Riemann-Hilbert problem
- Derive strong asymptotics for the orthogonal polynomials and thus prove universality results for specific potentials
This four step program has been successfully completed for the Hermitian one-matrix model, i.e. $p=1$:
- Joint probability density on eigenvalues, for $M \in \mathcal{M}(n), U: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
& \qquad \mathrm{d} \mu(M) \propto e^{-\operatorname{tr} U(M)} \mathrm{d} M \rightsquigarrow P\left(\left\{x_{j}\right\}_{1}^{n}\right) \mathrm{d}^{n} x=\frac{1}{Z_{n}} \Delta(X)^{2} e^{-\sum_{j=1}^{n} U\left(x_{j}\right)} \prod_{j=1}^{n} \mathrm{~d} x_{j} \\
& \text { with Vandermonde } \Delta(X)=\prod_{j<k}\left(x_{j}-x_{k}\right) .(\text { PR } 60 \text { [18], D } 62 \text { [10]) }
\end{aligned}
$$

- Joint probability density on eigenvalues, for $M \in \mathcal{M}(n), U: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\mathrm{d} \mu(M) \propto e^{-\operatorname{tr} U(M)} \mathrm{d} M \rightsquigarrow P\left(\left\{x_{j}\right\}_{1}^{n}\right) \mathrm{d}^{n} x=\frac{1}{Z_{n}} \Delta(X)^{2} e^{-\sum_{j=1}^{n} U\left(x_{j}\right)} \prod_{j=1}^{n} \mathrm{~d} x_{j}
$$

with Vandermonde $\Delta(X)=\prod_{j<k}\left(x_{j}-x_{k}\right)$. (PR 60 [18], D 62 [10])

- Determinantal reduction for the ℓ-point correlation function

$$
\mathcal{R}^{(\ell)}\left(\left\{x_{j}\right\}_{1}^{\ell}\right)=\frac{\ell!}{(n-\ell)!} \int_{\mathbb{R}^{n-\ell}} P\left(\left\{x_{j}\right\}_{1}^{n}\right) \prod_{j=\ell+1}^{n} \mathrm{~d} x_{j}=\operatorname{det}\left[\mathbb{K}_{11}\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{\ell}
$$

- Joint probability density on eigenvalues, for $M \in \mathcal{M}(n), U: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\mathrm{d} \mu(M) \propto e^{-\operatorname{tr} U(M)} \mathrm{d} M \rightsquigarrow P\left(\left\{x_{j}\right\}_{1}^{n}\right) \mathrm{d}^{n} x=\frac{1}{Z_{n}} \Delta(X)^{2} e^{-\sum_{j=1}^{n} U\left(x_{j}\right)} \prod_{j=1}^{n} \mathrm{~d} x_{j}
$$

with Vandermonde $\Delta(X)=\prod_{j<k}\left(x_{j}-x_{k}\right)$. (PR 60 [18], D 62 [10])

- Determinantal reduction for the ℓ-point correlation function

$$
\mathcal{R}^{(\ell)}\left(\left\{x_{j}\right\}_{1}^{\ell}\right)=\frac{\ell!}{(n-\ell)!} \int_{\mathbb{R}^{n-\ell}} P\left(\left\{x_{j}\right\}_{1}^{n}\right) \prod_{j=\ell+1}^{n} \mathrm{~d} x_{j}=\operatorname{det}\left[\mathbb{K}_{11}\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{\ell}
$$

with correlation kernel

$$
\mathbb{K}_{11}(x, y)=e^{-\frac{1}{2} U(x)} e^{-\frac{1}{2} U(y)} \sum_{k=0}^{n-1} \pi_{k}(x) \pi_{k}(y) \frac{1}{h_{k}}
$$

and monic orthogonal polynomials $\left\{\pi_{k}\right\}_{k \geq 0}$

$$
\int_{\mathbb{R}} \pi_{n}(x) \pi_{m}(x) e^{-U(x)} \mathrm{d} x=h_{n} \delta_{n m} . \quad(\mathrm{D} 70[11])
$$

- Riemann-Hilbert characterization for $\left\{\pi_{k}\right\}_{k \geq 0}$ (FIK 91 [13]):
- Riemann-Hilbert characterization for $\left\{\pi_{k}\right\}_{k \geq 0}$ (FIK 91 [13]): Determine 2×2 function $\Gamma(z) \equiv \Gamma(z ; n)$ such that
(1) $\Gamma(z)$ analytic for $z \in \mathbb{C} \backslash \mathbb{R}$
- Riemann-Hilbert characterization for $\left\{\pi_{k}\right\}_{k \geq 0}$ (FIK 91 [13]): Determine 2×2 function $\Gamma(z) \equiv \Gamma(z ; n)$ such that
(1) $\Gamma(z)$ analytic for $z \in \mathbb{C} \backslash \mathbb{R}$
(2) $\Gamma(z)$ admits boundary values $\Gamma_{ \pm}(z)$ for $z \in \mathbb{R}$ related via

$$
\Gamma_{+}(z)=\Gamma_{-}(z)\left[\begin{array}{cc}
1 & e^{-U(z)} \\
0 & 1
\end{array}\right], \quad z \in \mathbb{R}
$$

- Riemann-Hilbert characterization for $\left\{\pi_{k}\right\}_{k \geq 0}$ (FIK 91 [13]): Determine 2×2 function $\Gamma(z) \equiv \Gamma(z ; n)$ such that
(1) $\Gamma(z)$ analytic for $z \in \mathbb{C} \backslash \mathbb{R}$
(2) $\Gamma(z)$ admits boundary values $\Gamma_{ \pm}(z)$ for $z \in \mathbb{R}$ related via

$$
\Gamma_{+}(z)=\Gamma_{-}(z)\left[\begin{array}{cc}
1 & e^{-U(z)} \\
0 & 1
\end{array}\right], \quad z \in \mathbb{R}
$$

(3) As $z \rightarrow \infty$,

$$
\Gamma(z)=\left(1+\mathcal{O}\left(z^{-1}\right)\right) z^{n \sigma_{3}}, \quad z \rightarrow \infty
$$

- Riemann-Hilbert characterization for $\left\{\pi_{k}\right\}_{k \geq 0}$ (FIK 91 [13]): Determine 2×2 function $\Gamma(z) \equiv \Gamma(z ; n)$ such that
(1) $\Gamma(z)$ analytic for $z \in \mathbb{C} \backslash \mathbb{R}$
(2) $\Gamma(z)$ admits boundary values $\Gamma_{ \pm}(z)$ for $z \in \mathbb{R}$ related via

$$
\Gamma_{+}(z)=\Gamma_{-}(z)\left[\begin{array}{cc}
1 & e^{-U(z)} \\
0 & 1
\end{array}\right], \quad z \in \mathbb{R}
$$

(3) As $z \rightarrow \infty$,

$$
\Gamma(z)=\left(1+\mathcal{O}\left(z^{-1}\right)\right) z^{n \sigma_{3}}, \quad z \rightarrow \infty
$$

