Statistical Methodology
(† Current or previous Ph.D.
student coauthors)
1.
W.-Z.
Su† and X. Wang. (2022+) “Multiple Hypotheses Testing
on Dependent Count Data with Covariate Effects”. Statistics and Its
Interface. accepted. HMMtesting (Rpackage)
2.
W.-J.
Su†, X. Wang and R. D. Szczesniak.
(2021). “Flexible link
functions in a joint hierarchical Gaussian process model”, Biometrics 77(2), 754-764. doi:10.1111/biom.13291
3.
W.-J.
Su† , E. Gecili, X. Wang and R. D. Szczesniak.
(2021) “An empirical
comparison of segment and stochastic linear mixed effects models to estimate
rapid disease progression in longitudinal biomarker studies”. Statistics
in Biopharmaceutical Research 13(3), 270-279. doi:
10.1080/19466315.2020.1870546
4.
X. Wang, J. Pancras, and D. K. Dey. (2021). “Investigating
emergent nested geographic structure in consumer purchases: a Bayesian dynamic
multi-scale spatiotemporal modeling approach”, Journal of Applied Statistics
48(3), 410-433. doi:
10.1080/02664763.2020.1725810.
5.
W.-J.
Su†, X. Wang and R. D. Szczesniak.
(2020). “Risk factor
identification in cystic fibrosis by flexible hierarchical joint models''. Statistical Methods in Medical Research
30 (1), 244-260. doi: 10.1177/0962280220950369
6.
W.-Z.
Su† and X. Wang. (2020). “Hidden Markov
model in multiple testing on dependent
count data”,
Journal of Statistical Computation and Simulation 90(5), 889-906, doi:
10.1080/00949655.2019.1710507
7.
X. Wang, A. Shojaie, and J. Zou. (2019) “Bayesian hidden Markov models for
dependent large-scale multiple testing”, Computational
Statistics & Data Analysis 136, 123-136, doi:
10.1016/j.csda.2019.01.009
8.
D.
Li†, X. Wang, and D. K. Dey. (2019)
“Power link functions
in ordinal regression models with Gaussian process priors”,
Environmetrics,
accepted. doi: 10.1002/env.2564
9.
Y.
Zhang†, X. Wang, and B. Zhang.
(2019). “Bayesian approach
for clustered interval-censored data with time-varying covariate effects”, Statistics and Its Interface 12 (3),
457-465, doi: 10.4310/19-SII563.
10.
L.L.
Duan†, X. Wang, J.P. Clancy, and R.
D. Szczesniak. (2018) “Joint hierarchical
Gaussian process model with application to personalized prediction in medical monitoring”, Stat 7(1), doi:
10.1002/sta4.178.
11.
L.
L. Duan†, R. D. Szczesniak, and X. Wang. (2017). “Functional
inverted-Wishart for Bayesian multivariate spatial modeling with application to
regional climatology model data”, Environmetrics 28(7), doi:10.1002/env.2467, in press.
12.
D.
Li†, X. Wang, and D. K. Dey. (2016).
“A flexible cure
rate model for spatially correlated survival data based on generalized extreme
value distribution and Gaussian process priors,” Biometrical Journal 58(5), 1178-1197, DOI:
10.1002/bimj.201500040.
13.
E.
Salazar, D. Hammerling, X. Wang, B. Sansó, A.O. Finley, and L.
Mearns. (2016). “Observation-based blended projections from ensembles of
regional climate models,'' Climatic
Change 138(1), 55-69, doi:
10.1007/s10584-016-1722-1.
14.
D.
Li†, X. Wang, S. Song, N. Zhang, and
D. K. Dey. (2015). “Flexible link
functions in a joint model of binary and longitudinal data”, Stat 4(1), 320–330, doi:
10.1002/sta4.98.
15.
D.
Li†, X. Wang, L. Lin, & D. K.
Dey. (2015). “Flexible link
functions in nonparametric binary regression with Gaussian process priors,” Biometrics 72, 707-719, doi:
10.1111/biom.12462.
16.
X.
Wang, M-H Chen, R. C. Kuo, and D. K. Dey. (2015).
“Dynamic spatial pattern recognition in count data,” Z. Jin et al. (eds.), New Developments in Statistical Modeling,
Inference and Application, ICSA Book Series in Statistics, Springer
International Publishing Switzerland, doi:
10.1007/978-3-319-42571-9_10, in press.
17.
J.
Pancras, X. Wang, and D. K. Dey.
(2015). “Investigating the
impact of customer stochasticity on firm price discrimination strategies using
a new Bayesian mixture scale heterogeneity model,” Marketing
Letters 27(3), 537-552, doi:
10.1007/s11002-015-9362-1.
18.
X. Wang, M-H Chen, R. C. Kuo, and D. K. Dey. (2015). “Bayesian spatial-temporal
modeling of ecological zero-inflated count data,” Statistica Sinica
25, 189-204.
19.
X. Wang and D. K. Dey.
(2011). “Generalized
extreme value regression for ordinal response data”. Environmental
and Ecological Statistics 18(4),
619-634, doi: 10.1007/s10651-010-0154-8
Interdisciplinary
Research
1. M. T. Booth, M. Urbanic, X. Wang, and
J.J. Beaulieu. (2021). “Bioturbation frequency alters methane emissions from
reservoir sediments”, Science of the Total Environment 789(1). doi: 10.1016/j.scitotenv.2021.148033
2. A.E. Egan, A.M.K. Thompson, D. Buesing, S. M. Fourman, A.E.B. Packard, T. Terefe1, D. Li†, X. Wang, S. Song, M.B.
Solomon, Y.M. Ulrich-Lai. (2018)
“Palatable food affects HPA axis responsivity and forebrain neurocircuitry in
an estrous cycle-specific manner in female rats”, Neuroscience 384(1), 224-240.
5. X. Wang. (2017). “Statistical Assessment of QC Metrics on Raw LC-MS/MS Data”, Methods in Molecular Biology, Proteomics:
Methods and Protocols, 325–337. L. Comai, J.
Katz, and P. Mallick (editors), Springer Nature, New York.,
doi:10.1007/978-1-4939-6747-622.
Doctoral Students
Supervision
1. Leo L. Duan. 08/2015 (joint with Rhonda Szczesniak, CCHMC)
Dissertation: Bayesian
Nonparametric Methods with Applications in Longitudinal, Heterogeneous and
Spatiotemporal Data
2.
Dan
Li.
08/2016.
Dissertation: Bayesian
Nonparametric and Semiparametric Models for Categorical, Survival and
Longitudinal Data
3. Yue Zhang. 08/2016 (joint with Bin Zhang, CCHMC)
Dissertation: Bayesian
Cox Models for Interval-Censored Survival Data
4. Weiji Su. 08/2020 (joint with Rhonda Szczesniak, CCHMC)
Dissertation: Flexible Joint Hierarchical
Gaussian Process Model for Longitudinal and Recurrent Event Data
5. Weizhe Su.
12/2020
Dissertation: Bayesian
Hidden Markov Model in Multiple Testing on Dependent Count Data
Undergraduate Research
Supervision
Yiren Wang. 02/2014 – 08/2015. TAFT Undergraduate Research Awardee.
Change
point detection in statistical process control
Khoa
Huynh Le Anh. 2019-2020. Undergraduate
capstone project.
LASSO in generalized linear regression model
My
Nguyen, 2020
Gaussian Process in Machine Learning
Behruz Bazarov,
2022
Deep Learning on Loneliness, Stress, and Technology
Usage during the COVID-19 Pandemic