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Setup and outline

This talk discusses joint work (BB 14 [6]) with Marco Bertola on the Cauchy matrix
chain, the space Mp

+(n), p, n 2 Z�2 of p-tuples (M1, . . . ,Mp) of n ⇥ n positive -
definite Hermitian matrices with joint probability density function

dµ(M1, . . . ,Mp) / e
�tr

Pp
j=1 Uj (Mj )

Qp�1
j=1 det(Mj +Mj+1)n

dM1 · . . . · dMp . (1)

The density depends on p potentials Uj : R+ ! R which we specify later on.

Several
key features (“Integrability”) of the model allow us to

Reduce (1) to a density function defined on the eigenvalues

Rewrite correlation functions in determinantal form and connect to orthogonal
polynomials

Express orthogonal polynomials in terms of a Riemann-Hilbert problem

Derive strong asymptotics for the orthogonal polynomials and thus prove
universality results for specific potentials

This four step program has been successfully completed for the Hermitian one-matrix
model, i.e. p = 1:
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Hermitian one-matrix model

Joint probability density on eigenvalues, for M 2 M(n),U : R ! R,

dµ(M) / e�trU(M)dM  P({xj}n1)dnx =
1

Zn
�(X )2e�

Pn
j=1 U(xj )

nY

j=1

dxj

with Vandermonde �(X ) =
Q

j<k (xj � xk ). (PR 60 [18], D 62 [10])

Determinantal reduction for the `-point correlation function

R(`)({xj}`1) =
`!

(n � `)!

Z

Rn�`
P({xj}n1)

nY

j=`+1

dxj = det
⇥
K11(xi , xj )

⇤`
i,j=1

with correlation kernel

K11(x , y) = e�
1
2U(x)e�

1
2U(y)

n�1X

k=0

⇡k (x)⇡k (y)
1

hk

and monic orthogonal polynomials {⇡k}k�0

Z

R
⇡n(x)⇡m(x)e

�U(x) dx = hn�nm. (D 70 [11])
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Riemann-Hilbert characterization for {⇡k}k�0 (FIK 91 [13]):

Determine 2⇥ 2
function �(z) ⌘ �(z; n) such that

1 �(z) analytic for z 2 C\R
2 �(z) admits boundary values �±(z) for z 2 R related via

�+(z) = ��(z)


1 e�U(z)

0 1

�
, z 2 R

3 As z ! 1,

�(z) =
⇣
I + O

⇣
z�1

⌘⌘
zn�3 , z ! 1

The RHP for �(z; n) is uniquely solvable i↵ ⇡n(z) exists, moreover

K11(x , y) = e�
1
2U(x)e�

1
2U(y) i

2⇡


��1(x ; n)�(y ; n)

x � y

�

21

Plancherel-Rotach asymptotics for orthogonal polynomials ⇡n(z) (DKMVZ 99
[8]) leading to universality theorems: Suppose U(x) = NV (x) with V (x) real

analytic on R and V (x)
ln(x2+1)

! 1 as |x | ! 1.

1

n
K11(x , x)dx * dµV (x) as n,N ! 1 :

n

N
! 1
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The support ⌃V of the limiting equilibrium measure µV with density ⇢V consists of a
finite union of intervals.

1 For x⇤ 2 Int(⌃V ) such that ⇢V (x⇤) > 0, (PS 97 [17], BI 99 [7], DKMVZ 99 [8])

lim
n!1

1

n⇢V (x⇤)
K11

✓
x⇤ +

x

n⇢V (x⇤)
, x⇤ +

y

n⇢V (x⇤)

◆
= Ksin(x , y)

with Ksin(x , y) =
sin⇡(x�y)
⇡(x�y) (regular bulk universality).

2 For x⇤ 2 @(⌃V ), (DG 07 [9])

lim
n!1

1

(cn)2/3
K11

✓
x⇤ ± x

(cn)2/3
, x⇤ ± y

(cn)2/3

◆
= KAi(x , y)

with KAi(x , y) =
Ai(x)Ai0(y)�Ai0(x)Ai(y)

x�y
(soft edge universality).