The RHP for $\Gamma(z ; n)$ is uniquely solvable iff $\pi_{n}(z)$ exists,

- Riemann-Hilbert characterization for $\left\{\pi_{k}\right\}_{k \geq 0}$ (FIK 91 [13]): Determine 2×2 function $\Gamma(z) \equiv \Gamma(z ; n)$ such that
(1) $\Gamma(z)$ analytic for $z \in \mathbb{C} \backslash \mathbb{R}$
(2) $\Gamma(z)$ admits boundary values $\Gamma_{ \pm}(z)$ for $z \in \mathbb{R}$ related via

$$
\Gamma_{+}(z)=\Gamma_{-}(z)\left[\begin{array}{cc}
1 & e^{-U(z)} \\
0 & 1
\end{array}\right], \quad z \in \mathbb{R}
$$

(3) As $z \rightarrow \infty$,

$$
\Gamma(z)=\left(1+\mathcal{O}\left(z^{-1}\right)\right) z^{n \sigma_{3}}, \quad z \rightarrow \infty
$$

The RHP for $\Gamma(z ; n)$ is uniquely solvable iff $\pi_{n}(z)$ exists, moreover

$$
\mathbb{K}_{11}(x, y)=e^{-\frac{1}{2} U(x)} e^{-\frac{1}{2} U(y)} \frac{\mathrm{i}}{2 \pi}\left[\frac{\Gamma^{-1}(x ; n) \Gamma(y ; n)}{x-y}\right]_{21}
$$

- Riemann-Hilbert characterization for $\left\{\pi_{k}\right\}_{k \geq 0}$ (FIK 91 [13]): Determine 2×2 function $\Gamma(z) \equiv \Gamma(z ; n)$ such that
(1) $\Gamma(z)$ analytic for $z \in \mathbb{C} \backslash \mathbb{R}$
(2) $\Gamma(z)$ admits boundary values $\Gamma_{ \pm}(z)$ for $z \in \mathbb{R}$ related via

$$
\Gamma_{+}(z)=\Gamma_{-}(z)\left[\begin{array}{cc}
1 & e^{-U(z)} \\
0 & 1
\end{array}\right], \quad z \in \mathbb{R}
$$

(3) As $z \rightarrow \infty$,

$$
\Gamma(z)=\left(1+\mathcal{O}\left(z^{-1}\right)\right) z^{n \sigma_{3}}, \quad z \rightarrow \infty
$$

The RHP for $\Gamma(z ; n)$ is uniquely solvable iff $\pi_{n}(z)$ exists, moreover

$$
\mathbb{K}_{11}(x, y)=e^{-\frac{1}{2} U(x)} e^{-\frac{1}{2} U(y)} \frac{\mathrm{i}}{2 \pi}\left[\frac{\Gamma^{-1}(x ; n) \Gamma(y ; n)}{x-y}\right]_{21}
$$

- Plancherel-Rotach asymptotics for orthogonal polynomials $\pi_{n}(z)$ (DKMVZ 99 [8]) leading to universality theorems:
- Riemann-Hilbert characterization for $\left\{\pi_{k}\right\}_{k \geq 0}$ (FIK 91 [13]): Determine 2×2 function $\Gamma(z) \equiv \Gamma(z ; n)$ such that
(1) $\Gamma(z)$ analytic for $z \in \mathbb{C} \backslash \mathbb{R}$
(2) $\Gamma(z)$ admits boundary values $\Gamma_{ \pm}(z)$ for $z \in \mathbb{R}$ related via

$$
\Gamma_{+}(z)=\Gamma_{-}(z)\left[\begin{array}{cc}
1 & e^{-U(z)} \\
0 & 1
\end{array}\right], \quad z \in \mathbb{R}
$$

(3) As $z \rightarrow \infty$,

$$
\Gamma(z)=\left(1+\mathcal{O}\left(z^{-1}\right)\right) z^{n \sigma_{3}}, \quad z \rightarrow \infty
$$

The RHP for $\Gamma(z ; n)$ is uniquely solvable iff $\pi_{n}(z)$ exists, moreover

$$
\mathbb{K}_{11}(x, y)=e^{-\frac{1}{2} U(x)} e^{-\frac{1}{2} U(y)} \frac{\mathrm{i}}{2 \pi}\left[\frac{\Gamma^{-1}(x ; n) \Gamma(y ; n)}{x-y}\right]_{21}
$$

- Plancherel-Rotach asymptotics for orthogonal polynomials $\pi_{n}(z)$ (DKMVZ 99 [8]) leading to universality theorems: Suppose $U(x)=N V(x)$ with $V(x)$ real analytic on \mathbb{R} and $\frac{V(x)}{\ln \left(x^{2}+1\right)} \rightarrow \infty$ as $|x| \rightarrow \infty$.

$$
\frac{1}{n} \mathbb{K}_{11}(x, x) \mathrm{d} x \rightharpoonup \mathrm{~d} \mu_{V}(x) \quad \text { as } n, N \rightarrow \infty: \quad \frac{n}{N} \rightarrow 1
$$

The support Σ_{V} of the limiting equilibrium measure μ_{V} with density ρ_{V} consists of a finite union of intervals.

The support Σ_{V} of the limiting equilibrium measure μ_{V} with density ρ_{V} consists of a finite union of intervals.
(1) For $x^{*} \in \operatorname{Int}\left(\Sigma_{V}\right)$ such that $\rho_{V}\left(x^{*}\right)>0$, (PS 97 [17], BI 99 [7], DKMVZ 99 [8])

$$
\lim _{n \rightarrow \infty} \frac{1}{n \rho_{V}\left(x^{*}\right)} \mathbb{K}_{11}\left(x^{*}+\frac{x}{n \rho_{V}\left(x^{*}\right)}, x^{*}+\frac{y}{n \rho_{V}\left(x^{*}\right)}\right)=K_{\sin }(x, y)
$$

with $K_{\sin }(x, y)=\frac{\sin \pi(x-y)}{\pi(x-y)}$ (regular bulk universality).

The support Σ_{V} of the limiting equilibrium measure μ_{V} with density ρ_{V} consists of a finite union of intervals.
(1) For $x^{*} \in \operatorname{Int}\left(\Sigma_{V}\right)$ such that $\rho_{V}\left(x^{*}\right)>0$, (PS 97 [17], BI 99 [7], DKMVZ 99 [8])

$$
\lim _{n \rightarrow \infty} \frac{1}{n \rho_{V}\left(x^{*}\right)} \mathbb{K}_{11}\left(x^{*}+\frac{x}{n \rho_{V}\left(x^{*}\right)}, x^{*}+\frac{y}{n \rho_{V}\left(x^{*}\right)}\right)=K_{\sin }(x, y)
$$

with $K_{\text {sin }}(x, y)=\frac{\sin \pi(x-y)}{\pi(x-y)}$ (regular bulk universality).
(2) For $x^{*} \in \partial\left(\Sigma_{V}\right)$, (DG 07 [9])

$$
\lim _{n \rightarrow \infty} \frac{1}{(c n)^{2 / 3}} \mathbb{K}_{11}\left(x^{*} \pm \frac{x}{(c n)^{2 / 3}}, x^{*} \pm \frac{y}{(c n)^{2 / 3}}\right)=K_{\mathrm{Ai}}(x, y)
$$

with $K_{\mathrm{Ai}}(x, y)=\frac{\operatorname{Ai}^{(x)} \operatorname{Ai}^{\prime}(y)-\operatorname{Ai}^{\prime}(x) \mathrm{Ai}^{2}(y)}{x-y}$ (soft edge universality).

