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Chapter 1

Vectors

1.1 Displacements

Even though motion in mechanics is best described in terms of vectors, the formal study of
vectors began only after the development of electromagnetic theory, when it was realized
that they were essential to the problem of describing the electric and magnetic fields.
However, vector analysis assumes an even more interesting role in mechanics, where it is
used to implement a powerful principle of physics called the principle of covariance. This
principle was first explicitly stated by Einstein as a fundamental postulate of the special
theory of relativity. It requires the laws of physics to be independent of the features of any
particular coordinate system, thereby lending a certain depth to the fundamental laws of
physics and giving us a way to compare observations of physical phenomena by different
observers using different coordinate frames. The great value of vector analysis lies in the
fact that it clarifies the meaning of coordinate independence.

We assume that motion in space will, in general, occur smoothly along some curve
passing through two given points (an initial position and a final position), but the net
effect of the motion is described by a directed line segment beginning at the initial position
of the moving body and terminating at its final position, as shown in figure (1.1). If a
body moves from the point labeled “i” in figure (1.1) to the point “f” then, no matter
what the actual path traced by the body in going from i to f , we define its displacement
as the directed straight line segment from i to f as shown. This directed line segment has
both magnitude (its length) and direction (the arrow pointing from the initial position
to the final position) and will be our prototypical vector. Thus, roughly speaking, a
vector is any physical quantity that has both magnitude and direction in space and it may
graphically be represented by a directed line segment. It is important to bear in mind
that what defines a displacement is its magnitude and direction, not the actual initial
and final points. Two displacements with the same magnitude and direction are identical,

1
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x1

x3

x2

displacement

i

f

Figure 1.1: Displacement vector

regardless of the initial and final points. So also, what defines a vector is its magnitude
and direction and not its location in space.

We must also consider how displacements in particular and vectors in general may
be represented algebraically. In a two dimensional plane, we introduce two mutually
perpendicular axes intersecting at some point O, the origin, order them in some way calling
one the x axis and the other the y axis, and label points by an ordered pair, the coordinates
(x, y), where x represents the projection of the point on the x axis and y its projection
on the y axis. A more fruitful way to think about this Cartesian coordinate system is to
imagine that we have two mutually perpendicular and space filling one parameter families
of parallel straight lines in the plane (see figure (1.2). Because the families are space filling,
every point will lie on the intersection of one “vertical” and one “horizontal” line. Label a
point by the parameter values of the straight lines it lies on. Why is this a better way to
think about coordinates? Because it is now easily generalized. Straight lines are not the
only curves possible. We could also consider circles of radius r about an origin together
with radial lines from the origin, each making an angle θ with some chosen direction [see
figure (1.3)]. Every point in the plane lies on the intersection of some circle with some
radial line and could therefore be labeled by the pair (r, θ). These, of course, are the
familiar polar coordinates. The system is ill defined at the origin because θ cannot be
defined there.

The situation is similar in three dimensions, except that the curves are now replaced
by surfaces. A coordinate system in three dimensions is a set of three independent, space
filling, one parameter families of surfaces relative to which points are labeled. In the
Cartesian system this set consists of three mutually perpendicular one parameter families
of parallel planes. All points in R3 will lie on the intersection of a unique set of three
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Figure 1.2: Cartesian coordinates in the plane.
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planes and can be represented by an ordered triplet r⃗ = (x1, x2, x3) consisting of the
parameter values of the planes that intersect at the point in question. This is equivalent
to the traditional way of viewing the Cartesian system as consisting of three mutually
perpendicular straight lines, called coordinate axes, which intersect at a fixed point called
the origin. Each axis is normal to a particular family of planes and each coordinate value
gives the value of the papameter labeling the members of this family. They are ordered in
some way and all points are represented by a correspondingly ordered set of three numbers,
an ordered triplet r⃗ = (x1, x2, x3), each number measuring the distance along the direction
specified by one of the axes from the origin to the point in question. Alternatively one
could consider a family of right circular cylinders with a common axis of symmetry and
two families of mutually perpendicular planes, one of which contains the axis of symmetry
of the cylinders and the other is perpendicular to this axis. These lead to the so called
cylindrical system. In a spherical spherical system the surfaces are concentric spheres,
right circular cones with common axis of symmetry and apex at the center of the spheres
and planes containing the axis of symmetry of the cones.

The choice of coordinate system will depend on the “symmetries” of the given problem.
For example, it is simpler to work with polar coordinates when examining the motion
of the planets about the sun. However, let us confine ourselves to Cartesian systems
until they become inconvenient. Although we could consider finite displacements in R3,
it is sufficient and beneficial in the long run to restrict our attention to infinitesimal
displacements. Introduce a Cartesian coordinate system and consider two points, i and
f that are infinitesimally separated, with coordinates r⃗i = (x1, x2, x3) and r⃗f = (x1 +
dx1, x2+ dx2, x3+ dx3) respectively. The quantities dxi represent displacements from i to
f along the three (independent) coordinate directions. Let us represent the displacement,
dr⃗, of a body moving from i to f as the ordered collection of these displacements (an
ordered triplet),1

dr⃗ = (dx1, dx2, dx3). (1.1.1)

The numbers dxi that form the triplet are called the components of dr⃗. The magnitude
of dr⃗, denoted by |dr⃗|, is given by Pythagoras’ theorem as

|dr⃗| =
√
dx21 + dx22 + dx23 . (1.1.2)

Its direction can be specified by the angles that dr⃗ makes with the coordinate axes. Calling
these angles α1, α2 and α3 respectively and applying Pythagoras’ theorem again we find

dxi = |dr⃗| cosαi, i ∈ {1, 2, 3}, (1.1.3)

The cosines are called the direction cosines of the displacement. They are not all
independent. Indeed, by substituting (1.1.3) into (1.1.2), one sees that they must satisfy

1The arrow over the r⃗ indicates that dr⃗ is not a number but an ordered triplet.
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Figure 1.4: Representation of the displacement vector

the constraint ∑
i

cos2 αi = 1, (1.1.4)

showing that one of the three angles is determined by the other two.
We will sometimes denote the ith component, dxi, of dr⃗ by [dr⃗]i. The following defini-

tions are natural:

• Two displacements are equal if they have the same magnitude and direction:

dr⃗1 = dr⃗2 ⇔ [dr⃗1]i = [dr⃗2]i (1.1.5)

• If a is a real number,
[adr⃗]i = a[dr⃗]i (1.1.6)

In particular, with a = −1, [−dr⃗]i = −[dr⃗]i.

• If dr⃗1 and dr⃗2 are two displacements then their sum is also a displacement given by

[dr⃗1 + dr⃗2]i = [dr⃗]1,i + [dr⃗]2,i (1.1.7)

(This definition can be understood as the algebraic equivalent of the familiar geo-
metric parallelogram law of vector addition.)

Our implicit choice of coordinate system can be made explicit by assigning directions to
the coordinate axes as follows: since every straight line is determined by two distinct
points, on each axis choose two points one unit away from each other, in the direction of
increasing coordinate value. There are only three corresponding displacements, which can
be written as2

x̂1 = x̂ = (1, 0, 0), x̂2 = ŷ = (0, 1, 0) and x̂3 = ẑ = (0, 0, 1) (1.1.8)

2Carets, as opposed to arrows, are used to represent any displacement of unit magnitude.
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and it is straightforward that, using the scalar multiplication rule (1.1.6) and the sum rule
(1.1.7), any displacement dr⃗ could also be represented as

dr⃗ = dx1x̂1 + dx2x̂2 + dx3x̂3 =
∑
i

dxix̂i. (1.1.9)

The x̂i represent unit displacements along the of our chosen Cartesian system and the
set {x̂i} is called a basis. In R3, we could use the Cartesian coordinates of any point to
represent its displacement from the origin. Displacements in R3 from the origin

r⃗ = (x1, x2, x3) =
∑
i

xix̂i. (1.1.10)

are called position vectors.
It is extremely important to recognize that the representation of a displacement de-

pends sensitively on the choice of coordinate system whereas the displacement itself does
not. Therefore, we must distinguish between displacements (and, vectors, in general)
and their representations. To see why this is important, we first examine how different
Cartesian systems transform into one another.

1.2 Linear Coordinate Transformations

Two types of transformations exist between Cartesian frames, viz., translations of the
origin of coordinates and rotations of the axes. Translations are just constant shifts of
the coordinate origin. If the origin, O, is shifted to the point O′ whose coordinates are
(xO, yO, zO), measured from O, the coordinates get likewise shifted, each by the corre-
sponding constant,

x′ = x− xO, y′ = y − yO, z′ = z − zO (1.2.1)

But since xO, yO and zO are all constants, such a transformation does not change the
representation of a displacement vector,

dr⃗ = (dx, dy, dz) = (dx′, dy′, dz′). (1.2.2)

Representations of displacement vectors are, however, affected by a rotation of the coordi-
nate axes. Let us first consider rotations in two spatial dimensions [see figure (1.5)], where
the primed axes are obtained from the original system by a rotation through some angle,
θ. The coordinates (x1, x2) of a point P in the original system would be (x′1, x

′
2) in the

rotated system. In particular, in terms of the length l of the hypotenuse OP of triangle
AOP [figure (1.5)], we have

x1 = l cos(α+ θ) = (l cosα) cos θ − (l sinα) sin θ = x′1 cos θ − x′2 sin θ
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Figure 1.5: Rotations in two space dimensions

x2 = l sin(α+ θ) = (l sinα) cos θ + (l cosα) sin θ = x′2 cos θ + x′1 sin θ. (1.2.3)

Inverting these relations gives

x′1 = x1 cos θ + x2 sin θ

x′2 = −x1 sin θ + x2 cos θ (1.2.4)

or, in terms of the components of an infinitesimal displacement from P ,

dx′1 = dx1 cos θ + dx2 sin θ

dx′2 = −dx1 sin θ + dx2 cos θ (1.2.5)

We could also exploit the representation given in (1.1.9) to obtain the same result. Let x̂1
and x̂2 designate the directions of the original x1 and x2 axes respectively and x̂′1 and x̂′2
the directions of the rotated axes. Then, because the displacement itself is independent
of the coordinate system, we may write

dr⃗ = dx1x̂1 + dx2x̂2 = dx′1x̂
′
1 + dx′2x̂

′
2 (1.2.6)

Clearly, from figure (1.5)

x̂′1 = cos θx̂1 + sin θx̂2

x̂′2 = − sin θx̂1 + cos θx̂2. (1.2.7)

Inserting these into the (1.2.6) we find

dr⃗ = dx1x̂1 + dx2x̂2 = dx′1(cos θx̂1 + sin θx̂2) + dx′2(− sin θx̂1 + cos θx̂2)
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= (dx′1 cos θ − dx′2 sin θ)x̂1 + (dx′1 sin θ + dx′2 cos θ)x̂2 (1.2.8)

A simple comparison now gives

dx1 = dx′1 cos θ − dx′2 sin θ

dx2 = dx′1 sin θ + dx′2 cos θ (1.2.9)

or, upon inverting the relations,

dx′1 = dx1 cos θ + dx2 sin θ

dx′2 = −dx1 sin θ + dx2 cos θ. (1.2.10)

It is easy to see that these transformations can also be written in matrix form as(
dx′1
dx′2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
dx1
dx2

)
(1.2.11)

and (
dx1
dx2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
dx′1
dx′2

)
(1.2.12)

Other, more complicated but rigid transformations of the coordinate system can always
be represented as combinations of rotations and translations.

1.3 Vectors and Scalars

Definition: A vector is a quantity that can be represented in a Cartesian system by
an ordered triplet (A1, A2, A3) of components, which transform as the components of an
infinitesimal displacement under a rotation of the reference coordinate system. Any vector
can always be expressed as a linear combination of basis vectors, A⃗ = Aix̂i.

In two dimensions, a vector may be represented by two Cartesian components A⃗ =
(A1, A2), which transform under a rotation of the Cartesian reference system as (A1, A2) →
(A′

1, A
′
2) such that (

A′
1

A′
2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
A1

A2

)
(1.3.1)

Definition: A scalar is any physical quantity that does not transform (stays invariant)
under a rotation of the reference coordinate system.
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A typical scalar quantity in Newtonian mechanics would be the mass of a particle. The
magnitude of a vector is also a scalar quantity, as we shall soon see. It is of great interest
to determine scalar quantities in physics because these quantities are not sensitive to
particular choices of coordinate systems and are therefore the same for all observers.
Other examples of scalars within the context of Newtonian mechanics are temperature
and density.

In the Newtonian conception of space and time, time is also a scalar. Because time is
a scalar all quantities constructed from the position vector of a particle moving in space
by taking derivatives with respect to time are also vectors, therefore

• the velocity: v⃗ = dr⃗
dt

• the acceleration: a⃗ = dv⃗
dt

• the momentum: p⃗ = mv⃗ and

• the force F⃗ = dp⃗
dt

are all examples of vectors that arise naturally in mechanics. In electromagnetism, the
electric and magnetic fields are vectors. As an example of a quantity that has the ap-
pearance of a vector but is not a vector, consider A = (x,−y). Under a rotation of the
coordinate system by an angle θ,

A′
1 = A1 cos θ −A2 sin θ

A′
2 = A1 sin θ +A2 cos θ (1.3.2)

which are not consistent with (1.3.1). The lesson is that the transformation properties
must always be checked.

1.4 Rotations in two dimensions

Equation (1.3.1) can also be written as follows

A′
i =

∑
j

R̂ijAj (1.4.1)

where

R̂ij(θ) =

(
cos θ sin θ
− sin θ cos θ

)
(1.4.2)

is just the two dimensional “rotation” matrix. We easily verify that it satisfies the following
very interesting properties:
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1. If we perform two successive rotations on a vector A⃗, so that after the first rotation

Ai → A′
i =

∑
j

R̂ij(θ1)Aj (1.4.3)

and after the second rotation

A′
i → Ai

′′ =
∑
k

R̂ik(θ2)A
′
k =

∑
k

R̂ik(θ2)R̂kj(θ1)Aj (1.4.4)

then by explicit calculation it follows that∑
k

R̂ik(θ2)R̂kj(θ1) = R̂ij(θ1 + θ2) (1.4.5)

so
Ai

′′ =
∑
j

R̂ij(θ1 + θ2)Aj (1.4.6)

i.e., the result of two rotations is another rotation. The set of rotation matrices is
therefore “closed” under matrix multiplication.

2. The unit matrix, 1, is the rotation matrix R̂(0).

3. The transpose of the rotation matrix whose angle is θ is the rotation matrix whose
angle is −θ. This follows easily from,

R̂(−θ) =
(

cos(−θ) sin(−θ)
− sin(−θ) cos(−θ)

)
=

(
cos θ − sin θ
sin θ cos θ

)
= R̂T (θ) (1.4.7)

Now, using the closure property,

RT (θ) ·R(θ) = R(−θ) ·R(θ) = R(0) = 1 (1.4.8)

Therefore, for every rotation matrix R̂(θ) there exists an inverse, R̂(−θ) = R̂T .

4. Matrix multiplication is associative.

The rotation matrices therefore form a group under matrix multiplication.3 The group
elements are all determined by one continuous parameter, the rotation angle θ. This is
the commutative group, called SO(2), of 2 × 2 orthogonal matrices with unit determi-
nant, under matrix multiplication. We will now see that the situation gets vastly more
complicated in the physically relevant case of three dimensions.

3Recall the following definitions:

Definition: The pair (G, ∗) consisting of any set G = {g1, g2, ...} with a binary operation ∗ defined on it
that obeys the four properties

• closure under ∗, i.e., ∀ g1, g2 ∈ G g1 ∗ g2 ∈ G

• existence of an identity, i.e., ∃ e ∈ G s.t. ∀ g ∈ G, g ∗ e = e ∗ g = g
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1.5 Rotations in three dimensions

In two dimensions there is just one way to rotate the axes which, if we introduce a “x3”
axis, amounts to a rotation of the x1−x2 axes about it. In three dimensions there are three
such rotations possible: the rotation of the x1 − x2 axes about the x3 axis, the rotation
of the x2 − x3 axes about the x1 axis and the rotation of the x1 − x3 axes about the x2
axis. In each of these rotations the axis of rotation remains fixed, and each rotation is
obviously independent of the others. Thus, we now need 3× 3 matrices and may write

R̂3(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (1.5.1)

to represent the rotation of the x1 − x2 axes as before about the x3 axis. Under such a
rotation only the first and second component of a vector are transformed according to the
rule

A′
i =

∑
j

R̂3
ij(θ)Aj (1.5.2)

Rotations about the other two axes may be written likewise as follows:

R̂1(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (1.5.3)

and4

R̂2(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (1.5.4)

The general rotation matrix in three dimensions may be constructed in many ways, one
of which (originally due to Euler) is canonical:

• first rotate the (x1, x2) about the x3 axis through an angle θ. This gives the new
axes (ξ, η, τ) (τ ≡ z),

• existence of an inverse i.e., ∀ g ∈ G ∃ g−1 ∈ G s.t. g ∗ g−1 = g−1 ∗ g = e, and

• associativity of ∗, i.e., ∀ g1, g2, g3 ∈ G, g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3
is called a group.

Definition: If ∀ g1, g2 ∈ G, [g1, g2] = g1 ∗ g2 − g2 ∗ g1 = 0 then the group (G, ∗) is called a “commutative”
or “ Abelian” group. [g1, g2] is called the commutator of the elements g1 and g2.

4Note the change in sign. It is because we are using a right-handed coordinate system. Convince
yourself that it should be so.
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• then rotate (ξ, η, z) about the ξ axis through an angle ϕ. This gives the new axes
(ξ′, η′, τ ′) (ξ′ ≡ ξ),

• finally rotate (ξ, η′, τ ′) about the τ ′ axis through an angle ψ to get (x′, y′, z′).

We get
R̂(θ, ϕ, ψ) = R̂3(ψ) · R̂2(ϕ) · R̂3(θ) (1.5.5)

The angles {θ, ϕ, ψ} are called the Euler angles after the the originator of this particular
sequence of rotations.5 The sequence is not unique however and there are many possible
ways to make a general rotation. To count the number of ways, we need to keep in mind
that three independent rotations are necessary:

• the first rotation can be performed in one of three ways, corresponding to the three
independent rotations about the axes,

• the second rotation can be performed in one of two independent ways: we are not per-
mitted to rotate about the axis around which the previous rotation was performed,
and

• the third rotation can be performed in one of two independent ways: again we
are not permitted to rotate about the axis around which the previous rotation was
performed.

So in all there are 3 × 2 × 2 = 12 possible combinations of rotations that will give the
desired general rotation matrix in three dimensions. Note that any scheme you choose
will involve three and only three independent angles, whereas only one angle was needed
to define the general rotation matrix in two dimensions. The general rotation matrix in n
dimensions will require n(n− 1)/2 angles.

Three dimensional rotation matrices satisfy some interesting properties that we will
now outline:

• The product of any two rotation matrices is also a rotation matrix.

• The identity matrix is just the rotation matrix R̂(0, 0, 0).

• All three dimensional rotation matrices, like their two dimensional counterparts,
obey the condition

R̂T · R̂ = 1 (1.5.6)

5Problem: Show that the general rotation matrix constructed with the rotation sequence of (1.5.5) is

R̂(θ, ϕ, ψ) =

 cos θ cosϕ cosψ − sin θ sinψ cosϕ cosψ sin θ + cos θ sinψ − cosψ sinϕ
− cosψ sin θ − cos θ cosϕ sinψ cos θ cosψ − cosϕ sin θ sinψ sinϕ sinψ

cos θ sinϕ sin θ sinϕ cosϕ
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where R̂T is the transpose of R̂, i.e.,

R̂Tij = R̂ji (1.5.7)

The transpose of any rotation matrix is also a rotation matrix. It is obtained by
applying the separate rotation matrices in reverse order. In the Euler parametriza-
tion,6

R̂T (θ, ϕ, ψ) = R̂(−ψ,−ϕ,−θ) (1.5.8)

Therefore, the transpose of a rotation matrix is its inverse.

• Finally, the associative property of matrix multiplication ensures that the product
of rotations is associative.

The four properties listed above ensure that three dimensional rotations form a group un-
der matrix multiplication. This the continuous, three parameter group called SO(3) and is
the group of all 3×3 orthogonal matrices of unit determinant, under matrix multiplication.
The group is not commutative.

Rotations keep the magnitude of a vector invariant. Suppose A⃗ has components
(A1, A2, A3). Under a general rotation the components transform as

A′
i =

∑
j

R̂ijAj (1.5.9)

Therefore,∑
i

A′
iA

′
i =

∑
ijk

AjR̂
T
jiR̂ikAk =

∑
jk

Aj

(∑
i

R̂TjiR̂ik

)
Ak =

∑
jk

AjδjkAk =
∑
j

AjAj

(1.5.10)
where δjk is the Kronecker δ,7 and in the last step we use the fact that the transpose of

R̂ is its inverse.
∑

iAiAi is simply the length square of the vector |A⃗|, or its magnitude
squared, i.e.,

|A⃗| =
√∑

i

AiAi (1.5.11)

6Problem: Verify this explicitly!
7Problem: The Kronecker δ is defined by

δij =

{
0 if i ̸= j
1 if i = j

so it is the unit matrix. In fact, δij is a “tensor”, i.e., it transforms as two copies of a vector under
rotations. Show this by showing that

δ′ij =
∑
lk

R̂ilR̂jkδlk = δij .
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is invariant under rotations.

1.6 Algebraic Operations on Vectors

We define

• Vector equality:

A⃗ = B⃗ ⇔ Ai = Bi, for all i (1.6.1)

• Scalar multiplication:

B⃗ = aA⃗⇔ Bi = aAi, for a ∈ R (1.6.2)

and

• Vector addition/subtraction:

C⃗ = A⃗± B⃗ ⇔ Ci = Ai ±Bi (1.6.3)

It is easy to show that the results of scalar multiplication, addition and subtraction are
vectors (i.e., having the correct transformation properties). Furthermore, there are two
ways to define a product between two vectors.

1.6.1 The scalar product

The first is called the scalar (or inner, or dot) product and yields a scalar quantity. If A⃗
and B⃗ are two vectors,

A⃗ · B⃗ =
∑
i

AiBi (1.6.4)

To show that A⃗ · B⃗ is a scalar under rotations, consider∑
i

A′
iB

′
i =

∑
ijk

AjR̂
T
jiR̂ikBk =

∑
jk

AjδjkBk =
∑
j

AjBj . (1.6.5)

Notice that |A⃗| =
√
A⃗ · A⃗.

The basis vectors {x̂i} satisfy x̂i · x̂j = δij and the component of a vector A⃗ along

any of the axes can be obtained from the scalar product of A⃗ with the unit vector in the
direction of the axis,

Ai = A⃗ · x̂i, (1.6.6)
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Since Ai = |A⃗| cosαi, it can be used to define the direction cosines,

cosαi =
A⃗ · x̂i
|A⃗|

=
A⃗ · x̂i√
A⃗ · A⃗

(1.6.7)

Indeed, if û is any unit vector, the component of A⃗ in the direction of û is Au = A⃗ · û.
Because the scalar product is invariant under rotations, we prove this by letting αi be
the direction angles of A⃗ and βi be the direction angles of û in the particular frame in
which both A⃗ and û lie in the x1 − x2 plane (such a plane can always be found). Then
α3 = β3 =

π
2 and

A⃗ · û = |A⃗|
∑
i

cosαi cosβi = |A⃗|(cosα1 cosβ1 + cosα2 cosβ2) (1.6.8)

In two dimensions, α2 =
π
2 − α1 and β2 =

π
2 − β1 so

A⃗ · û = |A⃗|(cosα1 cosβ1 + sinα1 sinβ1) = |A⃗| cos(α1 − β1) = |A⃗| cos θu (1.6.9)

where θu is the angle between A⃗ and û, because α1 and β1 are the angles made with the x
axis. It follows, by Pythagoras’ theorem, that Au is the component of A⃗ in the direction
of û. In a general coordinate frame, for any two vectors A⃗ and B⃗,

A⃗ · B⃗ = |A⃗||B⃗|
∑
i

cosαi cosβi = |A⃗||B⃗| cos θAB (1.6.10)

where θAB is the angle between A⃗ and B⃗.

1.6.2 The vector product

The second product between two vectors yields another vector and is called the vector (or
cross) product. If C⃗ = A⃗× B⃗, then

Ci =
∑
jk

ϵijkAjBk (1.6.11)

where we have introduced the three index quantity called the Levi-Civita tensor (density),
defined by8

ϵijk =


+1 if {i, j, k} is an even permutation of {1, 2, 3}
−1 if {i, j, k} is an odd permutation of {1, 2, 3}
0 if {i, j, k} is not a permutation of {1, 2, 3}

(1.6.12)

8Prove that ϵijk transforms as a rank three tensor, i.e., according to three copies of a vector. Show that

ϵ′ijk =
∑
lmn

R̂ilR̂jmR̂knϵlmn = ϵijk

provided that the rotation matrices are of unit determinant.
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eijk
+1

1

2 3

-1

Figure 1.6: Useful way to remember ϵijk

An useful mnemonic is shown in figure (1.6). One should check the following identities by
direct computation ∑

i

ϵijkϵirs = δjrδks − δjsδkr∑
ij

ϵijkϵijs = 2δks∑
ijk

ϵijkϵijk = 3! (1.6.13)

Note that the Levi-Civita symbol is antisymmetric under an interchange of its indices, eg.,
ϵijk = −ϵikj etc. Using the above definition of the cross product, we could write out the

components of A⃗× B⃗ explicitly,

A⃗× B⃗ = (A2B3 −A3B2, A3B1 −A1B3, A1B2 −A2B1), (1.6.14)

which is also obtained from the determinant form9

A⃗× B⃗ = det

∣∣∣∣∣∣
x̂1 x̂2 x̂3
A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣ (1.6.16)

It is worth showing that the cross product is a vector. Since the Levi-Civita symbol
transforms as a rank three tensor,

C ′
i =

∑
j,k

ϵ′ijkA
′
jB

′
k =

∑
l,m,n,,j,k,p,q

RilRjmRknRjpRkqϵlmnApBq

9The Levi-Civita symbol can be used to define the determinant of any 3× 3 matrix as follows: if M̂ is
a 3× 3 matrix then

det|M̂ | =
∑
ijk

ϵijkM̂1iM̂2jM̂3k (1.6.15)
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A

B

A X B

Figure 1.7: The right hand rule

=
∑
l,m,n

RilϵlmnAmBn =
∑
l

RilCl (1.6.17)

where we have used
∑

k RknRkq = δnq and
∑

j RjmRjp = δmp.

Notice that A⃗×A⃗ = 0 and that the basis vectors obey x̂i× x̂j = ϵijkx̂k. In a coordinate

frame that has been rotated so that both A⃗ and B⃗ lie in the x1−x2 plane, using cosα2 =
sinα1 and cosβ2 = sinβ1 together with cosα3 = cosβ3 = 0, we find that the only non-
vanishing component of C⃗ is C3 given by

C3 = |A⃗||B⃗|(cosα1 sinβ1 − sinα1 cosβ1) = |A⃗||B⃗| sin(β1 − α1) (1.6.18)

If β1 > α1, then C3 is positive and C⃗ points along the positive x3 axis. On the contrary
if β1 < α1, then C3 points along the negative x3 axis. Because the magnitude of a vector
independent of the frame, we conclude: in a general coordinate frame, the vector A⃗ × B⃗
has magnitude

|A⃗× B⃗| = |A⃗||B⃗|

∣∣∣∣∣∣
∑
j,k

ϵijk cosαj cosβk

∣∣∣∣∣∣ = |A⃗||B⃗| sin |θAB| (1.6.19)

and direction given by the right-hand rule, which states that if the fingers of the right
hand rotate A⃗ into B⃗ then the outstretched thumb points in the direction of C⃗ (see figure
(1.7).

1.7 Vector Spaces

It is easy to verify that the set of all vectors in three dimensional space (R3), form an
Abelian group under vector addition. The unit element is the zero vector and the inverse
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of A⃗ is −A⃗. Moreover, vector addition inherits its associativity from addition of ordinary
numbers and is commutative. The space is also closed under scalar multiplication, since
multiplying any vector by a real number gives another vector. Scalar multiplication is also

• associative,

a(bA⃗) = (ab)A⃗, (1.7.1)

• distributive over vector addition,

a(A⃗+ B⃗) = aA⃗+ aB⃗ (1.7.2)

• as well as over scalar addition,

(a+ b)A⃗ = aA⃗+ bB⃗, (1.7.3)

• and admits an identity (1),

1(A⃗) = A⃗ (1.7.4)

In general, a vector space is any set that is a group under some binary operation (addition)
over which multiplication by elements of a field, satisfying the four properties listed above,
is defined.10 Although we have considered only scalar multiplication by real numbers,
scalar multiplication by elements of any field (eg. the complex numbers or the rational
numbers) is possible in general. The scalar and vector products we have defined are
additional structures, not inherent to the definition of a vector space. The vectors we have
introduced are geometric vectors in R3.

1.8 Some Algebraic Identities

We turn to proving some simple but important identities involving the scalar and vector
products. The examples given will not be exhaustive, but will serve to illustrate the general

10Additional Definitions:

• A set of vectors, {A⃗i}, is linearly independent if for scalars ai,∑
i

aiA⃗i = 0 ⇔ ai = 0 ∀ i.

• A set of linearly independent vectors is complete if any vector in the vector space may be expressed
as a linear combination of its members.

• A complete set of linearly independent vectors is said to form a basis for the vector space.

• The set of vectors x̂1 = (1, 0, 0), x̂2 = (0, 1, 0) and x̂3 = (0, 0, 1), form a basis for R3.
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methods used. To simplify notation we will henceforth employ the following convention:
if an index is repeated in any expression, it is automatically assumed that the index is to
be summed over. Thus we will no longer write the sums explicitly (this is known as the
Einstein summation convention).

1. A⃗× B⃗ = −B⃗ × A⃗.
We prove this for the components.

[A⃗× B⃗]i = ϵijkAjBk = ϵikjAkBj = ϵikjBjAk = −ϵijkBjAk = −[B⃗ × A⃗]i

where, in the second step, we have simply renamed the indices by calling j ↔ k
which changes nothing as the indices j and k are summed over. In the next to last
step we have used the fact that ϵijk is antisymmetric in its indices, so that every
interchange of indices in ϵijk introduces a negative sign.

2. A⃗× (B⃗ × C⃗) = (A⃗ · C⃗)B⃗ − (A⃗ · B⃗)C⃗
Again take a look at the components,

[A⃗× (B⃗ × C⃗)]i = ϵijkAj [B⃗ × C⃗]k = ϵijkϵklmAjBlCm

= ϵijkϵlmkAjBlCm = (δilδjm − δimδjl)AjBlCm

= (A⃗ · C⃗)Bi − (A⃗ · B⃗)Ci

3. (A⃗× B⃗) · (C⃗ × D⃗) = (A⃗ · C⃗)(B⃗ · D⃗)− (A⃗ · D⃗)(B⃗ · C⃗)
Write everything down in components. The left hand side is

(A⃗× B⃗) · (C⃗ × D⃗) = ϵijkAjBkϵilmClDm = (δjlδkm − δjmδkl)AjBkClDm

= (A⃗ · C⃗)(B⃗ · D⃗)− (A⃗ · D⃗)(B⃗ · C⃗)

In particular, (A⃗× B⃗)2 = A⃗2B⃗2 sin2 θ, where θ is the angle between A⃗ and B⃗.

4. The triple product of three vectors A⃗, B⃗ and C⃗ is defined by

[A⃗, B⃗, C⃗] = A⃗ · (B⃗ × C⃗) = ϵijkAiBjCk

This is a scalar.11 It satisfies the following properties:

[A⃗, B⃗, C⃗] = [C⃗, A⃗, B⃗] = [B⃗, C⃗, A⃗] = −[B⃗, A⃗, C⃗] = −[C⃗, B⃗, A⃗] = −[A⃗, C⃗, B⃗] (1.8.1)

i.e., the triple product is even under cyclic permutations and otherwise odd. Also
[A⃗, A⃗, B⃗] = 0. All these properties follow directly from the properties of the Levi-
Civita tensor density, ϵijk.

12

11Problem: Verify this!
12Problem: Convince yourself that this is so.
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5. (A⃗× B⃗)× (C⃗ × D⃗) = [A⃗, B⃗, D⃗]C⃗ − [A⃗, B⃗, C⃗]D⃗
The left hand side is just

(A⃗× B⃗)× (C⃗ × D⃗) = ϵijkϵjrsϵkmnArBsCmDn = ϵjrs(δimδjn − δinδjm)ArBsCmDn

= (ϵnrsArBsDn)Ci − (ϵmrsArBsCm)Di

= [A⃗, B⃗, D⃗]C⃗ − [A⃗, B⃗, C⃗]D⃗

1.9 Differentiation of Vectors

1.9.1 Time derivatives

A vector function of time is a vector whose components are functions of time. The deriva-
tive of a vector function of time is then defined in a natural way in terms of the derivatives
of its components in the Cartesian basis. Let A⃗(t) be a vector function of some parameter
t, i.e.,

A⃗(t) = (A1(t), A2(t), A3(t)) (1.9.1)

The derivative of A⃗(t) is another vector function, C⃗(t), whose Cartesian components are
given by

Ci =
dAi
dt

(1.9.2)

Note that the above definition is “good” only in for the Cartesian components of the
vector. This is because the Cartesian basis {x̂i} is rigid, i.e., it does not change in space.
In more general coordinate systems, where the basis is not rigid, the derivative of a vector
must be handled delicately. We will return to this later. Here, we will convince ourselves
that C⃗ is really a vector. Under a rotation

Ai → A′
i ⇒ C ′

i =
dA′

i

dt
=

d

dt
(R̂ijAj) = R̂ij

dAi
dt

= R̂ijCj (1.9.3)

which shows that C⃗(t) has the correct transformation properties, inherited from A⃗(t).
This justifies the statement that the velocity, momentum, acceleration and force must all
be vectors, because they are all obtained by differentiating r⃗(t).13

13Problem: Show that

dr

dt
= r̂ · v⃗

dr̂

dt
=
v⃗

r
− r̂

r
(r̂ · v⃗)

where r = |r⃗|, r̂ is the unit position vector and v⃗ is the velocity vector.
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1.9.2 The Gradient Operator

The gradient operator is a vector differential operator, whose definition is motivated
by a simple geometric fact. Consider some scalar function ϕ(r⃗)14 and the surface in R3,
defined by

ϕ(r⃗) = ϕ(x1, x2, x3) = const., (1.9.4)

so that

ϕ′(x′1, x
′
2, x

′
3) = ϕ(x1, x2, x3) (1.9.5)

The total differential of ϕ(r⃗) is given by

dϕ =
∂ϕ

∂x1
dx1 +

∂ϕ

∂x2
dx2 +

∂ϕ

∂x3
dx3, (1.9.6)

which can be re-expressed as

dϕ =

(
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
· (dx1, dx2, dx3) = 0. (1.9.7)

The vector (dx1, dx2, dx3) represents an infinitesimal displacement on the surface deter-
mined by the equation ϕ(x1, x2, x3) = const. The other vector in the scalar product is
called the gradient of the function ϕ(r⃗),

∇⃗ϕ =

(
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
(1.9.8)

It has the form of a vector, but we need to check of course that its transformation properties
under rotations are those of a vector. We will therefore look at the components of ∇⃗ϕ:

∂ϕ

∂xi
= ∂iϕ→ ∂′iϕ

′ =
∂ϕ′

∂x′i
=

∂ϕ

∂xj

∂xj
∂x′i

(1.9.9)

Now

x′i = R̂ikxk ⇒ xj = R̂Tjixi (1.9.10)

so
∂xj
∂x′i

= R̂Tji = R̂ij (1.9.11)

and therefore

∂′iϕ
′ =

∂ϕ′

∂x′i
= R̂ij∂jϕ (1.9.12)

14Any scalar function ϕ(r⃗, t) is called a scalar field.
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which is indeed the vector transformation law. Hence ∇⃗ϕ is a vector if ϕ(r⃗) is a scalar.
Now it turns out that ∇⃗ϕ has a nice geometric meaning. Because

∇⃗ϕ · dr⃗ = 0 (1.9.13)

for all infinitesimal displacements along the surface, it follows that ∇⃗ϕ, if it is not vanishing,
must be normal to the surface given by ϕ(r⃗) = const. Thus, given any surface ϕ(r⃗) =
const.,

n̂ =
∇⃗ϕ
|∇⃗ϕ|

(1.9.14)

is the unit normal to the surface.

Example: Take ϕ(x, y, z) = x2 + y2 + z2, then ϕ(r⃗) = const. represents a sphere centered
at the origin of coordinates. The unit normal to the sphere at any point is

∇⃗ϕ =
r⃗

r
(1.9.15)

where r is the radius of the sphere and r⃗ is the position vector of the point. The normal
to the sphere is therefore in the direction of the radius.

Example: Take ϕ(x, y, z) = x2

a2
+ y2

b2
+ z2

c2
, so that ϕ(x, y, z) = 1 represents an ellipsoid with

semi-axes of lengths a, b and c respectively. We find

n̂ = (
x

a
,
y

b
,
z

c
) (1.9.16)

which is the normal to the ellipsoid at the point (x, y, z).

We see that ∇⃗ is just the derivative operator in the Cartesian system, so we can think of
it in component form as the collection of derivatives,

[∇⃗]i = ∂i. (1.9.17)

Now if we introduce the concept of a vector field as a vector function of space and time,

A⃗(r⃗, t) = (A1(r⃗, t), A2(r⃗, t), A3(r⃗, t)) (1.9.18)

then we can define two distinct operations on A⃗(r⃗, t) using the scalar and vector products
given earlier,

• the divergence of a vector field A⃗(r⃗, t) as

divA⃗ = ∇⃗ · A⃗ = ∂iAi (1.9.19)

and
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• the curl (or rotation) of a vector field A⃗(r⃗, t) as

[∇⃗ × A⃗]i = ϵijk∂jAk (1.9.20)

These turn out to be of fundamental importance in any dynamical theory of fields, eg.,
electromagnetism. We will understand their physical significance in the following chapters.
For now, we only prove a few identities involving the ∇⃗ operator. Once again, the examples
given are far from exhaustive, their purpose being only to illustrate the method.

1.10 Some Differential Identities

1. ∇⃗ · r⃗ = 3
This follows directly from the definition of the divergence,

∇⃗ · r⃗ = ∂ixi = δii = 3

2. ∇⃗ · (ϕA⃗) = (∇⃗ϕ) · A⃗+ ϕ(∇ · A⃗)
Expand the l.h.s to get

∂i(ϕAi) = (∂iϕ)Ai + ϕ(∂iAi) = (∇⃗ϕ) · A⃗+ ϕ(∇ · A⃗) (1.10.1)

As a special case, take A⃗ = r⃗, then ∇⃗ · (r⃗ϕ) = r⃗ · (∇⃗ϕ) + 3ϕ

3. ∇⃗ · (∇⃗ × A⃗) ≡ 0
The proof is straightforward and relies on the antisymmetry of ϵijk:

∇⃗ · (∇⃗ × A⃗) = ϵijk∂i∂jAk = 0

which follows because ∂i∂j is symmetric w.r.t. {ij} while ϵijk is antisymmetric w.r.t.
the same pair of indices.

4. ∇⃗ · (A⃗× B⃗) = (∇⃗ × A⃗) · B⃗ − A⃗ · (∇⃗ × B⃗)
Expanding the l.h.s.,

∂i(ϵijkAjBk) = ϵijk[(∂iAj)Bk +Aj(∂iBk)]

= (ϵkij∂iAj)Bk −Aj(ϵjik∂iBk)

= (∇⃗ × A⃗) · B⃗ − A⃗ · (∇⃗ × B⃗)

5. ∇⃗ × r⃗ = 0
This also follows from the antisymmetry of the Levi-Civita tensor,

∇⃗ × r⃗ = ϵijk∂jxk = ϵijkδjk = 0
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6. ∇⃗ × ∇⃗ϕ ≡ 0
This is another consequence of the same reasoning as above,

∇⃗ × ∇⃗ϕ = ϵijk∂j∂kϕ = 0

7. ∇⃗ × (ϕA⃗) = (∇⃗ϕ)× A⃗+ ϕ(∇× A⃗)
Consider the ith component of the l.h.s.,

[∇⃗ × (ϕA⃗)]i = ϵijk∂j(ϕAk) = ϵijk(∂jϕ)Ak + ϵijkϕ(∂jAk)

= [∇⃗ϕ× A⃗]i + ϕ[∇⃗ × A⃗]i

As a special case, take A⃗ = r⃗, then ∇⃗ × (r⃗ϕ) = (∇⃗ϕ)× r⃗.

8. ∇⃗ × (∇⃗ × A⃗) = ∇⃗(∇⃗ · A⃗)− ∇⃗2A⃗
Beginning with,

[∇⃗ × (∇⃗ × A⃗)]i = ϵijk∂j(ϵklm∂lAm) = (δilδjm − δimδjl)∂j∂lAm

= ∂i(∂mAm)− ∂j∂jAi = [∇⃗(∇⃗ · A⃗)]i − [∇⃗2A⃗]i

9. ∇⃗ × (A⃗× B⃗) = (∇⃗ · B⃗)A⃗− (∇⃗ · A⃗)B⃗ + (B⃗ · ∇⃗)A⃗− (A⃗ · ∇⃗)B⃗
Again, beginning with,

[∇⃗ × (A⃗× B⃗)]i = ϵijkϵklm∂j(AlBm) = (δilδjm − δimδjl)∂j(AlBm)

= ∂j(AiBj)− ∂j(AjBi)

= (∂jBj)Ai + (Bj∂j)Ai − (∂jAj)Bi − (Aj∂j)Bi

= (∇⃗ · B⃗)[A⃗]i − (∇⃗ · A⃗)[B⃗]i + (B⃗ · ∇⃗)[A⃗]i − (A⃗ · ∇⃗)[B⃗]i

10. ∇⃗(A⃗ · B⃗) = (A⃗ · ∇⃗)B⃗ + (B⃗ · ∇⃗)A⃗+ A⃗× (∇⃗ × B⃗) + B⃗ × (∇⃗ × A⃗)
Consider the ith component of the last two terms on the right,

[A⃗× (∇⃗ × B⃗) + B⃗ × (∇⃗ × A⃗)]i = ϵijkϵklmAj∂lBm + ϵijkϵklmBj∂lAm

= (δilδjm − δimδjl)Aj∂lBm

= Aj∂iBj −Aj∂jBi +Bj∂iAj −Bj∂jAi
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Figure 1.8: The Line Integral

= ∂i(AjBj)−Aj∂jBi −Bj∂jAi

= [∇⃗(A⃗ · B⃗)]i − (A⃗ · ∇⃗)Bi − (B⃗ · ∇⃗)Ai

The stated result follows.

11. A vector A⃗ is said to be irrotational if ∇⃗× A⃗ = 0 and it is solenoidal if ∇⃗ · A⃗ = 0.
It turns out that A⃗× B⃗ is solenoidal if both A⃗ and B⃗ are irrotational. Begin with

∇⃗ · (A⃗× B⃗) = ϵijk∂i(AjBk) = ϵijk(∂iAj)Bk + ϵijkAj(∂iBk)

= (∇⃗ × A⃗) · B⃗ − A⃗ · (∇⃗ × B⃗) = 0

(since both A⃗ and B⃗ are irrotational).

There are many more identities which we will encounter along the way and all of them
can be proved using the methods above

1.11 Vector Integration

There are three types of integrations involving vector and scalar functions that lead to
scalar quantities, viz.,

1.11.1 Line Integrals

Line integrals involve integrations along a curve, C, given by r⃗ = r⃗(t), and will quite
generally depend upon the curve over which the integration is carried out. The following
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are basic possibilities:

∫ f

i,C
ϕ(r⃗)ds,

∫ f

i,C
A⃗(r⃗)ds,

∫ f

i,C
ϕ(r⃗)dr⃗,

∫ f

i,C
A⃗(r⃗)× dr⃗,

∫ f

i,C
A⃗(r⃗) · dr⃗, (1.11.1)

where ds = |v⃗|dt represents the length of an infinitesimal line element on C and dr⃗ = v⃗dt
is an infinitesimal displacement along (tangent to) C. Each integral may be defined in
the usual way, as the limit of an infinite (Riemann) sum. The first and last integrals yield
scalars, the others are vectors. The curve may be open or closed and i and f are the
beginning and endpoints of the integration.

If ϕ(r⃗) represents the density of a “wire” laid along C, then the first integral returns
the mass of the wire. On the other hand, a well-known example of the last line integral is
the work performed by a force F⃗ in moving a particle along some trajectory, C (see figure
(1.8). A particularly interesting case occurs when the vector A⃗ is the gradient of a scalar
function, i.e., A⃗ = ∇⃗ϕ. In this case,

∫ f

i,C
A⃗ · dr⃗ =

∫ f

i,C
∇⃗ϕ · dr⃗ =

∫ f

i,C
dϕ = ϕ(r⃗f )− ϕ(r⃗i) (1.11.2)

showing that the integral depends only on the endpoints and not on the curve C itself. A
vector whose line integral is independent of the path along which the integration is carried
out is called conservative. Every conservative vector then obeys∮

C
A⃗ · dr⃗ = 0, (1.11.3)

for every closed path. Conversely, any vector that obeys (1.11.3) is expressible as the
gradient of a scalar function, for∮

C
A⃗ · dr⃗ = 0 ⇒ A⃗ · dr⃗ = dϕ = ∇⃗ϕ · dr⃗ (1.11.4)

and, since dr⃗ is arbitrary, it follows that A⃗ = ∇⃗ϕ.
One does not need to evaluate its line integral to determine whether or not a vector

is conservative. From the fact that the curl of a gradient vanishes it follows that if A⃗ is
conservative then ∇⃗ × A⃗ = 0. The converse is also true, since if A⃗ is irrotational then
ϵijk∂jAk = 0 for all i. These are simply integrability conditions for a function ϕ defined by
Ak = ∂kϕ, therefore every irrotational vector is conservative and vice versa. The function
−ϕ is generally called a potential of A⃗.
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n

Figure 1.9: The Surface Integral

1.11.2 Surface integrals

Surface integrals also appear in the same three forms, the integration occuring over in-
finitesimal area elements, dS⃗, which are assigned the direction of the surface normal, (see
figure (1.9) Writing dS⃗ as dSn̂, where n̂ is the unit normal to the surface at dS,∫

S
dS(n̂ϕ),

∫
S
dS(n̂× A⃗),

∫
S
dS(n̂ · A⃗) (1.11.5)

where S is some arbitrary (open or closed) surface.

1.11.3 Volume Integrals

We may define volume integrals similarly but because the volume element is a scalar there
are only two distinct possibilities,∫

V
d3r⃗ ϕ(r⃗),

∫
V
d3r⃗ A⃗(r⃗). (1.11.6)

1.12 Integral Theorems

The three types of integrals that were defined in the previous section are connected by the
following two theorems:15

1. Stokes Theorem: ∮
C
A⃗ · dr⃗ =

∫
S
dS n̂ · (∇⃗ × A⃗) (1.12.1)

15The proofs of these theorems can be found in any text on mathematical physics. We will leave it to
the student to examine the proofs independently.
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where C is a closed curve, S is a surface bounded by C, and n̂ is normal to the
surface element dS, chosen to obey the right hand rule, i.e., if the fingers of the
right hand point in the direction of dr⃗ along the curve then the outstretched thumb
determines the choice of the orientation of n̂.

2. Gauss’ theorem: ∮
S
dS n̂ · A⃗ =

∫
V
d3r⃗ ∇⃗ · A⃗ (1.12.2)

where S is a closed surface, n̂ is the outward directed normal to S and V is the
volume bounded S.

While we accept these theorems without proof here, we shall now use then to prove some
corollaries that will turn out to be useful in the future.

1.12.1 Corollaries of Stokes’ Theorem

We will prove the following three relations:

1.
∮
C ϕdr⃗ =

∫
S dS(n̂× ∇⃗ϕ)

2.
∮
C dr⃗ × A⃗ =

∫
S dS(n̂× ∇⃗)× A⃗

where C is a closed curve and S is the surface bounded by C in each case.
The proofs are quite simple. Define the vector A⃗ = a⃗ϕ, where a⃗ is an arbitrary,

constant vector then by Stokes’ theorem,∮
C
A⃗ · dr⃗ = a⃗ ·

∮
ϕdr⃗ =

∫
S
dSn̂ · (∇⃗ × a⃗ϕ) =

∫
S
dSn̂ · (∇⃗ϕ× a⃗)

= a⃗ ·
∫
S
dS(n̂× ∇⃗ϕ) (1.12.3)

Thus

a⃗ ·
(∮

ϕdr⃗ −
∫
S
dS(n̂× ∇⃗ϕ)

)
= 0 (1.12.4)

holds for arbitrary vectors implying the first identity.
The second identity may be derived similarly, by using B⃗ = a⃗× A⃗ in Stokes’ theorem.

Then ∮
C
B⃗ · dr⃗ =

∮
C
a⃗× A⃗ · dr⃗ = −

∮
C
(dr⃗ ×A) · a⃗

=

∫
S
dS n̂ · (∇⃗ × B⃗) =

∫
S
dS [(n̂× ∇⃗) · B⃗]



1.12. INTEGRAL THEOREMS 29

=

∫
S
dS [(n̂× ∇⃗) · (⃗a× A⃗)] (1.12.5)

But it is easy to show that16 (n̂× ∇⃗) · (⃗a× A⃗) = −[(n× ∇⃗)× A⃗] · a⃗, therefore

a⃗ ·
[∮

C
(dr⃗ ×A)−

∫
S
dS[n̂× (∇⃗ × A⃗)]

]
= 0 (1.12.6)

Again a⃗ was arbitrary, therefore the second identity follows.