3 For U(x) = NV (x)� a ln x with a > �1 and x > 0 we have, (KV 03 [14])

lim
n!1

1

(cn)2
K11

✓
x

(cn)2
,

y

(cn)2

◆
= KBess,a(x , y)

with KBess,a(x , y) =
Ja(

p
x)
p

yJ0a(
p
y)�Ja(

p
y)

p
xJ0a(

p
x)

2(x�y) (hard edge universality).
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lim
n!1

1

(cn)2/3
K11

✓
x⇤ ± x

(cn)2/3
, x⇤ ± y

(cn)2/3

◆
= KAi(x , y)

with KAi(x , y) =
Ai(x)Ai0(y)�Ai0(x)Ai(y)

x�y
(soft edge universality).

3 For U(x) = NV (x)� a ln x with a > �1 and x > 0 we have, (KV 03 [14])

lim
n!1

1

(cn)2
K11

✓
x

(cn)2
,

y

(cn)2

◆
= KBess,a(x , y)

with KBess,a(x , y) =
Ja(

p
x)
p
yJ0a(

p
y)�Ja(

p
y)

p
xJ0a(

p
x)

2(x�y) (hard edge universality).
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Towards chain models

Cauchy matrix chain (BGS 09 [4]) reduced to spectral variables (MS 94 [16])

dµ(M1, . . . ,Mp) / e
�tr

Pp
j=1 Uj (Mj )

Qp�1
j=1 det(Mj +Mj+1)n

 P({x1j}n1, . . . , {xpj}n1) =
1

Zn

⇥�(X1)�(Xp)e
�

Pp
m=1

Pn
j=1 Um(xmj )

p�1Y

↵=1

det


1

x↵j + x↵+1,k

�n

j,k=1

pY

j=1

nY

`=1

dxj`

We are now dealing with positive definite Hermitian matrices Mp
+(n).

Expressing (`1, . . . , `p)-point correlation function as determinant (EM 98 [12], BB
14 [6])

R(`1,...,`p)
�{x1j}`11 , . . . , {xpj}`p1

�
=

2

4
pY

j=1

n!

(n � `j )!

3

5 1

Zn

⇥
Z

Rn�`1
+

· · ·
Z

Rn�`p
+

P({x1j}n1, . . . , {xpj}n1)
pY

j=1

nY

mj=`j+1

dxjmj
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= det

2

666664

K11(x1r , x1s)
1r`1,1s`1

· · · K1p(x1r , xps)
1r`1,1s`p

...
. . .

...
Kp1(xpr , x1s)
1r`p ,1s`1

· · · Kpp(xpr , xps)
1r`p ,1s`p

3

777775

(
Pp

1 `i )⇥(
Pp

1 `i )

,

with correlation kernels

Kj`(x , y) = e�
1
2Uj (x)� 1

2U`(y)Mj`(x , y), Mp1(x , y) =
n�1X

`=0

�`(x) `(y)
1

h`

and the remaining kernels are (suitable) transformations of Mp1(x , y). The latter is
constructed with the help of monic (Cauchy) biorthogonal polynomials { k ,�k}k�0

ZZ

R2
+

 n(x)�m(y)⌘p(x , y)dxdy = hn�nm

with weight function on R2
+, (case p = 2 as “limit”)

⌘p(x , y) =

Z 1

0
· · ·

Z 1

0

e�U1(x)

x + ⇠1

0

@ e
�

Pp�1
j=2 Uj (⇠j�1)

Qp�3
j=1 (⇠j + ⇠j+1)

1

A e�Up(y)

⇠p�2 + y

p�2Y

j=1

d⇠j .
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Riemann-Hilbert characterization for { k ,�k}k�0:

Determine (p + 1)⇥ (p + 1)
function �(z) = �(z; n) such that

1 �(z) is analytic in C\R
2 With jump for z 2 R\{0}

�+(z) = ��(z)

0

BBBBBBBBBB@

1 e�U1(z)�+ 0
0 1 e�U2(�z)�� 0

0 1 e�U3(z)�+

0 1
. . .