The support Σ_{V} of the limiting equilibrium measure μ_{V} with density ρ_{V} consists of a finite union of intervals.
(1) For $x^{*} \in \operatorname{Int}\left(\Sigma_{V}\right)$ such that $\rho_{V}\left(x^{*}\right)>0$, (PS 97 [17], BI 99 [7], DKMVZ 99 [8])

$$
\lim _{n \rightarrow \infty} \frac{1}{n \rho_{V}\left(x^{*}\right)} \mathbb{K}_{11}\left(x^{*}+\frac{x}{n \rho_{V}\left(x^{*}\right)}, x^{*}+\frac{y}{n \rho_{V}\left(x^{*}\right)}\right)=K_{\sin }(x, y)
$$

with $K_{\text {sin }}(x, y)=\frac{\sin \pi(x-y)}{\pi(x-y)}$ (regular bulk universality).
(2) For $x^{*} \in \partial\left(\Sigma_{V}\right)$, (DG 07 [9])

$$
\lim _{n \rightarrow \infty} \frac{1}{(c n)^{2 / 3}} \mathbb{K}_{11}\left(x^{*} \pm \frac{x}{(c n)^{2 / 3}}, x^{*} \pm \frac{y}{(c n)^{2 / 3}}\right)=K_{\mathrm{Ai}}(x, y)
$$

with $K_{\mathrm{Ai}}(x, y)=\frac{\operatorname{Ai}^{(x)} \mathrm{Ai}^{\prime}(y)-\operatorname{Ai}^{\prime}(x) \mathrm{Ai}^{(}(y)}{x-y}$ (soft edge universality).
(3) For $U(x)=N V(x)-a \ln x$ with $a>-1$ and $x>0$ we have, (KV 03 [14])

$$
\lim _{n \rightarrow \infty} \frac{1}{(c n)^{2}} \mathbb{K}_{11}\left(\frac{x}{(c n)^{2}}, \frac{y}{(c n)^{2}}\right)=K_{\text {Bess }, a}(x, y)
$$

with $K_{\text {Bess,a }}(x, y)=\frac{J_{a}(\sqrt{x}) \sqrt{y} J_{a}^{\prime}(\sqrt{y})-J_{a}(\sqrt{y}) \sqrt{x} J_{a}^{\prime}(\sqrt{x})}{2(x-y)}$ (hard edge universality).

Towards chain models

- Cauchy matrix chain (BGS 09 [4]) reduced to spectral variables (MS 94 [16])

$$
\begin{aligned}
& \mathrm{d} \mu\left(M_{1}, \ldots, M_{p}\right) \propto \frac{e^{-\operatorname{tr} \sum_{j=1}^{p} U_{j}\left(M_{j}\right)}}{\prod_{j=1}^{p-1} \operatorname{det}\left(M_{j}+M_{j+1}\right)^{n}} \rightsquigarrow P\left(\left\{x_{1 j}\right\}_{1}^{n}, \ldots,\left\{x_{p j}\right\}_{1}^{n}\right)=\frac{1}{\mathcal{Z}_{n}} \\
& \times \Delta\left(X_{1}\right) \Delta\left(X_{p}\right) e^{-\sum_{m=1}^{p} \sum_{j=1}^{n} U_{m}\left(x_{m j}\right)} \prod_{\alpha=1}^{p-1} \operatorname{det}\left[\frac{1}{x_{\alpha j}+x_{\alpha+1, k}}\right]_{j, k=1}^{n} \prod_{j=1}^{p} \prod_{\ell=1}^{n} \mathrm{~d} x_{j \ell}
\end{aligned}
$$

We are now dealing with positive definite Hermitian matrices $\mathcal{M}_{+}^{p}(n)$.

Towards chain models

- Cauchy matrix chain (BGS 09 [4]) reduced to spectral variables (MS 94 [16])

$$
\begin{aligned}
& \mathrm{d} \mu\left(M_{1}, \ldots, M_{p}\right) \propto \frac{e^{-\operatorname{tr} \sum_{j=1}^{p} U_{j}\left(M_{j}\right)}}{\prod_{j=1}^{p-1} \operatorname{det}\left(M_{j}+M_{j+1}\right)^{n}} \rightsquigarrow P\left(\left\{x_{1 j}\right\}_{1}^{n}, \ldots,\left\{x_{p j}\right\}_{1}^{n}\right)=\frac{1}{\mathcal{Z}_{n}} \\
& \times \Delta\left(X_{1}\right) \Delta\left(X_{p}\right) e^{-\sum_{m=1}^{p} \sum_{j=1}^{n} U_{m}\left(x_{m j}\right)} \prod_{\alpha=1}^{p-1} \operatorname{det}\left[\frac{1}{x_{\alpha j}+x_{\alpha+1, k}}\right]_{j, k=1}^{n} \prod_{j=1}^{p} \prod_{\ell=1}^{n} \mathrm{~d} x_{j \ell}
\end{aligned}
$$

We are now dealing with positive definite Hermitian matrices $\mathcal{M}_{+}^{p}(n)$.

- Expressing $\left(\ell_{1}, \ldots, \ell_{p}\right)$-point correlation function as determinant (EM 98 [12], BB 14 [6])
- Cauchy matrix chain (BGS 09 [4]) reduced to spectral variables (MS 94 [16])

$$
\begin{aligned}
& \mathrm{d} \mu\left(M_{1}, \ldots, M_{p}\right) \propto \frac{e^{-\operatorname{tr} \sum_{j=1}^{p} U_{j}\left(M_{j}\right)}}{\prod_{j=1}^{p-1} \operatorname{det}\left(M_{j}+M_{j+1}\right)^{n}} \rightsquigarrow P\left(\left\{x_{1 j}\right\}_{1}^{n}, \ldots,\left\{x_{p j}\right\}_{1}^{n}\right)=\frac{1}{\mathcal{Z}_{n}} \\
& \times \Delta\left(X_{1}\right) \Delta\left(X_{p}\right) e^{-\sum_{m=1}^{p} \sum_{j=1}^{n} U_{m}\left(x_{m j}\right)} \prod_{\alpha=1}^{p-1} \operatorname{det}\left[\frac{1}{x_{\alpha j}+x_{\alpha+1, k}}\right]_{j, k=1}^{n} \prod_{j=1}^{p} \prod_{\ell=1}^{n} \mathrm{~d} x_{j \ell}
\end{aligned}
$$

We are now dealing with positive definite Hermitian matrices $\mathcal{M}_{+}^{p}(n)$.