1.12.2 Corollaries of Gauss’ theorem

We will prove three relations that will be quite helpful to us in the future, viz.,

1.
∮
S dS(A⃗× n̂) =

∫
V d

3r⃗ ∇⃗ × A⃗

2. If ϕ and ψ are two arbitrary functions, then

(a) Green’s first identity:∫
V
d3r⃗ [∇⃗ϕ · ∇⃗ψ + ϕ∇⃗2ψ] =

∫
S
dS n̂ · ϕ∇⃗ψ (1.12.7)

and

(b) Green’s second identity:∫
V
d3r⃗ [ϕ∇⃗2ψ − ψ∇⃗2ϕ] =

∫
S
dS n̂ · [ϕ∇⃗ψ − ψ∇⃗ϕ] (1.12.8)

To prove the first corollary we will employ the trick we used to prove the corollaries of
Stoke’s theorem. For a constant vector a⃗, let B⃗ = a⃗× A⃗ and apply Gauss’ law∮

S
dS(n̂ · B⃗) =

∫
V
d3r⃗ ∇⃗ · B⃗ ⇒

∮
S
dS[n̂ · (⃗a× A⃗)] =

∫
d3r⃗ ∇⃗ · (⃗a× A⃗) (1.12.9)

Developing the last relation, using some of the vector identities we proved earlier, we find

a⃗ ·
[∮

S
dS(n̂× A⃗)−

∫
V
d3r⃗ ∇⃗ × A⃗

]
= 0 (1.12.10)

But since a⃗ is arbitrary, the identity follows.
To prove Green’s two theorems is equally straightforward. Take A⃗ = ϕ∇⃗ψ and apply

Gauss’ theorem. Since

∇⃗ · A⃗ = ∇⃗ · (ϕ∇⃗ψ) = (∇⃗ϕ) · (∇⃗ψ) + ϕ∇⃗2ψ, (1.12.11)

16Problem: Use the properties of the Levi-Civita tensor to show this
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it follows that the first of Green’s theorems is just Gauss’ theorem,∫
V
d3r⃗ [∇⃗ϕ · ∇⃗ψ + ϕ∇⃗2ψ] =

∫
S
dS n̂ · ϕ∇⃗ψ (1.12.12)

To prove the second identity, consider B⃗ = ψ∇⃗ϕ and again apply Gauss’ theorem to get∫
V
d3r⃗ [∇⃗ψ · ∇⃗ϕ+ ψ∇⃗2ϕ] =

∫
S
dS n̂ · ψ∇⃗ϕ (1.12.13)

Subtracting the second from the first gives∫
V
d3r⃗ [ϕ∇⃗2ψ − ψ∇⃗2ϕ] =

∫
S
dS n̂ · [ϕ∇⃗ψ − ψ∇⃗ϕ] (1.12.14)

which is Green’s second identity.
This chapter does not do justice to the vast area of vector analysis. On the contrary,

most proofs have not been given and many useful identities have been neglected. What
has been presented is only an introduction to the material we will immediately need.
Consequently, as we progress, expect to periodically encounter detours in which further
vector analysis will be presented, often as exercises in the footnotes.



Chapter 2

Newton’s Laws and Simple
Applications

2.1 Introduction

Theoretical mechanics is concerned with the temporal “evolution” of a physical system,
be it a single particle or a complex system of particles that interact among themselves.
By “evolution” one simply means a continuous change in “configuration”, i.e., a change
in some set of parameters that define the system. The fundamental problem is therefore
two-fold: on the one hand it is necessary to determine the appropriate parameters that
completely define a system within the limits of experimental possibility (disregarding lim-
itations imposed by current technology) and on the other it is necessary to determine the
equations (the dynamical equations) that govern the evolution of these parameters.

Most realistic physical systems encountered in daily life are complex. Nevertheless we
take a point of view, expressed by the Greeks as early as the third century before Christ
and later reiterated by Newton, that every complex system can be decomposed into and
subsequently reconstructed from elementary constituents which we will call “particles”.
In its most idealized form a particle is merely a mathematical point endowed with some
physical charateristics, which could be for example a “mass”, a “charge” etc., but with
no discernible geometric structure. These are the so-called “elementary particles”. The
concept is also useful as an approximation, if the volume of the object we are studying
is very small compared to typical volumes over which its evolution occurs. Thus to a
reasonable approximation, for example, the earth could be considered a particle if we
are interested in its motion about the sun, but it is certainly not a particle if we are
interested in its revolution about its North-South axis or in events that occur upon it.
Galaxies are particles compared with typical distances over which they may freely evolve
but certainly not particles if we are interested in their structural properties. On the other
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Figure 2.1: A particle trajectory

end of the spectrum, a molecule in a rarified gas may well be considered a particle for
most practical purposes when studying the macroscopic properties of the gas as a whole,
but we know well that molecules have complex structures which may be probed if one
looks close enough. The key to using the concept of a “particle” as an approximation is
to compare the volume of the object in consideration to the typical volume of space over
which its evolution occurs.

The evolution of particles is the subject of Newton’s laws of mechanics. These are
known to yield a very accurate description of their evolution if the speeds attained are
small compared to the speed of light. When speeds close to the speed of light are reached
one must account for “relativistic effects” which can be quite dramatic, but suppressed
by powers of v/c where v represents the speed of the body and c the speed of light. The
particle configuration at any time is defined by its mass, m, its position in space, r⃗,
and its velocity v⃗. In a nutshell the essential problem or mechanics is: given a certain
initial configuration, {m0, r⃗0, v⃗0} at a given (initial) time, t0, determine the evolution of
this configuration over time, i.e., deterimine its position and velocity, r⃗ = r⃗(t), v⃗ = v⃗(t)
for all future times.

2.2 The Serret-Frenet description of curves

Our definition of the configuration of a particle it terms of its position and velocity is based
on a picture of what the evolution of a particle entails, shown in figure (2.1). A moving
particle essentially sweeps out a smooth trajectory (a C(1) curve) in space. Because it has
no geometric features of its own, a description of its trajectory is necessarily a complete
description of a particle’s evolution. Geometrically, a curve is completely characterized at
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every point by three unit vectors, viz., the tangent, the normal and the bi-normal, and
two scalars, the curvature and torsion, as we now describe. Let C : r⃗(t) represent a curve
in space and let s(t) be an invertible function representing the distance along the curve of
the point given by r⃗(t) from some fixed point on the curve. We define the unit tangent
vector to the curve r⃗ = r⃗ ◦ t(s) as

t̂ =
dr⃗

ds
(2.2.1)

That t̂ is a unit vector follows from the definition of the path length s,

ds =
√
dx2 + dy2 + dz2 = |dr⃗| ⇒ 1 =

∣∣∣∣dr⃗ds
∣∣∣∣ (2.2.2)

We also define the unit normal vector to the curve by

dt̂

ds
= κ(s)n̂ (2.2.3)

where κ(s) is a function of position, called the curvature of C. The unit normal n̂ is
perpendicular to t̂ because t̂ is a unit vector

t̂2 = 1 ⇒ t̂ · dt̂
ds

= 0 = κ(s)t̂ · n̂ (2.2.4)

provided that κ(s) ̸= 0. The plane spanned by t̂ and n̂ at any point, P , on the curve is
called the osculating plane of the curve at P and a circle lying in the osculating plane at
P , that touches P , has the same tangent at P as the curve itself and radius equal to the
reciprocal of the curvature is called the osculating circle at P .

If we define the unit binormal vector as

b̂ = t̂× n̂ (2.2.5)

then b̂ is clearly perpendicular to both t̂ and n̂. In this way, {t̂, n̂, b̂} form a right handed
triad called the Frenet vectors. Together they form a basis for three dimensional space,
defining a non-static reference frame called the Frenet frame. Now since b̂ is a unit
vector it follows that db̂/ds is perpendicular to b̂ because

b̂2 = 0 ⇒ b̂ · db̂
ds

= 0. (2.2.6)

Moreover, because b̂ · t̂ = 0,

db̂

ds
· t̂+ b̂ · dt̂

ds
=
db̂

ds
· t̂+ κ(s)̂b · n̂ =

db̂

ds
· t̂ = 0 (2.2.7)
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Figure 2.2: Osculating circles for a plane curve

showing that db̂/ds is perpendicular to t̂ as well. But in three dimensions {t̂, n̂, b̂} is a
(right-handed) triad, so db̂/ds must be parallel or antiparallel to n̂. We define

db̂

ds
= −τ(s)n̂ (2.2.8)

where τ(s) is called the torsion of C. Finally, expressing (2.5.4) as n̂ = b̂× t̂ and taking
a derivative we get

dn̂

ds
= −τ(s)n̂× t̂+ κ(s)̂b× n̂ = τ(s)̂b− κ(s)t̂ (2.2.9)

The three equations (2.2.3,2.2.8,2.2.9) relating the vectors of the Frenet frame and their
derivatives are called the Serret-Frenet formulæ.

We are generically interested in time derivatives, not derivatives w.r.t. the path length
as given by the Frenet equations. However, applying the chain rule to express the velocity
and acceleration in terms of the Serret-Frenet vectors we get

v⃗ =
dr⃗

dt
=
dr⃗

ds

ds

dt
=
ds

dt
t̂,⇒ |v⃗| = ds

dt
and v̂ = t̂ (2.2.10)

showing that the velocity is tangent to the curve. Taking one more derivative,

a⃗ =
dv⃗

dt
=
d2s

dt2
t̂+ κ(s)

(
ds

dt

)2

n̂. (2.2.11)

The component of a⃗ in the direction of t̂ is called the tangential acceleration of the
particle,

at =
d2s

dt2
(2.2.12)

and its component in the direction of the normal is called the centripetal acceleration,

an = κ

(
ds

dt

)2

(2.2.13)
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Think, for example, of a body performing uniform motion in a circle of radius r.1 The
curvature of a circle of radius r is 1/r so the centripetal acceleration is v2/r, an expression
that is already quite familiar. However, we now see that the formula for the centripetal
acceleration is quite general, if one thinks of r as the instantaneous radius of curvature as
shown pictorially in figure (2.2).

2.3 Galilean Transformations

We have already seen how vectors in general and position vectors in particular transform
under rotations of the coordinate system. We may also ask how they transform under
boosts, i.e., uniform relative motions between coordinate systems. Therefore consider
two coordinate systems, S and S′ which are such that S′ has a constant velocity v⃗0
relative to S. Let P be a point in space (the position of some particle at time t, say) that
is represented in the coordinate system S by the position vector r⃗ and in the system S′ by
the position vector r⃗′. Suppose for convenience (and without loss of generality) that the
origin of the two frames coincide at t = 0. If we let r⃗0 represent the position of the origin
of S′ relative to the S at time t ̸= 0, then we could relate the vectors r⃗ and r⃗′ according
to [see figure (2.3)]

r⃗ = r⃗′ + r⃗0 = r⃗′ + v⃗0t (2.3.1)

If we also assume that time is absolute, i.e., that any time interval between two events as
measured in one frame is identical to the corresponding interval measured in the other,
then the two descriptions of the motion of the particle at P are related by

t′ = t

r⃗′ = r⃗ − v⃗0t (2.3.2)

1Problem: Consider a helix defined by the curve

r⃗(t) = (a cosωt, a sinωt, vt)

where a, ω and v are constants, and determine the tangent, normal and binormal vectors, t̂, n̂ and b̂.
Verify the Serret-Frenet relations and show that the curvature and torsion are constants given by

κ =
aω2

a2ω2 + v2

τ =
vω

a2ω2 + v2

Notice that if v = 0, so that the curve is a circle (in the x − y plane), then the curvature is just the
reciprocal of its radius and the torsion vanishes.
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Figure 2.3: Two frames in uniform relative motion

Notice that we are tacitly assuming that S′ and S are able to communicate with each
other instantaneously. Taking derivatives, it follows that

v⃗′ =
dr⃗′

dt′
=
dr⃗′

dt
= v⃗ − v⃗0

a⃗′ =
d2r⃗′

dt′2
=
d2r⃗′

dt2
= a⃗, (2.3.3)

where we make use of the fact that v⃗0 is constant. Thus, although the two observers rep-
resented by S and S′ observe different velocities for the particle, they measure the same
acceleration provided that their motion relative to each other is uniform, v⃗0 is constant.
These are the Galilean transformations. Any theory of vector transformations under
boosts is called a relativity theory. Galilean relativity is described by the transforma-
tions in (2.3.2). Soon we will see that these transformations are really a limiting case of
Einstein’s relativity theory in which it is not possible for S and S′ to communicate at
infinite speeds.

2.4 Newton’s Laws

Newton’s laws begin with both a definition of a class of observers called inertial observers
as well as a statement about the “natural” motion of a particle, i.e., the motion of a particle
in the absence of any external influence upon it from its environment, as viewed by an
inertial observer. We may state the “first” law (also known as the law of inertia) as
follows:

• 1st Law: It is always possible to identify a frame, called an inertial frame, in
which a particle will continue in its state of motion (at rest or in uniform motion in
a straight line, v⃗ = const.) unless compelled to do otherwise by an external force.
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In the absence of any external force, the inertial observer can mathematically describe the
particle’s motion by the statement dv⃗/dt = 0. It is important to note that there is not
enough content in the law for the observer to simultaneously determine both if (s)he is
inertial and if the particle being observed is “free”. Only when one fact is known can the
other be determined. If the observer knows herself to be inertial then a particle is free if
and only if it moves with a constant velocity relative to her and, conversely, if the particle
is known to be free then she is inertial if and only if the particle’s velocity relative to her
is constant.2

Ifm is the particle mass, which we assume constant, we may introduce the momentum,
p⃗ = mv⃗, and restate the first law in terms of it as follows: from the point of view of an
inertial observer

dv⃗

dt
= 0 = m

dv⃗

dt
⇒ dp⃗

dt
= 0. (2.4.1)

Newton goes on to say that any deviation from this “free” behavior is attributable to the
presence of an external force,

• 2nd Law: Viewed from an inertial frame, the rate of change of momentum is equal
to the external, applied “force”

dp⃗

dt
= F⃗ ext(r⃗, v⃗, t) (2.4.2)

Notice that because p⃗ is a vector, so is F⃗ ext. This law is a definition of the term “external
force” and does not specify it. F⃗ ext must be determined by experiment. Once F⃗ ext is
known by careful experimentation, then (2.4.2), viewed as a differential equation, gives the
particle trajectory subject, as always, to some initial conditions. Every effort is therefore
directed to determining the “force law”, i.e., the form of F⃗ ext. Note that “force” has
mechanical dimension [F ] = ml/t2. In the MKS system, force is measured in “Newtons”
and in the CGS system it is measured in “dynes”. As examples we know of

1. Hooke’s Law: The force exerted by a spring, stretched by a distance |r⃗|,

F⃗ = −kr⃗,

where r⃗ represents a displacement along the length of the spring from some position
at which the spring is in equilibrium, and k is a constant whose mechanical dimension
is [k] = m/t2 or N/m (MKS) and dynes/cm (CGS).

2The inertial observer in Newtonian mechanics is therefore a primitive concept. Newton asserts that
such frames exist, but does not state independently how they are determined (Newton considered observers
“moving at a constant velocity relative to the fixed stars” as inertial). The existence of inertial frames
is also asserted in Einstein’s special theory of relativity without further elaboration, but in the general
theory inertial frames may exist only locally, i.e., over infinitesimal regions of space-time.
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2. Newton’s law of Gravity: The gravitational force exerted by a point-like mass m1 on
another point-like mass m2

F⃗1→2 = −Gm1m2

r2
r̂,

where r is the separation between two particles, r̂ is the unit vector that points
from the particle labeled 1 to the particle labeled 2 and G is “Newtons constant of
universal gravitation”, with mechanical dimension [G] = l3/mt2 or N·m2/kg2 (MKS)
and dyne·cm/g2. in the CGS system.

3. Coulomb’s law: The electrostatic force exerted by a point-like charge q1 on another
point-like charge q2

F⃗1→2 =
1

4πϵo

q1q2
r2

r̂,

where r is the separation between the charges, r̂ points from the charge labeled 1 to
the charge labeled 2 and C = 1/4πϵ0 is “Coulomb’s constant” written in terms of
the electric permitivity of the vacuum ϵ0. The electric permitivity has mechanical
dimension [ϵ0] =Coulomb2/N · m2 (MKS).

4. Frictional Drag: The “drag” or resistance offered by a medium to the motion of a
body (whose dimensions are much larger than the typical dimensions of the molecules
of the medium) inside it,

F⃗drag = −k|v⃗|αv̂,

where k and α are constants, the first representing the strength of the drag and
the second its dependence on the velocity, v⃗ of the body. The exponent α can
have no mechanical dimension, but the mechanical dimension of k depends on α:
[k] =N·sα/mα. This expression for the drag is valid so long as the speed of the body
is not comparable to the speed of sound, c, in the medium. If the |v⃗| ≪ c then the
index α is on the order of unity. α gets larger as the speed of sound is approached,
which makes air drag significant at high speeds. The constant k depends on the
viscosity of the medium and the geometry of the body.

While the first law can be seen as an positing the existence of the inertial frame and
defining it by specifying what is the “natural” motion of a particle observed from such a
frame in the absence of any external influence, and the second defines quantitatively the
concept of an external influence (or force), the third law of Newton is actually a law in its
classical sense:

• 3rd Law: To every action of (force applied by) one particle on another, there is an
equal and contrary reaction of the other on the first, i.e.,

F⃗1→2 = −F⃗2→1 (2.4.3)
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This law does not have general applicability and neither does it have an obvious
generalization. It is true only when

– the forces between the particles act along the line joining the particles,

– the forces do not depend on the velocities of the particles themselves, and

– all velocities involved are small compared with the speed of light.

It does not, for example, hold for the Lorentz force of electrodynamics.

2.5 Newton’s Laws and the Serret Frenet Formulæ

Newton’s description of particle dynamics can be neatly connected with the Serret-Frenet
description of curves. In general,

v⃗ =
ds

dt
t̂

a⃗ =
dv⃗

dt
=
d2s

dt2
t̂+ κ(t)

(
ds

dt

)2

n̂ (2.5.1)

and so

t̂ = v̂,
ds

dt
= |v⃗| and

d2s

dt2
= v̂ · a⃗ (2.5.2)

It also follows that

v⃗ × a⃗ = κ|v⃗|3 b̂ ⇒ κ =
|v⃗ × a⃗|
|v⃗|3

(2.5.3)

and the binormal vector is

b̂ =
v⃗ × a⃗

|v⃗ × a⃗|
, (2.5.4)

therefore using the fact that {t̂, n̂, b̂} form a right handed triad we find the normal vector,

n̂ =
(v⃗ × a⃗)× v̂

|v⃗ × a⃗|
. (2.5.5)

Let us compute the torsion from

db̂

ds
= −τ n̂ ⇒ τ = − n̂

|v⃗|
· db̂
dt
, (2.5.6)

where b̂ is given in (2.5.4). Then,3

τ = − n̂

|v⃗|
· d
dt

[
v⃗ × a⃗

|v⃗ × a⃗|

]
3Problem: Show that

d

dt

1

|v⃗ × a⃗| = − 1

|v⃗ × a⃗|3 [v⃗ × (v⃗ × a⃗) · ˙⃗a]
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= − n̂

|v⃗|
·

[
v⃗ × ˙⃗a

|v⃗ × a⃗|
− v⃗ × a⃗

|v⃗ × a⃗|3
[v⃗ × (v⃗ × a⃗) · ˙⃗a]

]
(2.5.7)

and, since n̂ is perpendicular to v⃗ × a⃗, it follows that

τ = − n̂

|v⃗|
· v⃗ ×

˙⃗a

|v⃗ × a⃗|
= − [(v⃗ × a⃗)× v̂] · (v⃗ × ˙⃗a)

|v⃗||v⃗ × a⃗|2

= − a⃗ · (v⃗ ×
˙⃗a)

|v⃗ × a⃗|2
=
v⃗ · (⃗a× ˙⃗a)

κ2|v⃗|6
=

(v⃗ × a⃗) · ˙⃗a
κ2|v⃗|6

, (2.5.8)

where we used n̂ = (v⃗ × a⃗) × v̂/|v⃗ × a⃗| and the symmetries of the triple product. Notice
that the torsion is proportional to the rate of change of the acceleration (called the jerk)
and does not vanish only if the jerk has a non-vanishing component perpendicular to the
plane containing the velocity and acceleration.

One may re-express everything in terms of the Newtonian force, considering that a⃗ =
F⃗ /m, and we now summarize the relationship between the Serret-Frenet description of
curves and the Newtonian description of motion:

t̂ = v̂,
ds

dt
= |v⃗|, d2s

dt2
=
v̂ · F⃗
m

n̂ =
(v⃗ × F⃗ )× v̂

|v⃗ × F⃗ |

b̂ =
(v⃗ × F⃗ )

|v⃗ × F⃗ |

κ =
|v⃗ × F⃗ |
m|v⃗|3

τ =
(v⃗ × F⃗ ) · ˙⃗

F

m2κ2|v⃗|6
(2.5.9)

The force is therefore responsible for generating both the curvature and the torsion.4 To
generate a curvature F⃗ must have a component orthogonal to v⃗ and to generate a torsion
the rate of change of F⃗ should have a component perpendicular to the plane containing

4Show that

• for a “central force” (eg., Hooke’s law, Newton’s law of gravity, Coulomb’s law), the torsion of the
particle trajectory vanishes, and

• for the frictional drag force, both the curvature and the torsion vanish.

What do these facts mean in each case?
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v⃗ and F⃗ . For example, during uniform motion in a circle of radius r the tangential
acceleration is zero, implying that v̂ · F⃗ = 0 (the force must be perpendicular to the
velocity). The curvature of the circle is just 1/r and the fourth equation tells us that

|F⃗⊥| =
mv⃗2

r
(2.5.10)

which is the well known expression for the (magnitude of the) centripetal force on the
particle. In fact, the above formula holds for the component of F⃗ perpendicular to the
velocity at all times, even if the motion is not circular and uniform, provided that r is
taken to be the instantaneous radius of curvature of the trajectory and v⃗ the particle’s
instantaneous velocity.

2.6 One dimensional motion

We will now examine some simple applications of Newton’s laws. But first, let us develop
some solution methods. In a single spatial dimension, Newton’s second law of motion
yields a single equation,

dp

dt
= F (t, x, v) (2.6.1)

where the force may depend quite generally on time, the position and the velocity of the
body but not on higher derivatives, such as the acceleration.

• If the force depends only on time, the equation of motion can be easily integrated
twice. Without loss of generality, let the initial time be set to zero, i.e., t0 = 0.
This can always be done because it simply amounts to a resetting of our clock. For
constant m,

m
dv

dt
= F (t) ⇒ m

∫ v

v0

dv =

∫ t

0
dt′F (t′) ⇒ v − v0 =

∫ t

0
dt′F (t′) (2.6.2)

This is the first integral. Noting that v = dx/dt, the equation

dx

dt
= v0 +

1

m

∫ t

0
dt′F (t′) (2.6.3)

may be integrated again to give

x(t) = x0 + v0t+
1

m

∫ t

0
dt′
∫ t′

0
dt′′F (t′′) (2.6.4)

where x0 is the initial position of the particle, which also may be set to zero without
loss of generality. This would exploit our freedom to choose an origin. If F (t) is a
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constant, independent of time, let F = ma. For instance, a = −g could represent the
acceleration of a particle in the gravitational field of the earth, close to its surface
(g = 9.81 m/s2). Then

x(t) = x0 + v0t+
1

2
at2 (2.6.5)

which is the well known kinematical formula.

• If the applied force depends only on the position of the particle, as for example the
force exerted by a spring on a body depends only on the displacement of the body
from the equilibrium position of the spring (Hooke’s law), then a useful trick is to
consider the velocity as a function of position, i.e.,

v(t) = v ◦ x(t) = v[x(t)] (2.6.6)

and use the chain rule to reexpress the rate of change of momentum as

m
dv

dt
= m

dv

dx

dx

dt
= mv

dv

dx
= F (x) (2.6.7)

Integrating this equation once gives

m

∫ v

v0

vdv =

∫ x

0
F (x′)dx′ (2.6.8)

(where we have used our freedom to choose an origin by setting x0 = 0). Performing
the integrals gives

1

2
m(v2 − v20) =

∫ x

0
F (x′)dx′ ⇒ v = ±

√
v20 +

2

m

∫ x

0
F (x′)dx′ (2.6.9)

and rewriting the velocity as dx/dt,

dx

dt
= ±

√
v20 +

2

m

∫ x

0
F (x′)dx′ ⇒

∫ x

0

dx′√
v20 +

2
m

∫ x′
0 F (x′′)dx′′

= ±
∫ t

0
dt = ±t.

(2.6.10)
If the integral on the left can be performed we obtain t = t(v0, x), which must
be inverted to obtain x = x(v0, t). Neither of the two steps need be trivial to
perform, nevertheless the above constitutes a complete albeit implicit solution in to
the problem.
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• If the force depends only on the velocity, the second law of motion may also be inte-
grated to obtain an implicit solution, provided that the integrations and inversions
can be performed. Consider

m
dv

dt
= F (v) ⇒ m

∫ v

v0

dv′

F (v′)
= t (2.6.11)

If the integral can be done, we get t = t(v, v0). If the function can be inverted,
we would get v = v(v0, t) which can be integrated once more to obtain the desired
solution, so

dx

dt
= v(v0, t) ⇒ x = x0 +

∫ t

0
v(v0, t

′)dt′ (2.6.12)

would constitute a complete solution to the problem. It is sometimes convenient to
combine the trick of considering the velocity as a function of position and writing

mv
dv

dx
= F (v) ⇒

∫ v

v0

v′dv′

F (v′)
=

x

m
(2.6.13)

setting x0 = 0. Assuming the integral can be performed, we obtain v = v(v0, x),
which can be integrated once more

dx

dt
= v(v0, x) ⇒

∫ x

0

dx′

v(v0, x′)
= t (2.6.14)

again giving a complete implicit solution to the problem, but in a different form.

• In the general case,

m
dv

dt
= F (x, v, t) (2.6.15)

the second law must be treated as the second order differential equation

m
d2x

dt2
− F (x,

dx

dt
, t) = 0 (2.6.16)

Needless to say, the problem can be non-linear and difficult to solve, although in
rare cases a solution may be obtained. We will examine one such example in the
following pages.

We will now work out some specific examples to illustrate these procedures in problems
where all the required steps can be performed and the answer given in closed form. In
the worst case scenarios, it is usually possible to integrate the equations numerically.
Numerical solutions, while not ideal, are unfortunately what one must appeal to in most
realistic physical situations. Exact (closed form) solutions on the other hand serve our
intuition best and we will concentrate on these for the most part.
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pi

pf

Figure 2.4: The microscopic origin of “drag” in fluids

2.7 Motion in a resisting medium

It is known from experiment that the resistive force applied by a homogeneous fluid on a
body moving in it with a velocity v⃗ relative to the fluid itself is given by

Fi = −
∑
j

kij |v⃗|αv̂j (2.7.1)

where kij is a constant matrix with positive real coefficients and v̂ is the unit vector in
the direction of the body’s motion relative to the fluid. The expression is valid provided
that the dimensions of the body are large compared with the molecular dimensions and
the speed of the body is smaller than the speed of sound in the medium. It is acceptable
provided that kij v̂

j transforms as a vector, since |v⃗|α = (v⃗2)α/2 transforms as a scalar.
The constant matrix kij , called the drag coefficient, characterizes both the viscosity of the
fluid and the geometry of the body. The constant α is generally found to be unity for
speeds that are small compared with the speed of sound in the medium, but grows as the
speed of sound is approached.

This phenomenological force law can be derived from a microsocopic theory. The idea
is the following: if a body moves through a fluid with velocity v⃗ in a frame in which the
fluid is at rest (the molecules have zero average velocity in this frame), we consider the
frame of an observer who is instantaneously at rest relative to the body. In this second
frame the molecules of the fluid flow past the body with an average velocity −v⃗. The flux
of molecules (number of particles striking the body per unit area per unit time) in “front”
would be higher than that of the molecules striking the body from the “rear” (see (2.4).
During a collision between a molecule and the body, the molecule transfers some of its
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momentum to the body
∆p⃗ = p⃗f − p⃗i (2.7.2)

Let ⟨∆p⃗mol⟩ be the average momentum transferred by the molecules in this way to the
body, then by conservation of the total momentum

⟨∆p⃗tot⟩ = ⟨∆p⃗body +∆p⃗mol⟩ = 0 ⇒ ⟨∆p⃗body⟩ = −⟨∆p⃗mol⟩ (2.7.3)

Because the molecular flux is greater in “front” of the body, more momentum is transferred
to it in the “backward” direction than in the “forward” direction and this causes the drag.
For example, a more detailed analysis, employing hydrodynamics, of a sphere of radius r0
moving slowly compared to the speed of sound in the fluid suggests that

F⃗ = −6πηr0v⃗. (2.7.4)

where η is the viscosity of the fluid. We recognize (2.7.1) with kij = (6πηr0)δij and α = 1.
Let us consider motion in one dimension under (2.7.1) with α = 1. As the force

depends on the only on the velocity, we employ the general approach laid down earlier for
this case,

m
dv

dt
= −kv ⇒

∫ v

v0

dv

v
= − k

m
t⇒ v = v0e

−kt/m (2.7.5)

Integrating once more gives

dx

dt
= v0e

−kt/m ⇒ x = x0 + v0

∫ t

0
dt′e−kt

′/m (2.7.6)

The solution of the second law of motion is therefore

x(t) = x0 −
mv0
k
e−kt

′/m
∣∣∣t
0
= x0 +

mv0
k

(1− e−kt/m) (2.7.7)

To verify if the answer makes sense, we check some limits. At t = 0 we have v(0) = v0
and x(0) = x0, which are just our initial conditions. As t→ ∞,

v(t) → 0 and x(t) → x0 +
mv0
k

(2.7.8)

Although the body comes to rest an infinite time later the distance traveled by it is finite,

x(∞)− x(0) =
mv0
k

(2.7.9)

The distance traveled depends on the initial velocity (increases with increasing initial
velocity), on the viscosity (decreases as the viscosity increases) and on the geometry of
the body.
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Figure 2.5: The velocity as a function of time:
v0 = 0 m/s, b = 1 s−1 and g = 9.8 m/s2.
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Figure 2.6: The velocity as a function of time:
v0 = −20 m/s, b = 1 s−1 and g = 9.8 m/s2.

Let us complicate this example a bit by letting the body fall under the influence of
gravity (close to the surface of the earth, Fgrav = −mg) while experiencing the frictional
drag of the medium. Newton’s second law gives

m
dv

dt
= −kv −mg (2.7.10)

Calling b = k/m, this equation can be written as

dv

dt
= −bv − g (2.7.11)

and integrated (t0 = 0) ∫ v

v0

dv

bv + g
= −t⇒ 1

b
ln
(
v +

g

b

)∣∣∣∣v
v0

= −t (2.7.12)

Fortunately this expression is easy to invert and gives

v = −g
b
+
(
v0 +

g

b

)
e−bt (2.7.13)

We check that at t = 0, v = v0. Furthermore, as t→ ∞, v(t) → vT = −g/b, i.e., the body’s
velocity approaches a constant, the so called terminal velocity (the negative sign indicates
that the terminal velocity is in the direction of the gravitational field). The terminal
velocity depends directly on the mass of the body and inversely on the drag coefficient.
If the initial velocity is less than the terminal velocity, as for example is the case for a
parachutist jumping off an aircraft, it will increase in magnitude until the terminal velocity
is reached. If on the contrary the initial velocity is larger than the terminal velocity, it will
decrease in magnitude to approach the terminal velocity [see figures (2.7)] Next consider
integrating the velocity equation one more time,

dx

dt
= −g

b
+
(
v0 +

g

b

)
e−bt
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⇒ x = x0 −
g

b
t− 1

b

(
v0 +

g

b

)
e−bt

∣∣∣∣t
0

⇒ x = x0 −
g

b
t+

1

b

(
v0 +

g

b

)
(1− e−bt) (2.7.14)

At t = 0, x = x0 as required. As t→ ∞,

x(t) → x0 +
1

b

(
v0 +

g

b

)
+ vT t (2.7.15)

This result makes sense because, in the limit of large t, the body moves with constant
velocity equal to its terminal velocity. The effective “initial” position is not the same as
x0, but displaced by (v0b+ g)/b

2. This essentially accounts for the extra distance traveled
while the body’s speed was larger than its terminal speed.

2.7.1 Drag and the projectile

We can combine the motions examined above by considering a projectile in the presence
of drag. The equation of motion is now effectively two dimensional,

m
dv⃗

dt
= −kv⃗ +mg⃗ (2.7.16)

or the (decoupled) set of equations,

dvx
dt

= −bvx

dvy
dt

= −bvy − g (2.7.17)

Suppose that the body has initial velocity

v⃗0 = v0(cos θ, sin θ) = (v0x, v0y) (2.7.18)

where θ is the angle made with the x−axis, then applying our solutions,

x(t) =
v0x
b

(
1− e−bt

)
y(t) = vT t+

(
bv0y + g

b2

)
(1− e−bt) (2.7.19)

This trajectory is shown in figure (2.7.1). Notice that it is no longer symmetric about the
maximum. This is because the equations do not describe a parabola, as they do when
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Figure 2.7: Trajectory of a projectile with drag: v⃗0 = (5, 30) m/s, b = 0.2 s−1 and g = 9.8
m/s2.

k = 0. The drag free motion of a projectile must be recovered by taking the limit as b→ 0.
This is easiest to do via l’Hospital’s rule and gives5,

lim
b→0

x(t) = v0xt

lim
b→0

y(t) = vy0t−
1

2
gt2 (2.7.20)

2.7.2 Perturbative expansions: an example

Let us calculate the range of the projectile, when b is small, but non-vanishing. We must
solve the equation

gt

b
=

(
bv0y + g

b2

)
(1− e−bt) (2.7.21)

This is a transcendental equation, which is impossible to solve analyticaly. However, if bt
is small we may reexpress the exponential as a power series,

bgt = (v0yb+ g)

(
bt− b2t2

2!
+
b3t3

3!
− ...

)
⇒ 0 = v0yb

2t− (v0yb+ g)

(
b2t2

2!
− b3t3

3!
+
b4t4

4!
− ...

)
(2.7.22)

Dividing by v0yb
2 and rearranging terms, we get

t = (b+
g

v0y
)

(
t2

2!
− bt3

3!
+
b2t4

4!
− ...

)
(2.7.23)

5Problem: Apply l’Hospital’s rule and show that the drag free projectile motion is recovered.
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and we want to solve this for t. We now apply a method called “perturbation theory” to
solve this equation. The idea is to expand the solution (2.7.19) about its solution in the
absence of drag, which of course is only meaningful if the effects of drag are “small”. To
make precise what we mean by “small”, we proceed as follows: if t0 represents the solution
of the equation when b = 0, then the parameter

λ = bt0 (2.7.24)

is dimensionless (recall that [b] = t−1). The time scale t0 will depend on the initial
conditions. For small enough b (the drag) the dimensionless quantity λ will also be small
and, since λ is dimensionless, its magnitude will be independent of the units used. Any
parameter that is small, time independent and free of mechanical dimensions can serve
as a “perturbation” parameter. What this means is that we assume that the solution of
(2.7.23) has the form

t = t0 + λt1 + λ2t2 + ... =

∞∑
j=0

λjtj (2.7.25)

where t0 solves (2.7.23) with b = 0, i.e.,

t0 =
2v0y
g

(2.7.26)

Equation (2.7.23) now becomes

t0 + λt1 + λ2t2 + ... =

(
λ

t0
+

g

v0y

)(
1

2
(t0 + λt1 + ...)2 − λ

6t0
(t0 + λt1 + ...)3 + ....

)
=

(
λ

t0
+

g

v0y

)(
t20
2
+ λt0t1 −

λ

6
t20 + ...O(λ2)

)
(2.7.27)

and we compare terms with the same power of λ to get t1, t2 etc. To zeroeth order in λ
we get

t0 =
gt20
2v0y

⇒ t0 = 0 or t0 =
2v0y
g

(2.7.28)

which is precisely the same solution we had before, when b = 0. To first order

t1 =
t0
2
+
gt0t1
v0y

− gt20
6v0y

⇒ t1 = −v0y
3g

(2.7.29)

which is the first correction to b = 0 result: to first order in lambda we find

t ≈ t0 + λt1 =
2v0y
g

−
2bv20y
3g2

=
2v0y
g

[
1− bv0y

3g

]
(2.7.30)
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One can go on in this way, calculating t2, t3, etc., by comparing higher and higher powers
of lambda in (2.7.27) and using the previously obtained values of t0, t1, t2, etc. Note that
this method is based on the assumption that the series in (2.7.25) converges. This is no
longer true when λ ≥ 1, so we must require that

λ≪ 1 ⇒ bt0 ≪ 1 ⇒ k ≪ mg

2v0y
(2.7.31)

Thus the validity of the expansion depends on the mass of the body and the y− component
of the initial velocity. The approximation gets better for larger masses and smaller initial
velocities.

It is now straightforward to also approximate the range of the particle. From the first
equation in (2.7.19),

R′ =
v0x
b

(1− 1 + bt− b2t2

2
+ ...)t=t0+λt1+...

= v0x(t−
bt2

2
+ ...)t=t0+λt1+...

= v0x

(
2v0y
g

[
1− bv0y

3g

]
− b

2

4v20y
g2

+O(b2)

)
R′ ≈ 2v0xv0y

g

(
1− 4

3

bv0y
g

+ ...

)
(2.7.32)

The first term is the range of the drag free projectile. As we would expect, the range of
the projectile is diminished by the drag. We find that it is diminished (to first order in b)
by6

∆R = R−R′ ≈ 4

3

bv0xv
2
0y

g2
(2.7.33)

2.8 Harmonic motion

A deformed spring generally applies a “restorative” force on any body that is attached to
it. The restorative force is directed in such a way as to return the spring to its original

6Problem: The maximum height attained by the projectile is given by vy = 0, i.e.,

g

b
=

(
v0y +

g

b

)(
1− bt+

b2t2

2
− ...

)
Expand t as before (t = t0 + λt1 + ...) with λ = bt0, where t0 is the time taken to reach maximum height
when b = 0. Calculate the time taken to reach maximum height and then the maximum height attained
by the projectile.
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size and shape. If, for example, one end of the spring is attached to an (unmovable) wall
and the other to a body that is free to move, the restorative force will have the effect of
returning the body to its original position. Restorative forces can occur in a wide variety
of physical situations. For example consider an object floating in a liquid. If the body is
pushed deeper into the liquid, we know from experience that it will bounce back, moving
up and down until, over a characteristic period of time, it returns to its original position.
Under certain conditions that occur frequently enough to be most interesting and that
we will discuss later, the magnitude of the restorative force will depend linearly on the
displacement of the body from its equilibrium position. In general,

Fi = −
∑
j

kijx
j (2.8.1)

where kij is a constant, symmetric matrix of positive, real coefficients. This is a general
version of “Hooke’s Law”.

2.8.1 Harmonic motion in one dimension

Let us consider motion under Hooke’s law in one dimension. As the force depends only
on the position of the body, we apply the general method developed earlier for this case

m
d2x

dt2
= −kx⇒ d2x

dt2
= − k

m
x = −ω2x (2.8.2)

Rewriting the equation as

v
dv

dx
= −ω2x⇒ 1

2
(v2 − v20) = −1

2
ω2x2, (2.8.3)

where we have taken the equilibrium position of the body to be the origin and v0 is the
velocity at x = 0. This gives

v =
dx

dt
=
√
v20 − ω2x2 ⇒

∫ x

0

dx√
v20 − ω2x2

= t− t0, (2.8.4)

(since we have no right to fix the time at which the body is at its equilbrium position, t0
remains arbitrary). The integral is easily solved by substitution and we find

x(t) =
v0
ω

cos(ω[t− t0]) = A cos(ωt− ϕ0) (2.8.5)

and

v(t) =
dx

dt
= −ωA sin(ωt− ϕ0) (2.8.6)
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Figure 2.8: Graphic representation of simple harmonic motion

This solution represents “simple harmonic motion”, i.e., regular oscillations about a fixed
point [shown in figure(2.8)]. It involves two arbitrary constants, viz., A and ϕ0. The
constant A represents the maximum displacement of the body from its equilibrium position
and is called the amplitude of the oscillations. The second constant is called the initial
phase of the oscillation. Together with the amplitude, it determines the initial position
of the body by the relation

x(0) = x0 = A cos(ϕ0) (2.8.7)

Both the amplitude and the initial phase may be reexpressed in terms of the initial position
and velocity of the motion, thus

v(0) = v0 = ωA sin(ϕ0) (2.8.8)

together with (2.8.7) gives

tan(ϕ0) =
v0
ωx0

, A =

√
x20 +

v20
ω2

(2.8.9)

The period of the motion is the minimum time taken for the body to return to its position.
If we call this time τ , then we require that

x(t+ τ) = x(t) ⇒ A sin[ω(t+ τ)− ϕ0] = A sin(ωt− ϕ0) (2.8.10)

This gives ωτ = 2nπ, n ∈ Z− {0} and therefore

τ =
2π

ω
= 2π

√
m

k
(2.8.11)

The frequency of the oscillations is the number of oscillations that occur in one second,
i.e.,

f =
1

τ
=

ω

2π
=

1

2π

√
k

m
(2.8.12)
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Figure 2.9: Relationship between Uniform Circular motion and Simple Harmonic Motion.

It is sometimes useful to think of simple harmonic motion in terms of the uniform circular
motion of a body as shown in figure (2.9). As the angular velocity, ω = v/A, of the body
performing uniform circular motion is constant, the angle, θ, made by the body with the
x− axis at any time is given by θ(t) = ωt − ϕ0, where ϕ0 is a constant representing the
initial angle made by the body with the x− axis. The x−coordinate of the body,

x(t) = A cos θ(t) = A cos(ωt− ϕ0) (2.8.13)

performs simple harmonic motion about the origin, as does its y−coordinate. For this
reason, ω is called the angular frequency of the motion. It represents the number of
radians swept out per second by the equivalent body performing uniform circular motion.

2.8.2 One dimensional oscillations with damping

If in addition to the restoring force of a spring on a body, we must account for the dragging
of a medium, Newton’s second law should read

d2x

dt2
= −ω2x− bv (2.8.14)

Now the driving force is a function of both x and v. Rewriting the equation as

d2x

dt2
+ b

dx

dt
+ ω2x = 0 (2.8.15)
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we see that this is a linear, second order differential equation with constant coefficients.
To solve this equation, it is best to think of the l.h.s. as the action of the differential
operator D2 + bD + ω2 on the function x(t), where D = d/dt. Factoring the operator,

(D2 + bD + ω2) = (D − λ+)(D − λ−) (2.8.16)

we find

λ± =
−b±

√
b2 − 4ω2

2
. (2.8.17)

Now because
(D − λ+)(D − λ−)x(t) = 0 (2.8.18)

and because the operators (D − λ±) commute, it follows that either

(D − λ+)x(t) = 0 (2.8.19)

or
(D − λ−)x(t) = 0. (2.8.20)

Each first order equation is simple to solve, we find

dx±
dt

− λ±x± = 0 ⇒ x±(t) = A±e
λ±t (2.8.21)

where A± are arbitrary constants. The general solution of our problem is a linear combi-
nation of these two solutions because we are really interested in the second order equation
in (2.8.18). Therefore

x(t) = e−
bt
2

[
A+e

√
b2

4
−ω2t +A−e

−
√

b2

4
−ω2t

]
(2.8.22)

provided that the eigenvalues are not degenerate, i.e., λ+ ̸= λ−. Two cases arise:

• If b2

4 > ω2, the system is said to be overdamped. Calling ω =
√

b2

4 − ω2, all

solutions take the form

x(t) = e−bt/2
[
A+e

ωt +A−e
−ωt] (2.8.23)

The motion is not oscillatory, but decays with time to the equilibrium position of
the body, i.e., x(t → ∞) → 0. The two constants, A±, are determined from the
initial conditions, x(0) = x0 and v(0) = v0. We find7

x0 = A+ +A−

7Problem: Obtain explicit expressions for A± in terms of x0 and v0 from the equations in (2.8.24)
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v0 = − b
2
(A+ +A−) + ω(A+ −A−) (2.8.24)

For real solutions, the coefficients A± must be real. The trajectory is shown as the
red curve in figure (2.10).

• If b2

4 < ω2, the system is said to be underdamped. The motion is oscillatory, but

its amplitude decays to zero with time. We could set ω =
√
ω2 − b2

4 and write

x(t) = e−
bt
2
[
A+e

iωt +A−e
−iωt] (2.8.25)

Since the position of the body must be real,

x∗(t) = x(t) ⇒ A∗
+e

−iωt +A∗
−e

iωt = A+e
iωt +A−e

−iωt ⇒ A− = A∗
+ (2.8.26)

and therefore
x(t) = 2e−bt/2ℜ(A+e

iωt) (2.8.27)

Now A+, being generally complex, can be written as

A+ =
A
2
e−iϕ0 (2.8.28)

where A is real and −ϕ0 is the phase of A+, giving

x(t) = Ae−bt/2ℜ(ei(ωt−ϕ0)) (2.8.29)

Applying de Moivre’s formula,8 we then find the final form of the solution

x(t) = Ae−bt/2 cos(ωt− ϕ0) (2.8.30)

This expression is similar to that obtained earlier for the simple harmonic oscillator,
except that the amplitude is now decreasing exponentially with time,

A(t) = Ae−bt/2, (2.8.31)

and the frequency of oscillations,

τ =
2π

ω
=

2π√
ω2 − b2

4

⇒ f =

√
ω2 − b2

4

2π
, (2.8.32)

8De Moivre’s formula reads
eiθ = cos θ + i sin θ

Show this by expanding the exponential function in a Taylor series about θ = 0 and comparing the real
and imaginary parts of the expansion with the Taylor series of the cosine and sine functions respectively.
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Figure 2.10: Damped Oscillators: overdamping (red), underdamping (blue) and critical
damping (green).

is diminished by the damping. As before, the constants A and ϕ0 can be obtained
from the initial conditions.9 The underdamped oscillator is shown as the blue curve
in figure (2.10).

• A special situation occurs when the roots of the “auxiliary equation”D2+bD+ω2 = 0
are degenerate, i.e., λ+ = λ− = λ. In this situation (called critical damping) the
general solution is given by

x(t) = (A+Bt)eλt (2.8.33)

It occurs when ω = b/2 which means that λ = −b/2 and therefore

x(t) = (A+Bt)e−bt/2 (2.8.34)

As in the overdamped case, the system does not oscillate but returns to its equilib-
rium position in time, i.e., x(t → ∞) → 0. The constants may be determined from
the initial conditions,

x0 = x(0) = A, v0 = v(0) = −bA
2

+B. (2.8.35)

The critically damped oscillator is the green curve in figure (2.10).

2.8.3 Two dimensional oscillations

Let us consider the force law (2.8.1) in two dimensions. The two equations of motion

m
d2x

dt2
= −k11x− k12y

9Problem: Find the constants A and ϕ0 in terms of x0 = x(0) and v0 = v(0).
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m
d2y

dt2
= −k21x− k22y (2.8.36)

are coupled, i.e., the motion in any direction is affected by the motion in the other. This is
because we have not been clever enough to choose a convenient coordinate system i.e., one
in which the motions decouple. To see how this can be done, let us rewrite the equations
in matrix form,

m
d2r⃗

dt2
= −k̂r⃗ (2.8.37)

where k̂ is the matrix of elements kij . Because k̂ is a constant, symmetric matrix it can

be diagonalized by a constant orthogonal transformation, Ŝ. Let the diagonal matrix be
k̂D = Ŝk̂Ŝ−1. Multiplying the equation of motion on the left by Ŝ,

m
d2

dt2
(Ŝr⃗) = −(Ŝk̂Ŝ−1)(Ŝr⃗) (2.8.38)

where on the left we have used the fact that Ŝ is constant and on the right we have inserted
unity in the form of Ŝ−1Ŝ. Calling q⃗ = Ŝr⃗, we get

m
d2q⃗

dt2
= −k̂Dq⃗. (2.8.39)

But k̂D is diagonal, so the equation above is just a set of two decoupled harmonic oscillators
whose characteristic angular frequencies are determined by the eigenvalues of the matrix k̂.
However, the vector q⃗ represents the position of the body in a rotated coordinate system.
Let us suppose that the two eigenvalues of k̂ are k±. Then the equations of motion, in
terms of q⃗ = (q+, q−) become

d2q+
dt2

= −k+
m
q+ = −ω2

+q+

d2q−
dt2

= −k−
m
q− = −ω2

−q− (2.8.40)

which have the solutions
q± = A± cos(ω±t− ϕ±) (2.8.41)

The constants A± and ϕ± are related to the initial conditions (four of them because we are
in two dimensions; there are two initial conditions per dimension, viz., the initial position
and the initial velocity).

But what are q± and ω±? To answer this question we must first determine Ŝ. Being
two dimensional and orthogonal it must have the form

Ŝ =

(
cos η sin η
− sin η cos η

)
(2.8.42)
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and we would like to find η. By simply multiplying out the matrices, we determine that
for k̂D to be diagonal

k12 cos 2η −
1

2
(k11 − k22) sin 2η = 0 ⇒ η =

1

2
tan−1

[
2k12

(k11 − k22)

]
(2.8.43)

and that the eigenvalues of k̂ are

k± =
1

2

[
(k11 + k22)±

√
(k11 − k22)2 + 4k212

]
= mω2

± (2.8.44)

These are the “normal modes” of the system and f± = ω±/2π are its “normal frequen-
cies”. Moreover, since q⃗ = Ŝr⃗ we obtain the solution in terms of the old coordinates by
inversion,x(t)

y(t)

 =

cos η − sin η

sin η cos η

q+
q−

 =

cos η − sin η

sin η cos η

A+ cos(ω+t− ϕ+)

A− cos(ω−t− ϕ−)

 (2.8.45)

We have assumed that the eigenvalues of k̂ are positive, which is true only if k11k22 > k212.
It should be clear that the above procedure can be carried out in any number of dimensions.
The diagonalizing matrix will always be a member of special orthogonal group SO(n) and
therefore involve n(n− 1)/2 free parameters (the Euler angles).

The method can also be applied to more complex situations, such as the one that
occurs in solids. A solid can be thought of as a very large number, N , of molecules each of
which oscillates about some equilibrium position. The net force acting upon any molecule
is due to its interaction with all the molecules in its neighborhood and can be quite
complicated. However, it turns out that Hooke’s law is an excellent approximation under
normal conditions, so (2.8.1) applies. A generalization of the diagonalization illustrated in
the simple two dimensional example above can be applied to reduce the solid to a system
of 3N decoupled harmonic oscillators which, as we have just seen, is easily solved.

2.8.4 Trajectories in the plane

In the present, parametrized form it is difficult to visualize the trajectory of the body in
the x− y plane. For this it is sometimes better to determine the trajectory as an implicit
function f(x, y) =const. We begin with the simpler situation that occurs when k12 = 0.
This gives η = 0, ω2

+ = k11/m and ω2
− = k22/m. Therefore

x(t) = A+ cos(ω+t− ϕ+), y(t) = A− cos(ω−t− ϕ−), (2.8.46)

If we further specialize to the case when ω+ = ω− = ω, then the motions in the x− and
y− directions differ only by amplitude and a phase. If we let δ = ϕ+ − ϕ− then

y = A− cos(ωt− ϕ+ + δ)
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= A−[cos(ωt− ϕ+) cos δ − sin(ωt− ϕ+) sin δ]

=
A−
A+

[x cos δ −
√
A2

+ − x2 sin δ] (2.8.47)

Some special cases are particularly interesting:

• When δ = 2nπ, n ∈ Z,
y =

A−
A+

x (2.8.48)

which is the equation of a straight line in the x− y plane with positive slope deter-
mined by the respective amplitudes.

• When δ = (2n+ 1)π, n ∈ Z,

y = −A−
A+

x, (2.8.49)

which is the equation of a straight line in the x− y plane with negative slope whose
magnitude is again determined by the respective amplitudes.

• When δ = (2n+ 1)π2 , n ∈ Z,
x2

A2
+

+
y2

A2
−

= 1 (2.8.50)

which is the equation of an ellipse whose major/minor axes are along the coordinate
axes.