. . .
1

1

CCCCCCCCCCA

3 Singular behavior at z = 0 depending on Uj (z)
4 Normalization

�(z) =
⇣
I + O

⇣
z�1

⌘⌘
diag

h
zn, 1, . . . , 1, z�n

i
, z ! 1.

The RHP is uniquely solvable i↵ ( n(z),�n(z)) exists, moreover (BB 14 [6])

Mj`(x , y) =
(�)`�1

(�2⇡i)j�`+1


��1(w ; n)�(z; n)

w � z

�

j+1,`

����w=x(�)j+1

z=y(�)`�1

This is in sharp contrast to the Itzykson-Zuber model.
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Scaling limits and universality results

We confine ourselves first to

Uj (x) = NVj (x), 8 j : lim
x#0

Vj (x)

| ln x | = j > 0, lim
x!+1

Vj (x)

ln x
= +1

with Vj (x) real analytic on (0,1) and N = n > 0 independent.

In case p = 2:

Zn =

ZZ

Rn
+⇥Rn

+

�2(X )�2(Y )
Qn

j,k=1(xj + yk )
e�N

Pn
j=1(V1(xj )+V2(yj ))dXdY

=

ZZ

Rn
+⇥Rn

+

e�n2E(⌫1,⌫2) dXdY

with the energy functional (here W1(z) = V1(z),W2(z) = V2(�z))

E(⌫1, ⌫2) =
2X

j=1

ZZ
ln |s � t|�1d⌫j (s)d⌫j (t) +

Z
Wj (s)d⌫j (s)

�

�
ZZ

ln |s � t|�1d⌫1(s)d⌫2(t);

Z

R+

d⌫1(s) = 1 =

Z

R�

d⌫2(s).
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We are naturally lead to the minimization problem, i.e. vector equilibrium problem

EW1,W2 = inf
µ12M1[0,1)

µ22M1(�1,0]

E(µ1, µ2).

(2)

Theorem (BaB 09 [3])

There is a unique minimizer
�
µW1
1 , µW2

2

�
to (2), the supports consist of a finite union

of disjoint compact intervals

supp
⇣
µW1
1

⌘
=

L1G

`=1

A` ⇢ (0,1), supp
⇣
µW2
2

⌘
=

L2G

`=1

B` ⇢ (�1, 0).

Moreover the shifted resolvents y1 = �R1 +
1
3 (2W

0
1 +W 0

2), y3 = R2 � 1
3 (W

0
1 + 2W 0

2),
y2 = �(y1 + y3) with

Rj (z) =

Z
(s � z)�1dµ

Wj

j (s),

are the three branches of the cubic

y3 � R(z)y � D(z) = 0. (spectral curve)
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�
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⇣
µW1
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⌘
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µW2
2

⌘
=

L2G
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X1

X2

X3

Figure 1 : The Hurwitz diagram for a typical three sheeted covering of CP1. The support of µ
W1
1

on the left in red and for µ
W2
2 on the right in blue. This corresponds to the situation p = 2 and

limx#0
Vj (x)

| ln x| > 0 in place.

Near the branch points, i.e. edges, the densities ⇢j (s) of dµ
Wj

j (s) = ⇢j (s)ds vanish like

square roots, in the interior they are positive (generically!). Thus

With screening potentials, we obtain the same universality classes (i.e.
regular bulk and soft edge) as in the Hermitian one matrix model.

For non-screening potentials, the supports in Theorem 1 may contain the origin, thus
leading to a higher order branch point at the origin and a singular density

⇢j (s) = O
⇣
|s|�

p
p+1

⌘
, s ! 0. “new” universality class

Thomas Bothner Universality results for the Cauchy-Laguerre chain matrix model



X1

X2

X3

Figure 1 : The Hurwitz diagram for a typical three sheeted covering of CP1. The support of µ
W1
1

on the left in red and for µ
W2
2 on the right in blue. This corresponds to the situation p = 2 and

limx#0
Vj (x)

| ln x| > 0 in place.