- Expressing $\left(\ell_{1}, \ldots, \ell_{p}\right)$-point correlation function as determinant (EM 98 [12], BB 14 [6])

$$
\begin{aligned}
& \mathcal{R}^{\left(\ell_{1}, \ldots, \ell_{p}\right)}\left(\left\{x_{1 j}\right\}_{1}^{\ell_{1}}, \ldots,\left\{x_{p j}\right\}_{1}^{\ell_{p}}\right)=\left[\prod_{j=1}^{p} \frac{n!}{\left(n-\ell_{j}\right)!}\right] \frac{1}{\mathcal{Z}_{n}} \\
& \quad \times \int_{\mathbb{R}_{+}^{n-\ell_{1}}} \cdots \int_{\mathbb{R}_{+}^{n-\ell_{p}}} P\left(\left\{x_{1 j}\right\}_{1}^{n}, \ldots,\left\{x_{p j}\right\}_{1}^{n}\right) \prod_{j=1}^{p} \prod_{m_{j}=\ell_{j}+1}^{n} \mathrm{~d} x_{j m_{j}}
\end{aligned}
$$

$$
=\operatorname{det}\left[\begin{array}{ccc}
\begin{array}{|c}
\mathbb{K}_{11}\left(x_{1 r}, x_{1 s}\right) \\
1 \leq r \leq \ell_{1}, 1 \leq s \leq \ell_{1} \\
\hline
\end{array} & \cdots & \begin{array}{c}
\mathbb{K}_{1 p}\left(x_{1 r}, x_{p s}\right) \\
1 \leq r \leq \ell_{1}, 1 \leq s \leq \ell_{p}
\end{array} \\
\vdots & \ddots & \vdots \\
\begin{array}{c}
\mathbb{K}_{p 1}\left(x_{p r}, x_{1 s}\right) \\
1 \leq r \leq \ell_{p}, 1 \leq s \leq \ell_{1} \\
\hline
\end{array} & \cdots & \begin{array}{c}
\mathbb{K}_{p p}\left(x_{p r}, x_{p s}\right) \\
1 \leq r \leq \ell_{p}, 1 \leq s \leq \ell_{p}
\end{array}
\end{array}\right]_{\left(\sum_{1}^{p} \ell_{i}\right) \times\left(\sum_{1}^{p} \ell_{i}\right)},
$$

$$
=\operatorname{det}\left[\begin{array}{ccc}
\begin{array}{|c}
\mathbb{K}_{11}\left(x_{1 r}, x_{1 s}\right) \\
1 \leq r \leq \ell_{1}, 1 \leq s \leq \ell_{1}
\end{array} & \cdots & \begin{array}{c}
\mathbb{K}_{1 p}\left(x_{1 r}, x_{p s}\right) \\
1 \leq r \leq \ell_{1}, 1 \leq s \leq \ell_{p}
\end{array} \\
\vdots & \ddots & \vdots \\
\begin{array}{c}
\mathbb{K}_{p 1}\left(x_{p r}, x_{1 s}\right) \\
1 \leq r \leq \ell_{p}, 1 \leq s \leq \ell_{1}
\end{array} & \cdots & \begin{array}{c}
\mathbb{K}_{p p}\left(x_{p r}, x_{p s}\right) \\
1 \leq r \leq \ell_{p}, 1 \leq s \leq \ell_{p}
\end{array}
\end{array}\right]_{\left(\sum_{1}^{p} \ell_{i}\right) \times\left(\sum_{1}^{p} \ell_{i}\right)},
$$

with correlation kernels

$$
\mathbb{K}_{j \ell}(x, y)=e^{-\frac{1}{2} U_{j}(x)-\frac{1}{2} U_{\ell}(y)} \mathbb{M}_{j \ell}(x, y), \quad \mathbb{M}_{p 1}(x, y)=\sum_{\ell=0}^{n-1} \phi_{\ell}(x) \psi_{\ell}(y) \frac{1}{h_{\ell}}
$$

and the remaining kernels are (suitable) transformations of $\mathbb{M}_{p 1}(x, y)$.

$$
=\operatorname{det}\left[\begin{array}{ccc}
\begin{array}{|c}
\mathbb{K}_{11}\left(x_{1 r}, x_{1 s}\right) \\
1 \leq r \leq \ell_{1}, 1 \leq s \leq \ell_{1}
\end{array} & \cdots & \begin{array}{c}
\mathbb{K}_{1 p}\left(x_{1 r}, x_{p s}\right) \\
1 \leq r \leq \ell_{1}, 1 \leq s \leq \ell_{p}
\end{array} \\
\vdots & \ddots & \vdots \\
\begin{array}{c}
\mathbb{K}_{p 1}\left(x_{p r}, x_{1 s}\right) \\
1 \leq r \leq \ell_{p}, 1 \leq s \leq \ell_{1} \\
\hline
\end{array} & \cdots & \begin{array}{c}
\mathbb{K}_{p p}\left(x_{p r}, x_{p s}\right) \\
1 \leq r \leq \ell_{p}, 1 \leq s \leq \ell_{p}
\end{array}
\end{array}\right]_{\left(\sum_{1}^{p} \ell_{i}\right) \times\left(\sum_{1}^{p} \ell_{i}\right)},
$$

with correlation kernels

$$
\mathbb{K}_{j \ell}(x, y)=e^{-\frac{1}{2} U_{j}(x)-\frac{1}{2} U_{\ell}(y)} \mathbb{M}_{j \ell}(x, y), \quad \mathbb{M}_{p 1}(x, y)=\sum_{\ell=0}^{n-1} \phi_{\ell}(x) \psi_{\ell}(y) \frac{1}{h_{\ell}}
$$

and the remaining kernels are (suitable) transformations of $\mathbb{M}_{p 1}(x, y)$. The latter is constructed with the help of monic (Cauchy) biorthogonal polynomials $\left\{\psi_{k}, \phi_{k}\right\}_{k \geq 0}$

$$
\iint_{\mathbb{R}_{+}^{2}} \psi_{n}(x) \phi_{m}(y) \eta_{p}(x, y) \mathrm{d} x \mathrm{~d} y=h_{n} \delta_{n m}
$$

with weight function on \mathbb{R}_{+}^{2}, (case $p=2$ as "limit")

$$
\eta_{p}(x, y)=\int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{e^{-U_{1}(x)}}{x+\xi_{1}}\left(\frac{e^{-\sum_{j=2}^{p-1} U_{j}\left(\xi_{j-1}\right)}}{\prod_{j=1}^{p-3}\left(\xi_{j}+\xi_{j+1}\right)}\right) \frac{e^{-U_{p}(y)}}{\xi_{p-2}+y} \prod_{j=1}^{p-2} \mathrm{~d} \xi_{j}
$$

- Riemann-Hilbert characterization for $\left\{\psi_{k}, \phi_{k}\right\}_{k \geq 0}$:
- Riemann-Hilbert characterization for $\left\{\psi_{k}, \phi_{k}\right\}_{k \geq 0}$: Determine $(p+1) \times(p+1)$ function $\Gamma(z)=\Gamma(z ; n)$ such that
(1) $\Gamma(z)$ is analytic in $\mathbb{C} \backslash \mathbb{R}$
- Riemann-Hilbert characterization for $\left\{\psi_{k}, \phi_{k}\right\}_{k \geq 0}$: Determine $(p+1) \times(p+1)$ function $\Gamma(z)=\Gamma(z ; n)$ such that
(1) $\Gamma(z)$ is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) With jump for $z \in \mathbb{R} \backslash\{0\}$

$$
\Gamma_{+}(z)=\Gamma_{-}(z)\left(\begin{array}{cccccc}
1 & e^{-U_{1}(z)} \chi_{+} & 0 & & \\
0 & 1 & e^{-U_{2}(-z)} \chi_{-} & 0 & \\
& 0 & 1 & e^{-U_{3}(z)} \chi_{+} & \\
& & 0 & 1 & \ddots & \\
& & & \ddots & & \\
& & & & & 1
\end{array}\right)
$$