The general case is just as easy to analyze, for now we have

(A+y −A−x cos δ)
2 = A2

−(A2
+ − x2) sin2 δ. (2.8.51)

Expanding the expressions on both sides, dividing by A2
+A2

− and rearranging terms,

x2

A2
+

+
y2

A2
−
− 2

x

A+

y

A−
sin δ cos δ = sin2 δ (2.8.52)

This equation also represents an ellipse, but one whose major/minor axes are rotated away
from the coordinate axes. The angle by which the rotation occurs depends again on the
amplitudes and the phase difference. If we want to find this angle, all we need to do is to
perform a rotation of the original coordinates by an angle θ to a new set (x′, y′), subject to
the condition that the equation in (2.8.52) when written in terms of (x′, y′) becomes the
standard (canonical) equation of an ellipse. This determines θ, as we now see. Performing
the rotation, and expressing (x, y) in terms of (x′, y′) by inversion we substitute

x = x′ cos θ − y′ sin θ
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y = x′ sin θ + y′ cos θ (2.8.53)

into (2.8.52) to obtain

x′2(A2
+ sin2 θ +A2

− cos2 θ + 2A+A− sin θ cos θ cos δ)+

y′2(A2
+ cos2 θ +A2

− sin2 θ − 2A+A− sin θ cos θ cos δ)+

x′y′(−(A2
+ −A2

−) sin 2θ − 2A+A− cos 2θ cos δ) = A2
+A2

− sin2 δ (2.8.54)

To get the canonical form, we require

tan 2θ =
2A+A− cos δ

A2
− −A2

+

, A+ ̸= A− (2.8.55)

If A+ = A− = A then θ = π
4 . The equation of the ellipse is then

(1 + cos δ)x′2 + (1− cos δ)y′2 = A2 sin2 δ (2.8.56)

Only the lengths of the major and minor axes are determined by δ in this case. This is no
longer true when A+ ̸= A− as seen from (2.8.55), which must be applied otherwise.

2.8.5 Lissajou’s figures

The situation gets substantially more complicated when ω+ ̸= ω−, but it also gets more
interesting. Returning to (2.8.46), we could express t in terms of x,

t =
1

ω+

[
cos−1

(
x

A+

)
+ ϕ+

]
(2.8.57)

and substitute into the equation for y,

y = A− cos

(
ω−
ω+

[
cos−1 x

A+
+ ϕ+

]
− ϕ2

)
(2.8.58)

This makes it obvious that the function y = y(x) depends on the ratio ω−
ω+

and the
phase difference δ. One finds that when the ratio of frequencies is a rational number
the trajectory closes in the x − y plane. In this case the frequencies are said to be
commensurable. When the ratio of frequencies is not a rational number they are said
to be incommensurable and the trajectory never closes. Instead, given a sufficiently long
time, the body will come arbitrarily close to every point within the rectangle of dimensions
2A+ × 2A−. When the frequencies are commensurable, the (closed) trajectories of the
body are called Lissajou’s figures. Some examples of Lissajou’s figures are shown in figure
(2.11).
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Figure 2.11: Lissajou’s figures

2.9 One dimensional free fall

Let us turn our attention to a different problem. Consider two bodies falling freely into one
another under the influence of their mutual gravitational interaction. (We could imagine,
for instance, that the moon were caused to suddenly stop rotating around the earth, so
that at a certain instant (call it t = 0) it began to fall freely. How long will it take for
the moon to collide with the earth?) Let m1 and m2 be the masses of the bodies and let
their positions at time t be denoted by r⃗1(t) and r⃗2(t) respectively. Newton’s second law
applied to each of the bodies in turn tells us that

m1
d2r⃗1
dt2

= −Gm1m2(r⃗1 − r⃗2)

|r⃗2 − r⃗1|3
(2.9.1)

while for the second body

m2
d2r⃗2
dt2

= −Gm1m2(r⃗2 − r⃗1)

|r⃗2 − r⃗1|3
(2.9.2)

assuming that the masses stay constant during the free fall. Adding the two equations
gives

d2

dt2
(m1r⃗1 +m2r⃗2) = 0 (2.9.3)
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which tells us that the point whose position is

rcm =
m1r⃗1 +m2r⃗2
m1 +m2

(2.9.4)

moves with a constant velocity, as would a free body. This point is called the center of
mass of the system. Note that the center of mass is just a point in space; it is not itself
a material body.

Multiplying the first equation by m2 and the second by m1, and then subtracting the
first from the second gives

m1m2
d2

dt2
(r⃗2 − r⃗1) = −Gm1m2(m1 +m2)(r⃗2 − r⃗1)

|r⃗2 − r⃗1|3
(2.9.5)

or, if r⃗ is used to represent the relative position r⃗2 − r⃗1 of body 2 w.r.t. body 1, and
M = m1 +m2 is the total mass of the system,

d2r⃗

dt2
= −GM

r2
r̂ (2.9.6)

The coordinate r⃗ is called the relative coordinate. As the motion is purely radial, i.e.,
along the line joining the two bodies, it is effectively one dimensional with the force law

d2r

dt2
= −GM

r2
. (2.9.7)

It can solved using the techniques laid out earlier in the chapter. We have

v
dv

dr
= −GM

r2
⇒ 1

2
v2 = GM

[
1

r
− 1

r0

]
(2.9.8)

where r0 represents the position at which the bodies commenced their free fall (r(0) = r0)
and we have assumed that v(0) = 0. This means that

v =
dr

dt
= −

√
2GM

[
1

r
− 1

r0

]
⇒ −

√
r0

2GM

∫ r

r0

dr′
√

r′

r0 − r′
= t (2.9.9)

(we have chosen the negative square root because r is decreasing in time). By making the
substitution r′ = r0 sin

2 η, we evaluate the integral on the left and arrive at√
r0

2GM

[√
r(r − r0)− r0 sin

−1

√
r′

r0

]r
r0

= t(r) (2.9.10)

or √
r0

2GM

[
πr0
2

+
√
r(r − r0)− r0 sin

−1

√
r

r0

]
= t(r) (2.9.11)
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At r = 0 we have a collision, because r is the magnitude of the relative coordinate. The
time taken for collision is therefore

t(0) =
π

2

(
r30

2GM

) 1
2

(2.9.12)

We can now answer the question we began with. Suppose the moon were indeed suddenly
caused to stop in its orbit. Assuming that its orbit is quasi-circular, its period is given by

τ =
2πr0
v

= 2π

(
r30
GM

) 1
2

= 2
√
2π

(
r30

2GM

) 1
2

, (2.9.13)

where we used the fact that the centripetal acceleration of the moon is caused by the
gravitational force on it, i.e.,

v2

r0
=
GM

r20
⇒ v =

√
GM

r0
. (2.9.14)

We can give the time for collision in terms of its orbital period prior to being stopped,

t(0) =
τ

4
√
2
≈ 4.95 days (2.9.15)

(taking τ = 28 days for the moon’s orbit about the earth). Of course this is only an
academic discussion because if the moon is indeed suddenly stopped in its orbit it can be
only due to a catastrophic event such as a collision with another heavenly body, which will
not leave the moon intact. Moreover, a freely falling moon would cause such disruptions
to the earth’s environment as to make life impossible long before the actual collision takes
place.

2.10 Systems with variable mass: the rocket

Finally, we address a different sort of system, one in which the mass does not stay constant
in time. This kind of system emphasizes the fact that Newton’s second law is actually

dp⃗

dt
= F⃗ ext (2.10.1)

and not the more often quoted F⃗ = ma⃗, whose validity relies on the mass of the body
being held constant throughout the body’s motion.

Consider the rocket, shown schematically in figure (2.12). Rockets contain a com-
bustible material that burns at some rate depending on its design. The gasses produced
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Figure 2.12: The Rocket

by the burning combustible are exhausted from one end, which we call “the bottom”, of
the rocket, usually at a fixed rate relative to the rocket. Let O be an observer situated
on earth, relative to whom the velocity of the rocket is v⃗(t). Let the average velocity of
the gasses relative to this observer be v⃗g, so that the velocity of the gasses relative to the
rocket itself is u⃗ = v⃗g − v⃗, and this is usually constant. At some time t, the momentum of
the rocket together with all the combustible material that remains unburned is

p⃗(t) = m(t)v(t) (2.10.2)

An infinitesimal time δt later, a portion −δm of the combustible has been burned and
now exits the rocket with speed v⃗g while the mass m + δm travels upward with a speed
v⃗ + δv⃗. The momentum of the original mass is

p⃗(t+ δt) = (m+ δm)(v⃗ + δv⃗)− δmv⃗g

= mv⃗ +mδv⃗ + δm(v⃗ − v⃗g)

= p(t) +mδv⃗ − δmu⃗ (2.10.3)

where we have neglected the term δmδv⃗, which is too small, given that δm and δv⃗ are
themselves infinitesimals. The total change in momentum of the system in the time interval
δt is therefore

δp⃗(t) = p⃗(t+ δt)− p⃗(t) = mδv⃗ − δmu⃗

⇒ dp⃗

dt
= m

dv⃗

dt
− dm

dt
u⃗ (2.10.4)
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By Newton’s second law this can only be equal to the net external force, therefore

m
dv⃗

dt
=
dm

dt
u⃗+ F⃗ ext (2.10.5)

This is known as the rocket equation. Even when F⃗ ext = 0 there is an effective force
on the rocket, which comes about because of the need to conserve momentum and is
proportional to the rate at which fuel is being burned and the velocity, relative to the
rocket itself, at which the resulting gasses are expelled. Notice that because the fuel is
being consumed the rocket is continuously losing mass, so δm < 0. Therefore the first
term on the right hand side is directed opposite to the velocity of the gasses relative to
the rocket. Thus hot gasses ejected from the base of the rocket cause the rocket itself to
rise. If F⃗ ext is just the (approximately) constant gravitational field of the earth close to
its surface, F⃗ ext = mg⃗, we can integrate once to get

v⃗ = v⃗0 + u⃗ ln

(
m

m0

)
+ g⃗(t− t0) (2.10.6)

wherem0 is the mass of the rocket at time t0. A net zero acceleration (hovering) is possible
only if

dm

dt
u⃗ = −mg⃗ ⇒ m(t) = m0e

− g
u
(t−t0) (2.10.7)

i.e., the rate of fuel burning must be adjusted to precisely balance the changing mass of
the rocket.



Chapter 3

Conservation Theorems

In the previous chapter we stated Newton’s three laws of motion and used Newton’s second
law to obtain explicit solutions to a few simple problems involving one or two particles
subject to certain initial conditions, i.e., the position(s) and velocity(ies) of the particle(s).
Unfortunately it is not possible to obtain such simple, closed form solutions in most cases
of real physical interest. Can we then say anything about a physical system without
referring to a tidy, closed form solution? It turns out that the answer is yes, it is possible
to say quite a lot! For this we now examine some very general consequences of Newton’s
laws, the so-called conservation theorems. We will do this by building and examining
a generic mechanical system made up of particles with generic interactions. In doing so,
we will develop a new set of tools that will later allow us to analyze more complicated
problems than would otherwise be possible.

3.1 Single Particle Conservation Theorems

3.1.1 Conservation of momentum

We begin by considering a system consisting of one particle. According to Newton’s second
law,

dp⃗

dt
= F⃗ ext (3.1.1)

where F⃗ ext is the external force applied to it. Evidently, if F⃗ ext = 0, there is no external
force and

dp⃗

dt
= 0 ⇒ p⃗ = const. (3.1.2)

Thus we have our first conservation theorem:

• When the next external force on a particle is zero, the momentum of the particle is
conserved.

66
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3.1.2 Conservation of angular momentum

We define the angular momentum of a single particle about a point (call that point the
origin) as

L⃗ = r⃗ × p⃗ (3.1.3)

where r⃗ is the position of the particle with respect to the reference point. Taking a
derivative with respect to time,

dL⃗

dt
= v⃗ × p⃗+ r⃗ × dp⃗

dt
= r⃗ × F⃗ (3.1.4)

because v⃗ × p⃗ ≡ 0. This is the equivalent of Newton’s second law for rotational motion.
The quantity r⃗ × F⃗ is called the torque

τ⃗ = r⃗ × F⃗ (3.1.5)

and
dL⃗

dt
= τ⃗ (3.1.6)

Our second conservation law follows:

• When the net torque due to all the external forces on a particle vanishes the angular
momentum of the particle is conserved.

3.1.3 Work and the conservation of energy

Again, consider what happens when F⃗ ext ̸= 0. Then taking the inner product of the
second law with v⃗,

dp⃗

dt
= F⃗ ext ⇒ mv⃗ · dv⃗

dt
= v⃗ · F⃗ ext (3.1.7)

and integrating the resulting equation gives,

m

∫ 2

1
v⃗ · dv⃗ =

∫ 2

1
F⃗ ext · v⃗ dt⇒ 1

2
(mv⃗22 −mv⃗21) =

∫ 2

1
F⃗ ext · dr⃗ (3.1.8)

The quantity K = 1
2mv⃗

2 is called the kinetic energy of the particle, and

W12 =

∫ 2

1
F⃗ ext · dr⃗ (3.1.9)

is the work done by the external force F⃗ ext on the particle in moving it from the point
labeled “1” to the point labeled “2”. The power is the instantaneous rate at which work
is done,

P =
dW

dt
= F⃗ ext · dr⃗

dt
= F⃗ ext · v⃗ (3.1.10)
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Figure 3.1: Line integrals defining work.

We see from (3.1.8) that

K2 −K1 =W12, (3.1.11)

which states that the change in the kinetic energy of a particle is equal to the work done
by the external force acting upon it. This is called the “work energy theorem”.1

Work as defined in (3.1.9) is a line integral

W12 =

∫ 2

1
F⃗ ext · dr⃗ =

∑
i

∫ 2

1
F ext
i dxi, (3.1.12)

and will, in general, depend on the path along which it is taken. The work energy theorem
therefore says that the change in kinetic energy of the particle depends on the line integral
taken along the on the trajectory of the particle as given by Newton’s second law. Thus it
would seem that to use the theorem we would first have to solve Newton’s equations. Of
course, if that were always possible there would be no need of the theorem! Fortunately,
in many situations of fundamental importance F⃗ ext is such that the line integral does not
depend on the path taken. This would mean that∫ 2

1,C1

F⃗ · dr⃗ =
∫ 2

1,C2

F⃗ · dr⃗ (3.1.13)

where C1 and C2 are arbitrary paths joining the points “1” and “2” as shown in (3.1). If
so, then we would find that the line integral over the loop from “1” to “2” along path C1

1Problem: Consider two inertial frames, S, and S′ and suppose that the velocity of S′ relative to S
is u⃗. It should be clear that the Kinetic energy is not invariant under a Galilean transformation from S
to S′. Neither is the work done invariant under this transformation. Show that the work energy theorem
nevertheless has the same form in S′ as in S. This is a general principle, called the principle of covariance:
the laws of physics must have the same form in all inertial frames. Later we will see that the principle of
covariance can be extended to non-inertial frames as well.
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and from “2” to “1” along path C2 yields exactly zero because, rewriting (3.1.13) as∫ 2

1,C1

F⃗ · dr⃗ = −
∫ 1

2,C2

F⃗ · dr⃗ (3.1.14)

gives ∫ 2

1,C1

F⃗ · dr⃗ +
∫ 1

2,C2

F⃗ · dr⃗ = 0 =

∮
C1−C2

F⃗ · dr⃗ (3.1.15)

But C1 and C2 were quite arbitrary as were the initial and final points they connected,
therefore ∮

C
F⃗ · dr⃗ = 0 (3.1.16)

along any closed loop, C.

Definition: If the work done by a force F⃗ ,

W12 =

∫ 2

1,C
F⃗ · dr⃗, (3.1.17)

is independent of the path taken (the curve C) then it is conservative. A force F⃗ is
conservative if and only if ∮

C
F⃗ · dr⃗ = 0 (3.1.18)

for any closed curve C.

Conservative forces are of particular interest because, as far as we know, all the funda-
mental forces of nature are conservative. Moreover, they are easy to work with. If a force
is conservative then applying Stokes theorem to (3.1.18) gives∮

C
F⃗ · dr⃗ =

∫
S
(∇⃗ × F⃗ ) · dS⃗ = 0 (3.1.19)

But as C is arbitrary, so is S and it follows that ∇⃗ × F⃗ = 0. Thus F⃗ is conservative if
and only if it is rotation free. Of course, every rotation free vector can be expressed as
the gradient of a scalar function, therefore we define

F⃗ = −∇⃗U(r⃗) (3.1.20)

The work done by the conservative force F⃗ in moving a particle from one point to another
becomes ∫ 2

1,C
F⃗ · dr⃗ = −

∫ 2

1
∇⃗U · dr⃗ = −

∫ 2

1
dU = U(r⃗1)− U(r⃗2) (3.1.21)
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U(r⃗) is called the potential energy function corresponding to F⃗ . If F⃗ (r⃗) is known then it
can be recovered, up to a constant, from

U(r⃗) = −
∫ r⃗

∗
F⃗ (r⃗′) · dr⃗′ (3.1.22)

where ∗ represents some fixed point, a “reference” point, of our choosing. In other words,
U(r⃗) is defined only up to a constant. The constant is determined by our choice of ∗,
which is itself arbitrary but once chosen must be held fixed (although U(r⃗) is defined via
a line integral, it is well defined i.e., independent of the path from ∗ to r⃗) because F⃗ is
conservative). Now, by the work energy theorem

W12 = U(r⃗1)− U(r⃗2) = K2 −K1 ⇒ K1 + U(r⃗1) = K2 + U(r⃗2) (3.1.23)

which means that

E = K + U =
1

2
mv⃗2 + U(r⃗) (3.1.24)

is constant during the motion of the particle. The constant, E, is called the total energy
of the particle. Evidently, the total energy of a particle is defined only up to an additive
constant.

The concept of potential energy and by implication of the total energy of a particle is
strictly defined only when the total external force acting upon the particle is conservative.
If the reference point ∗ is changed to ∗′ we find that

U ′(r⃗) = −
∫ r⃗

∗′
F⃗ · dr⃗ = −

∫ ∗

∗′
F⃗ · dr⃗ −

∫ r⃗

∗
F⃗ · dr⃗

= U(r⃗) + C (3.1.25)

where C is the constant given by first integral on the right (because F⃗ is conservative the
integrals do not depend on the path between the endpoints, so they must depend only on
the endpoints). This leads to our second conservation theorem:

• When the external force(s) on a particle is (are) conservative, then F⃗ = −∇⃗U(r⃗),
for some function U(r⃗) called the potential energy of the particle,

U(r⃗) = −
∫ r⃗

∗
F⃗ · dr⃗, (3.1.26)

and the total energy, which is the sum of the kinetic energy and the potential energy,

E =
1

2
mv⃗2 + U(r⃗) (3.1.27)

is conserved throughout its motion.
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For a general potential function of the form U = U(r⃗, t), taking a time derivative of E in
(3.1.27) we see that

dE

dt
= mv⃗ · dv⃗

dt
+
dU

dt

= mv⃗ · dv⃗
dt

+ v⃗ · ∇⃗U(r⃗) +
∂U

∂t

= v⃗ ·
(
m
dv⃗

dt
+ ∇⃗U(r⃗)

)
+
∂U

∂t
=

(
m
dv⃗

dt
− F⃗

)
+
∂U

∂t
≡ ∂U

∂t
(3.1.28)

where we have used Newton’s second law. For conservative forces, U(r⃗, t) cannot depend
explicitly on time.

3.2 Frictional forces and mechanical energy

Frictional forces generally arise by the interactions of our physical system with the rest
of the universe. They are generally complex interactions and can be modelled only phe-
nomenologically. No frictional force, f⃗ , can be conservative because friction always acts
in a direction opposite to the velocity and therefore the work done by friction,

W f
12 =

∫ 2

1
dr⃗ · f⃗ = −

∫ 2

1
ds(v̂ · v̂)|f⃗ | = −

∫ 2

1
ds|f⃗ | (3.2.1)

where s is the path length and we have used dr⃗/ds = v̂, is always negative and can never
be independent of the path because the integrand is always positive. For instance, if |f⃗ | =
const., then the work done is just W12 = |f⃗ |L12 where L12 is the path length between
points 1 and 2. On the other hand, if |f⃗ | = k|v⃗|α then

W f
12 = −k

∫ 2

1
ds|v⃗|α (3.2.2)

and the rate at which this work is being done is

dW f
12

dt
= −k|v⃗|α+1 (3.2.3)

Suppose that all the other forces on our particle are conservative, so that we may define
a potential energy for the sum of the conservative forces,

U cons(r⃗) = −
∫ r⃗

∗
F⃗ cons · dr⃗. (3.2.4)
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Integrate the equations of motion once,

mv⃗ · dv⃗
dt

= f⃗ · v⃗ + F⃗ cons · v⃗

⇒ 1

2
m(v⃗22 − v⃗21) =

∫ 2

1
dr⃗ · f⃗ + U cons(r⃗1)− U cons(r⃗2)

⇒ 1

2
mv⃗22 + U cons(r⃗2) =

1

2
mv⃗21 + U cons(r⃗1)− k

∫ 2

1
ds|v⃗|α (3.2.5)

The quantity E = K+U cons, which we will refer to as the mechanical energy of the particle
is no longer conserved. In fact, it is easy to see that

dE
dt

= −k|v⃗|α+1 (3.2.6)

Now it is a fundamental postulate of physics that the total energy of the universe remains
constant. This loss of mechanical energy of our particle would then imply that the particle’s
energy is being transferred to the environment (the rest of the universe) at a rate that is
proportional to some power of the particle’s speed.

3.3 Examples of conservative forces

Only two of the forces considered in the pervious chapter are conservative, viz., the restora-
tive force of an ideal spring and the gravitational force acting between two massive bodies.
Let us take a brief look at them.

The simple harmonic oscillator: The restorative force exerted by a spring, F⃗ = −kr⃗, is
conservative. To see this simply take the curl of F⃗ to get

∇⃗ × F⃗ = −k∇⃗ × r⃗ ≡ 0. (3.3.1)

So we can obtain the potential energy of the simple harmonic oscillator by the integral

U(r⃗) = −
∫ r⃗

∗
F⃗ · dr⃗ = 1

2
kr⃗2 (3.3.2)

where we have taken the reference point to be the origin. The total energy of the harmonic
oscillator,

E =
1

2
mv⃗2 +

1

2
kr⃗2, (3.3.3)
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is conserved and in one dimension the relation may be thought of as the first of the two
integrals that are required to solve Newton’s equations. Solving for v gives

v =
dx

dt
=

√
2E

m
− ω2x2 (3.3.4)

and we note that if v0 represents the velocity of the body at x = 0 then v20 = 2E/m. Thus
we recover (2.8.4).

Gravitational free fall: The gravitational force between two particles is conservative. At
this point suppose, for simplicity, that particle 1 is somehow fixed at the origin and particle
2 is situated at r⃗. Then the gravitational force on particle 2 due to 1 is

F⃗ = −Gm1m2

r3
r̂ (3.3.5)

which is easily proved to be conservative (∇⃗ × F⃗ = 0). The potential energy of particle 2
due to its gravitational interaction with particle 1 is therefore

U(r⃗) = −
∫ r⃗

∗
F⃗ · dr⃗ = Gm1m2

∫ r⃗

∗

dr⃗

r2
· r̂ = Gm1m2

∫ r

∗

dr

r2
(3.3.6)

The most convenient reference point would be out at infinity, i.e., particle 2 is infinitely
separated from particle 1, in which case

U(r⃗) = −Gm1m2

r
(3.3.7)

The total energy of the particle 2 would be the sum

E =
1

2
mv⃗22 −

Gm1m2

r
(3.3.8)

In general we cannot assume that 1 is fixed to the origin (this may be a good approximation
when the mass of 1 is very much greater than the mass of 2 – as in, for example, the earth
sun system – but even so it is only an approximation.) A more detailed examination of
this system of two particles will be given at the end of this chapter.

3.4 The damped and driven oscillator

We have examined the damped and undamped oscillator in the previous chapter. Let us
now complicate the problem by adding a time dependent force driving the oscillator. The
equation of motion is

m
d2x

dt2
= −kx− b

dx

dt
+ F (t) (3.4.1)
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which can be written as

(D2 + 2γD + ω2
0)x(t) =

F (t)

m
(3.4.2)

where γ = b/2m and ω2
0 = k/m. Again we have a linear differential equation with constant

coefficients, but it is not homogeneous because of the driving force on the right.

3.4.1 Fourier Expansion

The function F (t) could be anything, but situations of greatest physical interest occur
when F (t) is periodic. It also turns out that, in this case, we can give a complete and
general solution to the problem by exploiting a beautiful theorem in mathematics due to
Jean-Baptiste Fourier, which says that:

The Fourier Theorem: Any piecewise continuous, periodic function with period τ , which
is square integrable, i.e., ∫ t2

t1

dt|F (t)|2 <∞ (3.4.3)

where t2 − t1 = T , can be decomposed into the infinite series

F (t) =
1

2
a0 +

∞∑
n=1

(an cosnωt+ bn sinnωt) , ω =
2π

τ
(3.4.4)

where an and bn are the “Fourier coefficients” that can be obtained from F (t) according
to

an =
2

τ

∫ τ

0
dt F (t) cosnωt

bn =
2

τ

∫ τ

0
dt F (t) sinnωt (3.4.5)

for all n (including n = 0). The nth order term in the expansion is called the nth harmonic
of F (t).

We will not prove Fourier’s theorem here,2 but simply examine the idea. It has to
do with the fact that the set of functions {sinnx, cosnx} (for integer values of n) is
“orthonormal” with respect to an inner product, defined by an integral over one period.
In fact, it is easy to show that

1

π

∫ 2π

0
dx sinnx sinmx = δmn =

1

π

∫ 2π

0
dx cosnx cosmx

2A proof can be found in the book Fourier Series and Boundary Value Problems by J.W. Brown and
R.V. Churchill, McGraw-Hill Science 7th edition, (2006).
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1

π

∫ 2π

0
dx sinnx cosmx = 0 (3.4.6)

for all values of n and m. This property of the sines and cosines is similar to the orthonor-
mality of basis vectors x̂1, x̂2, ... in ordinary space, except that the set is now countably
infinite and the definition of what we mean by the inner product is different. If we let the
variable x = ωt = 2πt/τ , then

ω

π

∫ 2π
ω

0
dt sinnωt sinmωt = δmn =

ω

π

∫ 2π
ω

0
dt cosnωt cosmωt

ω

π

∫ 2π
ω

0
dt sinnωt cosmωt = 0 (3.4.7)

Often the inner product between the functions is denoted by ⟨ , ⟩, for example if f(t) and
g(t) are two piecewise continuous, periodic functions of t with period τ the inner product
of f with g is

⟨f(t), g(t)⟩ = 2

τ

∫ τ

0
dt f(t)g(t), (3.4.8)

where we have set 2π/ω = τ . Carrying the analogy with an ordinary (finite dimensional)
vector space even further and using the inner product, we could define the norm of the
function f(t) by

∥f∥ = ⟨f, f⟩
1
2 (3.4.9)

Two functions are orthogonal if ⟨f, g⟩ = 0 and a function is normalized if its norm
is unity. The distance between two functions is defined to be d(f, g) = ∥f − g∥ and
represents the root mean square distance between their graphs. Suppose that a function
F (t) is expressed as

F (t) =
1

2
a0 +

∞∑
n=1

[an cosnωt+ bn sinnωt] (3.4.10)

Taking the inner product of F (t) with sinmωt and then cosmωt with m ̸= 0 would give

⟨F (t), sinmωt⟩ =
∞∑
n=1

bn⟨sinnωt, sinmωt⟩ =
∞∑
n=1

bnδnm = bm

⟨F (t), cosmωt⟩ =
∞∑
n=1

an⟨cosnωt, cosmωt⟩ =
∞∑
n=1

anδnm = am (3.4.11)

while if m = 0,

⟨F (t), 1⟩ = 2

τ

∫ τ

0
dt F (t) =

1

2
a0 ·

2

τ

∫ τ

0
dt = a0 (3.4.12)
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(we see why the first coefficient, a0, was defined with the extra factor of 1/2). Thus
all the coefficients can be formally defined simply because the set {sinnωt, cosnωt} is
orthonormal with respect to this inner product. However this does not guarantee that the
series faithfully reproduces the function F (t). Formally, this would happen if the sequence
SN defined by

SN (t) =
1

2
a0 +

N∑
n=1

[an cosnωt+ bn sinnωt] (3.4.13)

were to converge in the mean to the function F (t), i.e., if the root mean square distance
between the two were to approach zero as N approached infinity, or

lim
N→∞

∥F (t)− SN (t)∥2 = lim
N→∞

∫ τ

0
[F (t)− SN (t)]

2 = 0 (3.4.14)

If this condition holds for a class of periodic functions F (t) then the set {sinnωt, cosnωt}
would be not simply orthonormal but also complete within that class. It turns out that
this condition is met if F (t) is piecewise continuous and square integrable, so every square
integrable, piecewise continuous and periodic function has a faithful Fourier decomposi-
tion.

By a simple transformation,

αn =
√
a2n + b2n, ϕn = tan−1

(
bn
an

)
, (3.4.15)

which is valid so long as n ̸= 0 and provided that an ̸= 0, the Fourier series can be put in
the form

F (t) =
∞∑
n=0

αn cos(nωt− ϕn) (3.4.16)

with ϕ0 = 0 and α0 = a0/2. But (3.4.2) is a linear equation, which means that we can
consider its solution, x(t), to be a superposition, x(t) =

∑
n xn(t), where each xn(t) is a

solution of

(D2 + γD + ω2
0)x0(t) = f0

(D2 + γD + ω2
0)xn(t) = fn cos(nωt− ϕn), (3.4.17)

where f0,n = α0,n/m. There is a standard way to solve such differential equations. Recall
that a general solution of an nth order differential equation must have n (integration)
constants. Newton’s equations are second order, so they require two constants per space
dimension, which are related of course to the components of the initial position and velocity
of the particle. We already know how to solve the homogeneous equation

(D2 + 2γD + ω2
0)xn(t) = 0, (3.4.18)
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so here is the trick: first calculate the general solution to (3.4.18). This is the compli-
mentary function, xc(t), and will contain the desired integration constants. It does not
depend on n. Then look for a particular solution to the inhomogeneous equation, xn,p(t)
(this will depend on n). Any solution will do and the sum of xc(t) and xn,p(t)

xn(t) = xc(t) + xn,p(t) (3.4.19)

is also a solution of the inhomogeneous equation. Moreover, because it contains two
arbitrary constants, it is also the most general solution.

Since we already have the general solutions of the homogeneous equation (see (2.8.22),
we will now look for a particular solution. Try

xn,p(t) = Bn cos(nωt− δn), (3.4.20)

where Bn and δn are to be determined. Inserting this into (3.4.17) gives

(ω2
0 − n2ω2)Bn cos(nωt− δn)− 2γnωBn sin(nωt− δn) = fn cos(nωt− ϕn). (3.4.21)

If we expand the trigonometric functions on the left and right of the above equation, we
have

Bn[(ω
2
0 − n2ω2) cos δn − 2nωγ sin δn] cosnωt

+Bn[(ω
2
0 − n2ω2) sin δn − 2nωγ cos δn] sinnωt

= fn cosϕn cosnωt+ fn sinϕn sinnωt (3.4.22)

Comparing terms we get

Bn[(ω
2
0 − n2ω2) cos δn − 2nωγ sin δn] = fn cosϕn

Bn[(ω
2
0 − n2ω2) sin δn − 2nωγ cos δn] = fn sinϕn (3.4.23)

which together give ϕn in terms of δn,

tanϕn =
(ω2

0 − n2ω2) tan δn − 2nωγ

(ω2
0 − n2ω2)− 2nωγ tan δn

, (3.4.24)

equivalently δn in terms of ϕn

tan δn =
2nωγ + (ω2

0 − n2ω2) tanϕn
(ω2

0 − n2ω2)− 2nωγ tanϕn
(3.4.25)
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which is the relation we were after. We now seek the next relation we need, i.e., an
expression for Bn. Using (3.4.25) we find

sin δn =
(ω2

0 − n2ω2) tanϕn + 2nωγ√
(ω2

0 − n2ω2)2 + 4n2ω2γ2
cosϕn (3.4.26)

and

cos δn =
(ω2

0 − n2ω2) tanϕn − 2nωγ√
(ω2

0 − n2ω2)2 + 4n2ω2γ2
sinϕn (3.4.27)

which expressions may be inserted in either of the pair of equations in (3.4.23) to get

Bn =
fn√

(ω2
0 − n2ω2)2 + 4n2ω2γ2

(3.4.28)

The general solution of the damped and forced oscillator is therefore

x(t) = e−γt
[
A+e

√
γ2−ω2

0t +A−e
−
√
γ2−ω2

0t
]
+

∞∑
n=0

Bn cos(nωt+ δn) (3.4.29)

with Bn and δn given above for each n.

Notice that, after a very long time, t → ∞, the first term will die away because of
the exponential damping term multiplying it. The effect of the first term is therefore
negligible after a sufficiently long time (roughly τ ∼ γ−1), and xc(t) is said to represent
“transient effects”. For large times, the most important part of the solution is therefore
the particular solution,

x(t) → xp(t) =

∞∑
n=0

Bn cos(nωt− δn). (3.4.30)

Let us study some late time properties of the solution for the case when there are damped
oscillations with ω0 >

√
2γ. The amplitude of the driven oscillations is extreme for those

harmonics which satisfy

dBn
d(nω)

= 0 ⇒ 2γ2 − (ω2
0 − n2ω2) = 0, n ̸= 0 (3.4.31)

i.e., when

nR ω = ωR =
√
ω2
0 − 2γ2 (3.4.32)

It is easy to show that the second derivative of Bn is negative in this case and therefore
ωR yields a maximum amplitude. The total energy of the oscillator is proportional to the



3.4. THE DAMPED AND DRIVEN OSCILLATOR 79

square of the amplitude and therefore ωR also represents the harmonic for which the total
energy of the oscillator is maximum. On the other hand, the kinetic energy is

T =
1

2
mẋ2 =

1

2
m

[ ∞∑
n=0

nωBn sin(nωt− δn)

]2
(3.4.33)

It follows that the time averaged kinetic energy is3

T =
1

4
m

∞∑
n=0

n2ω2B2
n, (3.4.34)

(where we have used

sin(nωt− δn) sin(mωt− δm) =
1

2
δmn, (3.4.35)

which follows from orthonormality) is not maximum for the harmonic ωR but for

ωK = nKω = ω0. (3.4.36)

The total energy of the oscillator and the kinetic energy resonate at different harmonics,
an effect of the damping. Physically, this happens because energy is continuously being
transferred from the driving mechanism to the damping medium, where it is lost as heat.
To see this consider the power delivered by the driving force,

Fẋ = −
∑
n,m

mωαnBmcos(nωt− ϕn) sin(mωt− δn)

=
1

2

∑
n

nωαnBn sin(ϕn − δn). (3.4.37)

It is not difficult to see that the time average of the power transferred to the system by
the driving force is maximum for the harmonic ωK above, i.e., when the kinetic energy is
maximum. This is compatible with the fact that the rate at which mechanical energy is
lost to the dissipating medium depends on some power of the speed, as shown in 3.2.6.

3.4.2 Green’s Function

There is another generic technique for solving linear inhomogeneous differential equations
such as the one we have been dealing with, and that is to seek a particular solution of the

3For a periodic function, f , of period τ , we define the time average as

f =
1

τ

∫ τ

0

dtf(t)
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form

xp(t) =
1

m

∫ ∞

−∞
dt′G(t, t′)F (t′), (3.4.38)

where G(t, t′) is a function of two variables, to be determined. Since the differential
operator (D2 + 2γD + ω2

0) is translation invariant, the function G(t, t′) is expected to
be translation invariant as well and this implies that G(t, t′) = G(t − t′). To solve the
differential equation governing xp(t), G(t− t′) must satisfy the condition

(D2 + 2γD + ω2
0)G(t− t′) = δ(t− t′) (3.4.39)

where δ(t − t′) is not a function but a “distribution” called a “Dirac delta function” or
simply a δ−function and defined by the condition that∫ ∞

−∞
δ(t− t′)f(t′) = f(t) (3.4.40)

for any piecewise continuous function, f(t), on the real line. Any function that satisfies
an equation of the form (3.4.39), with a δ− function driving term is a Green’s function.
There are many explicit representations of δ−functions (see Appendix A), but the most
convenient one is

δ(t) = lim
n→∞

sinnt

πt
. (3.4.41)

It can be written in integral form as

δ(t) = lim
n→∞

1

2π

∫ n

−n
eiktdk =

1

2π

∫ ∞

−∞
eiktdk (3.4.42)

Now if we let

G(t− t′) =
1

2π

∫ ∞

−∞
G(k)eik(t−t

′)dk (3.4.43)

then acting on G(t− t′) with the our differential operator gives

1

2π

∫ ∞

−∞
G(k)(−k2 + 2iγk + ω2

0)e
ik(t−t′) =

1

2π

∫ ∞

−∞
eik(t−t

′)dk (3.4.44)

or

G(k) =
1

−k2 + 2iγk + ω2
0

(3.4.45)

and therefore

G(t− t′) =
1

2π

∫ ∞

−∞

eik(t−t
′)

−k2 + 2iγk + ω2
0

(3.4.46)

It is certainly not straightforward to solve for G(t− t′). Care must be taken to define the
integral to ensure that causality is not violated and causality implies that G(t − t′) = 0
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xx

C

C'

Figure 3.2: Contour in the complex k− plane defining the integral for G(t− t′).

when t < t′ because the oscillator should not respond to the force before the latter acts
on it.

Notice that the integrand has two poles, viz.,

k2 − 2iγk − ω2
0 = 0 ⇒ k = iγ ±

√
−γ2 + ω2

0, (3.4.47)

both of which lie in the upper half plane complex plane. We will define the integral by a
contour in the complex k−plane in such a way as to ensure that G(t− t′) = 0 when t < t′.

• First consider the underdamped case, for which the square root is positive, and let
ω =

√
ω2
0 − γ2. We define the integral by its value along one of the contours shown

in 3.2. Both contours run along the real axis from −∞ to +∞. One of them is
closed in the upper half plane and the other in the lower half plane by a semi-circle
at infinity. They must be chosen so that the integrals over the semi-circles vanish
and do not contribute to the value of the integral:

– if t > t′, we close the contour in the upper half plane and

– if t < t′, we close it in the lower half plane.

Because there are no poles in the lower half plane G(t − t′) = 0 when t < t′ by
Cauchy’s residue theorem. Moreover, using the residue theorem when t > t′, we get

G(t− t′) =
1

ω
e−γ(t−t

′) sinω(t− t′) (3.4.48)

when t > t′. We can combine the two cases by introducing the Heaviside function,

Θ(t) =

{
0 if t ≤ 0
1 if t > 0

(3.4.49)

writing

G(t− t′) =
1

ω
e−γ(t−t

′) sinω(t− t′)Θ(t− t′). (3.4.50)
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• For the critically damped case there is a double pole, situated at k = iγ/2. We
find straightforwardly that

G(t− t′) = e−γ(t−t
′)(t− t′)Θ(t− t′). (3.4.51)

• Finally, for the overdamped case there are two imaginary roots at

k = i

(
γ ±

√
γ2 − ω2

0

)
= k± (3.4.52)

and closing the contour as before gives

G(t− t′) = −i

[
eik+(t−t′)

k+ − k−
− eik−(t−t′)

k+ − k−

]
Θ(t− t′) (3.4.53)

or

G(t− t′) =
e−γ(t−t

′)√
γ2 − ω2

0

sinh
√
γ2 − ω2

0 Θ(t− t′). (3.4.54)

Now that G(t − t′) is known in each case, xp(t) is determined directly by integrating
according to (3.4.38). The Green’s function is an extremely powerful tool to solve linear,
inhomogeneous differential equations with constant coefficients and is straightforwardly
extended to partial differential equations in higher dimension.

3.5 Systems of many particles

Extending the arguments given in the previous sections, let us now consider many particles,
labeled by integers n ∈ N (not to be confused with the integers that label the harmonics
in the Fourier series), located at r⃗n and having masses mn as shown in figure (3.3). Define
the total momentum of the system as

p⃗ =
∑
n

p⃗n =
∑
n

mnv⃗n ⇒ dp⃗

dt
=
∑
n

mn
dv⃗n
dt

=
∑
n

F⃗n (3.5.1)

where F⃗n represents the total external force on the nth particle. This force may be thought
of as arising from two sources: (i) the forces, F⃗ ext

n , on the particle due to the rest of the
universe, i.e., the part of the universe that excludes the system of particles itself and (ii)
the force on the particle due to the other particles within the system. The latter force can
be written as the sum of all the forces exerted on the particle by all the other particles of
the system,

F⃗ int
n =

∑
m ̸=n

F⃗m→n (3.5.2)
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r
n

Figure 3.3: Many particle systems.

The first we shall call the “external” force, because it’s source is external to the system.
The second we call call an “internal” force because it arises from the system itself. Hence
the superscripts. The total force on the nth particle is then

F⃗n = F⃗ ext
n +

∑
m ̸=n

F⃗m→n (3.5.3)

where we have used F⃗m→n to signify the force exerted by the mth particle on the nth.
Since a particle is presumed not to exert a force on itself, we exclude m = n from the sum.
It follows that

dp⃗

dt
=
∑
n

F⃗ ext
n +

∑
n,m ̸=n

F⃗m→n (3.5.4)

and clearly the first term on the right gives the total external force on the system, i.e.,

F⃗ ext =
∑
n

F⃗ ext
n (3.5.5)

while the second term summarizes the effect of the internal forces on the total momentum
of the system of particles. Let us evaluate the sum∑

n,m ̸=n
F⃗m→n

making two very reasonable assumptions about the forces between the particles of the
system, viz.,

• they act along the lines joining the particles, and

• they do not depend on the velocities of the particles.
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Under these conditions, we may appeal to Newton’s third law which states that

F⃗m→n = −F⃗n→m, (3.5.6)

to argue that the desired sum is identically zero! The proof may be made by mathematical
induction. Considering just two particles we have∑

n,m ̸=n
F⃗m→n = F⃗1→2 + F⃗2→1 ≡ 0 (3.5.7)

With three particles there are six terms,∑
n,m ̸=n

F⃗m→n = F⃗1→2 + F⃗1→3 + F⃗2→1 + F⃗2→3 + F⃗3→1 + F⃗3→2

= (F⃗1→2 + F⃗2→1) + (F⃗1→3 + F⃗3→1) + (F⃗2→3 + F⃗3→2) (3.5.8)

which when suitably paired are again shown to cancel each other. We will now argue that
if the sum vanishes for N particles then it must vanish for N + 1 particles. Notice that,
for N particles, there are N(N − 1) terms in the sum. Suppose then that

N∑
{n,m ̸=n}=1

F⃗m→n = 0 (3.5.9)

If one more particle were added to we must account for an additional (N+1)N−N(N−1) =
2N terms, which may be written as

N+1∑
{n,m ̸=n}=1

F⃗m→n =
N∑

{n,m ̸=n}=1

F⃗m→n + (F⃗1→N+1 + F⃗N+1→1)

+(F⃗2→N+1 + F⃗N+1→2) + ...(F⃗N→N+1 + F⃗N+1→N )(3.5.10)

But all the additional terms vanish by Newton’s third law and we once again have a
vanishing sum. In fact, it is not difficult to see that∑

n,m ̸=n
F⃗m→n =

∑
m<n

(F⃗m→n + F⃗n→m) ≡ 0 (3.5.11)

and we conclude that
dp⃗

dt
= F⃗ ext (3.5.12)

i.e., the rate of change of total momentum depends only on the external applied force (and
is independent of the internal forces of the system).
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3.5.1 Conservation of momentum.

Let us define the center of mass of the system by

p⃗ =Mv⃗cm =M
dr⃗cm
dt

(3.5.13)

where M =
∑

nmn is the total mass of the system. Applying the definition of the total
momentum, we see that

p⃗ =
∑
n

mnv⃗n =Mv⃗cm ⇒ v⃗cm =

∑
nmnv⃗n∑
nmn

, (3.5.14)

or

r⃗cm =

∑
nmnr⃗n∑
nmn

(3.5.15)

gives the location of the center of mass of the system. It is the weighted mean position of
the particles of the system, where the masses of the individual particles weight the mean,
and moves with the velocity,

v⃗cm =
dr⃗cm
dt

=

∑
nmnv⃗n∑
nmn

. (3.5.16)

The center of mass is not necessarily the location of a massive particle but only behaves
as a particle of mass equal to the total mass of the system and located at r⃗cm. We see this
from (3.5.12), which says that

dp⃗

dt
=M

d2r⃗cm
dt2

= F⃗ ext (3.5.17)

and leads to our first conservation law for a system of particles:

• If the net external force on a system of particles is zero then the total momentum of
the system is conserved.

The center of mass of the system then behaves as a free particle moving, according to
Newton’s first law, with constant velocity. We used this fact to solve the problem of two
bodies falling freely under the influence of their mutual gravitational acceleration in the
previous chapter and it is regularly used in the analysis of collisions, when the colliding
system is isolated.
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r
1

r
2

r - r
1

2

F
2 1

Figure 3.4: A system of two particles

3.5.2 Conservation of angular momentum.

Every particle in the system contributes an angular momentum

L⃗n = r⃗n × p⃗n (3.5.18)

to the total angular momentum of the system,

L⃗ =
∑
n

r⃗n × p⃗n (3.5.19)

Taking one derivative,

dL⃗

dt
=

∑
n

(
dr⃗n
dt

× p⃗n + r⃗n ×
dp⃗n
dt

)
=
∑
n

r⃗n × F⃗n

=
∑
n

r⃗n × F⃗ ext
n +

∑
n,m ̸=n

r⃗n × F⃗m→n

=
∑
n

τ⃗ extn +
∑
n,m ̸=n

r⃗n × F⃗m→n (3.5.20)

The sum in the first term on the right represents the total external torque on the system.
Let us examine the second sum on the right. As before, consider just two particles, then

r⃗1 × F⃗2→1 + r⃗2 × F⃗1→2 = (r⃗1 − r⃗2)× F⃗2→1 (3.5.21)

where we have used Newton’s third law. But (r⃗1 − r⃗2) is the position vector of 1 relative
to 2 [see figure (3.4)] and, if the force F⃗2→1 acts along the line joining the particles, i.e.,
along (r⃗1 − r⃗2), then the sum vanishes. Likewise, for three particles∑

n,m ̸=n
r⃗n × F⃗m→n = r⃗1 × (F⃗2→1 + F⃗3→1) + r⃗2 × (F⃗1→2 + F⃗3→2)
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+r⃗3 × (F⃗1→3 + F⃗2→3) (3.5.22)

and rearranging the terms we find∑
n,m ̸=n

r⃗n × F⃗m→n = (r⃗1 − r⃗2)× F⃗2→1 + (r⃗1 − r⃗3)× F⃗3→1

+(r⃗2 − r⃗3)× F⃗3→2 ≡ 0 (3.5.23)

for the same reason we mentioned before, if all the forces between the particles act along
the lines joining them. In fact4∑

n,m ̸=n
r⃗n × F⃗m→n =

∑
n<m

(r⃗n − r⃗m)× F⃗m→n ≡ 0 (3.5.24)

It follows that
dL⃗

dt
=
∑
n

τ⃗ extn = τ⃗ ext (3.5.25)

and

• If the net external torque on the system vanishes, the total angular momentum of
the system is conserved.

There is an interesting expression for the total angular momentum of a system of particles
in terms of the angular momentum of its center of mass. Let r⃗n be the position of the nth

particle relative to the laboratory and let r⃗′n be its position relative to the center of mass,
i.e., r⃗′n = r⃗n − r⃗cm. The total angular momentum of the system can be written as

L⃗ =
∑
n

r⃗n × p⃗n =
∑
n

mn(r⃗
′
n + r⃗cm)× (v⃗′n + v⃗cm)

=
∑
n

mn(r⃗
′
n × v⃗′n + r⃗′n × v⃗cm + r⃗cm × v⃗′n + r⃗cm × v⃗cm)

=
∑
n

mn(r⃗
′
n × v⃗′n) +

(∑
n

mnr⃗
′
n

)
× v⃗cm + r⃗cm ×

(∑
n

mnv⃗
′
n

)
+ r⃗cm × (Mv⃗cm)

=
∑
n

(r⃗′n × p⃗′n) + r⃗cm × p⃗ (3.5.26)

where p⃗′n = mnv⃗
′
n is the momentum of the nth particle relative to the center of mass and

we have used ∑
n

mnr⃗
′
n = 0 =

∑
n

mnv⃗
′
n (3.5.27)

4Problem: Prove this by mathematical induction
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which follow directly from the definition of the center of mass. So the total angular
momentum is the sum of the angular momentum of the center of mass about the origin,
plus the angular momentum of the system about the center of mass.

3.5.3 The Work-Energy theorem

While the rate of change of the total momentum of a system of particles depends only on
the external force, the rate of change of the momentum of each particle within the system
is subject both to the external force acting on it as well as on the internal forces exerted
by the other particle of the system upon it, thus

mn
dv⃗n
dt

= F⃗n = F⃗ ext
n +

∑
m ̸=n

F⃗m→n (3.5.28)

Taking the scalar product of each side with v⃗n, we get a single scalar equation,

mnv⃗n ·
dv⃗n
dt

= v⃗n · F⃗n (3.5.29)

which may be integrated once, as we did before for a single particle, to obtain the work
energy theorem,

1

2
mn(v⃗

2
n,f − v⃗2n,i) =

∫ f

i
F⃗n · dr⃗n (3.5.30)

or
Kn,f −Kn,i =Wn,if (3.5.31)

Defining the total kinetic energy of the system and the total work done respectively by

K =
∑
n

Kn =
1

2

∑
n

mnv⃗
2
n (3.5.32)

and

Wif =
∑
n

Wn,if =
∑
n

∫ f

i
F⃗n · dr⃗n (3.5.33)

we find that
Kf −Ki =Wif (3.5.34)

This, of course, is the work energy theorem for a system of particles. Notice that the
total kinetic energy of the system is just the sum of the individual kinetic energies of the
particles and that the total work done on the system is the work done by both the internal
and the external forces acting on the system.

Just as we had separated the total angular momentum into two parts, the first corre-
sponding to the angular momentum of the center of mass about the origin and the second



3.5. SYSTEMS OF MANY PARTICLES 89

corresponding to the angular momentum of the system about the center of mass, so it
is also possible to separate the kinetic energy into two pieces, one corresponding to the
kinetic energy of the center of mass and the other to the system relative to the center of
mass. To see this, write the position vector of each particle as

r⃗n = r⃗cm + r⃗′n, v⃗n = v⃗cm + v⃗′n (3.5.35)

and inserting this into the expression for the total kinetic energy,

K =
∑
n

mnv⃗
2
n =

1

2

∑
n

mn(v⃗cm + v⃗′n)
2

=
1

2
Mv⃗2cm +

∑
n

mnv⃗cm · v⃗′n +
1

2

∑
n

mnv⃗
′2
n (3.5.36)

But once again we appeal to the fact that the center of mass is the weighted mean position
of the particles constituting the system so that

∑
nmnr⃗

′ = 0 =
∑

nmnv⃗
′. We get

K =
1

2
Mv⃗2cm +

1

2

∑
n

mnv⃗
′2
n . (3.5.37)

The first term on the right is obviously the kinetic energy of the center of mass. The
second is just the kinetic energy of the system as measured by an observer moving with
the center of mass.