Near the branch points, i.e. edges, the densities ⇢j (s) of dµ
Wj

j (s) = ⇢j (s)ds vanish like

square roots, in the interior they are positive (generically!).

Thus

With screening potentials, we obtain the same universality classes (i.e.
regular bulk and soft edge) as in the Hermitian one matrix model.

For non-screening potentials, the supports in Theorem 1 may contain the origin, thus
leading to a higher order branch point at the origin and a singular density

⇢j (s) = O
⇣
|s|�

p
p+1

⌘
, s ! 0. “new” universality class

Thomas Bothner Universality results for the Cauchy-Laguerre chain matrix model



X1

X2

X3

Figure 1 : The Hurwitz diagram for a typical three sheeted covering of CP1. The support of µ
W1
1

on the left in red and for µ
W2
2 on the right in blue. This corresponds to the situation p = 2 and

limx#0
Vj (x)

| ln x| > 0 in place.

Near the branch points, i.e. edges, the densities ⇢j (s) of dµ
Wj

j (s) = ⇢j (s)ds vanish like

square roots, in the interior they are positive (generically!). Thus

With screening potentials, we obtain the same universality classes (i.e.
regular bulk and soft edge) as in the Hermitian one matrix model.

For non-screening potentials, the supports in Theorem 1 may contain the origin, thus
leading to a higher order branch point at the origin and a singular density

⇢j (s) = O
⇣
|s|�

p
p+1

⌘
, s ! 0. “new” universality class

Thomas Bothner Universality results for the Cauchy-Laguerre chain matrix model



X1

X2

X3

Figure 1 : The Hurwitz diagram for a typical three sheeted covering of CP1. The support of µ
W1
1

on the left in red and for µ
W2
2 on the right in blue. This corresponds to the situation p = 2 and

limx#0
Vj (x)

| ln x| > 0 in place.

Near the branch points, i.e. edges, the densities ⇢j (s) of dµ
Wj

j (s) = ⇢j (s)ds vanish like

square roots, in the interior they are positive (generically!). Thus

With screening potentials, we obtain the same universality classes (i.e.
regular bulk and soft edge) as in the Hermitian one matrix model.

For non-screening potentials, the supports in Theorem 1 may contain the origin,

thus
leading to a higher order branch point at the origin and a singular density

⇢j (s) = O
⇣
|s|�

p
p+1

⌘
, s ! 0. “new” universality class

Thomas Bothner Universality results for the Cauchy-Laguerre chain matrix model



X1

X2

X3

Figure 1 : The Hurwitz diagram for a typical three sheeted covering of CP1. The support of µ
W1
1

on the left in red and for µ
W2
2 on the right in blue. This corresponds to the situation p = 2 and

limx#0
Vj (x)

| ln x| > 0 in place.

Near the branch points, i.e. edges, the densities ⇢j (s) of dµ
Wj

j (s) = ⇢j (s)ds vanish like

square roots, in the interior they are positive (generically!). Thus

With screening potentials, we obtain the same universality classes (i.e.
regular bulk and soft edge) as in the Hermitian one matrix model.

For non-screening potentials, the supports in Theorem 1 may contain the origin, thus
leading to a higher order branch point at the origin and a singular density

⇢j (s) = O
⇣
|s|�

p
p+1

⌘
, s ! 0. “new” universality class

Thomas Bothner Universality results for the Cauchy-Laguerre chain matrix model



The non-screening e↵ect appears for instance for the classical Laguerre weights

Uj (x) = NVj (x)� aj ln x , aj > �1 : ak` =
X̀

j=k

aj > �1; lim
x!+1

Vj (x)

ln x
= +1

and Vj is real-analytic on [0,1).