- Riemann-Hilbert characterization for $\left\{\psi_{k}, \phi_{k}\right\}_{k \geq 0}$: Determine $(p+1) \times(p+1)$ function $\Gamma(z)=\Gamma(z ; n)$ such that
(1) $\Gamma(z)$ is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) With jump for $z \in \mathbb{R} \backslash\{0\}$

$$
\Gamma_{+}(z)=\Gamma_{-}(z)\left(\begin{array}{cccccc}
1 & e^{-U_{1}(z)} \chi_{+} & 0 & & & \\
0 & 1 & e^{-U_{2}(-z)} \chi_{-} & 0 & \\
& 0 & 1 & e^{-U_{3}(z)} \chi_{+} & & \\
& & 0 & 1 & \ddots & \\
& & & \ddots & & \\
& & & & & 1
\end{array}\right)
$$

(3) Singular behavior at $z=0$ depending on $U_{j}(z)$

- Riemann-Hilbert characterization for $\left\{\psi_{k}, \phi_{k}\right\}_{k \geq 0}$: Determine $(p+1) \times(p+1)$ function $\Gamma(z)=\Gamma(z ; n)$ such that
(1) $\Gamma(z)$ is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) With jump for $z \in \mathbb{R} \backslash\{0\}$
(3) Singular behavior at $z=0$ depending on $U_{j}(z)$
(- Normalization

$$
\Gamma(z)=\left(1+\mathcal{O}\left(z^{-1}\right)\right) \operatorname{diag}\left[z^{n}, 1, \ldots, 1, z^{-n}\right], \quad z \rightarrow \infty
$$

- Riemann-Hilbert characterization for $\left\{\psi_{k}, \phi_{k}\right\}_{k \geq 0}$: Determine $(p+1) \times(p+1)$ function $\Gamma(z)=\Gamma(z ; n)$ such that
(1) $\Gamma(z)$ is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) With jump for $z \in \mathbb{R} \backslash\{0\}$
(3) Singular behavior at $z=0$ depending on $U_{j}(z)$
(- Normalization

$$
\Gamma(z)=\left(1+\mathcal{O}\left(z^{-1}\right)\right) \operatorname{diag}\left[z^{n}, 1, \ldots, 1, z^{-n}\right], \quad z \rightarrow \infty
$$

The RHP is uniquely solvable iff $\left(\psi_{n}(z), \phi_{n}(z)\right)$ exists,

- Riemann-Hilbert characterization for $\left\{\psi_{k}, \phi_{k}\right\}_{k \geq 0}$: Determine $(p+1) \times(p+1)$ function $\Gamma(z)=\Gamma(z ; n)$ such that
(1) $\Gamma(z)$ is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) With jump for $z \in \mathbb{R} \backslash\{0\}$
(3) Singular behavior at $z=0$ depending on $U_{j}(z)$
(Normalization

$$
\Gamma(z)=\left(1+\mathcal{O}\left(z^{-1}\right)\right) \operatorname{diag}\left[z^{n}, 1, \ldots, 1, z^{-n}\right], \quad z \rightarrow \infty
$$

The RHP is uniquely solvable iff $\left(\psi_{n}(z), \phi_{n}(z)\right)$ exists, moreover (BB 14 [6])

$$
\mathbb{M}_{j \ell}(x, y)=\left.\frac{(-)^{\ell-1}}{(-2 \pi \mathrm{i})^{j-\ell+1}}\left[\frac{\Gamma^{-1}(w ; n) \Gamma(z ; n)}{w-z}\right]_{j+1, \ell}\right|_{\substack{w=x(-)^{j+1} \\ z=y(-)^{\ell-1}}}
$$

This is in sharp contrast to the Itzykson-Zuber model.

We confine ourselves first to

$$
U_{j}(x)=N V_{j}(x), \quad \forall j: \lim _{x \downarrow 0} \frac{V_{j}(x)}{|\ln x|}=\kappa_{j}>0, \quad \lim _{x \rightarrow+\infty} \frac{V_{j}(x)}{\ln x}=+\infty
$$

with $V_{j}(x)$ real analytic on $(0, \infty)$ and $N=n>0$ independent.

We confine ourselves first to

$$
U_{j}(x)=N V_{j}(x), \quad \forall j: \lim _{x \downarrow 0} \frac{V_{j}(x)}{|\ln x|}=\kappa_{j}>0, \quad \lim _{x \rightarrow+\infty} \frac{V_{j}(x)}{\ln x}=+\infty
$$

with $V_{j}(x)$ real analytic on $(0, \infty)$ and $N=n>0$ independent. In case $p=2$:

$$
\mathcal{Z}_{n}=\iint_{\mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{n}} \frac{\Delta^{2}(X) \Delta^{2}(Y)}{\prod_{j, k=1}^{n}\left(x_{j}+y_{k}\right)} e^{-N \sum_{j=1}^{n}\left(v_{1}\left(x_{j}\right)+v_{2}\left(y_{j}\right)\right)} \mathrm{d} X \mathrm{~d} Y
$$

We confine ourselves first to

$$
U_{j}(x)=N V_{j}(x), \quad \forall j: \lim _{x \not 00} \frac{V_{j}(x)}{|\ln x|}=\kappa_{j}>0, \quad \lim _{x \rightarrow+\infty} \frac{V_{j}(x)}{\ln x}=+\infty
$$

with $V_{j}(x)$ real analytic on $(0, \infty)$ and $N=n>0$ independent. In case $p=2$:

$$
\begin{aligned}
\mathcal{Z}_{n} & =\iint_{\mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{n}} \frac{\Delta^{2}(X) \Delta^{2}(Y)}{\prod_{j, k=1}^{n}\left(x_{j}+y_{k}\right)} e^{-N \sum_{j=1}^{n}\left(v_{1}\left(x_{j}\right)+V_{2}\left(y_{j}\right)\right)} \mathrm{d} X \mathrm{~d} Y \\
& =\iint_{\mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{n}} e^{-n^{2} \mathcal{E}\left(\nu_{1}, \nu_{2}\right)} \mathrm{d} X \mathrm{~d} Y
\end{aligned}
$$

with the energy functional (here $W_{1}(z)=V_{1}(z), W_{2}(z)=V_{2}(-z)$)

$$
\begin{aligned}
\mathcal{E}\left(\nu_{1}, \nu_{2}\right) & =\sum_{j=1}^{2}\left[\iint \ln |s-t|^{-1} \mathrm{~d} \nu_{j}(s) \mathrm{d} \nu_{j}(t)+\int W_{j}(s) \mathrm{d} \nu_{j}(s)\right] \\
& -\iint \ln |s-t|^{-1} \mathrm{~d} \nu_{1}(s) \mathrm{d} \nu_{2}(t) ; \quad \int_{\mathbb{R}_{+}} \mathrm{d} \nu_{1}(s)=1=\iint_{\mathbb{R}_{-}} \mathrm{d} \nu_{2}(s)
\end{aligned}
$$