The total work may also be broken up into two pieces,

Wif =
∑
n

∫ f

i
F⃗ ext
n · dr⃗n +

∑
n,m ̸=n

∫ f

i
F⃗m→n · dr⃗n (3.5.38)

If all the external forces acting on the particles of the system are conservative then each
integral in the sum of the first term on the right is expressed as∫ f

i
F⃗ ext
n · dr⃗n = −

∫ f

i
∇⃗U ext

n (r⃗n) · dr⃗n = −
[
U ext
n,f − U ext

n,i

]
(3.5.39)

The potential energy of the system, due to the external forces, is

U ext =
∑
n

U ext
n (3.5.40)

For the internal forces, consider ∑
m̸=n

∫ f

i
F⃗m→n · dr⃗n. (3.5.41)
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If the internal forces are also conservative then for every pair (m,n), the force exerted by
m on n is the gradient of some function, which we call U int

nm, taken at n,

F⃗m→n = −∇⃗nU
int
nm. (3.5.42)

Therefore, the second term in (3.5.38) is

∑
n,m ̸=n

∫ f

i
F⃗m→n · dr⃗n = −

∑
n,m ̸=n

∫ f

i
∇⃗nU

int
nm · dr⃗n (3.5.43)

It generally happens that U int
nm depends only on the separation of the particles n and m,

i.e.,

U int
nm(r⃗n, r⃗m) = U int

nm(|r⃗n − r⃗m|). (3.5.44)

This is compatible with the third law, since the F⃗m→n = ∇⃗nUnm = −∇⃗mUmn = −F⃗n→m,
and it makes the internal forces invariant with respect to Galilean boosts. It also means
that

dU int
mn = ∇⃗nU

int
mn · dr⃗n + ∇⃗mU

int
mn · dr⃗m

= ∇⃗nU
int
mn · d(r⃗n − r⃗m)

= ∇⃗nU
int
mn · dr⃗nm (3.5.45)

where r⃗nm is the position of n relative to m. Returning to the second term in (3.5.38),
first consider just two particles

−
∑
n,m ̸=n

∫ f

i
∇⃗nU

int
nm · dr⃗n = −

∫ f

i

[
∇⃗1U

int
12 · dr⃗1 + ∇⃗2U

int
21 · dr⃗2

]
= −

∫ f

i
∇⃗1U

int
12 · dr⃗12

= −
∫ f

i
dU int

12 = U int
12 (r⃗i)− U int

12 (r⃗f ) (3.5.46)

For three particles, we have

−
∑
n,m ̸=n

∫ f

i
∇⃗nU

int
nm · dr⃗n = −

∫ f

i

[
∇⃗1(U

int
12 + U int

13 ) · dr⃗1 + ∇⃗2(U
int
21 + U int

23 ) · dr⃗2

+∇⃗3(U
int
31 + U int

32 ) · dr⃗3
]
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= −
∫ f

i

[
∇⃗1U

int
12 · dr⃗12 + ∇⃗1U

int
13 · dr⃗13 + ∇⃗2U

int
23 · dr⃗23

]
= −

∫ f

i

[
dU int

12 + dU int
13 + dU int

23

]
(3.5.47)

using (3.5.45), and we arrive at (for three particles)

−
∑
n,m ̸=n

∫ f

i
∇⃗nU

int
nm · dr⃗n = −

[
U int
12 + U int

13 + U int
23

]f
i

(3.5.48)

We can already recognize a pattern: for N particles,

−
∑
n,m ̸=n

∫ f

i
∇⃗nU

int
nm · dr⃗n = −

[∑
m<n

U int
mn

]f
i

= −1

2

∑
m̸=n

U int
mn

f
i

(3.5.49)

can be proved by induction provided, of course, that all the internal forces are conservative
with potentials that depend only on the separation of the particles.

We see that the system of particles also has a potential energy due to the internal
forces, which is given by

U int =
∑
m<n

U int
mn =

1

2

∑
m ̸=n

U int
mn (3.5.50)

The total potential energy of the system, due to both the internal and the external forces
is therefore

U = U ext + U int =
∑
n

U ext
n +

∑
m<n

U int
mn (3.5.51)

The work energy theorem then tells us that

Kf −Ki =Wif = Ui − Uf ⇒ Ki + Ui = Kf + Uf (3.5.52)

which, as before, means that there is a quantity, which we call the total energy of the
system of particles, that is conserved throughout the motion of the system:

E = K + U =
1

2

∑
n

mnv⃗
2
n +

∑
n

U ext
n (r⃗n) +

∑
m<n

U int
mn(|r⃗n − r⃗m|) (3.5.53)

We have arrived at the law of conservation of energy: if the internal and external forces on
a system of particles are conservative and if the interactions between the particle depend
only on the distance between them then the total energy of the system, which is given by
(3.5.53), is conserved.
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We close with the example of two bodies under the influence of their mutual gravita-
tional interaction. This could be, for example, a binary star system. The gravitational
force is certainly conservative,

F⃗1→2 = −Gm1m2

r312
r⃗12 (3.5.54)

and ∇⃗2 × F⃗1→2 ≡ 0. Therefore the potential energy is obtained from the integral

U21 = −
∫ r⃗2

∗
F⃗1→2 · dr⃗2 = Gm1m2

∫ r⃗2

∗

r̂12 · dr⃗2
r212

= −Gm1m2

r12
(3.5.55)

where, in the last step, we have used the fact that the inner product selects only the
component of dr⃗2 that is parallel to the displacement vector from 1 to 2 and we have chosen
the reference point at infinite separation. This potential energy satisfies the conditions of
the energy conservation theorem for systems of particles in as much as it depends only on
the separation of the particles. Thus, if there are no external forces on the particles, the
energy theorem gives the total energy of the system as

E =
1

2
m1v⃗

2
1 +

1

2
m2v⃗

2
2 −

Gm1m2

|r⃗1 − r⃗2|
(3.5.56)

Note that the potential energy is not counted twice.

From another point of view, recall how we had broken this problem up into two de-
coupled pieces: the motion of its center of mass and the motion of the relative coordinate.
The center of mass behaves as a free particle of mass M = m1 +m2 whereas the relative
coordinate behaves as a particle of “reduced” mass, µ = m1m2/(m1 +m2), moving with
potential energy

U(r⃗) = −GµM
r

, (3.5.57)

where r⃗ = r⃗2 − r⃗1. Treating the two particle system in terms of these new degrees of
freedom, we could write the energy as

E =
1

2
Mv⃗2cm +

1

2
µv⃗2 − GµM

r
(3.5.58)

with

v⃗ =
dr⃗

dt
= v⃗2 − v⃗1, v⃗cm =

dr⃗cm
dt

=
1

M
(m1v⃗1 +m2v⃗2). (3.5.59)

It is easy to see by direct substitution that (3.5.58) is identical to (3.5.56).
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Figure 3.5: Scattering (left) and explosions (right).

3.6 Collisions

The state of an N particle system in D dimensions at any time is determined by the
positions and momenta of the particles at that time and therefore requires 2DN variables.
Suppose we know the initial state of some N particle system and we wish to determine
its state at some future time, then we must solve DN coupled, second order differential
equations governing their motion (Newton’s second law) subject to the initial conditions.
Experience teaches us that this can be a very difficult task both because coupled differential
equations are generally difficult to solve and because such an approach requires a detailed
knowledge of the interactions between the particles. In our search for a more tractable
approach to this many body problem, we ask if the conservation laws may be put to good
use.

Let’s confine our attention to isolated systems of particles which come under each
other’s influence over a relatively short distance (compared with their path lengths) and
undergo scattering, or explosions as shown in 3.5. The shaded region in the figure rep-
resents the region in which the particles are strongly interacting with each other. We
assume that the initial state is known at some early time when the particles are separated
by distances large enough so that their mutual interactions can be ignored and fix our
attention on the 3N momenta of the particles at some future time, when they are again
separated by large enough distances as to be effectively free. Our objective will be to
recover as much information as possible about the final momenta of the particles, in terms
of the known initial state and using only the conservation laws.

If the system is isolated from the rest of the universe then its total momentum and
total angular momentum are conserved and, in D dimensions, this gives us D equations for
the momentum and D(D − 1)/2 equations, assuming they are not trivial, for the angular
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momentum, a total of D+D(D−1)/2 equations relating the particles’ initial positions and
momenta to their final positions and momenta. If, moreover, we have some information
about the mechanical energy of the system (say, that the total mechanical energy, or some
fraction of it, is preserved in the final state) then we have one additional condition, leading
to D +D(D − 1)/2 + 1 equations in all. We expect therefore that a direct application of
only the conservation laws leaves ∆ = 2DN −D−D(D−1)/2−1 variables of the state of
the system undetermined and conclude that if N is very large, conservation laws alone can
tell us little about the evolution of the system – seeing that D is small. However, if N is
small the situation is different. For example, consider a system of two particles interacting
in effectively one dimension. According to our formula, a straightforward application of
the conservation laws would lead to ∆ = 2 undetermined variables. These variables would
be the final positions of the particles, so we are able to determine the final momenta of
the particles without any à priori knowledge of the detailed force between them. For two
particles in two effective dimensions, ∆ = 4 remain undetermined and these can once
again be taken to represent the final positions of the two particles.

If we confine our attention to collisions in which the total angular momentum both
before and after the collision is identically zero, i.e., for which the angular momentum
equations are in fact trivial, and ask only for the final momenta of the particles, we will
have at most D+1 conditions with which to determine DN final momenta. It follows that
the problem of two particles colliding in effectively one dimension continues to be solvable
without any à priori knowledge of the final state, whereas the collision of two particles
in two dimensions requires the knowledge of one final state variable and in D dimensions
requires a knowledge of D−1 variables of the final state. Let us work out some illustrative
examples.

3.6.1 One Dimensional Collisions

In a plastic or completely inelastic collision, energy is not conserved but the particles
stick together in the final state so that the number of momenta to be found is reduced
to just the number of dimensions, D. Consider a plastic collision of two particles in one
dimension. Let the particles have masses m1,2 and let their initial velocities be v1,i and
v2,i respectively in some frame attached to the observer, which we’ll call the “Laboratory
frame”. The velocities (being vectors) are signed quantities in one dimension. As always
we will take velocities “to the right” to be positive and velocities “to the left” to be
negative. As the particles stick together in the final state, there will be only one final
momentum to be determined: that of the combination. The mass of the particle in the
end state is m1 +m2 and we will call its velocity vf . Conservation of momentum implies
that

m1v1i +m2v2i = (m1 +m2)vf (3.6.1)
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and so

vf =
m1v1i +m2v2i
(m1 +m2)

(3.6.2)

solves the problem: the final velocity is simply the velocity the center of mass. Clearly
mechanical energy was not conserved in this collision and we can determine the fraction
of the initial mechanical energy that was lost,

Q =
Kf

Ki
=

(m1 +m2)v
2
f

m1v21i +m2v22i
. (3.6.3)

We find that

1−Q =
m1m2(v1i − v2i)

2

(m1 +m2)(m1v21i +m2v22i)
> 0 (3.6.4)

which shows that Q < 1. The lost mechanical energy is actually energy transferred to the
environment as “heat” due to frictional forces during the collision, or as radiation if the
colliding particles were charged.

A slightly more difficult problem is that of an elastic collision in one dimension. Elastic
collisions conserve energy, so under the initial conditions of the system above we have two
equations (conservation of momentum and conservation of energy) that must be solved
for the two final velocities,

m1v1i +m2v2i = m1v1f +m2v2f

1

2
m1v

2
1i +

1

2
m2v

2
2i =

1

2
m1v

2
1f +

1

2
m2v

2
2f (3.6.5)

Combining these two equations we find

v1i + v1f = v2i + v2f (3.6.6)

which serves to eliminate v2f (say). The result is5

v1f =
m1 −m2

m1 +m2
v1i +

2m2

m1 +m2
v2i

v2f =
m2 −m1

m1 +m2
v2i +

2m1

m1 +m2
v1i (3.6.7)

Two special cases are of interest: (a) If m1 = m2 = m then v1f = v2i and v2f = v1i i.e.,
the particles simply exchange their velocities, and (b) if m2 ≪ m1 then v1f ≃ v1i and
v2f ≃ 2v1i − v2i, i.e., the more massive particle simply moves as if it were unaffected by
the collision. In particular, if the more massive particle is at rest in the observer’s frame

5Problem: Fill in the omitted steps.
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then the smaller particle simply “bounces back”, v2f = −v2i. Alternatively, if the lighter
particle is initially at rest it will move at twice the speed of the larger particle after the
collision.

If the collision is not elastic, but the fraction of the initial mechanical energy that is
preserved in the final state is known to be Q ≤ 1 then the second equation of (3.6.5) is
modified to

m1v
2
1f +m2v

2
2f = Q(m1v

2
1i +m2v

2
2i) (3.6.8)

and can once again be used, in combination with the conservation of momentum, to deter-
mine the final velocities of the particles as above. The general expression is not particularly
illuminating and we leave this as an exercise to the interested reader.6 Collisions between
macroscopic bodies will always be inelastic and mechanical energy will be converted into
heat by frictional forces during the impact.

An important fact to note is that the result in (3.6.7) has the same form in any
reference frame. This can be shown directly by applying a Galilean transformation to the
expressions for v1,2f in the Laboratory frame. For a frame S′, traveling with a velocity v0
relative to the Laboratory frame, one has only to substitute

v′1i = v1i − v0, v′2i = v2i − v0,
v′1f = v1f − v0, v′2f = v2f − v0, (3.6.9)

into (3.6.7) to obtain the expressions

v′1f =
m1 −m2

m1 +m2
v′1i +

2m2

m1 +m2
v′2i

v′2f =
m2 −m1

m1 +m2
v′2i +

2m1

m1 +m2
v′1i. (3.6.10)

Expressions that are form invariant under some set of transformations are said to be
covariant under those transformations.

Now because the total momentum and angular momentum of the particles is conserved
when there is no external force or torque on the system, the center of mass of the system
must move with a constant velocity,

vcm =
m1v1i +m2v2i
m1 +m2

=
m1v1f +m2v2f

m1 +m2
, (3.6.11)

relative to the Laboratory frame. An observer who is attached to the center of mass
and moves along with it is therefore inertial, so what would a collision look like from her
point of view? Since the total momentum in this frame must be zero, the conservation of
momentum implies that

m1v
′
1i +m2v

′
2i = 0 = m1v

′
1f +m2v

′
2f ⇒ v′2i = −m1

m2
v′1i, v′2f = −m1

m2
v′1f . (3.6.12)

6Problem: Determine the final velocities in terms of the initial velocities and the fraction Q.
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Figure 3.6: Two dimensional collisions from the point of view of particle “2”.

If the collision is plastic then, because v′1f = v′2f = v′f (say), it follows that v′f = 0. If the
collision is elastic, we must combine the above equations with (3.6.7) in this frame and we
will find v′1f = −v′1i and v′2f = −v′2i.

3.6.2 Two Dimensional Collisions

Let us now turn to two dimensional collisions between two particles and take the point of
view of the observer who is at rest relative to one of the particles, say particle “2”, in the
initial state. In component form the conservation of momentum reads (see figure 3.6)

m1v1i = m1v1f cos θ +m2v2f cosϕ

m1v1f sin θ = m2v2f sinϕ (3.6.13)

and if energy is also conserved, it provides a third equation,

m1v
2
1i = m1v

2
1f +m2v

2
2f . (3.6.14)

These three equations are not sufficient to determine the four final state variables, viz.,
v1f , v2f , θ = cos−1(v̂1i · v̂1f ) and ϕ = cos−1(v̂1i · v̂2f ). For the present, imagine that we
know one of the angles, say ϕ in figure 3.6. Our strategy will be to determine the final
speeds in terms of the angles and then determine the unknown angle, θ. Multiplying the
second equation in (3.6.13) by cosϕ and then using the first we find

m1v1f sin θ cosϕ = m2v2f sinϕ cosϕ = m1v1i sinϕ−m1v1f cos θ sinϕ (3.6.15)

and therefore, collecting terms,

m1v1f sin(θ + ϕ) = m1v1i sinϕ⇒ v1f =
v1i sinϕ

sin(θ + ϕ)
(3.6.16)
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Figure 3.7: Two dimensional collisions from the point of view of the center of mass.

provided of course that sin(θ + ϕ) ̸= 0. Now using the second momentum conservation
equation we find

v2f =
m1

m2

v1f sin θ

sinϕ
⇒ v2f =

m1

m2

v1i sin θ

sin(θ + ϕ)
(3.6.17)

It remains to determine θ, which we can do by using the energy equation. Inserting the
values of v1f and v2f as determined above we find

sin2(θ + ϕ) = sin2 ϕ+
m1

m2
sin2 θ (3.6.18)

and, expanding both sides and simplifying the resulting expressions, we arrive at

tan θ =
sin 2ϕ

m1
m2

− cos 2ϕ
. (3.6.19)

Notice that if m1 = m2 then tan θ = cotϕ which implies that θ + ϕ = π/2, i.e., a two
dimensional collision between equal masses will scatter the objects at right angles to one
another, in the frame in which one of them is initially at rest.

What is the view from the center of mass frame? In this case the initial and final total
momentum as measured in this frame must vanish exactly, which yields

v⃗′2i = −m1

m2
v⃗′1i, v⃗′2f = −m1

m2
v⃗′1f (3.6.20)
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which implies that the initial and final velocities are anti-parallel. If the collision is also
elastic then energy conservation will lead to(

1 +
m1

m2

)
v′1i

2
=

(
1 +

m1

m2

)
v′1f

2
(3.6.21)

which means that v′1f = v′1i and so v′2f = v′2i, i.e., the particles simply bounce off with the
same speeds as their respective initial speeds. But what about the direction? Since the
final velocities must be anti-parallel there is only one angle in the final state, as shown in
figure 3.7 but there isn’t enough information to determine it.

The final velocities in any frame can always be transformed into any other frame by
simply applying Galilei transformations. In particular, the simple results obtained in the
center of mass frame can be transformed to another frame by using v⃗1i = v⃗′1i + v⃗cm, etc.
As an example, let us transform from the center of mass frame to a Laboratory frame
in which particle “2” is at rest and compare what we obtain with our previous results.
Let ζ be the angle made in the center of mass frame, as indicated in figure 3.7. In the
Laboratory frame, v⃗2i = 0,

v⃗cm =
m1v⃗1i

m1 +m2
(3.6.22)

and

v⃗′1i = v⃗1i − v⃗cm =
m2

m1 +m2
v⃗1i

v⃗′2i = −v⃗cm = − m1

m1 +m2
v⃗1i

v⃗′1f = v′1i(cos ζ, sin ζ), v⃗′2f = v′2i(− cos ζ,− sin ζ), (3.6.23)

where, in the last equation, we used v′1f = v′1i and v
′
2f = v′2i. Therefore

v⃗1f = v⃗′1f + v⃗cm =
m2v1i

m1 +m2
(cos ζ +m1/m2, sin ζ)

v⃗2f = v⃗′2f + v⃗cm =
m1v1i

m1 +m2
(− cos ζ + 1, sin ζ) (3.6.24)

and we can now relate the angles θ and ϕ in figure 3.6 to ζ by

tan θ =
v1fy
v1fx

=
sin ζ

m1
m2

+ cos ζ
, tanϕ =

v2fy
v2fx

= cot(ζ/2) (3.6.25)

The second equation above says that ϕ = (π − ζ)/2 and with this we verify (3.6.19) by
direct substitution into the first.7

7Problem: Also verify (3.6.17).
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3.7 The Virial Theorem

The virial theorem relates the average kinetic energy of the particles of a many body
system to the so-called virial, which is closely related to their average potential energy
in cases of physical interest. Consider a system of particles which have momenta p⃗n and
positions r⃗n and define the quantity

S =
∑
n

r⃗n · p⃗n (3.7.1)

then the rate of change of S is given by

dS

dt
=
∑
n

( ˙⃗rn · p⃗n + r⃗n · ˙⃗pn) (3.7.2)

Consider the average rate of change,〈
dS

dt

〉
τ

= ⟨
∑
n

˙⃗rn · p⃗n⟩τ + ⟨
∑
n

r⃗n · ˙⃗pn⟩τ (3.7.3)

where the average is defined over some time interval, say [0, τ ], in the usual way,〈
dS

dt

〉
τ

=
1

τ

∫ τ

0
dt
dS

dt
=

1

τ

∫ τ

0
dS(t). (3.7.4)

By definition then, 〈
dS

dτ

〉
τ

=
S(τ)− S(0)

τ
. (3.7.5)

If the mechanical state of the system is periodic, i.e., the particles of the system return
to their positions and momenta at t = 0 after an interval an interval of time τ , then it
follows that 〈

dS

dt

〉
τ

= 0 (3.7.6)

On he other hand, if the motion is not periodic, assume that neither the positions nor the
momenta ever approach infinity during the evolution of the system. This makes sense if
the system is bound, and as a consequence S(τ) − S(0) is always finite. If we consider
very large times, taking τ → ∞, then clearly

lim
τ→∞

〈
dS

dt

〉
τ

→ 0 (3.7.7)

But this means that over the time interval τ (one period for periodic systems and infinite
for systems that are not periodic but bounded)∑

n

⟨ ˙⃗rn · p⃗n⟩τ = −
∑
n

⟨r⃗n · ˙⃗pn⟩τ (3.7.8)
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Now F⃗n = ˙⃗pn and p⃗n · ˙⃗rn = 2Kn. Therefore the left hand side of the equation is twice the
time averaged kinetic energy and we have

⟨K⟩τ = −1

2
⟨
∑
n

r⃗n · F⃗n⟩τ (3.7.9)

The average on the right hand side is called the Virial, and the relationship between
the time averaged kinetic energy and the Virial is called the Virial Theorem. Now F⃗n
represents the total force on the particle labeled n. If all the forces, internal and external
are conservative, so is F⃗n and we can write

F⃗n = −∇⃗nUn. (3.7.10)

The time averaged kinetic energy becomes

⟨K⟩τ =
1

2
⟨
∑
n

r⃗n · ∇⃗nUn⟩τ (3.7.11)

To understand its significance, consider what this means for a bound, self-gravitating
system of particles such as, say, a galaxy or even a group of galaxies (stars are small
compared to the distance between them and may be considered particles over galactic
scales). Thus we have to consider only the internal potential energies of interactions, so

1

2

∑
n

r⃗n · ∇⃗nUn =
1

2

∑
n,m ̸=n

r⃗n · ∇⃗nUnm(|r⃗n − r⃗m|)

=
1

4

∑
n,m ̸=n

(r⃗n − r⃗m) · ∇⃗nUnm(|r⃗n − r⃗m|) (3.7.12)

where we have used ∇⃗nUnm = −∇⃗mUmn. Now suppose that

Unm(|r⃗n − r⃗m|) = knm|r⃗n − r⃗m|α+1 (3.7.13)

where knm is a constant depending on the properties of particles m and n and α ̸= −1.
For instance, if the interactions are purely gravitational, kmn = −GMnMm where Mn and
Mm are the masses of particles n and m respectively and α = −2. We find

(r⃗n − r⃗m) · ∇⃗nUnm = (α+ 1)Unm (3.7.14)

and so, using

U int =
1

2

∑
n,m ̸=n

Unm, (3.7.15)
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we find that

⟨K⟩τ =
1

2
⟨
∑
n

r⃗n · ∇⃗nUn⟩τ =
α+ 1

2
⟨U int⟩τ . (3.7.16)

In particular, when α = −2 the time averaged kinetic energy is precisely minus one half of
the time averaged potential energy of the system!8 On the other hand, the time averaged
kinetic energy is precisely equal to the time averaged potential energy of a harmonic
oscillator.

8Problem: Determine the Virial for the the Yukawa interaction,

Unm(|r⃗n − r⃗m|) = knm

|r⃗n − r⃗m|e
−α|r⃗n−r⃗m|

where α is independent of m,n.



Chapter 4

Newtonian Gravity

We have seen that once the dependence of a force on the position, velocity and time
has been experimentally determined then the problem of calculating the trajectory of a
particle under the influence of the force is a mathematical problem of fundamental interest.
If an exact solution is obtained there are usually two free parameters per space dimension,
which can be thought of as representing the initial position and velocity of the particle.
Sometimes, a more fruitful way to think about these constants is in terms of conserved
quantities. The allowed motions can then be classified by these conserved quantities. We
shall soon see how this comes about, but first let us examine the gravitational force in
greater detail.

4.1 The force law

Gravitation was the first of the fundamental forces to be discovered and for which a
“force law” was given. The force law was first given by Newton after many years of
studying Kepler’s (1571-1630) three laws of planetary motion and Tyco Brahe’s (1546-
1601) excellent observational data on the same.1 We have already mentioned Newton’s
law of gravitation before. It says simply that the force of attraction exerted by a body of
mass m1 on another of mass m2 located respectively at r⃗1 and r⃗2 is given by

F⃗1→2 = −G m1m2

|r⃗2 − r⃗1|3
(r⃗2 − r⃗1) (4.1.1)

This force is always attractive because mass is positive.

A most remarkable fact about the gravitational force is that it depends on the masses
of the particles, in the same way as the electromagnetic force depends on the charges. m1

1Kepler was initially Tycho Brahe’s assistant and carried on his work after Tycho Brahe’s death in
1601.
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and m2 can therefore be thought of as gravitational “charges” and there is no à priori
reason to expect that they are precisely the inertial masses of the particles, i.e., the masses
that appear on the left hand side of Newton’s second law of motion. Experimentally,
however, one finds that they the gravitational mass and the inertial mass are identical up
to about one part in 1011 and it is necessary therefore to assume this as a principle. The
simple statement that gravitational and inertial masses are the same is called the “weak
equivalence principle”. A stronger form of the equivalence principle was given by Einstein
in making the transition from Newtonian gravity, summarized by the weak equivalence
principle and (4.1.1), and General Relativity, which is a theory about non-inertial frames.

As a consequence of the weak equivalence principle, the equations of motion for a
particle, say particle 2, do not involve its inertia,

d2r⃗2
dt2

= −Gm1

r212
r̂12 = g⃗(r⃗2) (4.1.2)

where r⃗12 = r⃗2 − r⃗1 and g⃗(r⃗) denotes the gravitational acceleration. One could even
conclude that gravity is not a force in the traditional Newtonian sense, since motion
under its influence is kinematical: when a gravitational field is present, the kinematical
equation

d2r⃗

dt2
= 0 (4.1.3)

should be replaced by the more general

d2r⃗

dt2
= g⃗(r⃗) (4.1.4)

where g⃗(r⃗) would be a property of the space(time) in which the particle is moving. This
kinematical equation would not lead to “motion in a straight line with constant velocity”,
as required by Newton’s first law of motion. However, the “straight line” can be thought
of as the shortest distance between two points in a flat space(time), so the presence of
matter (more generally, energy) in space must bend the space(time) in its neighborhood,
causing the shortest distance between two points to no longer be a straight line.2 Particle
trajectories between two points would then be geodesics, not necessarily straight lines.
General Relativity is a theory of how space(time) is curved by the presence of matter
(energy). We will ignore this modified view of gravity and take the Newtonian approach,
treating gravity as a force. It is a very good approximation as long as the gravitational
force is weak and the speeds involved are small compared with the speed of light. The
gravitational acceleration, g⃗(r⃗) is called the “gravitational field vector”. It can be defined,
for an arbitrary distribution of matter by two equations, which we now examine.

2Trajectories that minimize the distance between two points are called geodesics.
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4.2 Two properties of the gravitational field

Suppose we have a distribution of point particles, each labeled by an integer n, located
at r⃗n and having a mass mn. Consider a test particle of mass M and located at r⃗ in the
neighborhood of this distribution. Assuming that the net force on the test body is the
sum of forces exerted by each of the particles in the distribution on it, we have

F⃗ = −G
N∑
n=1

Mmn(r⃗ − r⃗n)

|r⃗ − r⃗n|3
(4.2.1)

This would give the gravitational acceleration of our test body (also known as the gravi-
tational field vector) at the point r⃗ as

g⃗(r⃗) = −G
N∑
n=1

mn(r⃗ − r⃗n)

|r⃗ − r⃗n|3
(4.2.2)

If the distribution can be considered continuous (this means that the average separation
between the atoms/molecules that make up the system is on the order of the typical
atomic/molecular size), then we can divide the system into infinitesimal pieces, each of
mass dm(r⃗′) and add up the contribution of each infinitesimal mass to the gravitational
field vector at r⃗ as we did before, except that now the sum is continuous and not discrete,
i.e., it becomes an integral over distribution,

g⃗(r⃗) = −G
∫
D
dm(r⃗′)

(r⃗ − r⃗′)

|r⃗ − r⃗′|3
(4.2.3)

We can express the mass of the infinitesimal pieces in terms of the density of the distri-
bution: dm(r⃗′) = ρ(r⃗′)d3r⃗′ and reexpress the field vector as a volume integral over the
distribution,

g⃗(r⃗) = −G
∫
VD

d3r⃗′
ρ(r⃗′)(r⃗ − r⃗′)

|r⃗ − r⃗′|3
(4.2.4)

We have made a rather important assumption in all of the above: we assumed that the
gravitational force on a body due to a distribution is the simple sum of forces exerted on it
by elements of the distribution. In other words, the interaction between an pair of bodies
does not affect the interaction of any of the bodies in the pair and a third body in their
neighborhood. This assumption fails in general relativity, which is a non-linear theory of
the gravitational field. If the field is sufficiently weak, however, superposition of forces is
a very good approximation.

It is easy to see from (4.1.2) that the gravitational field vector due to a single massive
body satisfies

∇⃗ × g⃗ = 0 (4.2.5)
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This can be proved by simply taking the curl of the left hand side of (4.1.2). Of course it
will hold for the gravitational field vector of a distribution too as long as the resulting g⃗(r⃗)
is obtained by simply adding the contributions from elementary masses in the distribution
(superposition). Thus, for the field vector due to a point mass, m, located at r⃗′,

∇⃗ × g⃗ = −Gm∇⃗ × (r⃗ − r⃗′)

|r⃗ − r⃗′|3
= −Gm

[
∇⃗ × (r⃗ − r⃗′)

|r⃗ − r⃗′|3
− (r⃗ − r⃗′)× ∇⃗ 1

|r⃗ − r⃗′|3

]
(4.2.6)

Now

[∇⃗ × (r⃗ − r⃗′)]i = ϵijk∂j(xk − x′k) = ϵijkδjk ≡ 0 (4.2.7)

by the antisymmetry of the Levi-Civita symbol, and

[
∇⃗ 1

|r⃗ − r⃗′|3

]
i

= ∂i

∑
j

(xj − x′j)
2

−3/2

= −3

∑
j

(xj − x′j)
2

−5/2

(xj − x′j)δij

= −
[
3(r⃗ − r⃗′)

|r⃗ − r⃗′|5

]
i

(4.2.8)

so

∇⃗ × g⃗ = −3Gm(r⃗ − r⃗′)× (r⃗ − r⃗′)

|r⃗ − r⃗′|5
= 0. (4.2.9)

Because g⃗ is irrotational it can be expressed as the gradient of a scalar function and we
can write

g⃗ = −∇⃗ϕ (4.2.10)

(the minus sign is inserted for later convenience). The scalar function ϕ is called the
gravitational potential. The gravitational field has not three but just one (continuous)
degree of freedom since all of the three components of g⃗ are obtained from the gradient of
a single scalar field. Knowing g⃗ we can determine ϕ: for a point particle, of mass m,

ϕ(r⃗) = − Gm

|r⃗ − r⃗′|
(4.2.11)

and, because we can superpose the gravitational field (at least, in the Newtonian approx-
imation), we can also superpose the gravitational potential. It follows that for a discrete
distribution, made up of masses mn located at r⃗n,

ϕ(r⃗) = −G
∑
n

mn

|r⃗ − r⃗n|
(4.2.12)
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and for a continuous distribution characterized by the density ρ(r⃗),

ϕ(r⃗) = −G
∫
VD

d3r⃗′
ρ(r⃗′)

|r⃗ − r⃗′|
(4.2.13)

The gravitational force on a mass M located in the neighborhood of the distribution can
be expressed in terms of the gravitational potential,

F⃗ =Mg⃗ = −M∇⃗ϕ (4.2.14)

The gravitational force is obviously conservative. This means that we can define the
potential energy of a body of mass M in the neighborhood of a distribution of masses as

UM (r⃗) = −
∫ r⃗

∗
F⃗ · dr⃗ =M

∫ r⃗

∗
∇⃗ϕ · dr⃗ =M [ϕ(r⃗)− ϕ(∗)] (4.2.15)

where ∗ is used to represent the standard fixed point to which the potential energy is
referred.

A second property of the gravitational field,

∇⃗ · g⃗ = −4πGρ (4.2.16)

follows from Gauss’ theorem. Again, if we can prove this for a point mass, then it will
hold true for arbitrary mass distributions, simply because of superposition. Consider a
closed surface, S and let us begin by evaluating∮

S
dS n̂ · g⃗ = −Gm

∮
S
dS

n̂ · (r⃗ − r⃗′)

|r⃗ − r⃗′|3
= −Gm

∮
S
dS

cos θ

|r⃗ − r⃗′|2
(4.2.17)

where θ is the angle between the normal to the surface and the outward radial vector from
the charge. Now dS n̂ · (r⃗ − r⃗′)/|r⃗ − r⃗′| is just the projection of the surface area dS on
the sphere of radius |r⃗ − r⃗′|, therefore the integrand is simply the solid angle subtended
by the projection of dS on the sphere of that radius at the charge q. If we sum up these
infinitesimal solid angles, then two cases may arise: (a) the original surface S does not
enclose the massm (see figure(4.1)), or (b) the mass is enclosed by the surface S (see figure
(4.2)). In case (a), the net result of summing up the solid angles subtended at m will be
identically zero due to the two equal and opposite contributions from region I, where cos θ
is negative, and from region II, where cos θ is positive. The contribution from region I is
negative, whereas the contribution from region II is positive and equal in magnitude to
the contribution from region I. In case (b), the infinitesimal solid angles add up to give
precisely the total solid angle of 4π. Thus we find that∮

S
dS n̂ · g⃗ = −4πGmin (4.2.18)



108 CHAPTER 4. NEWTONIAN GRAVITY

Figure 4.1: Gauss’ Law: Mass not enclosed by S

Figure 4.2: Gauss’ Law: Mass enclosed by S
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where the suffix in min is to indicate that only the charge contained within the surface
S contributes. Equation (4.2.18) is the integral form of Gauss’ law. Exploiting the fact
that the gravitational field due to a distribution of masses is a simple superposition of the
gravitational fields due to the individual masses, we may directly write down the integral
form of Gauss’ law for a discrete distribution∮

S
dS n̂ · g⃗ = −4πG

N∑
n=1

mn,in = −4πGMin (4.2.19)

where Min is the total mass contained within the surface, and for a continuous volume
distribution ∮

S
dS n̂ · g⃗ = −4πG

∫
V
d3r⃗′ ρ(r⃗′) = −4πGMin. (4.2.20)

The differential form of Gauss’ law can now be obtained by exploiting Gauss’ theorem,∮
S
dS n̂ · g⃗ =

∫
V
d3r⃗ ∇⃗ · g⃗ = −4πG

∫
V
d3r⃗ρ(r⃗). (4.2.21)

from which eq. (4.2.16) follows directly.3

4.3 Simple Applications of Gauss’ Law

In its integral form, Gauss’ law is useful to determine the gravitational field vector of highly
symmetric distributions. Otherwise, the using the integral form of Gauss’ law to determine
the gravitational field is not recommended. The idea is that if the mass distribution is
sufficiently symmetric and a closed surface that mimics the symmetry of the distribution
is chosen, the integral becomes trivial to evaluate.

4.3.1 Point mass.

The symmetry of a point charge is spherical so, for a Gaussian surface, choose a sphere with
the mass as its center (see figure (4.3). By the symmetry, we expect that the gravitational
field will point along the unit radial vector and toward the center, so g⃗ = −gr̂ and,

3Note: Outside of masses, Gauss’ reads simply reads ∇⃗ · g⃗ = 0. Thus, this is also the equation outside
a single point mass. Placing a point mass at the origin of coordinates and assuming spherical symmetry,
prove that

g⃗ = −Gmr̂
r2

is a solution of ∇⃗ · g⃗ = 0. Where does the constant m come from?
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Figure 4.3: Gaussian surface for a point mass.

moreover, that its magnitude will be constant on the surface of the sphere. The unit
radial vector, r̂, is also the normal to the sphere, so∮

S
dS n̂ · g⃗ = −g

∮
S
dS = −4πr2g = −4πGm⇒ g⃗ = −Gmr̂

r2
(4.3.1)

This argument may, of course, be extended to any spherically symmetric charge distri-
bution. At points outside it, a spherical charge distribution will therefore behave as if it
were a point charge situated at the center of the distribution.

4.3.2 Spherical charge distribution.

Consider a spherical mass distribution of radius R located so that its center is the origin of
coordinates and for which we know the density, ρ(r⃗), which may or may not be constant.
We are interested in the gravitational field both inside the sphere and outside it. To
find the gravitational field inside the distribution, consider a spherical gaussian surface of
radius r < R (shown as S1 in figure (4.4) with the same center as the distribution. Again,
by the symmetry, we expect that the gravitational field at points on the gaussian surface
will point radially inward, g⃗ = −gr̂ and that the magnitude of the gravitational field, g,
will depend only on the distance from the center, g = g(r), so that it is constant on the
gaussian sphere. Therefore,∮

S1

dS n̂ · g⃗ = −g
∮
S1

dS = −4πr2g = −4πG

∫
S1

d3r⃗ρ(r⃗) ⇒ g⃗ = −G r̂

r2

∫
S1

d3r⃗ρ(r⃗) (4.3.2)
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Figure 4.4: Gaussian surfaces for a massive sphere.

The integral on the right is just the mass contained within the gaussian surface. For
instance, if ρ(r⃗) = ρ0 is constant then performing the integral on the right gives

g⃗ = −4πGρ0r⃗

3
, (4.3.3)

which is the gravitational field inside the sphere at a distance r < R from the center. It
decreases in magnitude toward the center becoming zero at the center itself. To find the
field outside the sphere, consider the gaussian sphere S2 in figure (4.4), or radius r > R.
In this case∮

S2

dS n̂ · g⃗ = −g
∮
S2

dS = −4πr2g = −4πG

∫
S2

d3r⃗ρ(r⃗) ⇒ g⃗ = −GMtotr̂

r2
(4.3.4)

where Mtot is the total mass of the sphere (which is also the mass within the gaussian
surface). For points outside the sphere, the gravitational field is precisely the same as
it would be if the source were a point (instead of the sphere) of the same mass as the
sphere and situated at its center. Therefore, as far as the exterior gravitational field is
concerned, one could replace a sphere by an equal point-like mass located at its center.
The gravitational field vector is continuous at the surface of the spherical distribution.

4.3.3 Spherical shell.

An extension of the previous example is the spherical shell shown in figure (4.5) with inner
radius a and outer radius b. There are three regions of interest: (a) the hollow portion
of the shell, (b) the shell itself and (c) the exterior of the shell. In each of these regions
we draw gaussian spheres, shown as S1, S2 and S3 respectively in figure (4.5). As usual,
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Figure 4.5: Gaussian surfaces for a massive spherical shell.

spherical symmetry implies that the gravitational field is directed radially inward and that
its magnitude depends only on the distance from the center. Therefore, inside the hollow
portion (r < a) and on the gaussian sphere S1,∮

S1

dS n̂ · g⃗ = −g
∮
S1

dS = −4πr2g = −4πG

∫
S1

d3r⃗ρ(r⃗) = 0 ⇒ g⃗ = 0 (4.3.5)

i.e., the gravitational field vanishes at all points here. Inside the shell itself (a < r < b),∮
S2

dS n̂ · g⃗ = −g
∮
S2

dS = −4πr2g = −4πG

∫
S2

d3r⃗ρ(r⃗) ⇒ g⃗ = −G r̂

r2

∫
S2

d3r⃗ρ(r⃗) (4.3.6)

If the density is constant

g⃗ = −4πGρ0r̂

r2
(r3 − a3) (4.3.7)

Outside the shell (r > b) an argument similar to the one we made for the sphere tells us
that

g⃗ = −GMtotr̂

r2
(4.3.8)

where Mtot is the total mass of the shell.

4.3.4 Infinite line of constant linear mass density (cosmic string).

The symmetry of an infinite line of mass (infinite string) is that of a right circular cylinder.
For a Gaussian surface, choose an infinite cylinder with the line of charge along its axis
(see figure (4.6).
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Figure 4.6: Gaussian surface for an infinite, massive string.

Let ρ represent the radius of the cylinder and ρ̂ the unit radial vector. By the symmetry,
we expect that the gravitational field will point along the unit radial vector and toward
the axis of the cylinder, so g⃗ = −gρ̂ and, moreover, that its magnitude will be constant
on the surface of the cylinder, i.e., g = g(ρ). We take the length of the string to be L
(with the understanding that the limit as L → ∞ is to be taken in the end), so that
if λ represents the linear mass density on the string then the total mass of the string is
M = λL. The unit radial vector ρ̂ is also normal to the cylinder, so∮

S
dS n̂ · g⃗ = −g

∮
S
dS = −2πρLg = −4πGM = −4πGλL⇒ g⃗ = −2Gλ

ρ̂

ρ
(4.3.9)

What do we mean by an “infinite” string? Clearly, no such object exists in fact. If the
string is finite, of length L, then its symmetry is not really cylindrical and the problem
becomes more complicated by the presence of edges. An infinite string is the approximation
in which these edge effects can be neglected, i.e., when the point at which the field is
measured is close to the line so that ρ/L << 1.

4.3.5 Infinite sheet of constant areal mass density: (domain wall)

Choose a “pill-box”, i.e., a cylinder closed at its two ends as shown in figure (4.7) for
a Gaussian surface. By the planar symmetry of the mass distribution, we expect the
gravitational field to be normal to the sheet at all points and pointing inward, therefore
only the integrations over the upper and lower ends of the pill-box will yield non-vanishing
contributions. Furthermore, as the magnitude of the gravitational field may depend at
most on the perpendicular distance from the sheet and as we can arrange the pill-box so
that its two faces are equidistant from the sheet, the contributions from these two faces will
be identical. If ∆S is the area of each face, integrating over the pill-box shaped Gaussian
surface then gives∮

S
dS n̂ · g⃗ = −2g∆S = −4πGMin = −4πGσ∆S ⇒ g⃗ = −2πGσn̂ (4.3.10)

where n̂ is normal to the sheet.
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Figure 4.7: A “pill-box” Gaussian surface appropriate for an infinite, massive sheet.

4.4 The Poisson and Laplace Equations

If Gauss’ Law is combined with the fact that g⃗ is irrotational, we find that

∇⃗ · g⃗ = −∇⃗ · ∇⃗ϕ = −∇⃗2ϕ = −4πGρ, (4.4.1)

or

∇⃗2ϕ = 4πGρ. (4.4.2)

This is Poisson’s equation. It is the starting point for finding configurations of the gravita-
tional field i.e., given any matter distribution in space, the problem of finding g⃗ is reduced
to the boundary value problem of finding the appropriate solution to (4.4.2). Often we are
interested in finding the gravitational field outside of the sources; in this case the matter
density, ρ(r⃗) vanishes and the scalar potential satisfies Laplace’s equation

∇⃗2ϕ = 0. (4.4.3)

Both Poisson’s equation and Laplace’s equation are second order, elliptic partial differen-
tial equations that are usually satisfied in some subset of, or all of, space. Suppose we call
the region over which it is satisfied R and suppose that R is open and connected having
some piecewise smooth boundary, ∂R.

The solution to (4.4.2) becomes unique only when boundary conditions, i.e., conditions
satisfied by ϕ on ∂R, are imposed. Boundary conditions are an additional set of equations
imposed on ϕ and its derivatives at the boundary and an important question becomes
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what boundary conditions are required to have a unique solution to a given problem. In
general, in order to obtain a unique solution to any partial differential equation of order
k in n dimensions, one requires to specify the function and k − 1 normal derivatives of
the function on ∂R. These are the Cauchy conditions (sometimes referred to as Cauchy
“data”). Thus, typically two kinds of boundary conditions ensure unique solutions of
Poisson’s equation:

• the Dirichlet condition specifies the value of ϕ(r⃗) on ∂R and

• the Neumann condition specifies the normal derivative, n̂ · ∇⃗ϕ(r⃗), on the boundary,
where n̂ is the unit normal to ∂R.

In practice, however, either one or the other may suffice to completely determine the
unique solution.

If there are no non-trivial boundaries, the gravitational potential is generally required
to fall off to zero at infinity and the solution can be no different from the solution we have
already obtained,

ϕ(r⃗) = −G
∫
VD

d3r⃗′
ρ(r⃗′)

|r⃗ − r⃗′|
, (4.4.4)

where the integration is performed over the charge distribution D. But this means that
the right hand side of the above equation should obey (4.4.2). Taking the Laplacian of
the solution gives

∇⃗2ϕ = −G
∫
VD

d3r⃗′ρ(r⃗′)∇⃗2 1

|r⃗ − r⃗′|
(4.4.5)

and we see that

∇⃗2 1

|r⃗ − r⃗′|
= ∂i

xi − x′i
|r⃗ − r⃗′|3

= 0, (4.4.6)

provided that r⃗ ̸= r⃗′. However, it is badly defined at r⃗ = r⃗′ and this is precisely the limit
that supports the integral above to give a non-zero right hand side. We thus encounter
the three dimensional version of the “δ−function”, introduced in the previous chapter. If
we call

∇⃗2 1

|r⃗ − r⃗′|
= −4πδ3(r⃗ − r⃗′), (4.4.7)

then, because

∇⃗2ϕ(r⃗) = 4πGρ(r⃗), (4.4.8)

the distribution δ3(r⃗ − r⃗′) must have the following property∫
d3r⃗′f(r⃗′)δ3(r⃗ − r⃗′) = f(r⃗) (4.4.9)
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for any function, f(r⃗). In particular, taking f(r⃗′) = 1, we should have∫
d3r⃗′δ(r⃗ − r⃗′) = 1 (4.4.10)

In the parlance of the previous chapter,

G(r⃗ − r⃗′) = − 1

4π|r⃗ − r⃗′|
(4.4.11)

is the Green’s function of the Laplacian.4

We can convince ourselves of (4.4.7) by applying Gauss’ theorem,

− 1

4π

∫
d3r⃗ ∇⃗2

(
1

r

)
= − 1

4π

∮
S
dS⃗ · ∇⃗

(
1

r

)
(4.4.12)

where S is a closed surface bounding the region of integration. Clearly, only the radial
component of the surface normal will contribute to the integral. In other words, given any
arbitrary bounding surface, only the projection of this surface on a sphere of radius r is
relevant. This means that, without loss of generality, we can take S to be a sphere and
write the integral as

− 1

4π

∮
S
dS⃗ · ∇⃗

(
1

r

)
=

1

4π

∮
S
dθdϕr2

(
1

r2

)
= 1 (4.4.13)

as required.
Naturally, the Green’s function in (4.4.11) is only defined up to the addition of an

arbtrary solution of Laplace’s equation, i.e., more generally G(r⃗ − r⃗′) can be written as

G(r⃗ − r⃗′) = − 1

4π|r⃗ − r⃗′|
+Q(r⃗ − r⃗′) (4.4.14)

where ∇⃗2Q(r⃗ − r⃗′) = 0. Likewise, in principle any arbitrary solution, Φ(r⃗), of Laplace’s
equation may be added to ϕ(r⃗) in (4.4.4) to yield another solution of Poisson’s equation.

4Problem: This function can be obtained from first principles as we obtained the Green’s function for
the driven harmonic oscillator. Using the following representation of the δ−function,

δ3(r⃗ − r⃗′) =

∫
d3k⃗

(2π)3
eik⃗·(r⃗−r⃗′)

the integral expression

G(r⃗ − r⃗′) =

∫
d3k⃗

(2π)3
G(k⃗)eik⃗·(r⃗−r⃗′)

for G(r⃗ − r⃗′), find an expression for G(k⃗). Exploit spherical symmetry to reduce the resulting integral for

G(r⃗ − r⃗′) to a one dimensional integral defined in the complex |⃗k| = k plane and define the integral by its
principal value along the contour closed in the upper half plane.
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This is the analogue of adding a complimentary function to the particular solution in order
to get the most general solution of an inhomogeneous, one dimensional differential equa-
tion, as we did for the driven harmonic oscillator. In that problem, the arbitrary constants
in the complimentary function were determined by the initial conditions. Likewise, the
boundary conditions will determine Φ(r⃗) up to an additive constant and, conversely, an
appropriate Φ(r⃗) can always be found so that the sum ϕ(r⃗) + Φ(r⃗) satisfies any given set
of boundary conditions.

The δ−function provides a convenient way to represent the mass density of a discrete
distribution. Notice how the distribution is essentially zero except at a countable number
of points, the points of support, where it is infinite. In fact, by (4.4.9), it is “sufficiently
infinite” for its integral to be finite and non-zero. Therefore, we may define the mass
density of a discrete distribution as

ρ(r⃗) =
N∑
n=1

mnδ
3(r⃗ − r⃗n) (4.4.15)

Inserting this into the solution for ϕ(r⃗) in (4.2.13) gives

ϕ(r⃗) = −G
∫
VD

d3r⃗′
ρ(r⃗′)

|r⃗ − r⃗′|
= −G

N∑
n=1

∫
VD

d3r⃗′
mnδ

3(r⃗′ − r⃗n)

|r⃗ − r⃗′|
= −G

N∑
n=1

mn

|r⃗ − r⃗n|
(4.4.16)

exactly as given in (4.2.12). The use of δ−functions to represent the charge density of a
discrete distribution serves to unify our description of charge distributions.

Methods to solve Poisson’s equation and Laplace’s equation in the presence of more
sophisticated boundary conditions are well developed, but they will not be discussed fur-
ther here. We will turn to the problem of describing the motion of a body in a given
gravitational field instead. Therefore in the next chapter we give a detailed description
of the motion of test bodies under the action of a class of forces called “central”. The
gravitational force is one member of this class.



Chapter 5

Motion under a Central Force

5.1 Symmetries

When symmetries are present it is always convenient to select a coordinate system that is
adapted to them. We will be interested principally in problems with rectangular, spher-
ical or axial symmetry. In these cases it is convenient to turn respectively to Cartesian
coordinates, Spherical coordinates or Cylindrical coordinates respectively. Later we will
learn to work with general coordinate systems, but then we will introduce more powerful
techniques.