Example (Standard (symmetric) Laguerre weights for p = 2)

Consider the symmetric choice Vj (x) = x � a ln x , x 2 (0,1), j=1,2. The underlying
spectral curve equals

y3 � z2 + a2

3z2
y +

2z2 � 18a2 + 54a� 27

27z2
= 0

a = 0 a = 1 a = 2
a = 3

Figure 2 : The potentials Vj (x) are shown in red for di↵erent choices of the parameter a � 0. In
green the density of the measure ⇢1(x).
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Meijer-G random point field for p-chain

Definition

Let aj , bj 2 C and 0  m  q, 0  n  p be integers. The Meijer-G function is defined
through the Mellin-Barnes integral formula

G m,n
p,q

⇣
a1,...,ap
b1,...,bq

��� ⇣
⌘
=

1

2⇡i

Z

L

Qm
`=1 �(b` + s)

Qq�1
`=m �(1� b`+1 � s)

Qn
`=1 �(1� a` � s)

Qp�1
`=n �(a`+1 + s)

⇣�s ds

with a typical choice of integration contour shown below.

L

Figure 3 : A choice for L corresponding to aj = bj = 0.

These special functions have appeared recently in the statistical analysis of singular
values of products of Ginibre random matrices (AB 12 [1], AKW 13 [2], KZ 13 [15]).
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Conjecture (BB 14 [6])

For any p 2 Zp�2, there exists c0 = c0(p) and {⌘j}p1 which depend on {aj}p1 such that

lim
n!1

c0

np+1
n⌘`�⌘jKj`

⇣ c0

np+1
⇠,

c0

np+1
⌘
⌘
/ G(p)

j`

�
⇠, ⌘; {aj}p1

�

uniformly for ⇠, ⌘ chosen from compact subsets of (0,1).

Here the limiting
correlation kernels equal

G(p)
j`

�
⇠, ⌘; {aj}p1

�
=

Z

L

Z

bL

Q`�1
s=0 �(u � a1s)Qp

s=` �(1 + a1s � u)

Qp
s=j �(a1s � v)

Qj�1
s=0 �(1� a1s + v)

⇠v⌘�u

1� u + v

dv du

(2⇡i)2

+
X

s2P[{0}
res
v=s

Q`�1
s=0 �(1 + v � a1s)Qp

s=` �(a1s � v)

Qp
s=j �(a1s � v)

Qj�1
s=0 �(1 + v � a1s)

⇠v⌘�v

(�)j⇠ � (�)`⌘

with P = {a1`, 1  `  p}.

Theorem (BB 14 [6])

The conjecture holds for p = 2, 3 and potentials Uj (x) = Nx � aj ln x.
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Why not (yet) universality theorem for arbitrary p? I

1 No rigorous potential theoretic foundation for non-screening situation! We work
with explicit spectral curves, i.e. start from Hurwitz diagram and verify a
posteriori that the “guess” was correct. For p = 3:

y4 � z � 2

2z
y2 +

(3z � 4)(3z � 8)2

432z3
= 0 (3)

X1

X2

X3

X4

1

Figure 4 : The four sheeted Riemann surface corresponding to (3).
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Why not (yet) universality theorem for arbitrary p? II

2 We construct the relevant parametrices explicitly for arbitrary p 2 Z�2, i.e. in
particular the model problem at the origin is solved with the help of Meijer-G
functions

�
1 0

��a1 1

�
�

�
1 0

��a3 1

�

1 �
�

0 (��)a2

�(��)�a2 0

�
� 1

�
0 �a1

���a1 0

�
�

�
0 �a3

���a3 0

�

1 �
�

1 0
��a2e�i�a2 1

�
� 1

1 �
�

1 0
��a2ei�a2 1

�
� 1

�
1 0

��a1 1

�
�

�
1 0

��a3 1

�

1

Figure 5 : The local model problem at the origin, situation p = 3.

but the error analysis becomes more involved for p � 4.
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