We are naturally lead to the minimization problem, i.e. vector equilibrium problem

$$
E^{W_{1}, W_{2}}=\inf _{\substack{\mu_{1} \in \mathcal{M}^{1}[0, \infty) \\ \mu_{2} \in \mathcal{M}^{1}(-\infty, 0]}} \mathcal{E}\left(\mu_{1}, \mu_{2}\right) .
$$

We are naturally lead to the minimization problem, i.e. vector equilibrium problem

$$
\begin{equation*}
E^{W_{1}, W_{2}}=\inf _{\substack{\mu_{1} \in \mathcal{M}^{1}[0, \infty) \\ \mu_{2} \in \mathcal{M}^{1}(-\infty, 0]}} \mathcal{E}\left(\mu_{1}, \mu_{2}\right) . \tag{2}
\end{equation*}
$$

Theorem (BaB 09 [3])

There is a unique minimizer $\left(\mu_{1}^{W_{1}}, \mu_{2}^{W_{2}}\right)$ to (2), the supports consist of a finite union of disjoint compact intervals

$$
\operatorname{supp}\left(\mu_{1}^{W_{1}}\right)=\bigsqcup_{\ell=1}^{L_{1}} \mathcal{A}_{\ell} \subset(0, \infty), \quad \operatorname{supp}\left(\mu_{2}^{W_{2}}\right)=\bigsqcup_{\ell=1}^{L_{2}} \mathcal{B}_{\ell} \subset(-\infty, 0)
$$

We are naturally lead to the minimization problem, i.e. vector equilibrium problem

$$
\begin{equation*}
E^{W_{1}, W_{2}}=\inf _{\substack{\mu_{1} \in \mathcal{M}^{1}[0, \infty) \\ \mu_{2} \in \mathcal{M}^{1}(-\infty, 0]}} \mathcal{E}\left(\mu_{1}, \mu_{2}\right) . \tag{2}
\end{equation*}
$$

Theorem (BaB 09 [3])

There is a unique minimizer $\left(\mu_{1}^{W_{1}}, \mu_{2}^{W_{2}}\right)$ to (2), the supports consist of a finite union of disjoint compact intervals

$$
\operatorname{supp}\left(\mu_{1}^{W_{1}}\right)=\bigsqcup_{\ell=1}^{L_{1}} \mathcal{A}_{\ell} \subset(0, \infty), \quad \operatorname{supp}\left(\mu_{2}^{W_{2}}\right)=\bigsqcup_{\ell=1}^{L_{2}} \mathcal{B}_{\ell} \subset(-\infty, 0)
$$

Moreover the shifted resolvents $y_{1}=-R_{1}+\frac{1}{3}\left(2 W_{1}^{\prime}+W_{2}^{\prime}\right), y_{3}=R_{2}-\frac{1}{3}\left(W_{1}^{\prime}+2 W_{2}^{\prime}\right)$, $y_{2}=-\left(y_{1}+y_{3}\right)$ with

$$
R_{j}(z)=\int(s-z)^{-1} \mathrm{~d} \mu_{j}^{W_{j}}(s)
$$

are the three branches of the cubic

$$
y^{3}-R(z) y-D(z)=0 . \quad(\text { spectral curve })
$$

Figure 1: The Hurwitz diagram for a typical three sheeted covering of $\mathbb{C P}^{1}$. The support of $\mu_{1}^{W_{1}}$ on the left in red and for $\mu_{2}^{W_{2}}$ on the right in blue. This corresponds to the situation $p=2$ and $\lim _{x \downarrow 0} \frac{V_{j}(x)}{|\ln x|}>0$ in place.

Figure 1: The Hurwitz diagram for a typical three sheeted covering of $\mathbb{C P}^{1}$. The support of $\mu_{1}^{W_{1}}$ on the left in red and for $\mu_{2}^{W_{2}}$ on the right in blue. This corresponds to the situation $p=2$ and $\lim _{x \downarrow 0} \frac{V_{j}(x)}{|\ln x|}>0$ in place.

Near the branch points, i.e. edges, the densities $\rho_{j}(s)$ of $\mathrm{d} \mu_{j}^{W_{j}}(s)=\rho_{j}(s) \mathrm{d} s$ vanish like square roots, in the interior they are positive (generically!).

Figure 1: The Hurwitz diagram for a typical three sheeted covering of $\mathbb{C P}^{1}$. The support of $\mu_{1}^{W_{1}}$ on the left in red and for $\mu_{2}^{W_{2}}$ on the right in blue. This corresponds to the situation $p=2$ and $\lim _{x \downarrow 0} \frac{V_{j}(x)}{|\ln x|}>0$ in place.

Near the branch points, i.e. edges, the densities $\rho_{j}(s)$ of $\mathrm{d} \mu_{j}^{W_{j}}(s)=\rho_{j}(s) \mathrm{d} s$ vanish like square roots, in the interior they are positive (generically!). Thus

With screening potentials, we obtain the same universality classes (i.e. regular bulk and soft edge) as in the Hermitian one matrix model.

Figure 1: The Hurwitz diagram for a typical three sheeted covering of $\mathbb{C P}^{1}$. The support of $\mu_{1}^{W_{1}}$ on the left in red and for $\mu_{2}^{W_{2}}$ on the right in blue. This corresponds to the situation $p=2$ and $\lim _{x \downarrow 0} \frac{V_{j}(x)}{|\ln x|}>0$ in place.

Near the branch points, i.e. edges, the densities $\rho_{j}(s)$ of $\mathrm{d} \mu_{j}^{W_{j}}(s)=\rho_{j}(s) \mathrm{d} s$ vanish like square roots, in the interior they are positive (generically!). Thus

With screening potentials, we obtain the same universality classes (i.e. regular bulk and soft edge) as in the Hermitian one matrix model.

For non-screening potentials, the supports in Theorem 1 may contain the origin,

Figure 1: The Hurwitz diagram for a typical three sheeted covering of $\mathbb{C P}^{1}$. The support of $\mu_{1}^{W_{1}}$ on the left in red and for $\mu_{2}^{W_{2}}$ on the right in blue. This corresponds to the situation $p=2$ and $\lim _{x \downarrow 0} \frac{V_{j}(x)}{|\ln x|}>0$ in place.

Near the branch points, i.e. edges, the densities $\rho_{j}(s)$ of $\mathrm{d} \mu_{j}^{W_{j}}(s)=\rho_{j}(s) \mathrm{d} s$ vanish like square roots, in the interior they are positive (generically!). Thus

With screening potentials, we obtain the same universality classes (i.e. regular bulk and soft edge) as in the Hermitian one matrix model.

For non-screening potentials, the supports in Theorem 1 may contain the origin, thus leading to a higher order branch point at the origin and a singular density

$$
\rho_{j}(s)=\mathcal{O}\left(|s|^{-\frac{p}{p+1}}\right), \quad s \rightarrow 0 . \quad \text { "new" universality class }
$$

The non-screening effect appears for instance for the classical Laguerre weights

$$
U_{j}(x)=N V_{j}(x)-a_{j} \ln x, \quad a_{j}>-1: \quad a_{k \ell}=\sum_{j=k}^{\ell} a_{j}>-1 ; \quad \lim _{x \rightarrow+\infty} \frac{V_{j}(x)}{\ln x}=+\infty
$$

and V_{j} is real-analytic on $[0, \infty)$.