5.1.1 Spherical Coordinates

Thus, for example, if we know that the source charge distribution and boundary conditions
are spherically symmetric it is convenient to work in spherical coordinates, defined in terms
of the cartesian coordinate system by the transformations

r =
√
x2 + y2 + z2

φ = tan−1
(y
x

)
θ = cos−1

(
z√

x2 + y2 + z2

)
(5.1.1)

and the inverse transformations

x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ (5.1.2)
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Figure 5.1: Spherical Coordinates

These transformations are of course valid only away from the origin. Recall that unit
vectors representing the directions of increasing r, θ and φ are given by

r̂ = (sin θ cosφ, sin θ sinφ, cos θ)
θ̂ = (cos θ cosφ, cos θ sinφ,− sin θ)
φ̂ = (− sinφ, cosφ, 0) (5.1.3)

and that

∂r̂

∂θ
= θ̂,

∂r̂

∂φ
= φ̂ sin θ

∂θ̂

∂θ
= −r̂, ∂θ̂

∂φ
= φ̂ cos θ

∂φ̂

∂θ
= 0,

∂φ̂

∂φ
= −r̂ sin θ − θ̂ cos θ (5.1.4)

The unit vectors in the original Cartesian system may be given in terms of these unit
vectors as follows

x̂ = (x̂ · r̂)r̂ + (x̂ · θ̂)θ̂ + (x̂ · φ̂)φ̂ = r̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sinφ
ŷ = (ŷ · r̂)r̂ + (ŷ · θ̂)θ̂ + (ŷ · φ̂)φ̂ = r̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cosφ
ẑ = (ẑ · r̂)r̂ + (ẑ · θ̂)θ̂ + (ẑ · φ̂)φ̂ = r̂ cos θ − θ̂ sin θ (5.1.5)

Of interest to us is the Laplacian in these coordinates, so let us begin by evaluating the
gradient operator. Transforming its definition in Cartesian coordinates,

∇⃗ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(5.1.6)
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to spherical coordinates by using the transformations just given, we find1

∇⃗ = r̂
∂

∂r
+
θ̂

r

∂

∂θ
+

φ̂

r sin θ

∂

∂φ
(5.1.7)

and taking the inner product2 we obtain the Laplacian in spherical coordinates

∇⃗2 =
1

r2
∂r(r

2∂r) +
1

r2 sin θ
∂θ(sin θ∂θ) +

1

r2 sin2 θ
∂2φ (5.1.8)

The Euclidean distance between two points may be given in terms of r, θ and φ by
transforming its expression in Cartesian coordinates,

dr⃗2 = dx2 + dy2 + dz2 = dr2 + r2(dθ2 + sin2 θdφ2) (5.1.9)

The volume element must account for the Jacobian of the transformation from the Carte-
sian system to the spherical system,

J =
∂(x, y, z)

∂(r, θ, φ)
=


∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ

 (5.1.10)

i.e., ∫
d3r⃗ =

∫
dxdydz =

∫
drdθdφdet(J) =

∫
(r2 sin θ)drdθdϕ (5.1.11)

gives the volume of spheres.

5.1.2 Cylindrical coordinates

Cylindrical coordinates are defined by the following transformations from a Cartesian
system:

ρ =
√
x2 + y2

φ = tan−1
(y
x

)
z = z (5.1.12)

where, we have assumed that the axial symmetry is about the “z” axis. The inverse
transformations are simple to obtain

x = ρ cosφ

1Problem: Show this.
2Problem: Show this. Note that the gradient is a vector operator, so be careful to take appropriate

derivatives when necessary while taking the inner product.
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Figure 5.2: Cylindrical Coordinates

y = ρ sinφ
z = z (5.1.13)

and this time the system is badly defined along the entire z− axis. Nevertheless, for points
away from the z−axis, we may define the unit vectors

ρ̂ = (cosφ, sinφ, 0)
φ̂ = (− sinφ, cosφ, 0)
ẑ = (0, 0, 1) (5.1.14)

(ρ and φ are now just polar coordinates in the x− y plane) which satisfy

∂ρ̂

∂φ
= φ̂,

∂φ̂

∂φ
= −ρ̂ (5.1.15)

(all other derivatives vanish). The Cartesian unit vectors can be expressed in terms of the
cylindrical ones as we did in the case of spherical symmetry,

x̂ = ρ̂ cosφ− φ̂ sinφ
ŷ = ρ̂ sinφ+ φ̂ cosφ
ẑ = ẑ (5.1.16)

and the gradient operator can be transformed to the cylindrical system as before to get

∇⃗ = ρ̂∂ρ +
φ̂

ρ
∂φ + ẑ∂z (5.1.17)
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giving

∇⃗2 =
1

ρ
∂ρ(ρ∂ρ) +

1

ρ2
∂2φ + ∂2z (5.1.18)

The Euclidean distance between two points in these coordinates is

dr⃗2 = dρ2 + ρ2dφ2 + dz2 (5.1.19)

Again, the volume element must account for the Jacobian of the transformation from the
Cartesian system to the spherical system,∫

d3r⃗ =

∫
dxdydz =

∫
dρdφdzdet(J) =

∫
ρdρdφdz (5.1.20)

gives the volume of cylinders.

5.2 Central Forces

A central force is any force of the form

F⃗ (r⃗) = F (r)r̂ (5.2.1)

where r̂ is the unit outgoing radial vector from some fixed point, called the origin of the
force. The magnitude of the force depends only on the distance from the fixed point so
that it is the same at all points on the surface of a sphere with its center at the origin of
force. Central forces have the following two important properties:

1. Every central force is conservative. This can be seen by verifying that ∇⃗ × F⃗ = 0,

∇⃗ × F⃗ = (∇⃗F )× r̂ + F (∇⃗ × r̂) (5.2.2)

both terms of which vanish, the first because ∇⃗F (r) = F ′(r)r̂ is in the radial direction
and the second because r̂ is irrotational. It follows there exists a (potential energy)
function, ϕ = ϕ(r), such that F = −∇⃗ϕ(r).

2. Motion under a central force is torsion free. This is seen by evaluating rate of change

of
˙⃗
F . Using

dr

dt
= r̂ · v⃗, dr̂

dt
=
v⃗

r
− r̂

r
(r̂ · v⃗) (5.2.3)

we determine
˙⃗
F (r) = F ′(r)(r̂ · v⃗)r̂ + F (r)

r
[v⃗ − (r̂ · v⃗)r̂] (5.2.4)

and therefore

F⃗ × ˙⃗
F =

F 2(r)

r
(r̂ × v⃗) (5.2.5)
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showing that v⃗ ·(F⃗ × ˙⃗
F ) = 0. This leads to the important conclusion that the motion

will always occur in the plane determined by the initial velocity and the force itself.

Another way to arrive at the last conclusion is to consider Newton’s equations in spherical
coordinates. Taking a time derivative of the position vector

r⃗ = rr̂ (5.2.6)

and using (5.1.4), gives

dr⃗

dt
=
dr

dt
r̂ + r

dr̂

dt
= ṙr̂ + rθ̇θ̂ + r sin θφ̇φ̂. (5.2.7)

Taking a derivative once more,

d2r⃗

dt2
= (r̈ − rθ̇2 − rφ̇2 sin2 θ)r̂ + (2ṙθ̇ + rθ̈ − rφ̇2 sin θ cos θ)θ̂

+(2ṙφ̇ sin θ + 2rφ̇θ̇ cos θ + rφ̈ sin θ)φ̂. (5.2.8)

Now according to Newton’s second law

m
d2r⃗

dt2
= F (r)r̂ (5.2.9)

assuming that the force is central. If we orient our coordinate system in such a way that
the initial velocity is in the x − y plane (θ = π

2 ) i.e., θ̇(t = 0) = 0, we find (from the θ̂
component)

θ̈(t = 0) = 0 (5.2.10)

i.e., the motion will stay forever in the x − y plane. This greatly simplifies the problem
because it means that motion under a central force is effectively two dimensional. The
relevant two components of the equation of motion give

m(r̈ − rφ̇2) = F (r)

2ṙφ̇+ rφ̈ = 0 (5.2.11)

Of course, if the initial velocity of the particle is such that φ̇(t = 0) = 0 then the second
equation gives φ̈(t = 0) = 0, which means that the motion is forever radial or one dimen-
sional, but this is not the most general situation because it involves a restriction on the
initial velocity. On the other hand, because it is always possible to orient the x− y plane
so that it coincides with the plane defined by the radial vector and the (arbitrary) initial
velocity the motion will always be at most two dimensional.
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The second of (5.2.11) can be integrated quite easily and we find

2ṙ

r
= − φ̈

φ̇
⇒ ln r2 = ln

L

mφ̇
, (5.2.12)

where we have written the integration constant in the form L/m. A more convenient way
to express the solution is

mr2φ̇ = L, (5.2.13)

which should make it apparent that L is, in fact, the angular momentum of the body.
Solving for φ̇ and inserting the solution into the first equation in (5.2.11) gives

mr̈ − L2

mr3
= F (5.2.14)

which is an equation for r = r(t). The second term on the right, −L2/mr3, is the mass
times the centripetal acceleration required to keep the body moving around the center of
the force. The equation can be integrated once,

mr̈ = mṙ
dṙ

dr
= F +

L2

mr3
⇒ 1

2
mṙ2 +

L2

2mr2
−
∫
Fdr = E (5.2.15)

where E is also an integration constant, which will be recognized as the total energy of the
body . The first term on the left is the radial kinetic energy. The second is the rotational
kinetic energy and the last term is the potential energy associated with the central force,

ϕ(r) = −
∫ r

F (r′)dr′. (5.2.16)

Thus the quantity

V (r) = ϕ(r) +
L2

2mr2
(5.2.17)

has the form of an effective potential energy in (5.2.15). To understand its origin, turn
again to the equation of motion (5.2.14) and write it as

mr̈ = F (r) +
L2

mr3
(5.2.18)

The extra “force” on the right hand side is directed outward and corresponds to the
fictitious centrifugal force that an observer on the rotating body would feel. It corresponds
to a potential

ϕ′(r) = −
∫ r

dr′
L2

mr′3
=

L2

2mr2
(5.2.19)
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showing that V (r) is the effective potential energy measured by the observer who is at-
tached to the orbiting body. The energy equation,

ṙ =

√
2

m
[E − V (r)], (5.2.20)

can be formally integrated, to give∫ r

r0

dr′√
E − V (r′)

=

√
2

m
(t− t0) (5.2.21)

Of course, the problem is to perform the integral on the left. If this is done, we obtain the
radius of the body from the force center as a function of time, r = r(t), and then φ = φ(t)
directly from the first equation in (5.2.11). Thus,

φ̇ =
dφ

dt
=

L

mr2
⇒ φ− φ0 =

L

m

∫ t

t0

dt′

r2(t′)
(5.2.22)

In principle, this solves the central force problem.
Parametric solutions, with time as the parameter, are difficult to visualize. If possible,

in two dimensions it’s desirable to obtain the solution in function form. In this particular
case, it means that we should seek a solution of the form r = r(θ). rewrite (5.2.20) as

ṙ =
dr

dφ
φ̇ =

L

mr2
dr

dφ
=

√
2

m
[E − V (r)] (5.2.23)

or ∫ r

r0

dr/r2√
E − V (r)

=

√
2m

L2
(φ− φ0) (5.2.24)

where (r0, φ0) are the polar coordinates of the object at the initial time. If we could solve
the integral on the left we would get a relationship between r and φ, which would have to
be inverted to obtain r = r(φ).

5.3 Inverse square force

For an inverse square central force,

F (r) =
k

r2
, (5.3.1)

where k is positive for a repulsive force and negative for an attractive force (such as gravity)
the potential energy is

ϕ(r) = −
∫ r

dr′F (r′) =
k

r
(5.3.2)
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and the integral equation becomes∫ r

r0

dr/r2√
E − k

r −
L2

2mr2

=

√
2m

L2
(φ− φ0) (5.3.3)

Now if we substitute u = 1/r, we have

−
∫ u

u0

du√
E − ku− L2u2

2m

=

√
2m

L2
(φ− φ0) (5.3.4)

The integral on the left is easily solved by completion of squares and further substitutions.
Completing squares first, express the equation as

−
∫ u

u0

du√(
E + mk2

2L2

)
−
(

Lu√
2m

+
√

m
2
k
L

)2 =

√
2m

L2
(φ− φ0) (5.3.5)

Evidently, for real solutions, we require

E = E +
mk2

2L2
> 0 (5.3.6)

so let

w =
Lu√
2m

+

√
m

2

k

L
, dw =

Ldu√
2m

(5.3.7)

Then

−
∫ w

w0

dw′
√
E − w′2

= (φ− φ0) (5.3.8)

and the integral on the left (substitute w = E cos η) is solved to give

cos−1 w

E
− cos−1 w0

E
= (φ− φ0) (5.3.9)

or

w =
Lu√
2m

+

√
m

2

k

L
=

√
E cos(φ− φ0) (5.3.10)

where φ0 has been redefined to accommodate the constant term arising in the integral on
the left. Solving for u we find

u =
1

r
=
m|k|
L2

[
−sgn(k) +

√
1 +

2EL2

mk2
cos(φ− φ0)

]
(5.3.11)
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where sgn(k) is just the sign of the constant k3. The solution has the form

α

r
= −sgn(k) + ε cosφ (5.3.12)

where

α =
L2

m|k|
, ε =

√
1 +

2EL2

mk2

Consider first the case of an attractive inverse square central force, for which k < 0. The
solution,

α

r
= 1 + ε cos(φ− φ0), (5.3.13)

is described by two parameters which depend on the strength of the central force, k, and
the two integration constants, viz., the total energy and the angular momentum.

A very special case occurs when E = −mk2/2L2, for then ε = 0 and the motion
becomes circular, with radius α = L2/m|k|. This result can also be obtained by setting r̈
in (5.2.14) to zero,

r̈ = 0 = −|k|
r2

+
L2

mr3
⇒ r =

L2

m|k|
= α. (5.3.14)

The energy of such an orbit is just the effective potential energy,

E = V (r)|r=α =

[
−|k|
r

+
L2

2mr2

]
r=α

= −mk
2

2L2
(5.3.15)

In general the motion is a conic section. In the following section (detour) we obtain
the equations of conic sections in the form (5.3.13). This will allow us to interpret the
constants α and ε and so to describe the motion in detail as it depends on the two
integration constants E and L.

5.3.1 Conic sections

A conic section is a curve that is formed by the intersection of a cone with a plane, as
shown in figure (5.3).

• The circle is just the locus of points whose distance from a fixed point called the
center) is constant. If we locate the fixed point at the origin of coordinates and call
the constant distance from the fixed point a, then the equation of a circle is simply
r = a.

3sgn(k) is defined by

sgn(k) =

{
1 k > 0
−1 k < 0

.



128 CHAPTER 5. MOTION UNDER A CENTRAL FORCE

Figure 5.3: Conic sections.

• The ellipse is the locus of all points which are such that the sum of their distances
from two fixed points (called the foci) is constant (see figure (5.4). Imagine that we
place the origin of coordinates at one of the foci, say F , and measure the polar angle
φ as shown in the figure. From the figure we see that

r + r′ = 2a (5.3.16)

where we set the value of the constant to be 2a. It is also clear that

r′2 = [2aε+ r cosφ]2 + r2 sinφ2

= r2 + 4a2ε2 + 4aεr cosφ (5.3.17)

Therefore, the equation of the ellipse should be

r +
√
r2 + 4a2ε2 + 4aεr cosφ = 2a (5.3.18)

which can be simplified to give

r2 + 4a2 − 4ar = r2 + 4a2ε2 + 4aεr cosφ (5.3.19)

or
4a2(1− ε2) = 4ar(1 + ε cosφ), (5.3.20)

which can be put in the canonical form

α

r
=
a(1− ε2)

r
= 1 + ε cosφ (5.3.21)

We see that φ = 0 represents the point of closest approach, the periapsis, to the
focus serving as the force center, with r = a(1 − ε). On the other hand, φ = π
represents the point farthest from the force center, the apoapsis, with r = a(1+ ε).
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Figure 5.4: The ellipse.

• The parabola is the locus of points whose distance from a fixed point (called the
focus) is equal to the distance from a fixed line (the directrix). Referring to figure
(5.5), and once again placing the origin of coordinates at the (single) focus of the
parabola, we find

r = a− r cosφ (5.3.22)

or
a

r
= 1 + cosφ (5.3.23)

The periapsis has φ = 0, with r = a/2.

• The hyperbola is the locus of points which are such that the difference of their
distances from two fixed points (called the foci) is constant (see figure (5.6). As
before, we pick the origin at one of the foci, then referring to the figure we see that
the constraint can be written as

r′ − r = 2a (5.3.24)

Again because

r′2 = r2 sin2 φ+ (2aε− r cosφ)2 = r2 + 4a2ε2 − 4arε cosφ (5.3.25)

we have √
r2 + 4a2ε2 − 4arε cosφ− r = 2a

⇒ 4a2ε2 − 4arε cosφ = 4a2 + 4arε

⇒ α

r
=
a(ε2 − 1)

r
= 1 + ε cosφ (5.3.26)

The periapsis has φ = 0 with r = a(ε− 1).
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Figure 5.5: The parabola.

Figure 5.6: The Hyperbola.
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In all cases, the conic section depends on two parameters, viz., (a) the constant α and the
eccentricity ε ≥ 0. The circle has zero eccentricity, for the ellipse the eccentricity is less
than unity, for the parabola it is precisely unity and for the hyperbola it is greater than
unity.

5.3.2 Analysis of solutions

Returning to our general solutions in (5.3.13) with k < 0, we see immediately that

ε =

√
1 +

2EL2

mk2
, and

a|1− ε2| = L2

m|k|
⇒ a =

∣∣∣∣ k2E
∣∣∣∣ , E ̸= 0 (5.3.27)

so that the geometric parameters (α and ε) are given completely by the physical parame-
ters, |k|, E and L of the system. The constant φ0 is seen to determine the orientation of
the x−axis relative to the conic section and may always be chosen to be identically zero.
Several cases arise. We have already seen that the orbit is circular if E = −mk2/2L2. For
other values of E we also have:

• Case E < 0: If the total energy is negative, then ε < 1 and the orbit is elliptical.
The length of the semi-major axis is

2a =

∣∣∣∣ kE
∣∣∣∣ (5.3.28)

and the length of the semi-minor axis is obtained by looking at the point P located
on the intersection of the curve and the vertical axis. For this point, r = r′ gives
r = r′ = a, cosϕP = −ε and

2b = 2a
√

1− ε2 =

√
2L2

m|E|
(5.3.29)

The orbit is closed and the motion periodic.

• Case E = 0: If E = 0 then ε = 1 and the motion is parabolic, with

a =
L2

m|k|
(5.3.30)

The orbit is open, not closed. It is a limiting case, the boundary between closed,
elliptic orbits and open, hyperbolic orbits. The orbiting body returns after an infinite
time.
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Figure 5.7: Kepler’s second law.

• Case E > 0: When the total energy is positive the eccentricity is larger than unity
and the orbit is hyperbolic. The orbiting body never returns to the neighborhood of
the force center, F .

Finite period orbits occur only when E < 0, i.e., when the motion is elliptical. We can
think of the circle as an ellipse of zero eccentricity, therefore for circular orbits of radius
a = |k/2E|, there must be a precise relationship between the energy and the angular
momentum, L2 = mk2/2|E|.

5.3.3 Kepler’s laws

Kepler’s first law simply states that the orbits of the planets about the sun are elliptical
with the sun at one of the foci. We have already shown that this must be the case for
periodic orbits.

The second law states that the areas swept out by the radius vectors from the sun to
the planet in equal time intervals are equal. Putting this statement in the language of
calculus, we can say that

dA

dt
= constant (5.3.31)

where A is the area swept out by the radius vectors from the sun to the planet. This
is not difficult to prove and is actually a statement about the conservation of angular
momentum! Referring to the figure (5.7),

dA

dt
=

1

2
r2
dφ

dt
=

L

2m
(5.3.32)

which is a constant of the motion.
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Kepler’s third law gives the relationship between the period of the orbit and the length
of the semi-major axis. It states that the square of the period is proportional to the cube
of the semi-major axis, i.e., τ2 ∝ a3, where τ is the period, or the time taken to complete
one orbit. Proving this takes a bit of work, but this is the law that motivated Newton to
describe gravity by an inverse square central force. Begin by noting that integrating the
second law over an entire period gives the area of the ellipse

A =
Lτ

2m
(5.3.33)

However, the area of the ellipse is obtained by integrating the expression

dA =
1

2
r2dφ (5.3.34)

over the entire ellipse. Using the solutions obtained,

A =
α2

2

∫ 2π

0

dφ

(1 + ε cosφ)2
= πa2

√
1− ε2 (5.3.35)

Therefore,

Lτ

2m
= πa2

√
1− ε2 ⇒ τ = π

√
mk2

2|E|3
, (5.3.36)

the right hand side of which can be expressed in terms of the length of the semi-major
axis, using (5.3.27),

τ2 =
4π2m

k
a3 (5.3.37)

For the gravitational force, the constant k is proportional to the mass of the body, which is
just a statement of the weak equivalence principle. The proportionality constant between
the square of the radius and the cube of the semi-major axis is therefore independent of
the mass of the orbiting body. For instance, for a star-planet system, assuming that the
mass of the star, M⊙, is very much larger than the mass of the planet so that it is for all
practical purposes fixed,

k = GM⊙m ⇒ τ2 =
4π2

GM⊙
a3 (5.3.38)

When the mass of the planet is not negligible compared to the mass of the star, we may
still use the description of the motion as given above, provided we interpret the results
consistently. In that case, the coordinate r should be understood as the magnitude of the
relative coordinate, r⃗ = r⃗p − r⃗⊙, the mass of the orbiting body, m, should be replaced
by the reduced mass, µ, of the system and the mass of the star by the total mass. The
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force center is then the center of mass of the system. Because no external forces act on an
isolated system, the center of mass moves as though it were a free particle. In other words,
the star-planet system may move as a whole freely through space while each member of
the system orbits about the center of mass.

5.4 Other examples of central forces

The inverse square force is by no means the only physically important example of a central
force. The force exerted by a spring that is fixed at one end, for example, is a central force
for which F (r) = −k(r− r0), where r0 is the equilibrium length of the spring and k is the
spring constant. The negative sign indicates that the force is attractive so long as r > r0
(the spring is stretched) and repulsive when r < r0. The corresponding potential energy
is evidently

ϕ(r) = −
∫ r

r0

F (r)dr =
1

2
k(r − r0)

2. (5.4.1)

Another important example of a central force is the Yukawa force,

F (r) =
k

r2
e−r/r0

[
1 +

r

r0

]
, (5.4.2)

which is often used to describe the effective weak interactions between mesons. It is
approximately inverse square so long as r/r0 ≪ 1, but decreases rapidly at large distances,
i.e., when r/r0 ≫ 1. It is deemed a “short-range” force, as opposed to the inverse-square
force, which is considered “long range”. The potential energy corresponding to this force
is the Yukawa potential,

ϕ(r) = −
∫ r

∞
F (r)dr =

k

r
e−r/r0 . (5.4.3)

There are also generalizations of the inverse square force, with F (r) = k/rn, where n is a
positive integer. The potential energy is

ϕ(r) = −
∫ r

∞
F (r)dr =

k

(n− 1)rn−1
(5.4.4)

For n > 2, such terms arise, for example, as general relativistic corrections to Newton’s
inverse square law of gravity, but they are not so interesting on their own.

For each of the forces above, our starting point will be (5.2.24). As an example,
consider Hooke’s Law. For simplicity, take r0 = 0, then the effective potential in this case
is

V (r) =
L2

2mr2
+

1

2
kr2 (5.4.5)
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and (5.2.24) determines the two dimensional motion according to∫ r

r0

dr/r2√
E − L2

2mr2
− 1

2kr
2
=

√
2m

L2
(φ− φ0). (5.4.6)

The problem is to evaluate the integral on the left. It is convenient to make the substitution
u = 1/r2, which gives

−1

2

∫ r

u0

du√
Eu− L2u2

2m − k
2

=

√
2m

L2
(φ− φ0) (5.4.7)

or, completing squares,

−1

2

∫ u

u0

du√
(mE

2

2L2 − k
2 )− (

√
m
2
E
L − Lu√

2m
)2

=

√
2m

L2
(φ− φ0) (5.4.8)

Evidently, for real solutions,

E =
mE2

2L2
− k

2
> 0 (5.4.9)

and substituting w =
√

m
2
E
L − Lu√

2m
gives

1

2

∫ w

w0

dw√
E − w2

= (φ− φ0) ⇒ w = −
√
E cos 2(φ− φ0) (5.4.10)

where we have redefined φ0 to accommodate the additional constant obtained by integrat-
ing the left hand side. In terms of r, we find a solution of the form

α2

r2
= 1 + ε cos 2(φ− φ0) (5.4.11)

where

α =
L√
mE

, ε =

√
1− kL2

mE2
(5.4.12)

and circular orbits are possible if E = (kL2/m)1/2 (i.e., when ε = 0), in which case the
radius of a circular orbit is r = (L2/mk)1/4. This is the minimum permissible energy for
two dimensional motion.4

The solution in (5.4.11) describes an ellipse provided that ε < 1. This can be made
explicit by making the transformations x = r cosφ, y = r sinφ and taking φ0 = 0 for

4Problem: Determine the energy and radius of a circular orbit in terms of the angular momentum using
the condition r̈ = 0 in (5.2.14).
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convenience (this amounts only to choosing an orientation of the axes for the Cartesian
system so that the periapsis occurs at φ = 0). We find

α2

r2
= 1 + ε cos 2φ ⇒ x2

α2/(1 + ε)
+

y2

α2/(1− ε)
= 1, (5.4.13)

showing that the center of the force is at the center of the ellipse.5

Kepler’s second law is true for elliptical orbits caused by any central force because it
is just a restatement of the law of conservation of momentum. The period, however, does
depend on the particular form of the force. In this case, it turns out to be independent of
the length of the major axis. We find,

A =
Lτ

2m
=
α2

2

∫ 2π

0

dφ

(1 + ε cos 2φ)
=

πα2

√
1− ε2

=
πL√
km

(5.4.14)

gives

τ = 2π

√
m

k
, (5.4.15)

which is precisely the period of one dimensional oscillations.

5.5 Stability of Circular Orbits

We have seen that the equations describing the motion of an object under the action of a
central force are

m(r̈ − rφ̇2) = F (r)

2ṙφ̇+ rφ̈ = 0 (5.5.1)

We also discovered that the second is integrable, giving a conshtant of the motion, the
angular momentum, and that it can be combined with the first to give one equation for
the radial motion

mr̈ = F (r) +
L2

mr3
(5.5.2)

5Problem: By transforming to Cartesian coordinates, show that the orbit given by

a(1− ε2)

r
= 1 + ε cosφ

(ε < 1) is an ellipse, but that the force center is located at one focus of the ellipse in this case. Show also
that the distance from the center of the ellipse to the focus is aε. Hint: Choose a convenient orientation
of the Cartesian axes by selecting φ0, then show that the equation, written in Cartesian coordinates, is
the equation of an ellipse, horizontally shifted a distance −aε.
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Now it is quite clear that, no matter what the form of F (r), there will always be circular
orbits so long as F⃗ is attractive: simply solve

F (r) = − L2

mr3
(5.5.3)

to get the radius of the circle. This is of course just the condition that the effective
potential has an extremum at r0 because

V ′(r0) = ϕ′(r0)−
L2

mr30
= 0 ⇒ F (r0) = − L2

mr3
. (5.5.4)

Let us examine the stability of these circular orbits, first in general and then for some
particular cases. An orbit will be considered stable if it does not run away, or change
drastically when it is perturbed by some external influence. We will make this intuitive
idea more precise below.

Suppose that the solution to (5.5.3) is r0, then imagine that we perturb the orbit
slightly so that r = r0 + x, where x/r0 ≪ 1. Evidently, r̈ = ẍ and the equation of motion
becomes

mẍ = F (r0 + x) +
L2

m(r0 + x)3
(5.5.5)

Since x ≪ r0, we expand in a Taylor series about x = 0, retaining only the first order
term in x/r0. Then

mẍ = F (r0) +
L2

mr30
+ F ′(r0)x− 3L2x

mr40
+ . . . (5.5.6)

The first two terms on the right vanish because r0 is the radius of the circular orbit [see
(5.5.3)]. Then the equation for the perturbation, x, becomes

mẍ = −
(
3L2

mr40
− F ′(r0)

)
x = −κx (5.5.7)

and may be compared to the equation of a one dimensional harmonic oscillator, with force
constant κ. We understand these solutions quite well. If the force constant is positive
there are oscillations about x = 0, but if the force constant is negative then x may grow
exponentially, without bound. The perturbations continue small when the κ is positive
and that is therefore our condition for stability. It cannot have escaped you that we can
think of this condition as the requirement that the effective potential has a well defined
minimum at r = r0 (not simply an extremum) because

V ′′(r0) = −F ′(r0) +
3L2

mr40
(5.5.8)
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which we have just seen must be larger than zero for stability.

As an example, if

F (r) = − k

rn
(5.5.9)

the radius of the circular orbits would be given by

k

rn0
=

L2

mr30
⇒ rn−3

0 =
mk

L2
(5.5.10)

and in particular when n = 2 we have

r0 =
L2

mk
(5.5.11)

Are these circular orbits stable? Let us examine the condition for stability:

3L2

mr40
− nk

rn+1
0

> 0 ⇒ rn−3
0 >

nmk

3L2
(5.5.12)

or simply (inserting the value of r0 found above) n < 3. In this case, any perturbation
causes the body to oscillate about the stable circular orbit with an angular frequency of

ω =
L

mr20

√
3− n (5.5.13)

The solution for x, up to this order of approximation is then

x = A1 cosωt = A1 cos
(√

3− nφ
)

(5.5.14)

where we used (5.2.13) and r = r0. Clearly, for closed orbits we must ask for

√
3− n =

p

q
= β (5.5.15)

where p/q is a rational number. It this way the perturbation x would return to itself after
q rotations through an angle of 2π. Therefore, for rational β and

F (r) = − k

r3−β2 (5.5.16)

the circular orbits are not only stable against small perturbations, but they are also closed.
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5.5.1 Bertand’s Theorem

If we seek more stringent conditions on the force law, so orbits remain closed even when the
deviations from circularity are large (i.e., if we wish to beyond the linear approximation)
then the analysis is more complicated. It is convenient to rewrite the radial equation of
motion in (5.2.11) in terms of u(φ) = 1/r(φ) as

d2u

dφ2
+ u = −m

L2

dϕ(u)

du

def
= Q(u) (5.5.17)

Perfectly circular orbits are recovered when u′(φ) = 0, or u0 = Q(u0). First consider small
deviations from circularity, u = u0 + u(φ); in the linear approximation,

d2y

dφ2
+ u0 + y = Q(u0) + yQ′(u0) (5.5.18)

or
d2y

dφ2
+ [1−Q′(u0)]y = 0 (5.5.19)

whose solution is clearly y = A cos(βφ), where A is an integration constant and β2 =
1−Q′(u0) must be greater than zero for a stable orbit and rational for closed orbits. This
is just the result we had before.6

To go beyond the linear approximation, we retain higher order terms in the series
expansion of Q(u),

d2y

dφ2
+ β2y =

1

2!
Q′′(u0)y

2 +
1

3!
Q′′′(u0)y

3 + . . . (5.5.20)

Now the behavior of y(φ) to linear order is the first term of a Fourier expansion in βφ.
We therefore seek a closed orbit solution by including more terms of the Fourier series,
taking

y(φ) = A0 +A1 cosβφ+A2 cos 2βφ+A3 cos 3βφ+ . . . (5.5.21)

The coefficients A0 and A2 are of higher order (smaller) than A1, as can be seen in the
approach to circularity. Moreover, A3 will be smaller than A0 and A2, A4 will be smaller
than A3 and so on (we will see this shortly). Therefore, in the expansion (5.5.20), if we
include terms up to cos(3βφ) in y (third order), then we include only terms up to cos(2βφ)
in y2 and cos(βφ) in y3. Make use of the fact that the set

1√
2
,
{
cos(nβφ)

∣∣ n ∈ Z+
}

6Taking F (r) = k/rn, determine (a) Q(u), (b) the radius of circular orbits and (c) β. Confirm the
earlier results.
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is an orthonormal and complete basis for even, periodic functions, with inner product

⟨cos(nβφ), cos(mβφ)⟩ def
=

β

π

∫ 2π/β

0
dφ [cos(nβφ), cos(mβφ)] = δmn, (5.5.22)

to reduce higher powers of cos(nβϕ) and products as, for example,

cos2(βφ) =
1

2
⟨cos2 βφ, 1⟩+

∑
n

⟨cos2 βφ cos(nβφ)⟩ cos(nβφ) = 1

2
(1 + cos(2βφ))

cos3(βφ) =
1

4
(3 cos(βφ) + cos(3βφ))

cos(βφ) cos(2βφ) =
1

2
(cos(βφ) + cos(3βφ)) (5.5.23)

and so on. Carefully expanding (5.5.20), we find

A0 =
A2

1

4β2
Q′′(u0)

A2 = − A1

12β2
Q′′(u0)

A3 = − 1

16β3

[
A1A2Q

′′(u0) +
A3

1

12
Q′′′(u0)

]
(5.5.24)

as well as one constraint,

−A0A1Q
′′(u0)−

1

2
A1A2Q

′′(u0)−
1

8
A3

1Q
′′′(u0) = 0. (5.5.25)

We have already seen that F (r) = −k/r3−β2
is necessary for stable orbits. This means

that

Q(u) =
mk

L2
u1−β

2
(5.5.26)

and therefore the inverse radius of circular orbits is given by uβ
2

0 = mk/L2. Then

Q′′(u0) = −β
2(1− β2)

u0

Q′′′(u0) =
β2(1− β4)

u20
, (5.5.27)

and inserting (5.5.24) and (5.5.27) into (5.5.25) shows that β must satisfy the (much
stronger) condition

β2(1− β2)(4− β2) = 0 (5.5.28)
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b+db

b

P

f0

c

O

Figure 5.8: Scattering in the CM frame for an attractive central force.

For β ̸= 0, i.e., for non-vanishing deviations from a circular orbit, the only possibilities
are β2 = 3 − n = 1, 4 meaning that n = 2,−1 respectively, which are the inverse square
force law and Hooke’s law.7

5.6 Scattering by a Central Force

So far we have considered only bound orbits. Let us now consider unbound, hyperbolic or-
bits about a force center as shown in figure 5.8, where O is the scattering center (the center
of mass) and P represents the (fictitious) particle of (reduced ) mass µ = m1m2/(m1+m2)
and coordinate r⃗ = r⃗2−r⃗1 of body “2” relative to body “1” at the point of closest approach
(the periapsis).

The equation of motion is given in (5.5.17), with m replaced by µ and we consider an

attractive, inverse square force for which Q(u) = µ|k|
L2 . The solution possesses a positive

energy, E, so ε > 1 in

u =
1

α
[1 + ε cos(φ− φ0)] . (5.6.1)

Extremizing u we find that

u′ = − ε

α
sin(φ− φ0) = 0 ⇒ φ = φ0, u′′(φ0) < 0, (5.6.2)

so φ0 maximizes u (u has no minimum) and minimizes r, showing that φ0 is the angular
coordinate of the periapsis. To find φ0 we refer to figure 5.8, noting that, at early times,

7Notice that A0/A1 ∼ A2/A1 ∼ A1/u0 ≪ 1 by assumption and A3/A1 ∼ (A1/u0)
2 which is smaller

still. This justifies the approximation made.
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u(π) = 0 implies that φ0 = cos−1(1/ε). Thus the radial distance of the periapsis from the
scattering center will be rP = α/(1 + ε) = a(ε− 1). The total deflection angle is given by
the condition that u = 0 and φ ̸= π, i.e., referring to figure 5.8,

φ± − φ0 = ± cos−1

(
−1

ε

)
⇒ φ± = cos−1

(
1

ε

)
± cos−1

(
−1

ε

)
. (5.6.3)

The solution with the positive sign yields π, which represents the situation at early times,
so we pick the second solution

χ = φ− = cos−1

(
1

ε

)
− cos−1

(
−1

ε

)
= −2 sin−1

(
1

ε

)
, (5.6.4)

as representative of the situation at late times. χ is the scattering angle. It depends
exclusively on the eccentricity.8 Larger eccentricities are scattered through smaller angles,
but because the eccentricity depends on the energy and the angular momentum,

ε =

√
1 +

2EL2

µk2
, (5.6.5)

the higher the total energy and total angular momentum, the smaller will be the deflection
angle.

5.6.1 Differential Cross-Section

A problem of physical interest concerns the deflection of a beam of particles by a scattering
center, as in the case, for example, of Rutherford scattering. Typically, one is interested
in the differential scattering cross-section, which is the ratio of the number of particles
scattered in a solid angle between Ω and Ω + dΩ per unit time by the total number of
incident particles per unit area per unit time (flux),

dσ =
# of particles scattered in dΩ

incident flux
(5.6.6)

The mechanical dimension of the differential cross section is area. It may be thought
of as the area, transverse to the relative velocity, within which the interacting objects
must meet in order to scatter through a given solid angle. The differential solid angle is
dΩ = 2π sinχdχ. If v∞ is the initial relative speed far from the scattering center, so that
the initial relative velocity is v⃗ = v∞x̂ in figure 5.8, we express the angular momentum
and the total energy as

L = mv∞b, E =
1

2
µv2∞. (5.6.7)

8Problem: Perform a similar analysis for a repulsive central force, Q = −µ|k|
L2 . Show that χ =

+2 sin−1(1/ε).
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For particles of the same incident energy, the scattering angle χ depends only on the
angular momentum and therefore only on b, then the number particles scattered between
χ and dχ will pass through a ring of radius between b and b+db (again, refer to the figure),
so dσ = 2πbdb, i.e.,

dσ

dΩ
=

b

| sinχ|

∣∣∣∣ dbdχ
∣∣∣∣ (5.6.8)

and the total cross-section is defined as

σT =

∫
Ω
dσ = 2π

∫ π

0
dχ b

∣∣∣∣ dbdχ
∣∣∣∣ . (5.6.9)

From σT , we may also define a total cross sectional radius, a, by equating σT to the area

of a disk of radius a, i.e., σT
def
= πa2.

For the attractive, inverse square force we have examined above, because ε = −1/ sin(χ/2)
it follows that

dε2

dχ
=

2µ2v4∞bdb/dχ

k2
= − cosχ/2

sin3 χ/2
(5.6.10)

and therefore
dσ

dΩ
=

b

| sinχ|

∣∣∣∣ dbdχ
∣∣∣∣ = (k csc2 χ/24E

)2

(5.6.11)

The total differential cross section is infinite! This is because the force we have considered
is long range. In the Rutherford experiment, it is screened by the electrons in the atom.

5.6.2 Dynamical “Friction” (Chandrashekar)*

As our treatment above has dealt exclusively with the relative coordinate, we have had
little explicit information regarding the motion of the masses themselves. Let us close this
chapter by addressing the motion of the individual masses. Conservation of momentum
requires that

m1
dv⃗1
dt

+m2
dv⃗2
dt

= 0 (5.6.12)

so if we set v⃗ = v⃗2 − v⃗1, then it follows that the rate of change of each velocity depends
only on the rate of change of v⃗,

dv⃗1
dt

= −m2

M

dv⃗

dt
,
dv⃗2
dt

=
m1

M

dv⃗

dt
(5.6.13)

As before, we denote by b the impact parameter and v⃗− = v∞x̂ the velocity as t → −∞,
so L = µbv∞ and E = 1

2µv
2
∞ and both, being conserved, have the same values as t→ +∞.

Thus in the infinite future v⃗ will be

v⃗+ = v∞⟨cosχ, sinχ⟩ = v∞⟨1− 2

ε2
,−2

ε

√
ε2 − 1⟩ (5.6.14)
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Wake

Figure 5.9: Formation of a wake when an object moves through a sea of force centers.

which we write as

v+∥ = v∞

(
1− 2

ε2

)
v+⊥ = v∞

(
−2

ε

√
ε2 − 1

)
(5.6.15)

v∥ represents the velocity component parallel to the initial velocity (the x axis) and v⊥
represents the velocity component perpendicular to the initial velocity (the y axis). The
component of v⃗+ parallel to the initial velocity “slows” relative to the initial velocity and
the slowing effect is pronounced for small eccentricities. The total change in the parallel
component during the collision is ∆v∥ = −2v∞/ε

2, which translates into the following
changes in the parallel velocity component for the two masses m1 and m2:

∆v1∥ =
2m2v∞
Mε2

, ∆v2∥ = −2m1v∞
Mε2

(5.6.16)

(we will not be concerned with the transverse direction for the present).

Now imagine that m2 is passing through a homogeneous sea of force centers (as an
astrophysical application, for example, think of m2 as a black hole racing through a galaxy
and its dark matter halo or a globular cluster). Because of the assumed homogeneity there
will be no deflection in the transverse direction on the average (this is why we ignored it
above) but, as the object moves through the “medium”, scattering will occur as shown
in figure 5.9, resulting in an overdensity of scattering centers (a wake) behind the moving
object. This region of higher density exerts a drag on the moving object.
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We now single out v⃗2, call it v⃗M and its associated mass M . Let the force centers be
labeled by by their velocities v⃗, along with a distribution function 2πbf(v⃗)dbd3v⃗ giving the
number, dN , of force centers with velocities between v⃗ and v⃗ + dv⃗, masses m and impact
parameters between b and b + db. The rate at which the mass M encounters these force
centers is

2πb
(v∞
λ

)
f(v⃗)dbd3v⃗ (5.6.17)

where λ is the mean distance between them. For each encounter, there is a change in
vM∥ given by (5.6.16). The average rate of change of v⃗M due to encounters with dN force
centers is therefore

d

(
dvM⊥
dt

)
= 0

d

(
dvM∥

dt

)
= − 4πµv2∞

λ(m+M)

[
1 +

2EL2

µk2

]−1

bf(v⃗)dbd3v⃗

= − 4πµv2∞
λ(m+M)

[
1 +

µ2v4∞b
2

k2

]−1

bf(v⃗)dbd3v⃗ (5.6.18)

Perform the b integration from zero up to some maximum value to get

d

(
dvM∥

dt

)
= − 2πk2

λµ(M +m)v2∞
ln

(
1 +

b2maxµ
2v4∞

k2

)
f(v⃗)d3v⃗ (5.6.19)

A reasonable choice for bmax is the size of the system of force centers in which the mass M
is moving. In practice, the argument of the natural logarithm is very large and is usually
replaced by a constant, Λ2. As v∞ is actually |v⃗M − v⃗| and v⊥ undergoes no change, we
can integrate over the distribution writing the above equation as

dv⃗M
dt

≈ − 4πk2

λµ(m+M)
lnΛ

∫ vM

0

v⃗M − v⃗

|v⃗M − v⃗|3
f(v⃗)d3v⃗ (5.6.20)

For an isotropic distribution,

dv⃗M
dt

≈ − 16π2k2

λµ(M +m)
lnΛ

v⃗M
|v⃗M |3

∫ vM

0
f(v)v2dv (5.6.21)

and if the interactions are gravitational then k = G(m+M)µ gives

dv⃗M
dt

≈ −16π2G2(m+M)µ

λ
ln Λ

v⃗M
|v⃗M |3

∫ vM

0
f(v)v2dv (5.6.22)

The integral is taken over all force centers in the distribution with speeds up to vM . The
effect causes a gradual slowing down of the mass M as if it were moving in a viscous
field. However, it has nothing to do with friction and is purely due to the central force,
as switching it off by setting k = 0 would elliminate it.9

9Problem: If the central force is repulsive, what sort of effect may one expect? Why?



Chapter 6

Motion in Non-Inertial Reference
Frames

So far we have examined motion only from the point of view of the “inertial” observer.
Recall that while we were discussing Newton’s laws we defined such an observer (frame)
as one in which the trajectory of a “free ” body is a straight line. There is some ambiguity
here, as the observer must either know independently of her(is) frame that a body is free,
and then determine which frames are inertial, or s(he) must (independently) determine
whether her(is) frame is inertial and subsequently whether the body is “free”. The concept
of a free body is therefore intimately tied with the concept of an inertial frame. The
problem is more severe when we realize that the ambiguity creeps into the definition of a
force in the second law as that which gives rise to deviations from the first law.

This issue was addressed generally only in the early part of the twentieth century
by Einstein. We do not here delve into its resolution, but we assume that it is always
possible to find a family of inertial frames. However, it may often be impossible for a
given observer to actually occupy such a frame. For example, in order to describe the
motion of a particle on the surface of the earth, the most convenient frame is one that
is attached to the earth itself. But the earth rotates both about itself and the sun, and
the entire solar system rotates about the galaxy while also oscillating about the galactic
plane. The earth, convenient though it may be as a reference frame, is certainly not an
inertial.

6.1 Newton’s second law in an accelerating frame

Since we will assume that inertial frames exist, let us compare our description of motion
two frames S and S′, in which S is inertial. Suppose that S′ is non-inertial, having an

146
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acceleration a⃗(t) relative to S. It is clear that, instantaneously,

r⃗′ = r⃗ − R⃗ (6.1.1)

where r⃗(t) and r⃗′(t) represent the positions of a particle, P , relative to S and S′, and R⃗
is the position of S′ relative to S at time t. Taking derivatives,

v⃗′ = v⃗ − v⃗R

a⃗′ = a⃗− a⃗R (6.1.2)

Now, Newton’s laws are applicable in the unprimed frame, so if F⃗ textext is the force acting
on the particle at P , its motion, as described in S would be given by Newton’s second law

ma⃗ = F⃗ ext ⇒ ma⃗′ = F⃗ ext −ma⃗R. = F⃗ ext + f⃗ (6.1.3)

(Notice that, if the acceleration of S′ were zero as measured by S, then Newton’s second
law would hold in S′ as well. Therefore, all frames moving at a constant velocity relative
to an inertial frame are also inertial.) In general, we must account the additional term
f = −ma⃗R that appears on the right hand side. It has the mechanical dimension of force
and we will refer to it as a “fictitious” force, f⃗ . One recognizes a fictitious force by the
fact that it is multiplied by the mass of the particle itself, so that the acceleration of the
body measured in S′, due to the fictitious force, is independent of its mass,

d2r⃗′

dt2
=
F⃗ ext

m
− a⃗R. (6.1.4)

In other words: motion under the influence of purely fictitious forces is kinematical (the
mass, or inertial, of the body plays no role in the equations of motion)! An example of
such a force is obviously gravity itself, since the weak equivalence principle ensures that
the mass appearing on the left hand side of Newton’s equation is the same as the mass
appearing the the gravitational force law.

6.2 Rotating Frames

In considering the earth itself as a reference frame, the dominant acceleration of an observer
fixed relative to the surface of the earth is her(is) centripetal acceleration due to the
rotation of the earth about its north-south axis. As a special, but nevertheless very
interesting case, let us describe the motion of a body in a frame that is rotating with
respect to an inertial frame, but not translating relative to it. As before, let S be an
inertial frame and S′ be a non-inertial frame, rotating about some axis OP as shown in
figure (6.1). Any vector A⃗ may be described in S or S′
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Figure 6.1: S′ rotates about the axis PP ′

A⃗ = Aiêi = A′
iê

′
i (6.2.1)

where êi form a basis in S and ê′i a basis in S′. We will choose an orthonormal basis in
each frame so that êi · êj = δij = ê′i · ê′j . Now in the inertial frame S,

dA⃗

dt
=
dAi
dt

êi (6.2.2)

whereas if the inertial observer were to refer to the basis ê′i, since the frame S′ is rotating
with respect to S, s(he) would describe it as

dA⃗

dt
=
dA′

i

dt
ê′i +A′

i

dê′i
dt

(6.2.3)

Now the observer who is rotating sees the basis ê′i as fixed so that her(is) description of
the rate of change of A is therefore,

d′A⃗

dt
=
dA′

i

dt
ê′i (6.2.4)

where we use the prime in the derivative to indicate that it is the rate of change as
measured by the non-inertial observer. It follows that

dA⃗

dt
=
d′A⃗

dt
+A′

i

dê′i
dt

(6.2.5)
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Let us concentrate on the difference between the derivatives: A′
idê

′
i/dt. Because the rate

of change of each basis vector in S′ is itself a vector, it can be expanded in the S′ basis,
i.e.,

dê′i
dt

= aij ê
′
j (6.2.6)

But since the basis vectors in S′ are orthonormal

ê′i · ê′j = δij ⇒
dê′i
dt

· ê′j = −ê′i ·
dê′j
dt

⇒ aij = −aji, ∀ i, j ∈ {1, 2, 3}. (6.2.7)

This means that the matrix aij is antisymmetric, and therefore has only 3 independent
components (as opposed to nine for a general real 3× 3 matrix). We could write it as

â =


0 a12 a13

−a12 0 a23

−a13 −a23 0

 (6.2.8)

Define the vector ω⃗ with components

[ω⃗]i =
1

2
ϵijkajk (6.2.9)

in the S′ basis. Inverting this definition for aij , we find

ϵlmiωi =
1

2
ϵlmiϵijkajk =

1

2
(δljδmk − δlkδmj)ajk = alm, (6.2.10)

where we use the fact that â is antisymmetric, or

alm = ϵlmkωk. (6.2.11)

Then
dê′i
dt

= aij ê
′
j = ϵijkωkê

′
j = ω⃗ × ê′i (6.2.12)

The last step is not obvious, but it is straightforward to prove as follows: using the fact
that the nth component of ê′i is δin in the rotating basis, the right hand side is

ω⃗ × ê′i = (ϵjknωkδin) ê
′
j = ϵijkωkê

′
j . (6.2.13)

It follows that (6.2.5) can be written in the form

dA⃗

dt
=
d′A⃗

dt
+ ω⃗ × A⃗ (6.2.14)
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or, viewed as an operator, the derivative transforms from one frame to the other as

d

dt
. . . =

[
d′

dt
+ ω ×

]
. . . . (6.2.15)

This general result is valid for any vector A⃗1 and in particular for the position vector of a
particle, i.e.,

dr⃗

dt
=
d′r⃗

dt
+ ω⃗ × r⃗ (6.2.16)

If we take another derivative, to obtain the acceleration in the S frame,

d2r⃗

dt2
=

d

dt

[
d′r⃗

dt
+ ω⃗ × r⃗

]
=

d′

dt

[
d′r⃗

dt
+ ω⃗ × r⃗

]
+ ω ×

[
d′r⃗

dt
+ ω⃗ × r⃗

]
(6.2.17)

we find
d2r⃗

dt2
=
d′2r⃗

dt2
+ 2ω⃗ × d′r⃗

dt
+ ω⃗ × (ω⃗ × r⃗) +

d′ω⃗

dt
× r⃗ (6.2.18)

This is called Coriolis’ theorem. All the time derivatives on the right are relative to the
rotating observer. This means that if the particle with position vector r⃗ is subject to a
force F⃗ as measured in S, then Newton’s second law reads

m
d2r⃗

dt2
= F⃗ (6.2.19)

or, written in the rotating frame,

d′2r⃗

dt2
+ 2ω⃗ × d′r⃗

dt
+ ω⃗ × (ω⃗ × r⃗) +

d′ω⃗

dt
× r⃗ =

F⃗

m
. (6.2.20)

It follows, according to (6.1.3), that we must associate

f⃗ = −m
[
2ω⃗ × d′r⃗

dt
+ ω⃗ × (ω⃗ × r⃗) +

d′ω⃗

dt
× r⃗

]
(6.2.21)

with the fictitious force that appears to act on the particle when it is described in the
non-inertial frame S′. The first term is called the Corriolis force. The second is the
centrifugal force and the last term, which turns out to have no particular name, is

1Notice that
dω⃗

dt
=
d′ω⃗

dt

since ω⃗ × ω⃗ = 0.
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relevant only if the angular velocity of S′ is changing in time. This is because, as we argue
below, ω⃗ is the instantaneous angular velocity of S′ relative to S.