The non-screening effect appears for instance for the classical Laguerre weights

$$
U_{j}(x)=N V_{j}(x)-a_{j} \ln x, \quad a_{j}>-1: \quad a_{k \ell}=\sum_{j=k}^{\ell} a_{j}>-1 ; \quad \lim _{x \rightarrow+\infty} \frac{V_{j}(x)}{\ln x}=+\infty
$$

and V_{j} is real-analytic on $[0, \infty)$.

Example (Standard (symmetric) Laguerre weights for $p=2$)

Consider the symmetric choice $V_{j}(x)=x-a \ln x, x \in(0, \infty), \mathrm{j}=1,2$.

The non-screening effect appears for instance for the classical Laguerre weights

$$
U_{j}(x)=N V_{j}(x)-a_{j} \ln x, \quad a_{j}>-1: \quad a_{k \ell}=\sum_{j=k}^{\ell} a_{j}>-1 ; \quad \lim _{x \rightarrow+\infty} \frac{V_{j}(x)}{\ln x}=+\infty
$$

and V_{j} is real-analytic on $[0, \infty)$.

Example (Standard (symmetric) Laguerre weights for $p=2$)

Consider the symmetric choice $V_{j}(x)=x-a \ln x, x \in(0, \infty), \mathrm{j}=1,2$. The underlying spectral curve equals

$$
y^{3}-\frac{z^{2}+a^{2}}{3 z^{2}} y+\frac{2 z^{2}-18 a^{2}+54 a-27}{27 z^{2}}=0
$$

The non-screening effect appears for instance for the classical Laguerre weights

$$
U_{j}(x)=N V_{j}(x)-a_{j} \ln x, \quad a_{j}>-1: \quad a_{k \ell}=\sum_{j=k}^{\ell} a_{j}>-1 ; \quad \lim _{x \rightarrow+\infty} \frac{V_{j}(x)}{\ln x}=+\infty
$$

and V_{j} is real-analytic on $[0, \infty)$.
Example (Standard (symmetric) Laguerre weights for $p=2$)
Consider the symmetric choice $V_{j}(x)=x-a \ln x, x \in(0, \infty), j=1,2$. The underlying spectral curve equals

$$
y^{3}-\frac{z^{2}+a^{2}}{3 z^{2}} y+\frac{2 z^{2}-18 a^{2}+54 a-27}{27 z^{2}}=0
$$

Figure 2: The potentials $V_{j}(x)$ are shown in red for different choices of the parameter $a \geq 0$. In green the density of the measure $\rho_{1}(x)$.

Definition

Let $a_{j}, b_{j} \in \mathbb{C}$ and $0 \leq m \leq q, 0 \leq n \leq p$ be integers. The Meijer-G function is defined through the Mellin-Barnes integral formula

$$
G_{p, q}^{m, n}\left(\left.\begin{array}{l}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} \right\rvert\, \zeta\right)=\frac{1}{2 \pi \mathrm{i}} \int_{L} \frac{\prod_{\ell=1}^{m} \Gamma\left(b_{\ell}+s\right)}{\prod_{\ell=m}^{q-1} \Gamma\left(1-b_{\ell+1}-s\right)} \frac{\prod_{\ell=1}^{n} \Gamma\left(1-a_{\ell}-s\right)}{\prod_{\ell=n}^{p-1} \Gamma\left(a_{\ell+1}+s\right)} \zeta^{-s} \mathrm{~d} s
$$

Definition

Let $a_{j}, b_{j} \in \mathbb{C}$ and $0 \leq m \leq q, 0 \leq n \leq p$ be integers. The Meijer-G function is defined through the Mellin-Barnes integral formula

$$
G_{p, q}^{m, n}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} \right\rvert\, \zeta\right)=\frac{1}{2 \pi \mathrm{i}} \int_{L} \frac{\prod_{\ell=1}^{m} \Gamma\left(b_{\ell}+s\right)}{\prod_{\ell=m}^{q-1} \Gamma\left(1-b_{\ell+1}-s\right)} \frac{\prod_{\ell=1}^{n} \Gamma\left(1-a_{\ell}-s\right)}{\prod_{\ell=n}^{p-1} \Gamma\left(a_{\ell+1}+s\right)} \zeta^{-s} \mathrm{~d} s
$$

with a typical choice of integration contour shown below.

Figure 3: A choice for L corresponding to $a_{j}=b_{j}=0$.

Definition

Let $a_{j}, b_{j} \in \mathbb{C}$ and $0 \leq m \leq q, 0 \leq n \leq p$ be integers. The Meijer-G function is defined through the Mellin-Barnes integral formula

$$
G_{p, q}^{m, n}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} \right\rvert\, \zeta\right)=\frac{1}{2 \pi \mathrm{i}} \int_{L} \frac{\prod_{\ell=1}^{m} \Gamma\left(b_{\ell}+s\right)}{\prod_{\ell=m}^{q-1} \Gamma\left(1-b_{\ell+1}-s\right)} \frac{\prod_{\ell=1}^{n} \Gamma\left(1-a_{\ell}-s\right)}{\prod_{\ell=n}^{p-1} \Gamma\left(a_{\ell+1}+s\right)} \zeta^{-s} \mathrm{~d} s
$$

with a typical choice of integration contour shown below.

Figure 3: A choice for L corresponding to $a_{j}=b_{j}=0$.

These special functions have appeared recently in the statistical analysis of singular values of products of Ginibre random matrices (AB 12 [1], AKW 13 [2], KZ 13 [15]).

Conjecture (BB 14 [6])

For any $p \in \mathbb{Z}_{p \geq 2}$, there exists $c_{0}=c_{0}(p)$ and $\left\{\eta_{j}\right\}_{1}^{p}$ which depend on $\left\{a_{j}\right\}_{1}^{p}$ such that

$$
\lim _{n \rightarrow \infty} \frac{c_{0}}{n^{p+1}} n^{\eta_{\ell}-\eta_{j}} \mathbb{K}_{j \ell}\left(\frac{c_{0}}{n^{p+1}} \xi, \frac{c_{0}}{n^{p+1}} \eta\right) \propto \mathcal{G}_{j \ell}^{(p)}\left(\xi, \eta ;\left\{a_{j}\right\}_{1}^{p}\right)
$$

uniformly for ξ, η chosen from compact subsets of $(0, \infty)$.

Conjecture (BB 14 [6])

For any $p \in \mathbb{Z}_{p \geq 2}$, there exists $c_{0}=c_{0}(p)$ and $\left\{\eta_{j}\right\}_{1}^{p}$ which depend on $\left\{a_{j}\right\}_{1}^{p}$ such that

$$
\lim _{n \rightarrow \infty} \frac{c_{0}}{n^{p+1}} n^{\left.\left.\eta_{\ell}-\eta_{j} \mathbb{K}_{j \ell}\left(\frac{c_{0}}{n^{p+1}} \xi, \frac{c_{0}}{n^{p+1}} \eta\right) \propto \mathcal{G}_{j \ell}^{(p)}\left(\xi, \eta ;\left\{a_{j}\right\}_{1}^{p}\right)\right) .{ }^{2}\right)}
$$

uniformly for ξ, η chosen from compact subsets of $(0, \infty)$. Here the limiting correlation kernels equal

$$
\begin{aligned}
& \mathcal{G}_{j \ell}^{(p)}\left(\xi, \eta ;\left\{a_{j}\right\}_{1}^{p}\right)=\int_{L} \int_{\widehat{L}} \frac{\prod_{s=0}^{\ell-1} \Gamma\left(u-a_{1 s}\right)}{\prod_{s=\ell}^{p} \Gamma\left(1+a_{1 s}-u\right)} \frac{\prod_{s=j}^{p} \Gamma\left(a_{1 s}-v\right)}{\prod_{s=0}^{j-1} \Gamma\left(1-a_{1 s}+v\right)} \frac{\xi^{v} \eta^{-u}}{1-u+v} \frac{\mathrm{~d} v \mathrm{~d} u}{(2 \pi \mathrm{i})^{2}} \\
& \quad+\sum_{s \in \mathcal{P} \cup\{0\}} \operatorname{res}_{v=s} \frac{\prod_{s=0}^{\ell-1} \Gamma\left(1+v-a_{1 s}\right)}{\prod_{s=\ell}^{p} \Gamma\left(a_{1 s}-v\right)} \frac{\prod_{s=j}^{p} \Gamma\left(a_{1 s}-v\right)}{\prod_{s=0}^{j-1} \Gamma\left(1+v-a_{1 s}\right)} \frac{\xi^{v} \eta^{-v}}{(-)^{j \xi}-(-)^{\ell} \eta}
\end{aligned}
$$

with $\mathcal{P}=\left\{a_{1 \ell}, 1 \leq \ell \leq p\right\}$.

Conjecture (BB 14 [6])

For any $p \in \mathbb{Z}_{p \geq 2}$, there exists $c_{0}=c_{0}(p)$ and $\left\{\eta_{j}\right\}_{1}^{p}$ which depend on $\left\{a_{j}\right\}_{1}^{p}$ such that
uniformly for ξ, η chosen from compact subsets of $(0, \infty)$. Here the limiting correlation kernels equal

$$
\begin{aligned}
& \mathcal{G}_{j \ell}^{(p)}\left(\xi, \eta ;\left\{a_{j}\right\}_{1}^{p}\right)=\int_{L} \int_{\hat{L}} \frac{\prod_{s=0}^{\ell-1} \Gamma\left(u-a_{1 s}\right)}{\prod_{s=\ell}^{p} \Gamma\left(1+a_{1 s}-u\right)} \frac{\prod_{s=j}^{p} \Gamma\left(a_{1 s}-v\right)}{\prod_{s=0}^{j-1} \Gamma\left(1-a_{1 s}+v\right)} \frac{\xi^{v} \eta^{-u}}{1-u+v} \frac{\mathrm{~d} v \mathrm{~d} u}{(2 \pi \mathrm{i})^{2}} \\
& \quad+\sum_{s \in \mathcal{P} \cup\{0\}} \operatorname{res}_{v=s} \frac{\prod_{s=0}^{\ell-1} \Gamma\left(1+v-a_{1 s}\right)}{\prod_{s=\ell}^{p} \Gamma\left(a_{1 s}-v\right)} \frac{\prod_{s=j}^{p} \Gamma\left(a_{1 s}-v\right)}{\prod_{s=0}^{j-1} \Gamma\left(1+v-a_{1 s}\right)} \frac{\xi^{v} \eta^{-v}}{(-)^{j} \xi-(-)^{\ell} \eta}
\end{aligned}
$$

with $\mathcal{P}=\left\{a_{1 \ell}, 1 \leq \ell \leq p\right\}$.

Theorem (BB 14 [6])

The conjecture holds for $p=2,3$ and potentials $U_{j}(x)=N x-a_{j} \ln x$.
(1) No rigorous potential theoretic foundation for non-screening situation! We work with explicit spectral curves, i.e. start from Hurwitz diagram and verify a posteriori that the "guess" was correct. For $p=3$:

$$
\begin{equation*}
y^{4}-\frac{z-2}{2 z} y^{2}+\frac{(3 z-4)(3 z-8)^{2}}{432 z^{3}}=0 \tag{3}
\end{equation*}
$$

Figure 4: The four sheeted Riemann surface corresponding to (3).
(2) We construct the relevant parametrices explicitly for arbitrary $p \in \mathbb{Z}_{>2}$, i.e. in particular the model problem at the origin is solved with the help of Meijer-G functions

Figure 5: The local model problem at the origin, situation $p=3$.
but the error analysis becomes more involved for $p \geq 4$.

References I

G. Akemann, Z. Burda, Universal microscopic correlation functions for products of independent Ginibre matrices, J. Phys. A: Math. Theor. 45 (2012), 465201.

G. Akemann, M. Kieburg, L. Wei, Singular value correlation functions for products of Wishart random matrices, J. Phys. A: Math. Theor. 46 (2013), 275205.
F. Balogh, M. Bertola, Regularity of a vector problem and its spectral curve, J. Approx. Theory 161 (2009), 353-370.

M. Bertola, M. Gekhtman, J. Szmigielski, The Cauchy two-matrix model, Comm. Math. Phys., 287 (2009), 983-1014.
M. Bertola, M. Gekhtman, J. Szmigielski, Strong asymptotics for Cauchy biorthogonal polynomials with application to the Cauchy two-matrix model, J. Math. Phys. 54 (2013), 25pp.

M. Bertola, T. Bothner, Universality conjecture and results for a model of several coupled positive-definite matrices, preprint arXiv:1407.2597v1 (2014)

P. Bleher, A. Its, Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model, Ann. of Math. 150 (1999), 185-266

References II

P. Deift, T. Kriecherbauer, K. T-R McLaughlin, S. Venakides, X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math 52 (1999), 1335-1425

P. Deift, D. Gioev, Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices, Comm. Pure Appl. Math. 60 (2007), 867-910.
F. Dyson, Statistical theory of the energy levels of complex systems. I. J. Mathematical Phys. 3 (1962), 140-156.
F. Dyson, Correlations between eigenvalues of a random matrix, Comm. Math. Phys. 19 (1970), 235-250.

B. Eynard, M. L. Mehta, Matrices coupled in a chain. I. Eigenvalue correlations, J. Phys. A, 31 (1998), 4449-4456.
A. Fokas, A. Its, A. Kitaev, Discrete Painlevé equations and their appearance in quantum gravity, Comm. Math. Phys. 142 (1991), 313-344.
A.B.J. Kuijlaars, M. Vanlessen, Universality for eigenvalue correlations at the origin of the spectrum, Comm. Math. Phys. 243 (2003), 163-191.

References III

A. Kuijlaars, L. Zhang, Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scaling limits, preprint: arXiv:1308.1003v2 (2013).

M. L. Mehta, P. Shukla, Two coupled matrices: eigenvalue correlations and spacing functions, J. Phys. A 27 (1994), 7793-7803

L. Pastur, M. Shcherbina, Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles, J. Statist. Phys. 86 (1997), 109-147.
R
C. Porter, N. Rosenzweig, Statistical properties of atomic and nuclear spectra, Ann. Acad. Sci. Fenn. Ser. A VI 44 (1960) 66 pp.