Although ω⃗ was introduced in somewhat of an ad hoc manner in the previous section,
it can easily be assigned a physical significance. To do so, we must first show that it
possesses the transformation properties under rigid rotations that would make it a vector.
But this is obvious because from (6.2.6) it follows that aij transforms as two copies of a
vector (i.e., is a rank two tensor),

a′ij = R̂ilR̂jmalm (6.2.22)

and, because the Levi-Civita symbol is a rank three tensor, (6.2.9) ensures that ω⃗ trans-
forms as a vector. It is even easier to see that ω⃗ is the angular velocity of the frame S′.
Let A⃗ be any one of the basis vectors in the S′ frame. Since the basis vectors ê′i are not
moving relative to the S′ observer, d′ê′i/dt = 0. We then have

dê′i
dt

= ω⃗ × ê′i, (6.2.23)

which is precisely the equation for a vector that is rotating with an angular velocity ω⃗.

6.3 Motion near the surface of the earth.

For an observer fixed relative to the surface of the rotating earth, it is natural to apply not
Newton’s second law, but Corriolis’ theorem in describing the motion of a body. Thus,
the effective equations of motion take into account the fictitious forces that must be added
to compensate for her(is) rotation,

d′2r⃗

dt2
+ 2ω⃗ × d′r⃗

dt
+ ω⃗ × (ω⃗ × r⃗) +

d′ω⃗

dt
× r⃗ =

F⃗

m
+ g⃗ (6.3.1)

where we have restricted our attention to bodies moving close to the surface of the earth
(at heights that are small compared to the earth’s radius) and F⃗ now incorporates all
forces apart from the gravitational pull of the earth on the body.

6.3.1 Deflection of a freely falling particle

Examine the diagram in figure (6.2). For an observer at some latitude λ we erect a right
handed, rotatings coordinate system as follows: the ẑ axis points “up” along the outward
radius from the center of the earth, the x̂ axis points along the observer’s longitude toward
the south and the ŷ axis is directed east. We have seen that the vector ω⃗ is actually the
angular velocity about the north-south axis. Now the magnitude of ω⃗ is exceedingly small:

|ω⃗| = 2π

365.25× 24× 3600
≈ 7.27× 10−7 rads/s (6.3.2)
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Figure 6.2: The earth as a rotating frame

so we may neglect effects on the order of |ω|2 and, in particular, the centrifugal term. In
terms of λ

ω⃗ = ω(− cosλ, 0, sinλ) (6.3.3)

and we let the instantaneous velocity of a body as measured in this rotating frame be

v⃗′ =
d′r⃗

dt
= (ẋ, ẏ, ż). (6.3.4)

(the overdot now refers to the derivative in the rotating frame). It follows that the Corriolis
term is proportional to ω⃗× v⃗′ = ω(−ẏ sinλ, ẋ sinλ+ ż cosλ,−ẏ cosλ). Consider no forces
but gravity acting on the body and take gravity’s acceleration to be a constant vector,
g⃗ = (0, 0,−g). Let us henceforth drop the primes. Because all unprimed derivatives have
been eliminated, no ambiguity arises. Putting all this together, Corriolis’ theorem reads,

mẍ = 2mωẏ sinλ

mÿ = −2mω[ẋ sinλ+ ż cosλ]

mz̈ = −mg + 2mωẏ cosλ (6.3.5)

If the initial velocity has no component in the east-west or north-south direction then
evidently both ẋ and ẏ will be of order ω. This means that we can approximate the
equations above by

mẍ ≈ 0
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mÿ ≈ −2mωż cosλ

mz̈ ≈ −mg (6.3.6)

to be consistent with our neglect of terms that are second order in ω, such as the centrifugal
term. This system of equations is easy to solve: the last equation says that

z(t) = z0 −
1

2
gt2 (6.3.7)

assuming that ż0 = 0. Inserted into the second equation this gives

y = y0 +
1

3
ωgt3 cosλ (6.3.8)

and, evidently, x = x0. Notice that there is deflection of the falling body along the easterly
direction,2 of magnitude

∆y =
1

3
ωgt3 cosλ (6.3.9)

The deflection is maximum at the equator and vanishes at the pole, in agreement with
what one would naturally expect. If the body falls through a height h then

t =

√
2h

g
⇒ ∆y =

1

3
ω cosλ

√
8h3

g
(6.3.10)

The result does not depend on the mass of the body because the forces causing the
deflection are fictitious.

6.3.2 Motion of a projectile

Take a projectile that is fired from the origin in the easterly direction and making an angle
of α with the y−axis, so that the initial conditions read:

r⃗0 = 0, v⃗0 = v0(0, cosα, sinα) (6.3.11)

Because v0x = 0, ẋ will always be of order ω and because ÿ is driven by an omega dependent
force, changes to ẏ will be of order ω, that is, ẏ = v0 cosα +O(ω). Thus, up to the first
order in ω our equations in (6.3.5) read

mẍ ≈ 2mωv0 cosα sinλ

2Problem: Erect a suitable right handed coordinate system in the southern hemisphere and show that
a deflection of the same magnitude occurs in the westerly direction.
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mÿ ≈ −2mωż cosλ

mz̈ = −mg + 2mωv0 cosα cosλ (6.3.12)

The first and last equations are immediately solved:

x(t) ≈ ωv0t
2 cosα sinλ

z(t) ≈ v0t sinα+

(
−1

2
g + ωv0 cosα cosλ

)
t2 (6.3.13)

Up to the first order, only the first term in ż(t) is relevant in the equation for ÿ. The
second term would contribute to O(ω2). Therefore

ÿ ≈ −2ω cosλ(v0 sinα− gt) (6.3.14)

which gives

ẏ(t) = v0 cosα− 2ω

(
v0t sinα− 1

2
gt2
)
cosλ

y(t) = v0 cosαt− ω

(
v0t

2 sinα− 1

3
gt3
)
cosλ (6.3.15)

Now the deflection is southerly and given as a function of time by (6.3.13). To find the
total deflection we require the time taken by the projectile to strike the earth, which is
the non-vanishing solution of z(t) = 0,

t =
2v0 sinα

g − 2ωv0 cosα cosλ
≈ 2v0 sinα

g

[
1 +

2ωv0
g

cosα cosλ+ . . .

]
(6.3.16)

The total deflection, to order ω is then

∆x =
4ωv30
g2

sinλ cosα sin2 α (6.3.17)

It is vanishing for a projectile fired along the equator.
If the projectile is fired in the southerly direction and making an angle of α with the

x− axis, our initial conditions would read

r⃗0 = 0, v⃗0 = v0(cosα, 0, sinα) (6.3.18)

Applying the same arguments as in the previous example, Corriolis’ theorem approximated
up to the first order in ω gives

ẍ = 0
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ÿ = −2ω[ẋ sinλ+ ż cosλ]

z̈ = −g (6.3.19)

With our initial conditions,

x(t) = v0t cosα, z(t) = v0t sinα− 1

2
gt2 (6.3.20)

and

ÿ = −2ω[v0 cosα sinλ+ (v0 sinα− gt) cosλ] (6.3.21)

Integrating this equation, subject to the initial conditions we find

ẏ(t) = −2ω

[
v0t sin(α+ λ)− 1

2
gt2 cosλ

]
(6.3.22)

and

y(t) = −ω
[
v0t

2(sin(α+ λ)− 1

3
gt3 cosλ

]
(6.3.23)

When the time for the projectile to strike the earth,

t =
2v0 sinα

g
, (6.3.24)

is substituted into the expression for y(t) gives the total deflection as

∆y = −4ωv30
3g2

sin2 α (sinα cosλ+ 3 cosα sinλ) . (6.3.25)

It is in the westerly direction.3 Notice that the tendency is to rotate the plane of the
projectile in a clockwise direction in the northern hemisphere and in a counterclockwise
direction in the southern hemisphere.

This has an interesting consequence for hurricanes and tornadoes, as illustrated in
figure (6.3). When they form, regions of high pressure surround a region of low pressure.
As a result of the pressure differential, there is a radial flow of air mass into the region of
low pressure. The clockwise deflection of the trajectories by the Corriolis force leads to a
counter-clockwise rotation of the air mass about the center of the hurricane (or tornado)
as shown in the figure.

3Problem: Examine the projectile in the southern hemisphere, with similar initial conditions.
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Figure 6.3: The rotation of hurricanes and cyclones in the northern hemisphere.

6.3.3 The Foucault Pendulum

Because of the Coriolis force, the plane of oscillation of a simple pendulum will precess or
rotate so that the pendulum actually sweeps out a cone. This is the Foucault pendulum,
named after the french physicist Leon Foucault who used it to demonstrate the rotation
of the earth and the Corolis effect. The Foucault pendulum was first demonstrated to the
public in 1851, but it is known that the Italian physicist Vicenzo Viviani had experimented
with a very similar device as early as 1661. The Foucault pendulum, however, was the
first dynamical proof of the earth’s rotation.

It is not difficult for us now to see how this comes to be. As before, we apply Corriolis’
theorem up to the first order in ω [see figure (6.4)]. Take the origin to be the equilbrium
of the oscillation. The external force is just

F⃗ = mg⃗ + T⃗ (6.3.26)

where g⃗ = (0, 0,−g) and T⃗ = (Tx, Ty, Tz) is the tension in the string. If the angle, η
made with the vertical is small, then Tz = T cos η = mg ≈ T and therefore,

Tx ≈ −T sin η cosφ = −T
(
l′

l

)(x
l′

)
= −T x

l

Ty ≈ −T sin η sinφ = −T
(
l′

l

)(y
l′

)
= −T y

l
(6.3.27)

[see figure (6.5]. We take ż ≈ 0, assuming small oscillations, so that Corriolis’ equations
read

mẍ = 2mωẏ sinλ− T
x

l
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Figure 6.4: The Foucault Pendulum
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Figure 6.5: The Foucault Pendulum: components of the tension
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mÿ = −2mωẋ sinλ− T
y

l

mz̈ = 2mωẏ cosλ−mg + T (6.3.28)

It is convenient to define the variable u = x+ iy and write the first two equations as the
following complex equation in u

mü = −2imωu̇ sinλ− T
u

l
(6.3.29)

which can be written in the form of the linear equation

mü+ iβu+ α2u = 0 (6.3.30)

where β = 2mω sinλ and α2 = T/l. The roots of the auxiliary equation are

λ± = − i

2m

[
β ±

√
β2 + 4mα2

]
(6.3.31)

Define the quantities ω0 = α/
√
m =

√
T/ml ≈

√
g/l, which is independent of the earth’s

rotation, and γ = β/2m = ω sinλ, which vanishes if ω = 0. The general solution is of the
form

u(t) = e−iγt
[
Aei

√
ω2
0+γ

2
+Be−i

√
ω2
0+γ

2
]

(6.3.32)

To understand it, imagine for a moment that the earth does not rotate, i.e., that ω = 0,
then our solution reads

u0(t) = Aeiω0t +Be−iω0t (6.3.33)

which represents a simple oscillation of frequency ω0. But, when γ is small (we are
interested only in terms up to the first order in ω), we can neglect the γ2 occurring inside
the radicals in (6.3.32) so that

u(t) ≈ e−iγtu0(t). (6.3.34)

Recalling that u(t) = x(t) + iy(t), this can be put into the suggestive formx(t)
y(t)

 ≈

 cos γt sin γt

− sin γt cos γt

 x0(t)
y0(t)

 , (6.3.35)

showing that the plane of the simple oscillations that would occur in the absence of the
earth’s rotation is subject to a time dependent rotation at constant angular velocity γ =
ω sinλ.



Chapter 7

Rigid Bodies

A rigid body is defined as a system of particles for which the relative distance between
any two particles is constant. There are, of course, no truly rigid bodies in nature because
being rigid implies that the body cannot admit any deformations whatsoever, and we
know of no such system of particles: every body may be deformed, at least minimally, by
the application of external forces. The existence of purely rigid bodies is also prohibited
by special relativity because a truly rigid body would transmit information at an infinite
speed, which contradicts the postulate that no signal can travel faster than the speed of
light.

How many degrees of freedom would a rigid body possess? Consider any one particle
in the rigid body. To locate this particle relative to any coordinate system requires three
coordinates (or one position vector). Now consider a second particle within the body:
because its distance from the first is fixed it must lie on the surface of a sphere of a fixed
radius from the first, so we now require only two coordinates to locate this particle. A
third particle is at fixed distances from the first and the second particles, so it lies on the
curve of intersection of two spheres centered about them. This calls for just one additional
coordinate to locate its position. Once the positions of the first three particles are fixed
the positions of the remaining particles are completely determined in terms of them by the
constraints, therefore a rigid body in three dimensions possesses six degrees of freedom.1

Solids admit strong interactions between their elementary constituents that do a pretty
good job of resisting deformation and “rigidity” entails taking those inter-molecular inter-
actions resisting deformations to be effectively infinite or, more realistically, much larger
than the external applied forces. Our objective in this chapter is to describe the motion
in three dimensions of a system of particles that is effectively rigid.

1Problem: Repeat this argument to show that in D dimensions a rigid body will have D(D+1)
2

degrees
of freedom.

159
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Figure 7.1: A rigid body rotating about an arbitrary axis

7.1 Equations of motion

In keeping with our definition of what constitutes a rigid body, let’s consider a system
of particles whose separations are fixed, i.e., |r⃗α − r⃗β| is constant for any two particles,
labeled α and β. (We will use greek letters to designate the particles of the body so as
to avoid confusion with the components of vectors, for which we use the roman alphabet
as usual.) If the body rotates, its rigidity forces all the particles to move with the same
angular velocity. This simple observation makes it convenient to separate the motion of
the body into a rotational piece and translational one. Let S be an inertial frame which we
assume is attached to the laboratory and will henceforth refer to as the laboratory frame.
Let S′ be a frame whose orgin is fixed to the body, but which is not rotating relative to
S. Thus, in S′, the velocity of the particle labeled α is

v⃗′α = ω⃗ × r⃗′α (7.1.1)

Notice that ω⃗ is the same for all particles because the system is rigid. After all, if ω⃗α ̸= ω⃗β
for two particles α and β then the distance between α and β would change which would
violate our condition that tha body is rigid. Now, if the frame S′ has a velocity v⃗ relative
to S then the velocity of the αth particle in the laboratory system will be

v⃗α = v⃗ + ω⃗ × r⃗′α (7.1.2)
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The total momentum of the system is therefore

P⃗ =
∑
α

mαv⃗α =Mv⃗ + ω⃗ ×
∑
α

mαr⃗
′
α (7.1.3)

where M =
∑

αmα is the total mass of the body and

dP⃗

dt
=M

dv⃗

dt
+
∑
α

mα
d

dt
(ω⃗ × r⃗′α) = F⃗ ext. (7.1.4)

If the origin of S′ is located at the center of mass then the second term is clearly vanishing
and the equation says that the center of mass moves as a particle of mass equal to the
mass of the body and subject to the total external force to which the body is subjected.
This equation says nothing about the rotation of the body about the center of mass.

From another point of view, imagine yet another frame S′′ whose origin coincides with
that of S′ but which is rotating with the body. Because their origins coincide, the position
of the αth particle in the body with respect to S′′ is just r⃗′α but, with respect to S′′ every
particle is at rest, therefore

d′r⃗′α
dt

= 0 ⇒ dr⃗′α
dt

− ω⃗ × r⃗′α = 0 (7.1.5)

according to (6.2.16). But if r⃗ is the position of S′ relative to the laboratory frame S,
then r⃗α = r⃗ + r⃗′α and

v⃗α = v⃗ +
dr⃗′α
dt

= v⃗ + ω⃗ × r⃗′α (7.1.6)

which is the same, of course, as (7.1.2). This leads to the equations of motion in (7.1.5).

7.2 The Inertia Tensor

The equations of motion in (7.1.5) split naturally into translational and rotational pieces.
So do the kinetic energy and angular momentum as we now see. The kinetic energy of the
body is the sum of kinetic energies of its constituents, so

K =
1

2

∑
α

mαv⃗
2
α =

1

2

∑
α

mα(v⃗ + ω⃗ × r⃗′α)
2 (7.2.1)

Expanding the square,

K =
1

2

[
Mv⃗2 + 2

∑
α

mαv⃗ · (ω⃗ × r⃗′α) +
∑
α

mα(ω⃗ × r⃗′α)
2

]
. (7.2.2)



162 CHAPTER 7. RIGID BODIES

If we take S′ (commonly referred to as the “body system”) to lie at the center of mass of
the rigid body then the second term vanishes because

∑
αmαr⃗

′
α ≡ 0. On the other hand,

(ω⃗ × r⃗′α) · (ω⃗ × r⃗′α) = ϵijkϵipqωjr
′
α,kωpr

′
α,q

= ω⃗2r⃗′2α − (ω⃗ · r⃗′α)2 (7.2.3)

giving

K =
1

2
Mv⃗2cm + Icmij ωiωj (7.2.4)

where

Iij =
∑
α

mα(r⃗
′2
α δij − r⃗′α,ir⃗

′
α,j) (7.2.5)

is called the Inertia Tensor of the rigid body. The Kinetic energy in (7.2.4) breaks up
into a translational piece, which is just the translational kinetic energy of the center of
mass, behaving as a particle having the entire mass of the body, and a rotational piece,
which is the kinetic energy of the rigid body about the center of mass and is determined by
the angular velocity and the inertia tensor. Notice that while the definition of the inertia
tensor is quite generally given by (7.2.5), the simplified expression for the kinetic energy
depends on the fact that the body system has its origin at the center of mass. Therefore,
in that expression, we have labeled the inertia tensor by the superscript “cm” (for ‘center
of mass”). That the inertia tensor is a rank two, symmetric tensor is clear by inspection.

The angular momentum of the rigid body can also be written in terms of the inertia
tensor. Thus,

L⃗ =
∑
α

r⃗α × p⃗α =
∑
α

mα(r⃗ + r⃗′α)× (v⃗ + ω⃗ × r⃗′α) (7.2.6)

Again, if the origin of S′ is located at the center of mass, we could neglect all terms
in which a sum of the form

∑
αmαr⃗

′
α appears, because this sum vanishes identically by

definition. It follows that the expression for the angular momentum on the right hand
side expands into

L⃗ =Mr⃗cm × v⃗cm +
∑
α

mαr⃗
′
α × (ω⃗ × r⃗′α) (7.2.7)

or, in components,

Li = [r⃗cm × P⃗ ]i + Icmij ωj (7.2.8)

which is naturally interpreted as the angular momentum of the center of mass about S
plus the angular momentum of the body around the center of mass. Once again, the latter
is determined by the inertia tensor.
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7.3 Computing the Inertia Tensor: examples

In the continuum limit, when the average separation between the constituents is compa-
rable to their size one can turn the sum into an integral by imagining the constituents as
infinitesimal elements of mass dm(r⃗). In this case,

Iij =

∫
Vol

dm(r⃗)(r⃗2δij − r⃗ir⃗j) (7.3.1)

where the integral is over the volume of the solid. This can be made more explicit, if the
material is characterized by a density ρ(r⃗). Then

Iij =

∫
Vol

d3r⃗ ρ(r⃗)(r⃗2δij − r⃗ir⃗j) (7.3.2)

The diagonal elements of Iij are called the moments of inertia about the respective
axes.2 The off-diagonal elements are the products of inertia. We evaluate this integral
in two cases.

7.3.1 Homogeneous sphere

Let us begin with the simple example of of a homogeneous (ρ = const.) sphere. We wish
to calculate its inertia tensor about the center [see figure (7.2)]. First consider the piece
that is proportional to δij . The integral is best evaluated in spherical coordinates and
gives

4πρ

∫ R

0
r4drδij =

4

5
πρR5δij (7.3.3)

For the other piece, we’ll need to calculate each component separately. There are only six
independent ones to compute because of the symmetry, viz., I ′11, I

′
12, I

′
13, I

′
22, I

′
23 and I ′33.

2When the rotational motion can be reduced to two dimensional motion as, for example, during rigid
rotations, all particles move in planes perpendicular to a fixed axis of rotation whose direction is, say, û,
the moment of inertia about this axis is defined simply as the scalar I(û) =

∑
αmαr⃗

′2
α , where r⃗′α represents

the perpendicular displacement from the axis. This definition arises by projecting the inertia tensor in
(7.2.5) along the (rigid) axis: I(û) = Iijuiuj . Taking the angular velocity about the axis to point along it,
i.e., taking ω⃗ = ωû, the kinetic energy becomes

K =
1

2
Iijωiωj =

1

2
(Iijuiuj)ω

2 =
1

2
I(û)ω2

and the angular momentum about the axis is defined as

L
(û)
i = (L⃗ · û)ui = (Ijkujωk)ui = (Ijkujuk)ωui = I(û)ωi.

This simplification, however, is useful only for motions which are effectively two dimensional.
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x

y

z

Figure 7.2: Inertia tensor of a sphere about its center

Thus, using x = r sin θ cosφ, y = r sin θ sinφ and z = r cos θ, we get

I ′11 = ρ

∫
d3r⃗x2 = ρ

∫ 2π

0
dφ cos2 φ

∫ π

0
dθ sin3 θ

∫ R

0
drr4 =

4

15
πρR5

I ′22 = ρ

∫
d3r⃗y2 = ρ

∫ 2π

0
dφ sin2 φ

∫ π

0
dθ sin3 θ

∫ R

0
drr4 =

4

15
πρR5

I33 = ρ

∫
d3r⃗z2 = ρ

∫ 2π

0
dφ

∫ π

0
dθ sin θ cos2 θ

∫ R

0
drr4 =

4

15
πρR5 (7.3.4)

and find that all the products of inertia are vanishing. The result is that the inertia tensor
is diagonal,

Iij =
8

15
πρR5δij =

2

5
MR2δij , (7.3.5)

where M = (4πR3/3)ρ is the mass of the sphere. The inertia tensor turned out diagonal
because of the rotational symmetry of the sphere. Let us evaluate the moment of inertia
of an object that has manifestly no rotational symmetry.

7.3.2 Homogeneous cube

We will calculate the inertia tensor for the uniform cube, about one of its corners. To be
specific we select the corner shown in figure (7.3). Once again, calculating the diagonal
term is straightforward if we use Cartesian coordinates:

ρ

∫ L

0
dxdydz(x2 + y2 + z2)δij =

ρ

3

[
x3yz + xy3z + xyz3

]L
0
δij = ρL5δij (7.3.6)
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Figure 7.3: Inertia tensor of a cube about one corner

On the other hand,

I ′ij = ρ

∫ L

0

∏
k

dxk(xixj) =


ρ
4L

5, ∀ i ̸= j

ρ
3L

5, i = j
(7.3.7)

Thus, using M = ρL3, we find

I =M


2
3L

2 −1
4L

2 −1
4L

2

−1
4L

2 2
3L

2 −1
4L

2

−1
4L

2 −1
4L

2 2
3L

2

 (7.3.8)

The fact that all the moments of inertia are the same reflects the fact that rotations about
the x, y and z axes are all equivalent. This is due to the rectangular symmetry. The
existence of non-vanishing products of inertia, on the other hand, indicates that the none
of the three Cartesian axes is an “axis of symmetry” of the cube (i.e., the mass is not
distributed evenly about the axes).

The question that arises is whether it is possible to find the axes of symmetry, defined
as the axes for which all the products of inertia vanish. One can imagine that rotations
about symmetry axes are much simpler to analyze because if I is diagonal it can be written
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in the form I = Iiδij (no sum) and then the kinetic energy reduces to

K =
1

2
Iijωiωj =

1

2

∑
i

Iiω
2
i (7.3.9)

and
Li = Iijωj = Iiωi (7.3.10)

We see that the purely mathematical problem of diagonalizing a symmetric matrix is
actually in this case the physical problem of determining the axes of symmetry of the
body.

The “axes of symmetry” are just the eigenvectors of the inertia tensor. The eigenvalues
are called the “principal moments of inertia” and the eigenvectors are called the “principal
axes”. In many systems of high symmetry, the principal axes are determined by inspection.
For the cube they are not so evident, so let us determine the principal axes, passing through
the origin. We must diagonalize the matrix

Î =


2
3α −1

4α −1
4α

−1
4α

2
3α −1

4α

−1
4α −1

4α
2
3α

 , α =ML2 (7.3.11)

The secular equation, |Î − λ1| = 0 is(
2

3
α− λ

)2

− α3

32
− 3

16
α2

(
2

3
α− λ

)
= 0 (7.3.12)

and one can easily check that the eigenvalues are

λ =

{
1

6
α,

11

12
α

}
(7.3.13)

where the second is degenerate. The diagonalized inertia tensor is then

ÎD =


1
6α 0 0

0 11
12α 0

0 0 11
12α

 (7.3.14)

To find the principal axes (the eigenvectors), we use the eigenvalue equation (v̂n =
(un, vn, wn))

Î v̂n = λnv̂n (7.3.15)
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which gives

2α

3
un −

α

4
vn −

α

4
wn = λnun

−α
4
un +

2α

3
vn −

α

4
wn = λnvn

−α
4
un −

α

4
vn +

2α

3
wn = λnwn (7.3.16)

For λn = α/6 we find

v̂α/6 =
1√
3

11
1

 (7.3.17)

For the degenerate eigenvalue, 11α/12, the principal axes lie in the plane

u+ v + w = 0, (7.3.18)

passing through the origin with normal given precisely by v̂α/6. Thus 11α/12 is the
moment of inertia of a cube rotating about any axis passing through the origin and in the
plane perpendicular to v̂α/6. It should be obvious that the principal axes for the cube are
obtainable by a rotation of the original axes. We now prove that this is true in general:
the inertia tensor may always be diagonalized by a rotation of the original system.

Consider a rotation of the original coordinate system so that

r⃗α → r⃗′α = R̂r⃗α (7.3.19)

Because Î is a second rank tensor, under the rotation above it transforms as

Iij → I ′ij =
∑
lm

RilRjmIlm (7.3.20)

or

Î = R̂ I R̂T . (7.3.21)

Now what condition must be satisfied so that I ′ij is diagonal? We should have

I ′iδij =
∑
lm

RilRjmIlm ⇒
∑
j

I ′iδijR
T
nj =

∑
jlm

RilR
T
njRjmIlm (7.3.22)

So we see that

I ′iR
T
ni =

∑
lm

RilδnmIlm =
∑
l

RilIln (7.3.23)



168 CHAPTER 7. RIGID BODIES

and therefore ∑
l

Ril(Iln − I ′iδln) = 0 (7.3.24)

which is possible if and only if the secular equation |Î − Ii1| = 0 holds because |R̂| = 1.
This is the eigenvalue condition which yields the principal moments of inertia. Therefore
the principal axes are determined by a rotation of the original system.

Let us return to the example of the cube and find the rotation matrix that takes the
x− axis to the diagonal principal axis of the cube. We will see that it diagonalizes the
inertia tensor obtained before. We want to take the unit vector x̂ = (1, 0, 0) to the unit
vector

x̂′ =
1√
3
(1, 1, 1)

and for the ŷ′ and ẑ′ axes we choose any axes in the plane perpendicular to x̂′. For
instance, choose

ŷ′ =
1√
2
(−1, 1, 0) (7.3.25)

and

ẑ′ = x̂′ × ŷ′ =
1√
6
(−1,−1, 2) (7.3.26)

Recalling that the basis vectors transform as

Rikêk = ê′i (7.3.27)

we can take an inner product of both sides with êj to get

Rikêk · êj = Rikδkj = Rij = ê′i · êj (7.3.28)

which gives

R̂ =


1√
3

1√
3

1√
3

− 1√
2

1√
2

0

− 1√
6

− 1√
6

2√
6

 (7.3.29)

and it is easy to check that

ÎD = R̂ Î R̂T =


α
6 0 0

0 11
12α 0

0 0 11
12α

 (7.3.30)

as expected.
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7.4 The parallel axis theorem

Although it is convenient to consider a body system with its origin at the center of mass
because of the simplification in the expressions for the angular momentum and kinetic
energy that ensue, it is necessary also to consider body systems that do not have their
origins at the center of mass. How does the inertia tensor behave under translations?
Consider a translation of the origin by ξ⃗, then r⃗α → r⃗′α = r⃗α + ξ⃗ and

Iij → I ′ij =
∑
α

mα

[
(r⃗α + ξ⃗)2δij − (r⃗α,i + ξi)(r⃗α,j + ξj)

]
=

∑
α

mα

[
(r⃗2α + ξ⃗2 + 2r⃗α · ξ⃗)δij − (r⃗α,ir⃗α,j + r⃗α,iξj + r⃗α,jξi + ξiξj)

]
(7.4.1)

Collecting terms,
I ′ij = Iij +M(ξ⃗2δij − ξiξj) (7.4.2)

where we have made use of the fact that r⃗α is measured from the center of mass, so∑
αmαr⃗α = 0 and therefore Iij represents the inertia tensor about the center of mass.

This is “Steiner’s parallel axis theorem”, which can also be stated as follows:

Steiner’s parallel axis theorem: The inertia tensor about any body system is the sum of
the inertia tensor about the center of mass and the inertia tensor of the center of mass
about the new body system.3

7.5 Dynamics

Let us return to the dynamics of the rigid body. We have seen that the kinetic energy
and angular momentum have relatively simple expressions in terms of the inertia tensor
and in particular if the body system is taken with its origin at the center of mass. Yet,
how is the position of the body described? It is utterly redundant to specify the positions
of all the particles making up the body because their relative positions are constrained.
In fact, the body being rigid, the position vectors of any two distinct points on the body
determine completely the position vectors of all the other points on it, therefore only six
coordinates are required to describe a rigid body! Three of those coordinates may be
thought of as determining the position of the center of mass and the remaining three as
determining the orientation of the body in space. The coordinates of the center of mass

3For rigid rotations, the parallel axis theorem takes the more familiar form:

I ′(û) = I ′ijuiuj = Iijuiuj +Mh2
⊥ = I(û)cm +Mh2

⊥

where h⊥ represents the perpendicular distance of the axis from the center of mass.



170 CHAPTER 7. RIGID BODIES

are straightforward to give. To specify the orientation of the body we consider a system
chosen arbitrarily but fixed rigidly to the body so that it rotates with the body relative
to the center of mass system. The orientation of the body is then the orientation of the
attached system relative to the center of mass system (not rotating). The orientation is
specified by the time dependent parameters of a rotation matrix,

R̂ = R̂(θ1(t), θ2(t), θ3(t)) (7.5.1)

Thus our configuration space is coordinatized by (r⃗cm, θ1, θ2, θ3). If r⃗α represents the
position of a particle in the center of mass system,

dr⃗α
dt

= ω⃗ × r⃗α. (7.5.2)

Since the change is a pure rotation,

δr⃗α,i = −δRik(t)r⃗α,k (7.5.3)

it follows that
dr⃗α
dt

= −dRik
dt

r⃗α,k (7.5.4)

But, again, infinitesimally,
δRik = δθj(Ĵj)ik (7.5.5)

where Ĵj is a generator of the rotation group, [Ĵj ]ik = ϵjik, where ϵijk is the Levi-Civita
tensor. Therefore

δRik = −δθjϵijk ⇒
dRik
dt

= −ϵijk
dθj
dt

(7.5.6)

This gives
dr⃗α
dt

= ϵijk
dθj
dt
r⃗α,k (7.5.7)

Comparing with (7.5.2) we see that

ωi = dθi/dt, (7.5.8)

which defines each component of the angular velocity as the rate of change of the rotation
angle about the corresponding center of mass axis.

Simple counting should indicate that the three equations of motion in (7.1.4) are not
sufficient to describe the motion of the rigid body. Three more equations of motion are
required because there are six independent coordinates in all and these are the “torque”
equations, so let us consider the angular momentum of the body. Using (7.2.6)

dL⃗

dt
=
∑
α

r⃗α × F⃗α = τ⃗ ext (7.5.9)
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from which we get

dL⃗

dt
= r⃗cm × F⃗ ext + Îcm

dω⃗

dt
= τ⃗ ext (7.5.10)

or

Îcm
dω⃗

dt
= τ⃗

′ext (7.5.11)

where τ⃗
′ext represents the torque about the center of mass. These equations, together with

(7.1.4) constitute a complete description of the motion of a rigid body.4

Finally, let us rewrite the torque equation in terms of the time derivative appropriate
to a body frame that is rotating with the body. Using (6.2.16) we find

Iij
d′ωj
dt

+ ϵijkωjIkrωr = τ⃗
′ext
i , (7.5.12)

but we can put this in a more elegant form by multiplying both sides by ϵilm and summing
over i,

ϵilm

[
Iij
d′ωj
dt

+ ϵijkωjIkrωr

]
= ϵilmτ⃗

′ext
i (7.5.13)

Now if the axes coincide with the principal axes, then Iij = Iiδij and

ϵilmIi
d′ωi
dt

+ (δljδmk − δlkδjm)ωjIkrωr = ϵilmτ⃗
′ext
i (7.5.14)

or

ϵilmIi
d′ωi
dt

+ ωlImωm − ωmIlωl = ϵilmτ⃗
′ext
i (7.5.15)

and with appropriate renaming of the indices,

(Ii − Ij)ωiωj − ϵijk

(
Ik
d′ωk
dt

− τk

)
= 0. (7.5.16)

These three equations (one for every pair (i, j)) are calledEuler’s equations for rotational
motion. They are just a restatement of the torque equation as we have seen.

Instead of writing the equations of motion in terms of rotations about the the three
Cartesian axes, as we have just done, one could also consider rotations parameterized by
the Euler angles (ϕ, θ, ψ) that were introduced in the first chapter. This is just a change
in variables, of course, and the problem is to find the values of ωi in terms of (ϕ, θ, ψ)

4For rigid rotations,

dL(û)

dt
= û · τ⃗

′ext

completes the system of equations required to describe the motion.
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and (ϕ̇, θ̇, ψ̇). This is easy, for all we need to do is compare the expressions for a rotation
matrix, R̂, in two parameterizations,

R̂ = eψĴ3eθĴ1eϕĴ3 = eθiĴi (7.5.17)

Taking a derivative of R̂ we find in the Euler parameterization

dR̂

dt
= (ψ̇Ĵ3 + θ̇eψĴ3 Ĵ1e

−ψĴ3 + ϕ̇eψĴ3eθĴ1 Ĵ3e
−ψĴ1e−θĴ3)R̂ (7.5.18)

and in the Cartesian parameterization

dR̂

dt
= θ̇iĴiR̂ (7.5.19)

To simplify the expression we obtained for the derivative of R̂ in the Euler parameteriza-
tion, we need to use the Baker-Campbell-Hausdorf formula:

eÂ B̂ e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] + . . . (7.5.20)

Then

eψĴ3 Ĵ1e
−ψĴ3 = Ĵ3 + ψ[Ĵ3, Ĵ1] +

ψ2

2!
[Ĵ3, [Ĵ3, Ĵ1]] + . . .

= Ĵ1 − ψĴ2 −
ψ2

2!
Ĵ1 + . . . (7.5.21)

where we used the algebra of the three dimensional rotation group,

[Ĵi, Ĵj ] = −ϵijkĴk (7.5.22)

Continuing for a few terms we find

eψĴ3 Ĵ1e
−ψĴ3 = cosψĴ1 − sinψĴ2 (7.5.23)

and likewise

eθĴ1 Ĵ3e
−θĴ1 = cos θĴ3 + sin θĴ2

eψĴ3 Ĵ2e
−ψĴ3 = cosψĴ2 + sinψĴ1 (7.5.24)

Putting it all together, we find

θ̇1Ĵ1 + θ̇2Ĵ2 + θ̇3Ĵ3 = ψ̇Ĵ3 + θ̇(cosψĴ1 − sinψĴ2) + ϕ̇(cos θĴ3 + sin θ[cosψĴ2 + sinψĴ1])
(7.5.25)
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so that comparing terms

θ̇1 = ω1 = ϕ̇ sin θ sinψ + θ̇ cosψ

θ̇2 = ω2 = ϕ̇ sin θ cosψ − θ̇ sinψ

θ̇3 = ω3 = ϕ̇ cos θ + ψ̇ (7.5.26)

relates the angular velocity that we have used throughout to the time derivatives of the
Euler angles.



Chapter 8

Mechanical Waves

In physics, a mechanicalwave is a disturbance or deformation of a continuous medium that
propagates through it, transferring energy from one point in the medium to another with
little or (ideally) no mass transport of the medium itself. The energy of the wave consists
in the kinetic and potential energies of the particles of the medium, which are displaced
from their equilibrium positions as the wave propagates through it. A mechanical wave
may be transverse or longitudinal, depending on the direction of the displacement from
equilibrium. For transverse waves the displacement of the particles of the medium occurs
perpendicular to the direction of propagation of the wave itself and for longitudinal waves
the displacement occurs parallel to the direction of the propagation. Classic examples of
the two kinds of waves are waves propagating in a string (transverse) and sound waves
in air (longitudinal). In this chapter we develop the basic theory of waves in continuous
media. Waves, however, will henceforth be a recurring theme, turning up again and again
both as we learn of new symmetries (relativity) and as we we continue to deepen our
understanding of the mathematical methods of mechanics and the physics of continuous
media.

8.1 The Wave Equation

It is best to begin with the simplest example of a wave: a deformation in one dimension,
produced in a string. Imagine an ideal, by which we will mean perfectly elastic, string of
length L that is either fixed at one end (as indicated by the wall in figure 8.1) or free and
held at the other. By a jerk of the hand, one can induce a deformation in the string, which
we know, by common experience, will travel through the string beginning at the hand and
moving toward the fixed end at a constant speed. One also notices that the actual shape
of the deformation in the string does not change as it propagates through the string,
assuming that there is no loss of energy, so let us consider two observers, one stationary
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y

x

v

Wall

Hand

Figure 8.1: A deformation traveling in a string.

with respect to the string (medium) and the other moving with the deformation.
If the string is laid out along the x−axis, the deformation or wave function will be

represented by each observer as some function of (t, x) and (t, x′), i.e.,

y = y(t, x), y′ = y′(t, x′), (8.1.1)

where x′ represents the coordinate of the observer moving with the deformation and x the
coordinate of stationary observer, and we assume that the two origins coincide at t = 0.
However, because the moving observer is stationary relative to the deformation, we expect
that y′ can have no explicit dependence on t, i.e., y′ = y′(x′).

Suppose that the deformation travels through the string with speed v, then Galilean
relativity tells us that

x′ = x∓ vt, y′ = y, (8.1.2)

where the negative sign applies for a wave traveling to the right and the positive applies
for a wave traveling to the left. It follows that

y = y(x− vt), (8.1.3)

so the wave function can depend on space and time only in a very specific combination.
This, in turn, implies that the wave function must satisfy a particular equation, called
the wave equation. Since y could be any function of its argument, the argument must be
dimension free. Therefore it becomes necessary to introduce a constant, k, with dimension
of l−1, and consider instead

yk(t, x) = yk(kx− ωt), (8.1.4)

where ω = kv. The constant k we just introduced, with mechanical dimension l−1, is called
the wave number and the constant ω, whose mechanical dimension is t−1, is the angular
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frequency. The physical significance of k and ω will become clearer as we progress. Of
course if the wave were moving from right to left (instead of from left to right) then the
same arguments would lead to a wave function of the form

yk(t, x) = yk(kx+ ωt). (8.1.5)

It is easy to see, by repeatedly taking derivatives and using the chain rule, that the wave
function must satisfy the so-called wave equation,

∂2y

∂t2
− v2

∂2y

∂x2
= 0, (8.1.6)

in either case. For a physical wave or pulse, this equation must follow directly from
Newton’s laws. Note, however, the equation itself is not invariant under Galilean trans-
formations1 and holds only in the rest frame of the medium. We will show how this comes
about in strings and in fluid media below.

We end this section by pointing out that the equation is linear and this means that any
linear combination (a superposition) of solutions is also a solution of the wave equation.
In particular, a solution may contain waves traveling to the left and to the right,

yk(t, x) = akf(kx− ωt) + bkg(kx+ ωt), (8.1.7)

where ak and bk are constants and more generally, solutions of differing wave numbers
may also be superposed to get

y(t, x) =
∑
k

[akf(kx− ωt) + bkg(kx+ ωt)] . (8.1.8)

Superposition is a powerful tool in the development of solutions of the wave equation.

8.2 The Wave Equation from Dynamics

Let us now demonstrate how the arguments of the previous section, which employed only
kinematical concepts via the Galilean relativity principle, have led in fact to the correct
form of the wave equation. We will do this by obtaining the wave equation from dynamics,
employing Newton’s laws. It will turn out that dynamical considerations will not only
recover the wave equation but also relate the wave velocity to the macroscopic properties
of the medium.

8.2.1 Waves in Strings

Consider first an element of string of unstretched length ∆x and mass per unit length µ
as shown in 8.2. It’s mass is then ∆m = µ∆x. The two tensions acting on either edge of

1Problem: Show that the wave equation is not invariant under Galilean transformations.
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Figure 8.2: An element of string

it have x− and y−components that we now write as∑
Tx = T1 cos θ1 − T2 cos θ2∑
Ty = T1 sin θ1 − T2 sin θ2 (8.2.1)

The string element is able only to vibrate in the vertical direction (this is a transverse
wave) therefore there can be no net force in the x−direction,∑

Tx = T1 cos θ1 − T2 cos θ2 = 0 ⇒ T2 = T1
cos θ1
cos θ2

(8.2.2)

Inserting this into the equation for the y−component of the net tension we find∑
Ty = T1 cos θ1(tan θ1 − tan θ2) = T1 cos θ1

[
∂y

∂x

∣∣∣∣
x+∆x

− ∂y

∂x

∣∣∣∣
x

]
(8.2.3)

using the familiar definition of the tangent function. This is the net force in the y−direction,
so by Newton’s second law,

µ∆x
∂2y

∂t2
= T1 cos θ1

[
∂y

∂x

∣∣∣∣
x+∆x

− ∂y

∂x

∣∣∣∣
x

]
(8.2.4)

Now consider the approximation in which the amplitude of oscillation (of our tiny bit of
string) is not large, so that the angles θ1,2 are small. Then cos θ1,2 ≈ 1 and, from the

∑
Tx
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Dx

Figure 8.3: Sound waves in continuous media

equation, we see that T1 ≈ T2 ≡ T (say). Newton’s second law now reads,

∂2y

∂t2
=
T

µ

[
∂y
∂x

∣∣∣
x+∆x

− ∂y
∂x

∣∣∣
x

]
∆x

(8.2.5)

Take the limit as ∆x→ 0 to get
∂2y

∂t2
=
T

µ

∂2y

∂x2
(8.2.6)

which, when compared to the wave equation, will be recognized as the equation of a wave
propagating with a speed

v =

√
T

µ
(8.2.7)

in the string.

8.2.2 Sound Waves in Media

Consider a cylindrical chamber of cross section A with a driver on the left, which produces
compressions and rarefactions of a medium in the chamber (see figure 8.3), and otherwise
open. Due to the disturbance produced by the driver, layers of the medium oscillate about
their mean (undisturbed) positions. Let the displacement of a layer from its undisturbed
position, say x, be denoted by s(x, t). In the absence of the driver, the displacement of
the element is just s(x, t) ≡ 0. Consider some volume element of the medium and let ∆x
be its thickness, which we will eventually take to zero. Owing to the difference in pressure
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on the sides of the element, the net force in the x−direction experienced by this element
is

Fx = [p(x)− p(x+∆x)]A (8.2.8)

Since the mass of the element is ∆m = ρA∆x, where ρ is the mass density and A∆x = ∆V
is its volume, we have

ρ∆x
∂2s

∂t2
= [p(x)− p(x+∆x)] ⇒ ρ

∂2s

∂t2
= −∂p

∂x
(8.2.9)

It’s worth introducing the so-called Bulk Modulus of the medium (a bulk property, which
will play the role of the tension in the string). It is defined by

B = −V
(
∂p

∂V

)
process

(8.2.10)

where (p, V ) are the pressure and volume of some region. The Bulk modulus of any medium
depends on the process (that is the reason for the subscript in the above equation) and
represents the response of the medium to stress by measuring the rate at which pressure
changes relative to volume. Eq. (8.2.10) means that the change in pressure within the
element that has been compressed by ∆V is given in terms of the bulk modulus by

∆p = −B∆V

V
(8.2.11)

If s(x) represents the displacement from equilibrium of a fluid layer, originally situated at
x, then the change in volume of the element upon stress will be

∆V = A[s(x+∆x)− s(x)] (8.2.12)

The pressure change within the element is

∆p = −B
[
s(x+∆x)− s(x)

∆x

]
(8.2.13)

Taking the limit as ∆x→ 0 gives the change in pressure at any fluid layer in terms of the
spatial rate at which the fluid layer is displaced in the direction of the traveling wave:

∆p(x) = −B ∂s
∂x

(8.2.14)

The actual pressure at any layer is therefore

p(x) = p0 +∆p = p0 −B
∂s

∂x
(8.2.15)
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where p0 represents the unstressed pressure in the medium. Thus,

∂p

∂x
= −B ∂

2s

∂x2
. (8.2.16)

But, dividing (8.2.9) by ∆x and taking the limit as ∆x→ 0, we get

ρ
∂2s

∂t2
= −∂p

∂x
(8.2.17)

and therefore,
∂2s

∂t2
=
B

ρ

∂2s

∂x2
(8.2.18)

which is the wave equation. Comparison shows that the speed of sound is given by

v =

√
B

ρ
(8.2.19)

Let’s see how it works for the propagation of sound in an ideal gas.
Sound traveling through dry air, for example, is essentially an adiabatic process even

though it may seem that the surrounding air would act as a reservoir. The sound wave
causes oscillations in pressure but the oscillations are fast enough that energy cannot be
transferred in the form of heat from compressed regions to rarified regions in such a way
as to keep the temperature constant. For an adiabatic process, the effective equation of
state is

pV γ = const. ⇒
(
∂p

∂V

)
ad

= −γ p
V

⇒ B = γp (8.2.20)

Using p = nkT = ρkT/m, where m is the average molecular mass,

v =

√
γp

ρ
=

√
γkT

m
(8.2.21)

For the (diatomic) “molecule of air” γ = 7/5 and m = 28.8 u. We find v ≈ 347.1 m/s.
For an isothermal propagation on the other hand we should have

B = −V
(
∂p

∂V

)
T

= p→ v =

√
kT

m
(8.2.22)

which is smaller than the result for adiabatic propagation by about 15.5%.
Although the wave equation is given in terms of the displacement, s, of layers of the

medium, we can give it in terms of the pressure in the medium. For example, a sinusoidal
wave

s(x, t) = smax sin(kx− ωt), (8.2.23)
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using (8.2.15), gives
∆p = −Bksmax cos(kx− ωt) (8.2.24)

Substituting B = ρv2 and kv = ω gives

∆p = −ρvωsmax cos(kx− ωt) (8.2.25)

Notice that it is 90◦ out of phase with the displacement.2 Still, the maximum value of the
pressure is related to the maximum of the displacement,

∆pmax = ρvωsmax (8.2.26)

as one expects.

8.3 Energy Transfer

8.3.1 Waves in Strings

The energy contained by a unit length of the string is the sum of its kinetic and its
potential energies. For the kinetic energy we could write (per unit length)

dK

dx
=

1

2
µv2y =

1

2
µ

(
∂y

∂t

)2

(8.3.1)

For the potential energy, we identify the force on a unit length of the string from the right
hand side of the wave equation, i.e.,

F = T
∂2y

∂x2
. (8.3.2)

This force is directed opposite to the displacement (in the y direction) and so the potential
energy (per unit length) is

dU

dx
= −

∫ y

(−F )dy =

∫ y

T
∂2y

∂x2
dy = T

∫ y

y′
∂y′

∂y
dy =

1

2
T

(
∂y

∂x

)2

(8.3.3)

where y′ = ∂y/∂x. The total energy per unit length of the string is therefore

dE

dx
=

1

2
µ

[(
∂y

∂t

)2

+ v2
(
∂y

∂x

)2
]

(8.3.4)

2Problem: Give a qualitative argument for why this makes sense, i.e., what do you expect the particles
of the medium are doing very close to a minimum of the displacement and why would this lead to a
maximum pressure?
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where we used T = µv2. The precise value of this energy per unit length would depend
on the wave-form y(t, x), but it follows that the energy contained between x1 and x2 can
be given by

E =
1

2

∫ x2

x1

dx µ

[(
∂y

∂t

)2

+ v2
(
∂y

∂x

)2
]

(8.3.5)

where y represents the deformation of the string by the wave.

As a simple but useful example consider a right moving, sinusoidal wave given by

y(t, x) = ymax sin(kx− ωt) (8.3.6)

and note that

∂y

∂t
= −ωymax cos(kx− ωt),

∂y

∂x
= kymax cos(kx− ωt) (8.3.7)

then
dE

dx
=

1

2
µy2max(ω

2 + v2k2) cos2(kx− ωt) (8.3.8)

but, because v = ω/k, we find that the energy contained in a segment from x1 to x2 of
the string

E = µω2y2max

∫ x2

x1

cos2(kx− ωt)dx (8.3.9)

In particular, over one entire wavelength,

Eλ = µω2y2max

∫ a+λ

a
cos2

(
2πx

λ
− ωt

)
dx =

1

2
µω2y2maxλ (8.3.10)

where a is any starting point on the string. As the wave propagates, the energy transferred
per second is then

P =
Eλ
τ

=
1

2
µω2y2max

λ

τ
=

1

2
µω2y2maxv (8.3.11)

because τ is the period. Notice that the kinetic and potential energies contribute equally
to the total energy over a wavelength,

Kλ = Uλ =
1

4
µω2y2maxλ (8.3.12)

as they do for the simple harmonic oscillator over one period.
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8.3.2 Sound Waves

The energy contained by a unit volume of the medium is the sum of its kinetic and its
potential energies. For the kinetic energy we could write (per unit volume)

dK

dV
=

1

2
ρv2s =

1

2
ρ

(
∂s

∂t

)2

(8.3.13)

For the potential energy, we identify the force on a unit volume of the medium from the
right hand side of the wave equation, i.e.,

F = B
∂2s

∂x2
. (8.3.14)

This force is directed opposite to the displacement and so the potential energy (per unit
volume) is

dU

dV
= −

∫ s

(−F )ds =
∫ s

B
∂2s

∂x2
ds = B

∫ s

s′
∂s′

∂s
ds =

1

2
B

(
∂s

∂x

)2

(8.3.15)

where s′ = ∂s/∂x as before. The total energy per unit volume is therefore

dE

dV
=

1

2
ρ

[(
∂s

∂t

)2

+ v2
(
∂s

∂x

)2
]
, (8.3.16)

where we used B = ρv2, and gives the energy contained in any volume V of the medium
containing the travelling wave

E =
1

2

∫
V
dV ρ

[(
∂s

∂t

)2

+ v2
(
∂s

∂x

)2
]
. (8.3.17)

The precise value of this energy per unit length would depend on the wave-form s(x, t).
Again consider right-moving sinusoidal waves,

s(x, t) = smax sin(kx− ωt) (8.3.18)

traveling in the positive x−direction, and note that

∂s

∂t
= −ωsmax cos(kx− ωt),

∂s

∂x
= ksmax cos(kx− ωt) (8.3.19)

then
dE

dV
=

1

2
ρs2max(ω

2 + v2k2) cos2(kx− ωt) (8.3.20)
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but, because v = ω/k and because we can write dV = Adx, we find that the energy
contained in a cylindrical region of cross-sectional area A between x1 to x2 of the medium
is

E = (ρA)ω2s2max

∫ x2

x1

cos2(kx− ωt)dx (8.3.21)

(assuming a constant density). In particular, over one entire wavelength we find

Eλ = (ρA)ω2s2max

∫ a+λ

a
cos2

(
2πx

λ
− ωt

)
dx =

1

2
(ρA)ω2s2maxλ (8.3.22)

where a is any starting point. As the wave propagates, the energy transferred per second
through the medium by the sound way is then

P =
Eλ
τ

=
1

2
(ρA)ω2s2max

λ

τ
=

1

2
(ρA)ω2s2maxv (8.3.23)

because τ is the period. As before, the kinetic and potential energies contribute equally
to the total energy over an entire wavelength,

Kλ = Uλ =
1

4
(ρA)ω2s2maxλ. (8.3.24)

8.4 Solutions of the Wave Equation

A direct and standard approach to solving linear partial differential equations of the above
form is to apply the method of “separation of variables”. In applying this method one
assumes that the solution is “separable” i.e., that it can be expressed as

y(t, x) = a(t)b(x) (8.4.1)

and therefore it is important to bear in mind that solutions that do not separate as above,
if they exist, will not be obtained by this method. Inserting the ansatz into the wave
equation gives

d2a(t)

dt2
b(x) = v2a(t)

d2b(x)

dx2
, or

1

a(t)

d2a(t)

dt2
=

v2

b(x)

d2b(x)

dx2
(8.4.2)

where, we have divided by a(t)b(x) to obtain the last form. Now the left hand side of the
equation depends only on t whereas the right hand side depends only on x. They may be
equal to one another only if they are each constant,

1

a(t)

d2a(t)

dt2
=

v2

b(x)

d2b(x)

dx2
= −ω2. (8.4.3)
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We have called the constant −ω2 so that (i) we may have oscillatory solutions, hence the
negative sign, and (ii) the definition of ω in the previous sections is consistent with our
solutions. Thus we have

d2a(t)

dt2
+ ω2a(t) = 0 =

d2b(x)

dx2
+ k2b(x) (8.4.4)

where we have made use of the fact that ω = kv. The solutions are therefore

a(t) = Aeiωt +Be−iωt, b(x) = Ceikx +Be−ikx, (8.4.5)

where A,B,C,D are complex coefficients and hence y(t, x) has four terms

y(t, x) = A++e
i(kx+ωt) +A+−e

i(kx−ωt) +A−+e
−i(kx−ωt) +A−−e

−i(kx+ωt) (8.4.6)

involving eight real degrees of freedom (two per complex coefficient). However, we have
applied no boundary or initial conditions in obtaining these solutions and such conditions
will greatly reduce the number of degrees of freedom. For example, we already know
that the solution must be real (since y(t, x) represents some measurable property such as
a strng’s displacement or the pressure variations in a fluid) and so the coefficients must
satisfy the conditions

A++ = A∗
−− = A<, A+− = A∗

−+ = A> (8.4.7)

where we have used < to indicate left moving waves and > to indicate right movers. The
number of degrees of real freedom have thus been reduced to four and y(t, x) can be written
as

y(t, x) = 2ℜ
[
A<e

i(kx+ωt) +A>e
i(kx−ωt)

]
(8.4.8)

where ℜ stands for “the real part of”. In all our subsequent analysis we will stick with
the complex expression as far as possible and take the real part only when it is absolutely
necessary. This will simplify the algebra considerably, while not affecting the final result
in any way.

Notice that the phase of the left moving piece is ϕ< = kx + ωt and that of the right
moving piece is ϕ> = kx−ωt. The phases are constant when x = ∓ω

k t = ∓vt respectively.
Thus ∓v is called the phase velocity of the plane waves. It is the velocity with which
plane wave fronts travel in space. Holding t fixed (imagine taking a photograph of the
wave), we notice that the wave function repeats itself spatially every λ units, where

kλ = 2nπ (8.4.9)

for integer n. The wave number is therefore related to the wavelength, λ, according to
k = 2π/λ. On the other hand, viewing the same spatial point (i.e., holding x fixed) the
wave function is seen to repeat itself in a time τ , which satisfies

ωτ = 2nπ (8.4.10)
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for integer n and so the angular frequency is related to the period, τ , according to ω =
2π/τ . The frequency of the wave is related to the angular frequency by f = 1/τ = ω/2π.

8.5 Boundary Conditions and Particular Solutions

Wemust now consider what boundary conditions are to be satisfied by the wave. Boundary
conditions are crucial as they are what determine the actual wave forms encountered in any
given physical situation. As examples, we will consider two common types of particular
solutions below.

8.5.1 Standing Waves

A “standing wave” is a solution of the wave equation that is required to possess cer-
tain characteristics at the boundary. In the case of (one dimensional) waves in string,
the boundary would correspond two distinct points on the string; in the case of (one di-
mensional) sound waves, the boundary would correspond to two two-dimensional surfaces
perpendicular the direction of propagation. At each boundary we may require either (i)
that the wave function vanishes there or (ii) that the wave function achieves a maximum
there. Thus three possibilities occur: (a) the wave vanishes at both boundaries (b) it
vanishes at one boundary but is maximum at the other and (c) it is maximum at both
boundaries. Standing waves are formed by musical instruments. Every string instrument,
for example produces a standing wave in accordance with boundary condition (a) because
the strings are held fixed at two ends. On the other hand, wind instruments may be
designed to obey the boundary conditions of types (b) or (c). For instance, a clarinet
has one closed end, where the sound waves are required to vanish, and therefore obeys
condition (b) whereas flutes and oboes have both ends open and the sound waves achieve
their maximum value at both ends, so they obey condition (c).

We will begin with cases (a) and (b). For convenience, choose the point at which the
wave vanishes as the origin of coordinates and the other at a distance L from it, then the
condition

y(t, 0) = A<e
iωt +A∗

<e
−iωt +A>e

−iωt +A∗
>e

iωt = 0 (8.5.1)

implies that

A< = −A∗
> (8.5.2)

and inserting this into the wave equation gives

y(t, x) = 2ℜ
[
A<e

i(kx+ωt) −A∗
<e

i(kx−ωt)
]

(8.5.3)
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Our solution is now given in terms of one complex coefficient (two real degrees of freedom).
Suppose we let the complex coefficient A< = −1

4Ae
iδ where A and δ are real. Then

y(t, x) = −1

2
A ℜ

[
ei(kx+ωt+δ) − ei(kx−ωt−δ)

]
= −1

2
A ℜ

[
eikx

(
ei(ωt+δ) − e−i(ωt+δ)

)]
= −1

2
A ℜ

[
2ieikx sin(ωt+ δ)

]
= A sin(kx) sin(ωt+ δ). (8.5.4)

A is the amplitude of the wave (it is the maximum value of y(t, x)) and δ is the initial
phase. Because the variables (t, x) in y(t, x) do not occur in the combination x± vt, this
wave does not “travel”, i.e., it does not propagate in the medium. That is why it is called
a standing wave.

If the wave function is required to vanish at x = L as well, we see from (8.5.4) that it
is only possible if

sin(kL) = 0 ⇒ kn =
2π

λn
=
nπ

L
(8.5.5)

for some positive integer n. The angular frequency is therefore

ωn = knv =
nπv

L
(8.5.6)

On the other hand, if y(t, x) achieves its maximum at x = L (instead of vanishing there)
then the appropriate condition to apply is y′(t, L) = 0, where the prime refers to a deriva-
tive with respect to x, and

cos(kL) = 0 ⇒ kn =
2π

λn
= (2n− 1)

π

2L
, (8.5.7)

again for a positive integer, n. This gives

ωn = (2n− 1)
πv

2L
(8.5.8)

Naturally, equation (8.5.4) does not represent the only possible wave form. Since
the wave equation is linear we may superpose solutions with arbitrary (ω dependent)
coefficients and phases, so the most general solution is obtained from

y(t, x) =
∑
n

An sin(knx) cos(ωnt+ δn) (8.5.9)
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Figure 8.4: Dirichlet (left) and Neumann (right) conditions on both ends of a string

The lowest allowed frequency, given by n = 1, is called the fundamental frequency and
all allowed higher frequencies are called harmonics of the fundamental frequency. The
fundamental frequency is set both by the length L as well as the properties of the medium,
but the longest allowed wavelength is set only by the length L. Thus, the longest possible
wavelength in a string of length L is λ1 = 2L but for a clarinet of the same length it is
λ1 = 4L.

We must turn now to case (c). The condition y′(0, t) = 0 leads to

A< = A∗
> (8.5.10)

so taking A< = 1
4Ae

iδ (as before) leads to

y(t, x) = A cos kx cos(ωt+ δ) (8.5.11)

and applying the open boundary conditions at x = L as well will yield (8.5.5). Everything
that has been said for case (a) will also hold. In particular the most general waveform can
be obtained by superposition according to

y(t, x) =
∑
n

An cos(knx) cos(ωnt+ δn) (8.5.12)

where the sum is over all harmonics.
The two kinds of conditions we have imposed are, respectively, special cases of the

Dirichlet boundary conditions, for which the wave function is specified at the boundary,
and the Neumann boundary condition, for which the value of the normal derivative of
the wave function is given at the boundary. The unspecified amplitude, A, and initial
phase, δ, would be determined by initial conditions which specify the wave function and
its first time derivative at some (initial) time.

8.5.2 Traveling Wave at an Interface

Consider two strings of different densities attached to one another at (say) x = 0 and sup-
pose that a continuous wave of some frequency, ω, is incident on the joint and moving from
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left to right. Alternatively, consider sound waves passing from a region of some density
to another of a different density across a plane boundary. What stationary solutions of
the wave equation will be differentiable across the boundary? We will see that a portion
of the incident wave is reflected at the boundary and a portion of it is transmitted across
the boundary. The solution we seek will have the form

y(t, x) =


2ℜ
[
A<e

i(kx+ωt) +A>e
i(kx−ωt)] x < 0

2ℜ
[
B>e

i(k′x−ω′t)
]

x > 0

(8.5.13)

i.e., no left moving wave in the region x > 0 is allowed. The phase and amplitude of the
incoming wave are set by the initial conditions, so we do not attempt to find A>. We
are after the amplitude of the reflected and transmitted waves, respectively A< and B>.
If we compare y(t, 0−) with y(t, 0+) we see immediately that the wave function will be
continuous at x = 0 if and only if ω = ω′ and

B> = A> +A∗
<. (8.5.14)

Notice in particular that the frequency remains the same across the boundary but the
wavelength may change. This can only happen because the speed of the wave is different
in the two media and since ω = kv = ω′ = k′v′ it must then follow that k/k′ = v′/v.
Furthermore, for the wave function to be differentiable at x = 0 we require

k(A∗
< −A>) = −k′B> (8.5.15)

and solving the two conditions for the reflection and transmission amplitudes we find

A< =
k − k′

k + k′
A∗
>,

B> =
2kA>
k + k′

. (8.5.16)

The first of (8.5.16) tells us that the phase of A< is equal to the phase of A> if k > k′

(or v′ > v) and differs from it by π if k < k′ (or v > v′). Assuming that the tension,
in the case of the string, or the bulk modulus, in the case of fluid media, is the same on
both sides of the boundary, the speeds of the wave in either region will depend inversely
on the square root of the density in that region. A phase change will occur when µ′ > µ
(ρ′ > ρ) but no phase change will occur when µ′ < µ (ρ′ < ρ). Thus the reflected wave
undergoes a phase change of π when the wave is incident on a boundary with a region of
higher density and no phase change when the boundary leads to a region of lower density.
The second condition says that the phase of the transmitted wave is always the same as
the phase of the incident wave.
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In our simple example of a sinusoidal wave traveling from left to right, we saw that
the energy transferred across the string per second is proportional to µω2vy2max. Thus
the ratio of the power transferred by the reflected wave and the incident wave in the left
portion of the string will be

Pref

Pinc
=

∣∣∣∣A<A>
∣∣∣∣2 = (k − k′

k + k′

)2

= R, (8.5.17)

where we replaced ymax by the amplitudes for the incident and reflected waves respectively.
R is called the reflection coefficient. Likewise, the ratio of the power transmitted by the
outgoing wave in the right portion of the string to the incident wave (in the left) is

Ptr

Pinc
=
µ′v′

µv

∣∣∣∣B>A>
∣∣∣∣2 (8.5.18)

since ω = ω′. Again, because the string tension in both regions must be the same,

µv2 = µ′v′2 ⇒ µ′v′

µv
=
v

v′
=
k′

k
, (8.5.19)

where we used v = ω/k and the fact that ω = ω′ in the last step above. Therefore,

Ptr

Pinc
=

√
µ′

µ

4k2

(k + k′)2
=
k′

k

4k2

(k + k′)2
=

4kk′

(k + k′)2
= T, (8.5.20)

and T is called the transmission coefficient. Note that

R+ T = 1, (8.5.21)

which simply restates the law of conservation of energy.

8.6 The Doppler Effect

The Doppler effect consists of the change in the measured frequency of a source, whenever
the source or the observer or both the source and the observer are moving with respect to
the medium in which the wave travels. Recall that the wave equation is not invariant under
Galilean transformations, having the form (8.1.6) only in the rest frame of the medium.
The medium’s rest frame thus becomes a canonical reference frame, with respect to which
all quantities must be measured.
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Figure 8.5: Doppler effect with moving observer.

l’

v
Source Observer

Figure 8.6: Doppler effect with moving observer.

8.6.1 Stationary Source, Moving Observer

Let us first consider the situation depicted in 8.5 in which the source is stationary with
respect to the medium and the observer is moving either away from or toward it, with a
speed vO relative to it. Consider two successive wave fronts and suppose that the observer
has received the first at some time, t0. If the observer were stationary relative to the
medium the next front would arrive τ seconds later, where τ is the period of the wave.
However, since the observer is moving, the next front must cover a greater or lesser distance
to the observer and therefore takes a longer or shorter time (than τ) to arrive. Thus, while
the wavelength received by the observer is the same as the wavelength in the medium, the
received frequency will differ from its frequency in the medium. Let λ and f represent
respectively the wavelength and frequency of the wave in the medium. Because λf = v
is required for the wave equation, it is only possible to change f while holding λ fixed if
the speed of sound changes in such a way that λf ′ = v′. But, according to the Galilean
principle of relativity, the speed of sound relative to the moving observer is v′ = v ∓ vO,
so

f ′ =
v′

λ
=
v ∓ vO
λ

=
(
1∓ vO

v

)
f, (8.6.1)

where we used λf = v, so the frequency received is lower if the observer is moving away
from the source and higher if he is moving toward it.
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8.6.2 Moving Source, Stationary Observer

If the source is moving with a speed vS relative to the medium, as shown in 8.6, then
neither the frequency of the emitted wave nor its wavelength will end up being those that
would be emitted had the source been stationary with respect to the medium. Yet, in both
cases, the wave would travel at the same speed, v, in the medium. If unprimed quantities
refer to the properties of the wave emitted by a stationary source and primed quantities
to the wave emitted by the moving source we should have λf = v = λ′f ′. It is easy to
compute the change in wavelength if one again thinks in terms of wave fronts. Because the
source has moved in the time between the emission of successive wave fronts the effective
wavelength in the medium will be

λ′ = λ∓ vSτ (8.6.2)

where vS is the source velocity and the negative sign applies to the situation in which
the source is moving in the direction of the wave, the positive sign if it is moving in the
opposite direction. Since the speed of the wave in the medium is v, the observed frequency
becomes

f ′ =
v

λ′
=

v

λ∓ vSτ
=

f

(1∓ vS
v )

(8.6.3)

where we used λf = v. The received frequency is therefore higher if the source is moving
toward the observer and lower if it is moving away.

8.6.3 Generalizations

Both of these results generalize easily to the case in which the observer is moving at some
angle with the direction of the wave. Let û represent the direction in which the wave is
traveling and v⃗O represent the observer’s velocity, then

f ′ =


(
1− v⃗O·û

v

)
f, moving observer

f

(1− v⃗S ·û
v

)
, moving source.

(8.6.4)

Moreover, the two effects can be combined so that if both the source and the observer are
moving relative to the medium with velocities, respectively, v⃗S and v⃗O,

f ′ =
1− v⃗O·û

v

(1− v⃗S ·û
v )

f, (8.6.5)

which is directly recovered by combining the two arguments above.
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8.7 Superposition

In the preceeding examples we superposed waves propagating in a medium with a definite
frequency but traveling in opposite directions. In principle, though, there may be waves of
many different frequencies propagating simultaneously in the medium in either direction.
The superposition principle then tells us that the resulting wave will be the simple sum
of the individual waves and this leads to

y(t, x) = ℜ

[∑
k

A(k)ei(kx−ωt)

]
, (8.7.1)

where the sum is over a discrete set of wave-numbers, A>(k) represents the amplitude
of the waves with wave-number k and ω represents the angular frequency. In this sum,
k is allowed to be negative in order to account for both right and left moving waves
and ω = |k|v. Furthermore, if A(k) is decomposed into a real amplitude and a phase,
A(k) = Ake

iδk , then we can rewrite the sum as

y(t, x) = ℜ

[∑
k

Ake
i(kx−ωt+δk)

]
. (8.7.2)

It is worth considering some examples.

8.7.1 Interference

We have already seen that the solution representing two waves of the same frequency,
amplitude and initial phase, traveling in opposite directions is given by the standing wave

y(t, x) = A sin(kx) cos(ωt+ δ). (8.7.3)

If the two waves were to be traveling in the same direction, somehow arriving at a point
P with differing phases, say δ1 and δ2, then we expect the resulting wave at P to be

y(t, x) = A ℜ
[
ei(kx−ωt+δ1) + ei(kx−ωt+δ2)

]
= A ℜ

{
ei(kx−ωt)

[
eiδ1 + eiδ2

]}
(8.7.4)

Suppose δ represents the mean phase, δ = (δ1+δ2)/2, then introducing the phase difference
∆δ = δ1 − δ2, we have δ1 = δ + (∆δ)/2 and δ2 = δ − (∆δ)/2. Expressed in terms of the
mean phase and the phase difference,

y(t, x) = 2A cos

(
∆δ

2

)
ℜ ei(kx−ωt+δ) (8.7.5)
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Figure 8.7: Superposition of two waves.

represents a plane wave with the same wavelength and frequency, and an initial phase
equal to the mean phase of the two waves, but with an amplitude that depends on the
phase difference. In the extreme, if the phase difference is an odd integer multiple of π
then the waves completely annihilate one another and if it is an integer multiple of 2π
then they enhance one another giving a resulting wave of twice the original amplitude.

The phase difference may be introduced by using two identical sources that are out of
phase with one another. Alternatively, it may be introduced by having the wave traverse
paths of differing lengths before arriving at P . Consider two plane waves of the same
frequency, wavelength and initial phase, traveling along two different paths toward the
same point, P , as shown in figure 8.7. In the figure, S represents a common source for the
waves, ensuring that the frequency, wavelength and initial phase are the same for both
and, for simplicity, we also assume that the amplitudes are the same. The waves may be
produced from the single source by introducing two slits in an opaque screen a distance d
apart. Let x1 and x2 represent the path lengths of I and II respectively. By superposition,
the resulting wave at P at any time t will be

y(t, x) = Aℜ
[
ei(kx1−ωt+δ) + ei(kx2−ωt+δ)

]
= Aℜ

[
eikx1 + eikx2

]
e−i(ωt+δ) (8.7.6)

Suppose x represents the mean path length, x = (x1 + x2)/2 and ∆x = x1 − x2 the path
difference, then we have x1 = x + ∆x/2 and x2 = x − ∆x/2. Inserting this into the
expression for the resultant, we find

y(t, x) = 2A cos

(
k∆x

2

)
ℜ
[
Aei(kx−ωt+δ)

]
(8.7.7)
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Figure 8.8: Beats.

The wave at P therefore behaves as a traveling wave with the same frequency, wavelength
and initial phase as the source, but its amplitude at the point P is sensitive to the difference
∆x in the path lengths traveled by the waves. Indeed it is always zero when the path
difference is an odd multiple of one half the wavelength,

k∆x

2
= (2n+ 1)

π

2
⇒ ∆x = (2n+ 1)

λ

2
, (8.7.8)

and always a maximum, which is twice the amplitude of the original waves, when the path
difference is a multiple of the wavelength,

k∆x

2
= nπ ⇒ ∆x = nλ. (8.7.9)

and so two waves traveling in a medium can, under certain conditions, completely destroy
each other or perfectly enhance each other. Superposition between waves of the same
frequency and wavelength is commonly referred to as the phenomenon of interference.
Where the amplitude of the resulting wave is enhanced over the amplitudes of the original
waves, we say that constructive interference has occurred. Consversely, destructive
interference occurs where the amplitude of the resulting wave is diminished.

8.7.2 Beats

What if the wavelengths and frequencies of the component waves are not the same? Con-
sider two waves of differing wavelength and frequency but (for simplicity) having the same
amplitude and initial phase and traveling in the same direction. The resulting wave will
be

y(t, x) = Aℜ eiδ
[
ei(kx−ωt) + ei(k

′x−ω′t)
]
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= 2A cos

[
∆k

2
x− ∆ω

2
t

]
ℜ ei(kx−ωt+δ) (8.7.10)

where, as before, we have introduced k = 1
2(k + k′), ∆k = k − k′ and likewise for ω. The

resultant is therefore made up of two traveling waves: One wave travels with the average
wavelength and frequency of the component waves (this is the frequency perceived by the
listener) and the other is a cosine wave which oscillates with a (lower) frequency, 1

2∆ω, and
modulates the amplitude of the first. The modulation wave is called the beat. Because
both waves are traveling in the same medium we know that ω/k = v = ω′/k′, where v is
the speed of the wave in that medium. Therefore the beat or group velocity, which may
be defined as the rate at which a constant amplitude travels through space, is vg = ∆ω/∆k
and will be the same as the wave velocity. The frequency of intensity fluctuation will be
∆ω/4π. This is called the beat frequency, which, in this particular case, ends up being
half the difference in the frequencies of the component waves.

In all the cases analyzed above, we only considered waves traveling with the same
velocity. Our reasoning was that the properties of the medium determine the velocity of a
traveling wave and we tacitly assumed that the properties of the medium are insensitive
to the wavelength and frequency of the traveling wave, making the velocity of propagation
the same for all frequencies. There is, however, no fundamental principle that ensures this
to be the case and in fact a more detailed analysis shows that it is only an approximation.
Materials in which the velocity of wave propagation is the same for all wavelengths are
called non-dispersive. Most materials are dispersive, i.e., they will cause waves of
differing wavelengths to travel at different speeds. If we account for this dependence of v
on k then the frequency ω(k) = v(k)k will no longer be linearly related to k and then

vg(k) =
∆ω

∆k
̸= ω

k
= v(k). (8.7.11)

In other words, the beat velocity will differ from the phase velocity. The two are related;
assuming that ∆k and ∆ω are small, v(k) ≈ v(k) = ω(k)/k and

vg(k) =
dω(k)

dk
= v(k) + k

dv(k)

dk
(8.7.12)

It can be shown that energy and momentum is transferred through the medium with the
group velocity and therefore it is the group velocity that we measure.

Examples of dispersion in materials abound. For example, the polarizability of a
medium changes rapidly when the photon energies approach the energies of quantum
transitions (because of the possibility of resonant absorption), which affects the dielectric
constant and hence the refractive index in a frequency dependent way. Dispersion in the
ionosphere as the frequency of the radio waves approaches the plasma frequency, is the
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reason why AM radio is accessible at great distances. The changing refractive index of
the ionosphere leads to “total internal reflection” so that the waves are reflected back to
earth.

8.7.3 Wave Packets

If the wave-numbers are allowed to vary continuously, instead of discretely, then the su-
perposition sum in (8.7.2) should be replaced by an integral over k,

y(t, x) = ℜ
∫ ∞

−∞
dkA(k)ei(kx−ω(k)t+δk). (8.7.13)

where the amplitudes must now be understood to carry the appropriate dimensional infor-
mation, since A(k)dk represents the amplitude of waves with wavenumber lying between
k and k + dk. A(k) is the Fourier transform of the wave function and is known as the
spectral distribution. A single wave, propagating with wavenumber k0 and amplitude
A0, for example, can be recovered if the spectral distribution is A = A0δ(k−k0). We have
accounted for dispersion in (8.7.13) by allowing ω(k) to be a general function of k. If the
spectral distribution is not a delta function then y(t, x) is called a wave packet.

While plane waves are of infinite extent, wave packets can be “localized” if the spectral
distribution is peaked around some value, say k0, and vanishes rapidly about the peak.
Suppose that the integral receives a significant contribution only in a finite interval [k0 −
∆k, k0 +∆k] about k0. Then

y(t, x) ≈ ℜ ei(k0x−ω(k0)t)
∫ ∆k

−∆k
dk̃{A(k0) +A′′(k0)k̃

2}eik̃(x−ω′(k0)t)+iδk , (8.7.14)

where k̃ = k− k0. The term we have been able to take out of the integral is a plane wave,
propagating at the phase velocity v = ω(k0)/k0. The integral term should be viewed as
the beat since the condition k̃ < ∆k ≪ k0 ensures that the exponential outside the integral
oscillates rapidly compared with the exponential inside integral. Coherent propagation of
the amplitude will occur when x− ω′(k0)t = const., i.e., when

dx

dt
= ω′(k0) = vg(k0) =

dω(k)

dk

∣∣∣∣
k=k0

(8.7.15)

This is the group velocity, as we saw earlier, and it is related to the phase velocity by
(8.7.12).

Let us close with the simple example of a “gaussian” wave packet, for which the spectral
distribution is of the form

A(k) = ae−b(k−k0)
2
, (8.7.16)
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Figure 8.9: Spatial form of the Gaussian Wavepacket at t = 0

where a and b are constants, and let δk = 0 and ω(k) = σk2 (the group velocity is therefore

vg(k) =
dω

dk
= 2σk. (8.7.17)

Integrating (8.7.13), the solution is given as

y(t, x) =

√
πa2

r
exp

[
− b

4r2
(x− vg(k0)t)

2

]
×

× cos

[
−σtx

2

4r2
+
b2

r2
(k0x− ω0t) + tan−1 σt

b

]
(8.7.18)

where r =
√
b2 + σ2t2. The wave packet is localized, with a variance of σ =

√
2r2/b. Its

spatial distribution at t = 0 is shown in figure 8.9. As t increases, the peak travels (to the
right) at the group velocity, vg(k0), but its amplitude decreases according to t−1/2 (when
t≫ b/σ) and its variance increases as t, causing the packet to spread about the mean.



Chapter 9

The Calculus of Variations

We are now going to embark on a different approach to mechanics than the one we have
taken so far. The new approach involves looking for some quantity that appears to be
optimized by the physical system. Once the quantity is discovered, the mathematical
techniques that we introduce in this chapter allow us to compute the equations of motion
of the system. It should always be remembered that the equations of motion are no
different than those that would follow from a careful application of Newton’s laws. The
fundamental principles of mechanics, as embodied in Newton’s three laws do not change,
only our way of thinking about them and the techniques used to execute what in the end
is Newton’s program are enlarged and made more powerful. Yet, the new approach is
not just about formalism. It also provides a significantly deeper insight into Newton’s
laws themselves. It makes manifest the underlying symmetries of the mechanical system
and relates the conservation laws to the symmetries. A famous theorem by the English
mathematician Emmy Noether showed that the relationship between symmetries of the
quantity that is optimized and conservation laws obeyed by the system is a profound one.
We will explore Noether’s theorem in considerable depth as we go along.

One of the most significant uses of the new formalism will be the ease with which it is
possible to incorporate constraints: for instance, one may be interested in the motion of a
body subject to the action of some known forces but constrained to move only along some
surface. While not impossible to handle, such problems are far from easy if all that were
available to us were the methods that have already been introduced. The techniques we
are about to learn will significantly simplify them. Because of the relationship they bear
with underlying symmetries and because they are able to handle constrained systems so
naturally, the approach finds its most powerful use in the treatment of field theories.

The new techniques are based upon the “calculus of variations”, which we examine
in this chapter. This chapter should be thought of as an essential mathematical detour.
From the mathematical point of view, the problem is one of extremization. Only, this time

199
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Figure 9.1: The path length in a plane and on the surface of a two sphere

we are interested not in extremizing functions on space but real valued maps from a subset
of the space of functions on a manifold to the reals. Such maps are called functionals.

9.1 Functionals

Roughly speaking, a functional is a real or complex valued function that takes functions
(or, more generally, elements of a vector space) as its argument. Thus, the domain of a
functional is a set of functions and its range is a subset of the reals). As an example of a
functional, let f(x) be any square integrable function on R, then F defined by

F [f ] =

∫ ∞

−∞
dx∥f(x)∥2 (9.1.1)

is a functional on the set of square integrable functions on R because it associates every
element in its domain to one and only one real number, the norm of f .

Of more immediate interest is the distance between two points in the plane along some
curve given by y = y(x). Using Pythagoras’ theorem, it can be written as the integral

S[y] =

∫ 2

1

√
dx2 + dy2 =

∫ x2

x1

dx

√
1 +

(
dy

dx

)2

(9.1.2)

To each curve connecting the points 1 and 2, which are held fixed, there is a unique real
number representing its path length (distance). Different curves, specified by different
functions y(x) may present the same path length, but functionals (like functions) are not
required to be one to one. In this case we have a functional representing the path length on
the curve y = y(x) in R2. Extremizing this functional, if we could do such a thing, would
give us the curve with the shortest path length between 1 and 2. We could generalize to
the surface of a two sphere. If the latitudes are specified by θ and the longitudes by φ, so
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Figure 9.2: The surface of revolution generated by a curve y = y(x)

that a curve can be given by a function of the form φ = φ(θ), then

S[φ] =

∫ 2

1
r

√
dθ2 + sin2 θdφ2 = r

∫ 2

1
dθ

√
1 + sin2 θ

(
dφ

dθ

)2

(9.1.3)

where r is the radius of the sphere.
Another example of a functional is the area of the surface of revolution generated by

a curve y = y(x), rotated about the x−axis. The problem would be to find the curve
that generates the surface of minimum area. If the curve begins at (x1, y1) and ends at
(x2, y2), the area of the surface can be obtained by integrating infinitesimal circular strips
as shown in figure (9.2). The area is then

A[y] =

∫ 2

1
2πyds = 2π

∫ x2

x1

dx y(x)

√
1 +

(
dy

dx

)2

(9.1.4)

While these examples may appear to be of geometrical interest only, they are in fact
of physical interest as well. The first is connected to Newton’s first law, according to
which a free particle will choose the shortest distance between two points (the straight
line). Newton’s first law may therefore be viewed as an optimization problem in which
the quantity that is optimized is the path length. The advantage of thinking about it in
this way is that it can easily be generalized to curved spaces in which straight lines may
be impossible. The “straight line” is replaced with the “geodesic”, the path of minimum
length.

The second above is a problem that is intimately connected with the formation of
soap bubbles between two rings. Minimizing the surface area would give us the shape of
the bubble. In this genre of problems, consider a flexible cable, suspended between two
fixed points as in a suspension bridge. If the length of the cable is fixed, we could write
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an expression for its gravitational potential energy as a sum over the potential energies
infinitesimal lengths, ds, each located at a height y from some reference level,

U =

∫ 2

1
ρgyds = ρg

∫ x2

x1

dx y(x)

√
1 +

(
dy

dx

)2

(9.1.5)

Minimizing the potential energy would tell us the shape of the cable in equilibrium.

Again, consider a fixed volume of water in a cylindrical container that is rotating with
a fixed angular velocity ω. Due to the rotation, the surface of the water will not be
planar but will be such as to minimize the potential energy of the water in the combined
gravitational-centrifugal force field. The potential energy of an infinitesimal volume of
water of mass δm = ρdV can be written as

δU = δmgy − 1

2
δmω2r2 (9.1.6)

since F⃗c = δmω2r⃗ represents the centrifugal force on the element if it is located a distance
r from the axis of rotation. Using cylindrical coordinates in which the y axis is the axis
of rotations, the total potential energy is

U = ρ

∫ R

0
rdr

∫ 2π

0
dφ

∫ y(r)

0
dy(gy − 1

2
ω2r2) (9.1.7)

where y = y(r) is understood to represent points on the surface of the water. Because
of axial symmetry, we may perform the φ integration right away. Performing also the y
integration gives

U [y] = 2πρ

∫
dr r

[
gy2(r)− 1

2
ω2r2y(r)

]
(9.1.8)

Minimizing this energy shows that the surface of the water is parabolic.

As a final example, a problem of considerable historical interest is determining the
trajectory of a particle falling in a constant gravitational field in such a way that that the
time taken for it to travel between two points is minimized. We can setup the problem as
follows: the time taken to cover an infinitesimal length of the trajectory is

dt =
ds

v
(9.1.9)

where v is its instantaneous velocity. Conservation of energy tells us that

1

2
mv21 +mgy1 =

1

2
mv2 +mgy (9.1.10)
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Figure 9.3: Deformations of a curve y = y(t), holding the endpoints fixed.

where y1 represents its initial height and v1 its initial speed. For convenience, take v1 = 0,
so the particle begins at rest at (x1, y1), then

v =
√
2g(y1 − y) (9.1.11)

and

T [y] =

∫ 2

1
dt =

∫ x2

x1

dx

√
1 + y′2

2g(y1 − y)
(9.1.12)

is the time taken between the initial and final points. This is known as the “Brachis-
tochrone” problem. It is the curve of fastest descent and has a stellar history in which
some of the greatest minds in physics and mathematics were involved. It was first posed
by Galileo (who incorrectly stated that the solution was a circle, and later addressed by
the likes of Newton, the brothers Bernoulli, Leibnitz and l’Hospital). We will later address
a similar problem (not the same!), which is relevant to geometric optics when it is treated
according to Fermat’s principle. Fermat’s principle states that the trajectories followed
by “particles” of light (the principle was enunciated before the wave theory of light was
generally recognized as correct) are such as to extremize the time taken by the particles to
travel between two points. . Much later, when we address the theory of special relativity,
Fermat’s principle will be return, but now it will also describe the relativistic dynamics of
ordinary matter.
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9.2 Euler’s equation for extrema

With the motivation provided by the examples in the previous section, we want to obtain
the necessary and sufficient conditions for the existence of an extremum of a functional
which has the form

S[y] =

∫ 2

1
dtf(y(t), ẏ(t); t) (9.2.1)

We are using t for our independent variable and y(t) as the test function. Suppose that
a trajectory that extremizes S[y] exists and call it y0(t). Then consider a one parameter
deformation of the trajectory y0(t) of the form

y(α, t) = y0(t) + αη(t), (9.2.2)

and η(t) is any differentiable function obeying

η(t1) = η(t2) = 0 (9.2.3)

In other words, the the endpoints are held fixed by the deformations, but otherwise they
are arbitrary [see figure (9.3)]. The functional

S[y;α] =

∫ 2

1
dtf(y(α, t), ẏ(α, t); t) (9.2.4)

is now also a function of α. The necessary condition for an extremum is

∂S[y;α]

∂α

∣∣∣∣
α=0

= 0 (9.2.5)

but we must understand how to take this derivative. Expanding f(y0, ẏ0; t) in a Taylor
series, we have

f(y, ẏ; t) = f(y0, ẏ0; t) + α

[
η
∂f

∂y

∣∣∣∣
α=0

+ η̇
∂f

∂ẏ

∣∣∣∣
α=0

]
+ . . . (9.2.6)

so that
∂S[y;α]

∂α
=

∫ 2

1
dt

[
∂f

∂y

∣∣∣∣
α=0

+ η̇
∂f

∂ẏ

∣∣∣∣
α=0

]
. (9.2.7)

With the understanding that all partial derivatives of f are taken at α = 0, we write this
as

∂S[y;α]

∂α
=

∫ 2

1
dt

[
∂f

∂y
η +

∂f

∂ẏ
η̇

]
. (9.2.8)
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The second term can be integrated by parts

∂S[y;α]

∂α

∣∣∣∣
α=0

=

∫ 2

1
dt

[
η
∂f

∂y
− η

d

dt

(
∂f

∂ẏ

)]
+

[
η(t)

∂f

∂ẏ

]2
1

, (9.2.9)

but because the deformations we are considering vanish at the boundaries (η(t1) = 0 =
η(t2)), the necessary condition for an extremum becomes

∂S[y;α]

∂α

∣∣∣∣
α=0

=

∫ 2

1
dt

[
∂f

∂y
− d

dt

(
∂f

∂ẏ

)]
η(t) = 0. (9.2.10)

The deformations, η(t), are arbitrary, therefore the integral can vanish only if

∂f

∂y
− d

dt

(
∂f

∂ẏ

)
= 0 (9.2.11)

This necessary condition for the existence of an extremum is known as Euler’s equation.
It is equivalent to the usual condition for the existence of an extremum of a simple function
of a single variable in elementary calculus. If the functional S depends on more than one
independent function, there is one Euler equation for each such independent function.

The left hand side of (9.2.11) is known as the first functional derivative of the S[y]
or the Euler derivative of f , and denoted by

δS[y]

δy(t)

def
=

∂f

∂y(t)
− d

dt

(
∂f

∂ẏ(t)

)
. (9.2.12)

so that a necessary condition for the existence of an extremum is a vanishing first functional
derivative,

δS[y]

δy(t)
= 0 (9.2.13)

An alternative (quick and dirty) approach to recovering Euler’s equation that we shall use
henceforth is to consider a “variation” of S under variations of the function y(t) as follows,

δS[y] =

∫ 2

1
dt

(
∂f

∂y
δy +

∂f

∂ẏ
δẏ

)
(9.2.14)

where δy = αη. The variations commute with the time derivative of y, i.e.,

δ
dy

dt
=

d

dt
δy, i.e.,

[
δ,
d

dt

]
y(t) = 0 (9.2.15)

Integrating by parts (as we did before) and discarding the boundary term because the
variations vanish on the boundary, gives

δS[y] =

∫ 2

1
dt

(
∂f

∂y
− d

dt

∂f

∂ẏ

)
δy = 0, (9.2.16)

which imply Euler’s equation by the same argument we used earlier. Let’s apply this
equation to determine the extrema of the functionals we developed earlier.
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9.3 Examples

9.3.1 Geodesics

Consider first the functional

S[y] =

∫ x2

x1

dx
√
1 + y′2 (9.3.1)

which gives the path length between two points on a trajectory specified by y = y(x).
Applying Euler’s equation gives a differential equation for the function y(x),

∂f

∂y
− d

dx

∂f

∂y′
= − d

dx

y′√
1 + y′2

= 0 (9.3.2)

which means that
y′√

1 + y′2
= c, (9.3.3)

where c is some constant. Solving shows that the solution is of the form y = mx+d, where
m = c/(1− c2) and d is another arbitrary constant. This is the equation of a straight line,
as we expected. The two constants (the slope and the y−intercept) are determined by the
end points of course. An alternative approach would be to expand the derivative getting[

1√
1 + y′2

− y′2

(1 + y′2)3/2

]
y′′ =

y′′

(1 + y′2)3/2
= 0 (9.3.4)

which is only possible if y′′(x) = 0. This gives the solution y = mx + d. Paths given by
functions of the form y = y(x) are very special if y(x) is a function because it cannot turn
into itself as the function cannot be one to many.

The generalization of this problem to the problem of the geodesic on a sphere can also
be solved exactly. Our action functional was

S = r

∫ 2

1
dθ

√
1 + sin2 θφ′2 (9.3.5)

where the prime now refers to a derivative with respect to φ. Euler’s equation is

− d

dθ

(
sin2 θφ′√

1 + sin2 θφ′2

)
= 0 (9.3.6)

which is not dissimilar from the problem of the geodesic in R2. The solution is however
different. We have

sin2 θφ′√
1 + sin2 θφ′2

= α (9.3.7)
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where α is some constant, and simplifying

φ′ =
α√

sin4 θ − α2 sin2 θ
(9.3.8)

or

φ =

∫
α csc2 θdθ√
1− α2 csc2 θ

(9.3.9)

The integral on the right can be solved by the substitution x = α cot θ, which gives

φ+ β =

∫
dx√

1− α2 − x2
= sin−1 x√

1− α2
= sin−1

(
cot θ

a

)
(9.3.10)

where a =
√
1− α2/α. The solution is

cot θ = a sin(φ+ β) (9.3.11)

To understand what it means, expand the right hand side to rewrite the equation as

cos θ = a(sinφ cosβ + cosφ sinβ) sin θ (9.3.12)

and view the sphere as embedded in R3, where

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ. (9.3.13)

The solution, rewritten in terms of the Cartesian coordinates in the embedding space is

z = Ax+By (9.3.14)

where A and B are constants of the integration, related in an obvious way to a and β. We
recognize this as the equation of a plane passing through the origin, i.e., the center of the
sphere! So the geodesic on a sphere is a great circle.1

1Problem: Show that the equation for a geodesic on a cylinder is

φ = mz + φ0

which is the equation of a helix. By “unwrapping” the cylinder, it turns into a plane. What does the
geodesic look like in the plane?



208 CHAPTER 9. THE CALCULUS OF VARIATIONS

9.3.2 Minimum surface of revolution

Our next problem was to determine the curve whose surface of revolution is minimum.
For this we had to extremize the functional

A[y] = 2π

∫ x2

x1

dx y
√
1 + y′2. (9.3.15)

The Euler equation for the area functional is

∂f

∂y
− d

dx

∂f

∂y′
=
√
1 + y′2 − d

dx

yy′√
1 + y′2

= 0 (9.3.16)

Expand the derivative

√
1 + y′2 − yy′′ + y′2√

1 + y′2
+

yy′2y′′

(1 + y′2)3/2
= 0 (9.3.17)

and simplify to see that this gives the simple equation

(1 + y′2)2 − (1 + y′2)y′2 − yy′′ = 1 + y′2 − yy′′ = 0. (9.3.18)

One may employ the following trick to solve this equation, even though it looks difficult.
Divide by (1 + y′2)3/2 and multiply by y′ to write it as

y′√
1 + y′2

− yy′y′′

(1 + y′2)3/2
=

d

dx

y√
1 + y′2

= 0, (9.3.19)

which means that
y√

1 + y′2
= c⇒ y′ =

dy

dx
= ±

√
y2

c2
− 1 (9.3.20)

where c is an arbitrary constant. The solution is, of course∫
dy√
y2

c2
− 1

= ±x+ d (9.3.21)

where d is yet another constant of integration. The solution is obtained by the substitution
y = c cosh η

y(x) = c cosh

(
x+ d

c

)
(9.3.22)

The shape of a cable on a suspension bridge is given by the same solution because the
functional minimizing the potential energy is the same.
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9.3.3 The rotating bucket

We have argued that the shape of the surface of water that is rotating in a bucket is
determined by the functional

U [y] = 2πρ

∫ R

0
dr r

[
gy2 − 1

2
ω2r2y

]
(9.3.23)

This functional has no derivatives of y(r), so Euler’s equation reads

y(r) =
1

4g
ω2r2 (9.3.24)

which is the equation of a parabola whose steepness is determined by ω2/4g.

9.3.4 The Brachistochrone

We turn finally to the Brachistochrone, which involves minimizing the functional

T [y] =

∫ x2

x1

dx

√
1 + y′2

2g(y1 − y)
. (9.3.25)

and leads to
1

2

√
1 + y′2

(y1 − y)3/2
− d

dx

(
y′√

(1 + y′2)(y1 − y)

)
= 0 (9.3.26)

Expanding the drivative term,

1

2

√
1 + y′2

(y1 − y)3/2
− y′′√

(1 + y′2)(y1 − y)
+

y′2y′′
√
y1 − y(1 + y′2)3/2

− y′2

2
√
1 + y′2(y1 − y)3/2

= 0 (9.3.27)

and simplifying

1

2
(1 + y′2)2 − y′′(y1 − y)(1 + y′2) + y′2y′′(y1 − y)− 1

2
y′2(1 + y′2) = 0

⇒ 1 + y′2 − 2(y1 − y)y′′ = 0 (9.3.28)

To solve this equation, it’s convenient to eliminate y1 by defining z = y1 − y so that the
equation we must solve is

1 + z′2 + 2zz′′ = 0 (9.3.29)
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and divide by z3/2(1 + z′2)3/2. This gives

1

z3/2
√
1 + z′2

+
2z′′

√
z(1 + z′2)3/2

= − d

dx

1√
z(1 + z′2)

= 0 (9.3.30)

which, when solved for z′ gives

z′ = ±
√
c

z
− 1 ⇒

∫ √
zdz√
c− z

= x+ d (9.3.31)

The solution to this integral is best obtained in parameterized form by making the sub-
stitution z = c sin2 θ to rewrite the integral as

2c

∫
sin2 θ = x+ d⇒ x =

c

2
(2θ − sin 2θ)− d (9.3.32)

Our solution, in parameterized form is therefore

x =
c

2
(2θ − sin 2θ), y = y1 +

c

2
(1− cos 2θ) (9.3.33)

which is a cycloid reflected on the x−axis and vertically shifted by y1 .

9.4 Functional Derivatives

The Euler derivative is also called the first functional derivative of S[y]. It is worth
rewriting our definition of this derivative in a way that is more adapted to extending it to
higher order functional derivatives. To this end, define

δS[y] =

∫
dt
δS[y]

δy(t)
η(t) =

∂S[y;α]

∂α

∣∣∣∣
α=0

(9.4.1)

and compare the left hand side of the definition to (9.2.10) to see that it is identical to
(9.2.12). In this suggestive form, however, it is easy to see how higher functional derivatives
are to be defined. A natural extension is

δnS[y] =

∫
dt1dt2...dtn

δnS[y]

δy(t1)δy(t2)...δy(tn)
η(t1)η(t2)...η(tn)

def
=

∂nS[y;α]

∂αn

∣∣∣∣
α=0

.

(9.4.2)
It turns out that higher order functional derivatives are ultralocal differential operators, i.e.,
operators that are proportional to Dirac δ−function(s). The second functional derivative
defines an “eigenvalue” (Sturm-Liouville) problem for η(t) and whether the extrema we
have found are minima or maxima depends on whether or not δ2S[y] > 0, i.e., on the
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eigenvalue spectrum of this differential operator. If the spectrum is positive definite the
extremum is a minimum.

Let us use the definition in (9.4.2) to determine the second order functional derivative
of (9.2.1). Expanding f(y + αη, ẏ + αẏ; t) up to second order in α,

f(y, ẏ; t) = f(y0, ẏ0; t) + α

[
η
∂f

∂y
+ η̇

∂f

∂y

]
α=0

+
α2

2

[
η2
∂2f

∂y2
+ ηη̇

∂2f

∂y∂ẏ
+ η̇2

∂2f

∂ẏ2

]
α=0

+ . . .

(9.4.3)
so

∂2S[y + αη]

∂α2

∣∣∣∣
α=0

=

∫ f

i
dt

[
η2
∂2f

∂y2
+ ηη̇

∂2f

∂y∂ẏ
+ η̇2

∂2f

∂ẏ2

]
(9.4.4)

Now notice that in the middle term ηη̇ = η̇2/2 allows us to integrate the second term by
parts and drop a total derivative (boundary term) because η is required to vanish there.
Therefore

∂2S[y + αη]

∂α2

∣∣∣∣
α=0

=

∫ f

i
dt

[
η2
{
∂2f

∂y2
− 1

2

d

dt

(
∂2f

∂y∂ẏ

)}
+ η̇2

∂2f

∂ẏ2

]
(9.4.5)

Also integrating the last term once by parts allows us to write the entire expression as

∂2S[y + αη]

∂α2

∣∣∣∣
α=0

=

∫ f

i
dt η

[{
∂2f

∂y2
− 1

2

d

dt

(
∂2f

∂y∂ẏ

)
− d

dt

(
∂2f

∂ẏ2
d

dt

)}]
η (9.4.6)

and now we’re able to compare it with (9.4.2). Let’s apply this to a simple, but useful type
of functional for which f(y, ẏ; t) = ẏ2/2− v(y). In this case, a straightforward calculation
reveals

∂2S[y + αη]

∂α2

∣∣∣∣
α=0

= −
∫ f

i
dt η(t)

[
∂2v

∂y2
+
d2

dt2

]
η(t) (9.4.7)

or (y1 = y(t1) and y2 = y(t2))

δ2S

δy1δy2
= −

[
d2

dt21
+
∂2v(y1)

∂y21

]
δ(t1 − t2) (9.4.8)

Consider the eigenvalue equations for this operator,

−
[
∂2v

∂y2
+
d2

dt2

]
y=y0

ϕn(t) = λnϕn(t), (9.4.9)

where y0(t) represents an extreme value of the functional, i.e. a solution to Euler’s equation
and ϕn(t) represent a complete set of orthonormal eigenfunctions. Let ϕn(t) be normalized
in the interval [ti, tf ] and vanishing at the boundaries, so that we can set

η(t) =
∑
n

cnϕn(t) (9.4.10)
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then if we let S[y] = S[y0] + δS[y0] + δ2S[y0] + . . .,

δ2S[y0] =
∑
n

λnc
2
n (9.4.11)

To make our example simpler still, take v′′(y) to be ignorable, then our eigenvalue equation
becomes

d2ϕn
dt2

+ λnϕn = 0 (9.4.12)

Solutions that vanish at the ti and tf can be found. To simplify the algebra, take ti = 0
and tf = T , so that the only solutions that vanish at the end points are

ϕn = A sin
√
λnt (9.4.13)

where

λn =
n2π2

T 2
, n ∈ N ∪ {0} (9.4.14)

The eigenvalues are all non-negative, so δ2S[y0] > 0 so, in this case, the extremum of the
action, given by Eulers equations, will represent a minimum. More generally, eg., if v′′(y)
were not ignorable, the result would depend on v(y).

9.5 An alternate form of Euler’s equation

There is an alternate form of Euler’s equation, which is particularly useful when f(y, ẏ)
does not explicitly depend on t. It can be obtained directly from (9.2.11) by writing

df

dt
=
∂f

∂t
+
∂f

∂y
ẏ +

∂f

∂ẏ
ÿ (9.5.1)

and substituting
d

dt

(
∂f

∂ẏ
ẏ

)
=
∂f

∂ẏ
ÿ + ẏ

d

dt

(
∂f

∂ẏ

)
(9.5.2)

we find
d

dt

[
f − ∂f

∂ẏ
ẏ

]
=
∂f

∂t
+

[
∂f

∂y
− d

dt

(
∂f

∂ẏ

)]
ẏ. (9.5.3)

But by Euler’s equation, the term in square brackets on right hand side vanishes, therefore

∂f

∂t
− d

dt

[
f − ∂f

∂ẏ
ẏ

]
= 0 (9.5.4)

and if f does not depend explicitly on time,

f − ∂f

∂ẏ
ẏ = constant (9.5.5)

summarizes the content of (9.2.11). One can immediately see how useful this is as it
involves just a first order equation.
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9.6 Functionals involving several functions

Our considerations so far are easily generalized to functionals of several dependent vari-
ables,

S[x1, x2, ...xn] =

∫ 2

1
dt f(x1(t), ..., xn(t), ẋ1(t), ..., ẋn(t), t) (9.6.1)

Such functionals are more adapted to the requirements of mechanics, where even two
dimensional trajectories may fold in on themselves and cannot be represented as func-
tions, but more generally are not constrained to surfaces. As we know, in mechanics it is
more useful to consider parameterized curves, r⃗ = r⃗(t). We can use the same variational
techniques as we did before. Once more, requiring

δS =

∫ n∑
i=1

(
∂f

∂xi
δxi +

∂f

∂ẋi
δẋi

)
= 0 (9.6.2)

gives

δS = 0 ⇒
∫
dt

n∑
i=1

(
∂f

∂xi
− d

dt

∂f

∂ẋi

)
δxi = 0 (9.6.3)

which is possible if and only if each term vanishes because the variations δxi(t) are all
arbitrary and independent. Therefore we have n Euler equations, one for each dependent
variable,

∂f

∂xi
− d

dt

∂f

∂ẋi
= 0, i ∈ {1, ..., n} (9.6.4)

which may, or may not be coupled, dependending on the functions f .2

As an example, consider the parameterized curve in R3, given by the three functions,
x1(t), x2(t) and x3(t). In this case, the path length can be written as

S =

∫ t2

t1

dt
√
ẋ21 + ẋ22 + ẋ23. (9.6.5)

There are therefore three Euler equations, one for each function. We have,

∂f

∂xi
− d

dt

∂f

∂ẋi
= − d

dt

ẋi√
ẋ21 + ẋ22 + ẋ23

= 0 (9.6.6)

2Problem: Show that if f has no explicit dependence on t, then

f −
∑
i

∂f

∂ẏi
ẏi = 0

Note that this is just one equation, whereas there are as many Euler’s equations as dependent functions,
assuming no external constraints. This is the “alternative” form of the previous section.
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The vector v⃗ = (ẋ1, ẋ2, ẋ3) is just the “velocity” and therefore these equations tell us that
v̂ is a constant vector. Since the direction of the velocity vector is constant, the trajectory
is a straight line. We can put the equations in a more suggestive form if we recognize that

ds

dt
=
√
ẋ21 + ẋ22 + ẋ23 (9.6.7)

and therefore that (9.6.6) can also be written as

dt̂

ds
= 0 (9.6.8)

where t̂ is the unit tangent vector to the curve. In the Serret-Frenet description of curves,
this is saying that the curvature is zero. Note that minimizing the path length gives no
information about the magnitude of the velocity and this means that there are really only
two and not three independent equations of motion. One can trace this to “reparametriza-
tion invariance”, which means that any transformation t → t′ = f(t), with xi → x′i = xi,
leaves the functional S invariant so that the parameter t itself has no physical significance.
We will be looking for functionals whose extremization leads to Newton’s laws of motion.
However, because Newton’s first law already requires a free body to possess a constant
velocity (therefore both magnitude and direction), this functional is not a good starting
point.

9.7 Constraints

Often it happens that it is necessary to consider additonal constraints on a system. For
example, consider the equation of the geodesic on sphere. The way we solved the problem
was to think of the sphere intrinsically i.e., without reference to the three dimensional
space, R3, in which it is embedded. This is a very useful way to think about curved spaces,
but it is not necessary because every such space can also be thought of as embedded in some
higher dimensional space, Rn.3 For example, we could think of the sphere as embedded
in R3. We already know that the shortest distance between two points in R3 is a straight
line, but it is far from so on the sphere! To get the shortest distance along the sphere we
must impose an additional condition, a constraint, which explicitly requires that all points
on the trajectory lie on it, i.e., we must also require

x21(t) + x22(t) + x23(t) = r2 (9.7.1)

where r is the radius of the sphere.

3Note that the embedding space does not necessarily possess just one dimension more than the embedded
space.
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In general, when constraints are present, we need to impose additional conditions of
the form

g(x1, x2, ..., ẋ1, ..., ẋn) = 0 (9.7.2)

The presence of constraints implies that the variations we make in deriving the Euler
equations are not all independent and therefore δS = 0 does not imply that the Euler
equations hold separately for each dependent variable. Let us first review how constraints
are handled in simple problems not involving functionals.

Consider a cylinder of radius r and length l. How can the surface area be minimized
while keeping the volume of the cylinder fixed?. (For example, you may be asked to design
a cylindrical container of fixed volume in such a way as to minimize the material used in
its construction.) For any r and l, the surface area of the cylinder (including its ends) is
A(r, l) = 2πrl + 2πr2 and its volume is V (r, l) = πr2l. In this simple example, we could
solve the constraint directly,

l =
V

πr2
(9.7.3)

and rewrite A as a function of r (subject to the constraint)

A(r) =
2V

r
+ 2πr2 (9.7.4)

Then it is easy to see that r = 3
√
V/2π gives the radius that minimizes the surface area.

Notice that solving the constraint first reduces the number of independent variables (in
this case, r and l). It also complicates the function to be extremized. Sometimes it may
be difficult to solve the constraint equation(s); what then do we do? We follow a method
introduced by and named after the mathematician Joseph Louis Lagrange.

To motivate Lagrange’s approach, consider having to extremize a function S of two
variables, xi, i ∈ {1, 2}, subject to a constraint of the form g(xi) = 0. The extremization
condition for S is

δS =
∑
i

∂S

∂xi
δxi = 0 (9.7.5)

but because the variables are not all independent on account of the constraint, we cannot
set each first partial derivative to zero independently. Instead, noting that g(xi) = 0, vary
the constraint also to get

δg(xi) = 0 =
∑
i

∂g

∂xi
δxi (9.7.6)

Of course, this means that

δx2 = −∂g/∂x1
∂g/∂x2

δx1 (9.7.7)
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Inserting this into the variation of S, we find

δS =

[
∂S

∂x1
− ∂S

∂x2

∂g/∂x1
∂g/∂x2

]
δx1 (9.7.8)

or
∂S

∂x1

(
∂g

∂x1

)−1

=
∂S

∂x2

(
∂g

∂x2

)−1

(9.7.9)

However, because the left hand side involves only derivatives with respect to x1 and the
right only derivatives with respect to x2, the two must be equal to some constant, −λ. In
particular,

∂S

∂xi
+ λ

∂g

∂xi
= 0, i ∈ {1, 2} (9.7.10)

and, if we call S = S + λg, then not only do we have

∂S
∂xi

= 0, i ∈ {1, 2} (9.7.11)

but also
∂S
∂λ

= 0, (9.7.12)

which reproduces the constraint g(xi) = 0. The three equations (9.7.11) and (9.7.12) are
sufficient to solve for the three variables xi and λ and constitute a general solution of the
extremzation problem when constraints are present. The extra variable that was intro-
duced (λ) has come to be called a Lagrange multiplier. The method is easily extended (by
mathematical induction) to the case of n variables and any number m < n of constraints.
We need one Lagrange multiplier for each constraint.

Lagrange thus turned a problem originally involving n variables satisfying m < n
constraints (our simple example involves two variables and one constraint) into a problem
involving n+m variables and no constraints by introducing the Lagrange multipliers.
In our toy example, instead of considering A(r, l) we consider the function

A = A(r, l) + λ(V (r, l)− V0) (9.7.13)

where λ is a new variable (called a Lagrange multiplier) that multiplies the constraint and
V0 is the desired volume of the container. Notice that if all variables are independent,
then A is extreme only if its first derivative with respect to each variable vanishes

∂A
∂r

= 2π(l + 2r + λrl) = 0

∂A
∂l

= 2π

(
r +

λ

2
r2
)

= 0
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∂A
∂λ

= πr2l − V0 = 0. (9.7.14)

We have three equations for the three variables r, l, λ. The last equation makes the con-
straint explicit. The second equation, when solved for λ gives λ = −2/r and when this
value of λ is inserted into the first equation we obtain l = 2r. With this value of l, the last
equation gives precisely r = 3

√
V0/2π. The cost of using Lagrange multipliers is that we

have had to solve three equations simultaneously, whereas we would have had to solve just
one equation if the constraint were solved at the start and l replaced by an appropriate
function of r. In general, when there are m < n constraints in the system, the use of
Lagrange multipliers introduces an additional 2m equations. The lesson is that if the con-
straints can be solved at the start, it is best to do so and work with independent variables.
Lagrange multipliers should be used only if it is impossible to solve the constraints.

Solving constraints may be done in one of two ways: either one uses the constraint
equations to directly eliminate one or more variables and reexpress the function to be
extremized in terms of the remaining (now independent) variables or, what is most fre-
quently the case, finding an entirely new set of (independent) variables in terms of which
which to express the function to be extremized. For example, (9.7.1) can be solved by
introducing the angles θ and φ, in terms of which

x1 = r sin θ cosφ, x2 = r sin θ sinφ, x3 = r cos θ. (9.7.15)

These are the transformations to spherical coordinates, but here r is constant. By con-
struction x21 + x22 + x23 = r2 is automatic and the distance function can now be expressed
in terms of the angles as

ds2 = dx21 + dx22 + dx23 = r2(dθ2 + sin2 θdφ2) (9.7.16)

The problem of finding geodesics on the sphere in terms of θ and φ has already been
solved.

Consider the problem of finding the dimensions of a box for which the energy of a
quantum particle in its ground state and confined to its interior is minimum, holding the
volume of the box fixed. The ground state energy of a quantum particle in a box of
dimensions a b and c is

E(a, b, c) =
π2ℏ2

2m

[
1

a2
+

1

b2
+

1

c2

]
(9.7.17)

and we must impose the constraint g(a, b, c) = abc − V0 = 0. We have a function of
three variables and one constraint. Using the method of Lagrange multipliers, we would
introduce one Lagrange multiplier (for the constraint) and extremize the function

E(a, b, c, λ) = E(a, b, c) + λg(a, b, c), (9.7.18)
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treating it as a function of four independent variables. Thus,

∂E
∂a

= −π
2ℏ2

ma3
+ λbc = 0

∂E
∂b

= −π
2ℏ2

mb3
+ λac = 0

∂E
∂c

= −π
2ℏ2

mc3
+ λab = 0

∂E
∂λ

= abc− V0 = 0 (9.7.19)

Multiplying the first equation by a, the second by b and the last by c we find

λabc =
π2ℏ2

ma2
=
π2ℏ2

mb2
=
π2ℏ2

mc2
(9.7.20)

i.e., a = b = c and the box is a cube. Further, taking second derivatives makes it clear
that the energy is minimized, so the box that minimizes the ground state energy is a cube
of side a = 3

√
V0.

4

A still more interesting example is the following. For a system of identical particles
obeying Pauli’s exclusion principle, the probability of a given arrangement possessing ni
particles in state i of energy εi and degeneracy gi is

W =
∏
i

gi!

ni!(gi − ni)!
. (9.7.21)

If the total number of particles, N =
∑

i ni and the total energy of the system, E =∑
i niεi, are together held fixed, we can show using Lagrange’s method that the maximum

probability occurs for the arrangement

ni =
gi

eλ1+λ2εi + 1
(9.7.22)

where λ1,2 are the Lagrange multipliers corresponding to the first and second constraints
respectively. It’s simpler to examine the log of the probability function

lnW ≈
∑
i

[gi ln gi − ni lnni − (gi − ni) ln(gi − ni)] (9.7.23)

4Problem: The ground state energy of a quantum particle confined to a cylindrical container of radius
r and length l is

E(r, l) =
ℏ2

2m

(
c2

r2
+
π2

l2

)
where c is a constant. If the volume of the cylinder is held fixed, show that the ground state energy is
minimized when

r

l
=

c√
2π
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where we have used Stirling’s formula

lnN ! ≈ N lnN −N (9.7.24)

Now introduce the constraints via Lagrange multipliers, consider

W =
∑
i

[gi ln gi − ni lnni − (gi − ni) ln(gi − ni)− λ1ni − λ2niεi] (9.7.25)

and vary with respect to ni,

δ lnW =
∑
i

[− lnni + ln(gi − ni)− λ1 − λ2εi]δni = 0 (9.7.26)

gives
ni

gi − ni
= eλ1+λ2εi ⇒ ni =

gie
−λ1−λ2εi

e−λ1−λ2εi + 1
(9.7.27)

or
ni =

gi
eλ1+λ2εi + 1

(9.7.28)

The Lagrange multipliers are related to the fermi energy, EF , and the temperature, T ,
of the Fermi gas. Comparing with the Fermi distribution we see that λ2 = 1/kT and
λ1 = −EF /kT .

We can apply the same arguments to the problem of extremizing functionals with
constraints. Consider a functional of two functions,

S[x1, x2] =

∫ 2

1
dtf(x1, x2, ẋ1, ẋ2, t) (9.7.29)

where x1(t) and x2(t) are subject to some constraint g(x1, x2) = 0. Varying S

δS =

∫ 2

1
dt

[(
∂f

∂x1
− d

dt

∂f

∂ẋ1

)
δx1 +

(
∂f

∂x2
− d

dt

∂f

∂ẋ2

)
δx2

]
= 0 (9.7.30)

but each term in brackets cannot be separately set to zero because of the constraint.
Instead we consider

δg(x1, x2) =
∂g

∂x1
δx1 +

∂g

∂x2
δx2 = 0 (9.7.31)

which means that

δx2 = −∂g/∂x1
∂g/∂x2

δx1 (9.7.32)

which can be inserted into the variation of S to give

δS =

∫ 2

1
dt

[(
∂f

∂x1
− d

dt

∂f

∂ẋ1

)
−
(
∂f

∂x2
− d

dt

∂f

∂ẋ2

)
∂g/∂x1
∂g/∂x2

]
δx1 = 0 (9.7.33)
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Thus, (
∂f

∂x1
− d

dt

∂f

∂ẋ1

)(
∂g

∂x1

)−1

=

(
∂f

∂x2
− d

dt

∂f

∂ẋ2

)(
∂g

∂x2

)−1

(9.7.34)

But the left hand side of the above equation involves only functional derivatives with
respect to x1, whereas the right hand side only functional derivatives with respect to x2,
so they must each be equal to some function −λ(t),(

∂f

∂x1
− d

dt

∂f

∂ẋ1

)
+ λ(t)

(
∂g

∂x1

)
= 0(

∂f

∂x2
− d

dt

∂f

∂ẋ2

)
+ λ(t)

(
∂g

∂x2

)
= 0 (9.7.35)

along with the constraint g(x1, x2) = 0. The function λ(t) is determined from these three
equations. It is a Lagrange multiplier function. In fact if we have n dependent variables
and m < n constraints of the form gl(x1, ..., xn) = 0, then there are n +m equations of
the form (

∂f

∂xi
− d

dt

∂f

∂ẋi

)
+ λ(t)

(
∂g

∂xi

)
= 0, i ∈ {1, ..., n}

gl(x1, ..., xn) = 0, l ∈ {1, ...,m} (9.7.36)

all of which can be derived from varying the modified functional

S → S =

∫ 2

1
dt

[
f(x1, ..., xn, ẋ1, ..., ẋn, t) +

m∑
l=1

λl(t)gl(x1, ..., xn)

]
(9.7.37)

with respect to the xi and λl, treating all of them as independent variations.5

Constraints are classified according to their form. If xi are the dependent variables of
the system and the constraints can be expressed in the form

g(xi, t) = 0 (9.7.38)

then they are called holonomous. If they cannot be expressed in the form (9.7.38) then
they are non-holonomous. For example the requirement that an object may move only
on the surface of a sphere is the holonomous constraint g(x, y, z) = x2 + y2 + z2 − r2 = 0.
On the other hand, requiring the object to always reside inside the sphere is the non-
holonomous constraint g(x, y, z) = x2 + y2 + z2 − r2 ≤ 0. Velocity dependent constraints
such as

g(xi, ẋi, t) = 0 (9.7.39)

5Problem: Use mathematical induction to show this!
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are holonomous if they can be integrated to the form (9.7.38).
Constraints may or may not depend explicitly on time. Holonomic constraints that do

not depend explicitly on time are called scleronomous. Holonomic constraints that do
depend explicitly on time are rheonomous. Thus if we require a bead to slide along a
wire spanning some fixed curve in space the holonomous constraint would be scleronomous.
But if the curve itself were to change in time in some externally prescribed fashion then
the constraint would be rheonomous. The key words here are “externally prescribed”.
If the curve were to change as a consequence of the beads motion so that the wire were
itself a part of the system then the constraint would be scleronomous because this time
dependence would not be explicit. We will have more to say about constraints as we
proceed to address problems of physical interest.



Chapter 10

The Lagrangian

So far we have applied the variational principle to problems primarily of geometric interest.
However, it has played a most crucial role in the development of physics. For instance,
Fermat in 1740 derived the laws of reflection and refraction (of light) from such a principle.
Newton’s laws of motion can be formulated in terms of a variational principle and the
variational principle makes their generalization to relativistic (special and general) systems
straightforward. In this chapter we will learn to formulate Newton’s laws in terms of a
variational principle, but first let us examine Fermat’s derivation of the laws of reflection
and refraction, not simply because of its historic importance but also because it will return
when we consider mechanics in the context of special relativity.

We will discuss the concept of symmetries and prove Noether’s theorems, in fulfillment
of a promise made in the previous chapter to show how how the symmetries of a mechanical
system relate to the conservation laws. Finally we will examine an important reformulation
in terms of the “Hamiltonian” and the Poisson brackets which played a key role in the
development of quantum mechanics. When the Lagrangian describing the mechanical
system has no explicit time dependence (equivalently, when the action describing the
system is time translation invariant), the Hamiltonian is nothing but the energy of the
mechanical system.

10.1 Fermat’s least time principle

In 1740, Fermat postulated that light always travels along the path that minimizes the
time taken by it to get from one point to another. This has come to be known as “Fermat’s
least time principle”. We will see now how it can be used to derive Snell’s laws of geometric
optics. Consider a ray of light that travels from A to B upon reflection at some point P
on a reflecting surface, as shown in figure (10.1)]. Because we are considering reflection,
the ray of light travels in a single medium throughout its path and the speed of light is

222
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A(a ,a )x y

A’

B(b ,b )x y

P(x ,0)
q f C

x

Figure 10.1: Law of reflection

constant. It follows that the least time principle is equivalent in this case to the shortest
distance principle. The distance a ray of light would have to travel in going from A to B
via P (refer to the figure) is

d(x) =
√

(x− ax)2 + a2y +
√
(bx − x)2 + b2y (10.1.1)

Extremizing the function d(x),

d′(x) =
(x− ax)√

(x− ax)2 + a2y

− (bx − x)√
(bx − x)2 + b2y

= 0 (10.1.2)

which implies that

cos θ = cosϕ (10.1.3)

or θ = ϕ, which is the law of reflection.

The situation is slightly more complicated when we consider refraction because the ray
of light travels through two media (at least) with different velocities [see figure (10.2)].
Therefore the times taken for the paths are respectively

tAP =

√
(x− ax)2 + a2y

v1

tPB =

√
(bx − x)2 + b2y

v2
(10.1.4)
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Figure 10.2: Law of refraction

and, according to the least time principle, the quantity to be minimized is

tAB(x) = tAP + tPB =

√
(x− ax)2 + a2y

v1
+

√
(bx − x)2 + b2y

v2
. (10.1.5)

We find

t′AB =
cos θ

v1
− cosϕ

v2
= 0 (10.1.6)

or
sin i

sin r
=
v1
v2

(10.1.7)

which we recognize as Snell’s law, if we identify the ratio n12 = v1/v2 as the refractive
index of medium 2 relative to medium 1. This is quite a prediction, because we know
experimentally that light bends toward the normal when passing from a rarer to a denser
medium and, in this case, n12 > 1. This implies that the seed of light is smaller in a denser
medium. In particular, the speed of light is maximum in the vacuum. This behavior is
opposite that of the speed of sound and contrary to the predictions of Newton’s corpuscular
theory of light, which were set forth by Newton himself after Fermat enunciated his least
time principle. We know of course that it is Fermat’s principle that gives the correct
result.

In general, Fermat’s principle can be formulated in terms of a functional to be extrem-
ized. Let n(r⃗) = c/|v⃗(r⃗)|, where r⃗ = (x1, x2, x3) is the position vector of any point P ,
represent the refractive index of a medium (or set of media) relative to the vacuum (c is
the speed of light in the vacuum), then the time taken for light to travel from point A to
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point B is the functional

T [x1, x2, x3] =

∫ B

A

ds

|v⃗(r⃗)|
=

1

c

∫ B

A
n(r⃗)ds (10.1.8)

According to Fermat’s principle, the path followed by a ray of light is the one for which
T [x1, x2, x3] is minimum. The functional T [x1, x2, x3] is called the optical path length
from A to B.

10.2 The variational principle of mechanics

In the previous chapter we saw that minimization of the path length yields straight line
trajectories but not Newton’s first law. This was because reparameterization invariance
implied that Euler’s equations cannot determine the speed of the particle, only the curva-
ture of its trajectory. To recover the entire content of the first law from Euler’s equations,
we could introduce a constraint requiring that the speed is held fixed, but the constraint
would be non-holonomous and non-holonomous constraints are usually difficult to deal
with. Moreover, this cannot be the correct approach because the constraint could not
be imposed in the presence of external forces and we are, in the end, after a variational
principle for a particle or system of particles in the presence of external and internal forces.
We would therefore encounter a situation in which the functional describing the motion
of a free particle cannot be obtained as the limit of a more general functional as the ex-
ternal forces are made to vanish. Therefore, we ask instead if there is a functional whose
extremization would yield

mẍi = 0, i ∈ {1, 2, 3} (10.2.1)

(the equations of motion for a free particle) without imposing additional constraints. It is
not difficult to see that the equations ẍi = 0 extremize the functional

S′ =

∫ 2

1
dt

1

2

∑
i

ẋ2i , (10.2.2)

therefore, since we want mẍi = 0, or more precisely dpi/dt = 0, we simply multiply the
functional S′ by the mass of the particle, taking instead the action

S =

∫ 2

1
dt

1

2
m
∑
i

ẋ2i =

∫ 2

1
dt T (ẋi). (10.2.3)

where we recognize T (ẋi) to be the kinetic energy of the particle.
Notice that the motion of a free particle is not interpreted as optimizing any geometric

quantity (such as the path length) but rather the average kinetic energy of the particle.
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However, it turns out that it is actually an approximation of a quantity that does have
a geometric meaning, the “proper time” of the particle. This is the time measured on a
clock that moves with the particle. For observers relative to whom the speed of the particle
is slow compared with the speed of light the proper time approximates to the absolute,
Galilean, time up to corrections of order v2/c2. The functional (10.2.3) represents the first
correction term.

Including the action of forces on the particle (Newton’s second law) just as easy. Modify
S by introducing an additional function

S =

∫ 2

1
dt [T (ẋi) + Z(xi, ẋi, t)] (10.2.4)

and determine Z. The Euler Lagrange equations are then

−mẍi +
∂Z

∂xi
− d

dt

(
∂Z

∂ẋi

)
= 0. (10.2.5)

We will consider only forces that are derivable from a potential, Fi = −∂iU (conservative
forces). If the force does not depend on the velocity then the potential is a function only
of position, U = U(r⃗). According to Newton’s second law, mẍi = −∂iU , therefore we
must take Z(xiẋi, t) = −U(xi). Therefore, when all the forces acting on the particle are
conservative, extremizing the functional

S =

∫ 2

1
dt [T (ẋi)− U(xi)] (10.2.6)

then gives precisely Newton’s second law of motion. As is often the case in physics, we raise
the statement to the status of a fundamental law, applicable to all physical systems and
generalizing when necessary even Newton’s three laws of motion, leaving it to experiment
to determine its the limits if any of its validity. Thus we arrive at Hamilton’s principle
(which has yet to be challenged):

Hamilton’s principle: Of all possible paths along which a dynamical system may evolve,
from one configuration to another within a fixed time interval, the actual path taken is
the one that extremizes the functional (10.2.6).

The quantity L = T − U is called the Lagrangian of the system and S is called the
action functional,

S =

∫ 2

1
dt L(xi, ẋi, t) (10.2.7)

When a system consists of more than one particle, the kinetic energy is the total kinetic
energy, i.e., the simple sum of kinetic energies of the individual particles and the potential
energy is the total potential energy (external plus internal) of the system.
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When there are constraints on a system, the coordinates and velocities are not all
independent. In the case of holonomous constraints this is resolved by choosing a set of
generalized coordinates that solve the constraints. For an unconstrained n particle
system there are 3n coordinates, xi. Imposing r constraints reduces the number of in-
dependent coordinates to 3n − r. If the constraints can be solved so that the Cartesian
coordinates, or a subset of them, are expressed in terms of 3n− r generalized coordinates,
qa ∈ {q1, q2, . . . , q3n−r} then we will have 2n relations of the form

xi = xi(q1, q2, ..., q3n−r), ẋi =

3n−r∑
a=1

∂xi
∂qa

q̇a (10.2.8)

The Lagrangian may be expressed in terms of the geneneralized coordinates without con-
straints. If it is impossible to find generalized coordinates (because it turns out to be
exceedingly difficult to solve the constraints) then the Lagrangian may be written in terms
of the original coordinates, xi, with the constraints introduced via Lagrange multipliers.
One should use Lagrange multipliers only as a last resort. Solving and eliminating the
constraints first is always preferred, when possible.

When the constraints are of the form

gα(xi, ẋi, t) = 0 (10.2.9)

one should first check if they are integrable. For example, the constraint∑
i

Ai(x⃗, t)
dxi
dt

+B(x⃗, t) (10.2.10)

is integrable if and only if ∑
i

Ai(x⃗, t)dxi +B(x⃗, t)dt = df(x⃗, t) (10.2.11)

where f is some function of xi and t. This means that

Ai =
∂f

∂xi
B =

∂f

∂t
(10.2.12)

for some function f(x⃗, t) and it follows that

∂Ai
∂t

=
∂B

∂xi
(10.2.13)

If these conditions fail the constraint is not holonomous.
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10.3 Examples

The one dimensional harmonic oscillator is described by the potential function U(x) =
1
2kx

2. Its Lagrangian is therefore

L = T (ẋ)− U(x) =
1

2

(
mẋ2 − kx2

)
(10.3.1)

with the action

S =
1

2

∫ 2

1
dt(mẋ2 − kx2). (10.3.2)

The Euler equation,
∂L
∂x

− d

dt

(
∂L
∂ẋ

)
= −kx−mẍ = 0 (10.3.3)

yields the well known equation of motion mẍ = −kx.
The gravitational potential energy of a system of two particles of mass m1 and m2 is

U(r) = −Gm1m2m/|r⃗1 − r⃗2|. The Lagrangian therefore is

L =
1

2
m1

˙⃗r1
2
+

1

2
m2

˙⃗r2
2
+
Gm1m2

|r⃗1 − r⃗2|
, (10.3.4)

and the action,

S =

∫ 2

1
dt

[
1

2
m1

˙⃗r1
2
+

1

2
m2

˙⃗r2
2
+
Gm1m2

|r⃗1 − r⃗2|

]
(10.3.5)

when extremized gives the Euler equations

∂L
∂xn,i

− d

dt

(
∂L
∂ẋn,i

)
= 0 (10.3.6)

or

m1
¨⃗r1 = −Gm1m2(r⃗1 − r⃗2)

|r⃗1 − r⃗2|3

m2
¨⃗r2 = −Gm1m2(r⃗2 − r⃗1)

|r⃗1 − r⃗2|3
(10.3.7)

which together represent the familiar Newton’s law of universal gravitation.

Consider the simple pendulum shown in figure (10.3). Begin by using the Cartesian
coordinates of the bob, in terms of which

T =
1

2
m(ẋ2 + ẏ2) (10.3.8)



10.3. EXAMPLES 229

O

y

x

(x ,y)

q

Figure 10.3: The simple pendulum

and U(y) = mgy. There is one holonomous constraint on the system, which is that the
length of the cord is held fixed during the motion

g(x, y) =
√
x2 + y2 − l. (10.3.9)

So we have a choice. We could incorporate the constraint in an action,

Sλ =

∫ 2

1
dt

[
1

2
m(ẋ2 + ẏ2)−mgy + λ(t)(

√
x2 + y2 − l)

]
, (10.3.10)

or we could choose to solve the constraints by reparameterizing the problem via the in-
vertible transformation

x = l sin θ, y = l cos θ (10.3.11)

in which case we calculate

T =
1

2
ml2θ̇2 (10.3.12)

and therefore we could write a action functional of just one dependent function

S =

∫ 2

1
dt

[
1

2
ml2θ̇2 +mgl cos θ

]
(10.3.13)

The equations of motion for this system are

−mgl sin θ −ml2θ̈ = 0 ⇒ θ̈ = −g
l
sin θ (10.3.14)
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Figure 10.4: Particle on a cone

(one equation) whereas the equations of motion in the constrained system are

mẍ− λx√
x2 + y2

= 0

mÿ +mg − λy√
x2 + y2

= 0√
x2 + y2 = l (10.3.15)

(three equations for three unknown functions).
For another example, consider a particle moving on a cone in a constant gravitational

field. Suppose that the angle of the cone is α as shown in figure (10.4) Again, we have a
choice: we could use the Cartesian coordinates, in terms of which

Sλ =

∫ 2

1
dt

[
1

2
m
∑
i

(ẋ2 + ẏ2 + ż2)−mgz + λ(t)(z −
√
x2 + y2 cotα)

]
(10.3.16)

where we have used the fact that U = mgz and, for the constraint, the equation of the
cone

z =
√
x2 + y2 + z2 cosα⇒ z =

√
x2 + y2 cotα (10.3.17)

This gives rise to the following four equations

mẍ = − λx cotα√
x2 + y2

mÿ = − λy cotα√
x2 + y2

mz̈ = −mg + λ
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Figure 10.5: A disk rolling down an inclined plane without slipping

z =
√
x2 + y2 cotα. (10.3.18)

(four equations for four unknown functions). Alternatively we could solve the constraint
by reparameterizing as follows:

x = ρ cosφ

y = ρ sinφ

z = ρ cotα (10.3.19)

in which case we end up with the action

S =

∫ 2

1
dt

[
1

2
m(ρ̇2 csc2 α+ ρ2φ̇2)−mgρ cotα

]
(10.3.20)

from which we get two Euler equations

ρ̈− ρ sin2 αφ̇2 = −g sinα cosα

d

dt
(mρ2φ̇) = 0 (10.3.21)

which is a much simpler problem in just two unknown functions. The last equation will
be recognized as conserving angular momentum.

Consider a disk rolling down a plane without slipping, as shown in figure (10.5) Let’s
use the coordinates (y, θ) as shown in the figure. We choose y to be the distance of the
center of the disk, measured along a line parallel to the plane of the incline, from the left
edge and θ is the angle made by the radius to a fixed point P on the disk with this line.
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The kinetic energy of the disk is the kinetic energy of its center of mass together with its
rotational kinetic energy

T =
1

2
Mẏ2 +

1

2
Iθ̇2 (10.3.22)

and its potential energy is just gravitational, U = mgh = mg(L− y) sinα, where L is the
length of the incline and α is its angle.

However, this is not enough because we must also incorporate the constraint that the
disk does not slip. This means that dy = Rdθ where R is the radius of the disk. We could
include a constraint,

Sλ =

∫ 2

1
dt

[
1

2
Mẏ2 +

1

2
Iθ̇2 −mg(L− y) sinα+ λ(y − y0 −Rθ)

]
(10.3.23)

and solve the three equations,

Mÿ = mg sinα+ λ

Iθ̈ = −Rλ

y = y0 +Rθ, (10.3.24)

for the three unknown functions, y(t), θ(t) and λ(t). Alternatively, we could incorporate
the constraint directly:

T =
1

2
(MR2 + I)θ̇2 =

1

2
I ′θ̇2

U = mg(L− y0 −Rθ) (10.3.25)

so that

S =

∫ 2

1
dt

[
1

2
I ′θ̇2 −mg(L− y0 −Rθ) sinα

]
(10.3.26)

giving the single Euler equation

I ′θ̈ = mgR sinα, (10.3.27)

for θ(t).1

1Suggestion: It’s a good exercise to go through mechanics problems from elementary textbooks, say on
Calculus based first year Physics, and set up Lagrangians describing the systems with careful attention to
the constraints. Verify, in each case, that the equations of motion obtained from the traditional approach
(ma⃗ = F⃗ , Iα⃗ = τ⃗) are equivalent to the Euler equations extremizing the Lagrangians.
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10.4 Symmetries and Noether’s theorems

E. Noether’s two theorems, the first relating the conservation laws to the existence of global
symmetries (finite, continuous group symmetries of the action) and the second pointing
out the existence of identities that result from local symmetries (infinite, continuous group
symmetries of the action), profoundly influenced the course of physics in the 20th century,
leading eventually to the discovery of gauge theories in particle physics. In this section
we will prove both Noether’s first and most well-known theorem in general, as well as
her second theorem but only for a special class of local transformations. Both proofs will
be given in the context of particle mechanics, but their extension to “field” theories is
straightforward.

Consider a general action,

S =

∫ 2

1
dt L(qi, q̇i; t), (10.4.1)

where L(q, q̇; t) includes all constraints (solved via generalized coordinates or not) and
consider a transformation of time, say t → t′ = t + δt = t + ϵ(t) and the coordinates,
q(t) → q′(t′) = q(t) + δq(t). The action is invariant under this transformation if δS = 0.
So far we have only been concerned with variations in which δt = 0. When δt ̸= 0, the
total change in the coordinates is the sum of two parts, the first arising due to a change
in the argument, t, of the coordinates and the second due to a change in the functional
form of q(t), which is what we used up to now and which, to avoid confusion with the
total change in q(t), we will henceforth represent by δ0q(t):

δ0q(t) = q′(t)− q(t) = αη(t) (10.4.2)

where η(t) are arbitrary functions of t, earlier taken to vanish at the boundaries. Note
that a variation of the functional form of qi(t) and differentiation with respect to time are
independent operations, which can be performed in any order,i.e.,

[δ0,
d

dt
] = 0. (10.4.3)

Thus, for δt ̸= 0,

q(t) → q′(t′) = q(t′) + δ0q(t
′) = q(t+ ϵ) + δ0q(t) (10.4.4)

where, in the second term on the right, we have ignored a second order correction, given
that the transformations are infinitesimal. For each coordinate in L, we can write

q′(t′) = q(t) + ϵ(t)q̇(t) + δ0q(t), (10.4.5)
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which gives
δq(t) = ϵ(t)q̇(t) + δ0q(t) (10.4.6)

where δq(t) is the total variation of q(t).2 In the same way, noting that

q̇′(t′) =
d

dt′
q′(t′) =

dt

dt′
d

dt
[q(t) + ϵ(t)q̇(t) + δ0q(t)]

= (1− ϵ̇(t))[q̇(t) + ϵ(t)q̈(t) + ϵ̇(t)q̇(t) + δ0q̇(t)] (10.4.7)

we find, to first order in the variations,

q̇′(t′) = q̇(t) + ϵ(t)q̈(t) + δ0q̇(t), (10.4.8)

or
δq̇(t) = ϵ(t)q̈(t) + δ0q̇(t). (10.4.9)

The change induced in S by the variations just described is

δS =

∫ 2

1
[δ(dt)L(qi, q̇i; t) + dtδL(qi, q̇i; t)] (10.4.10)

Now
t→ t′ = t+ ϵ(t) ⇒ dt→ dt′ = [1 + ϵ̇(t)]dt (10.4.11)

or
δ(dt) = ϵ̇(t)dt (10.4.12)

and therefore

δS =

∫ 2

1
dt

[
ϵ̇(t)L+ ϵ(t)

∂L
∂t

+
∑
i

∂L
∂qi

δqi +
∑
i

∂L
∂q̇i

δq̇i

]
. (10.4.13)

Substituting the total variations of q(t) and q̇(t), given in (10.4.6) and (10.4.9), we find

δS =

∫ 2

1
dt

[
ϵ̇L+ ϵ

∂L
∂t

+
∑
i

∂L
∂qi

(ϵq̇i + δ0qi) +
∑
i

∂L
∂q̇i

(ϵq̈i + δ0q̇i)

]
(10.4.14)

which expression, collecting terms proportional to ϵ, simplifies to

δS =

∫ 2

1
dt

[
d

dt
(ϵL) +

∑
i

∂L
∂qi

δ0qi +
∑
i

∂L
∂q̇i

δ0q̇i

]
. (10.4.15)

2Problem: Show that the total variation of qi(t) does not commute with the differentiation with respect
to time, [

δ,
d

dt

]
qi(t) ̸= 0.
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The last term in the integrand of (10.4.15) can be re-expressed using,∑
i

[
d

dt

(
∂L
∂q̇i

δ0qi

)
− d

dt

(
∂L
∂q̇i

)
δ0qi

]
(10.4.16)

and we find

δS =

∫ 2

1
dt

[∑
i

Eiδ0qi +
d

dt

(
ϵL+

∑
i

∂L
∂q̇i

δ0qi

)]
(10.4.17)

where Ei is the Euler derivative of L. If the variations are required to vanish on the
boundaries, then the surface term vanishes and the action is invariant (δS = 0) provided
that ∑

i

∫ 2

1
dtEiδ0qi = 0 (10.4.18)

This will be recognized as precisely (9.2.16). The action is also invariant under the trans-
formations that do not vanish on the boundaries, provided that each term vanishes, i.e.,
both Ei = 0 (Euler’s equations) and

d

dt

(
ϵL+

∑
i

∂L
∂q̇i

δ0qi

)
= 0 (10.4.19)

hold true simultaneously. This is saying that the quantity in brackets is a constant of the
motion, so it is a conservation law. Let us first re-express the conserved quatity above in
terms of the total variations, using (10.4.6), as(

L −
∑
i

∂L
∂q̇i

q̇i

)
ϵ+

∑
i

∂L
∂q̇i

δqi = const. (10.4.20)

and suppose that the variations result from some global transformations which form a
finite, continuous group and depend on r constant parameters, δωa, a ∈ {1, 2, ..., r},
according to

δt = ϵ(t) = Ga(t)δωa ⇒ Ga =
δϵ(t)

δωa

δqi(t) = Gia(q, t)δωa,⇒ Gia =
δqi
δωa

. (10.4.21)

The G’s are called the generators of the transformation. Inserting these into (10.4.21), we
find that the r quantities

ja =

(
L −

∑
i

∂L
∂q̇i

q̇i

)
Ga +

∑
i

∂L
∂q̇i

Gia (10.4.22)
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are conserved on the physical trajectories, i.e., so long as Euler’s equations are obeyed.
This is Noether’s first and most famous theorem. Below are some simple but very special
examples of how it works in the context of particle mechanics.

• Time translations: Take a translation of time by a constant, t → t′ = t + δω and
qi(t) → q′i(t

′) = qi(t) (trajectories do not depend on the choice of the time origin) so
δqi = 0. This is a one parameter group of transformations in which G = 1, Gi = 0.
If S is invariant under time translations, δS = 0 and

H =
∂L
∂q̇i

q̇i − L (10.4.23)

is a constant of the motion. H is called the “Hamiltonian” of the system and it
can, under certain conditions, be interpreted as the energy of the system. Energy
conservation is thus a consequence of time translation invariance.

• Spatial translations: Constant translations of r coordinates, qi → qi+ai holding time
fixed, t → t′(t) = t form an r dimensional Abelian group with δωi = ai = δqi and
ϵ(t) = 0, or Gi = 0 and Gij = δij . If the action is invariant under spatial translations
of some or all of the N coordinates then for those coordinates,

pi =
∂L
∂q̇i

(10.4.24)

is conserved. pi is called the momentum of the system “conjugate” to qi.
3 Thus

momentum conservation in any direction is a consequence of space translation in-
variance of the action. A coordinate that does not appear in the Lagrangian i.e.,
upon which the Lagrangian does not explicitly depend is called cyclic or ignorable.
Naturally, the momentum conjugate to a cyclic coordinate is conserved.

• Spatial Rotations: Finally, let the coordinates qi represent the usual Cartesian co-
ordinates, and use xi instead to denote them. General rotations of the coordinate

3In the simple example in which

L =
∑
i

1

2
mẋ2i − U(xi)

we find that
∂L
∂ẋi

= mẋi

which is precisely the momentum of the system. We generalize this to any system by simply declaring
∂L/∂q̇i to be the momentum of the system conjugate to the (possibly generalized) coordinate qi. The
Hamiltonian is generally expressed in terms of the generalized momentum as

H =
∑
i

piq̇i − L.
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system may be written as products of rotations about the individual axes, of which
there are three. If we consider an infinitesimal rotation, for example, about the
z−axis we have

Rzij = δij + δθ3U3
ij (10.4.25)

where

U3
ij =

 0 1 0
−1 0 0
0 0 0

 = [ϵ3]ij (10.4.26)

is the “generator” of rotations about the z−axis. Here [ϵk]ij = ϵkij is, of course, the
Levi-Civita tensor, and, for example, [ϵ3]ij is to be thought of as a matrix ϵ̂3, whose
components are given by the Levi Civita symbol ϵ3ij . For an infinitesimal rotation
about the x− axis we would have

Rxij = δij + δθ1U1
ij (10.4.27)

where

U1
ij =

0 0 0
0 0 1
0 −1 0

 = [ϵ1]ij (10.4.28)

and, finally about the y axis,

Ryij = δij + δθ2U2
ij (10.4.29)

where

U2
ij =

0 0 −1
0 0 0
1 0 0

 = [ϵ2]ij (10.4.30)

An arbitrary infinitesimal rotation of the coordinates xi of our particle would there-
fore take the form (sum over repeated indices)

δxi = δθk[ϵk]ijxj (10.4.31)

and the time parameter remains unchanged, t′ = t or δt = 0. The parameters of the
transformation are the angles θk and

Gik =
δxi
δθk

= ϵkijxj (10.4.32)

It follows from Noether’s theorem that, if the action for the particle is invariant
under spatial rotations, the quantity

Lk = −ϵkijpixj = (r⃗ × p⃗)k (10.4.33)
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(which will be recognized as the angular momentum of the particle) is conserved.
Conservation of angular momentum is a consequence of invariance of the action
under spatial rotations.

Since the currents derived from (10.4.22) are conserved only on physical trajectories, they
are sometimes said to be weakly conserved and Noether’s first theorem is said to lead to
weak conservation laws.

Noether’s second theorem deals with actions that are invariant under transformations
belonging to an infinite, continuous group, i.e., transformations that are not just global
but local, in which the variations ϵ and δqi depend of a finite number, r, of functions and
their derivatives. It states that in general, and not simply on (physical) trajectories for
which Euler’s equations hold, the local symmetries imply a set of r identities between the
Euler derivatives of the Lagrangian.

According to (10.4.17), the action is invariant under the transformations if∫ 2

1
dt

[∑
i

Eiδ0qi +
d

dt

(
ϵL+

∑
i

∂L
∂q̇i

δ0qi

)]
= 0, (10.4.34)

where the Ei are the Euler derivatives of L. For simplicity we will restrict ourselves here
to a special set of transformations, in which the variations depend on r functions δωa(t)
and their first derivatives only,

ϵ(t) = Gaδωa(t)
δqi(t) = Giaδωa(t) + Tiaδω̇a(t). (10.4.35)

Because the δωa are arbitrary functions of t, we can choose them so that they and their
derivatives vanish at the boundaries. In that case, the surface terms (total derivatives)
automatically vanish and invariance implies that

∑
i

∫ 2

1
dt Ei(δqi − ϵq̇i) =

∑
i

∫ 2

1
dt Ei [(Gia − q̇iGa)δωa + Tiaδω̇a] = 0. (10.4.36)

Integrating the last term by parts, we find

∑
i

∫ 2

1
dt

[
Ei(Gia − q̇iGa)−

d

dt
(EiTia)

]
δωa, (10.4.37)

which, for arbitrary δωa, is only possible if∑
i

[
Ei(Gia − q̇iGa)−

d

dt
(EiTia)

]
= 0 (10.4.38)
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These r identities of Noether’s second theorem are trivially satisfied on physical trajectories
(Ei = 0) but they hold irrespective of the Euler equations (they are strong) and, if they
are non-trivial, show that the Euler equations are not all independent. Although we have
carried out the calculation here for the special transformations in (10.4.35), the theorem
itself is quite general and the same procedure may be employed when higher derivatives are
present. Naturally, more complicated local symmetries lead to more complicated identities,
but it all cases the existence of r identities implies that only (n − r) of the equations of
motion are independent. Thus, like external constraints, local symmetries of the action
reduce the number of physical degrees of freedom in the system. As we saw earlier, for
example, the local reparameterization invariance of the path length functional in (9.6.5)
implies that there are only two instead of three independent equations of motion.



Chapter 11

The Hamiltonian

The Lagrangian formulation adds considerably to our understanding of mechanics, both by
contributing to its philosophical underpinnings and by introducing a substantial amount
of new mathematical structure, which, as we have seen, can be exploited to gain a more
profound understanding of the general properties of a physical system. The Hamilto-
nian formulation of mechanics is an alternative to the Lagrangian formulation. While
not adding in any way to the physics, it provides new mathematical structure and more
powerful ways of working with the physical principles that have already been established.

11.1 Legendre Transformations

From Noether’s first theorem, an action that is invariant under time translations describes
a system that conserves the Hamiltonian

H =
∂L
∂q̇i

q̇i − L, dH
dt

= 0. (11.1.1)

But, because

dL
dt

=
∂L
∂qi

q̇i +
∂L
∂q̇i

q̈i +
∂L
∂t

=
d

dt

(
∂L
∂q̇i

q̇i

)
+
∂L
∂t

(11.1.2)

(where we have used Euler’s equation), (11.1.1) implies that

d

dt

(
∂L
∂q̇i

q̇i − L
)

= −∂L
∂t

= 0. (11.1.3)

240
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and it follows also that L can have no explicit dependence on time. For example, take
a single particle of mass m moving in a potential U(r⃗) and let it be described by the
Lagrangian

L =
1

2
mẋ2i − U(xi) (11.1.4)

where a summation over repeated indices is understood. We find

∂L
∂ẋi

= mẋi (11.1.5)

which is just the ith component of the momentum of the particle! The Hamiltonian is

H = mẋ2i −
1

2
mẋ2i + U(xi) =

1

2
mẋ2i + U(xi) (11.1.6)

which will be recognized as the total energy of the particle. Because L does not explicitly
depend on time, the total energy of such a system is conserved.

Now we had defined the “generalized momentum” conjugate to the generalized coor-
dinate qi by

pi =
∂L
∂q̇i

. (11.1.7)

If this system of equations is invertible then we may solve it to get the velocities in terms
of the momenta and coordinates, q̇i = q̇i(q, p, t). Once this is done, the Hamiltonian can
be written in the form

H = piq̇i(q, p, t)− L. (11.1.8)

and it is easy to show that H = H(qi, pi, t) is independent of the velocities. The right
hand side of (11.1.8) is a Legendre transformation of L, taking us from a function of
the coordinates and velocities, L(qi, q̇i, t), to a function of the coordinates and momenta,
H(qi, pi, t) .

Legendre transformations are performed often in physics. For example in Thermody-
namics, going from the internal energy to the free energy of a system involves a Legendre
transformation. The first law of Thermodynamics,

dU = TdS − pdV,

shows that U is naturally viewed as a function of (S, V ) and then T = (∂U/∂S)V . By
defining the (Helmholz) free energy as F = U − TS, we make a Legendre transformation
taking U(S, V ) → F (T, V ), as one can check from

dF = dU − TdS − SdT = −pdV − SdT.
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This enables us to deal more effectively with situations in which the temperature and
volume are easy to control or measure. For example, while the work done by a thermody-
namic system during an isentropic process is equal to the decrease in its internal energy,
the work done during an isothermal process is equal to the decrease in its free energy.
Another useful quantity with dimensions of energy is the enthalpy, H, which involves a
Legendre transformation from U(S, V ) → H(S, p). Again, p = −∂U/∂V implies that the
desired Legendre transformation must be H = U + pV ,

dH = dU + pdV + V dp = TdS + V dp

In the same spirit, a double Legendre transformation would take us to the Thermodynamic
Potential or Gibbs free energy, G(T, p) = U − TS + pV .

dG = −SdT + V dp

The Gibbs free energy stays constant during any process that is both isobaric and isother-
mal, such as a phase transition.

11.2 The Canonical equations of motion

The Legendre transformation that takes us from the Lagrangian description to the Hamil-
tonian replaces q̇i with pi so that H can be thought of as a function only of the coordinates
and momenta, not the velocities. The coordinates and momenta must be treated indepen-
dently and, assuming there are n independent coordinates, they define a space that is 2n
dimensional. This space of coordinates and momenta is called phase space.

The first step in performing the transformation involves using the definition of pi in
(11.1.7) to obtain the velocities, q̇i, in terms of the coordinates and momenta, i.e., we
solve (11.1.7) for q̇i(qi, pi, t). In the next step we must replace the replace q̇i everywhere
on the right hand side of (11.1.8) to recover H(qi, pi, t). By the inverse function theorem,
however, the first step is only possible if

det|Wij | = det

∣∣∣∣∂pi∂q̇j

∣∣∣∣ = det

∣∣∣∣ ∂2L∂q̇i∂q̇j

∣∣∣∣ ̸= 0. (11.2.1)

The matrix Wij is called the Hessian. When the determinant of the Hessian is non-
vanishing the Lagrangian system is called regular, otherwise it is singular. When the
Lagrangian system is singular a Hamiltonian may be defined only on a subset of the
original phase space. This Hamiltonian may subsequently be extended over the entire
phase space by explicitly introducing constraints in much the same way as we did earlier
by means of Lagrange multipliers. The procedure was originally outlined by Dirac and
later elaborted upon by Bergmann. We will outline the Dirac-Bergmann algorithm at the
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end of this chapter but, for the most part, we consider regular Lagrangian systems in these
notes.

From the defining equations and the definition of the generalized momenta follow the
equations of motion in terms of the Hamiltonian. Notice that from the definition of H in
(11.1.8),

dH = q̇idpi + pidq̇i −
∂L
∂t
dt− ∂L

∂qi
dqi −

∂L
∂q̇i

dq̇i

= q̇idpi −
∂L
∂qi

dqi −
∂L
∂t
dt, (11.2.2)

where we used the definition of the generalized momenta. This shows that H = H(qi, pi, t)
and therefore

dH =
∂H
∂pi

dpi +
∂H
∂qi

dqi +
∂H
∂t

dt. (11.2.3)

Comparing the two expressions we see that

q̇i =
∂H

∂pi
∂L
∂qi

= −∂H
∂qi

∂L
∂t

= −∂H
∂t

(11.2.4)

But, by Euler’s equations,
∂L
∂qi

=
d

dt

(
∂L
∂q̇i

)
= ṗi (11.2.5)

so we find that the set of equations in (11.2.4) can also be written as

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
,
∂L
∂t

= −∂H
∂t

. (11.2.6)

These are known as the Hamilton equations (of motion). Using them we find that

dH
dt

=
∂H
∂t

+
∂H
∂qi

q̇i +
∂H
∂pi

ṗi =
∂H
∂t

(11.2.7)

which says that any time dependence of the Hamiltonian must be explicit.
The Hamilton equations are also called the canonical equations of motion and

the description of the motion by them is called Hamiltonian dynamics. If there are n
generalized coordinates, there must be 2n pairs (qi, pi) and 2n canonical equations. The
canonical equations are coupled, first order differential equations in time whose integration
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involves 2n constants or initial values. This is the same number of constants that are
required for Lagrangian dynamics because, although there are just n Euler equations they
are second order in time. The space formed by all the generalized coordinates is called the
configuration space of the system. The space formed by all the generalized coordinates
and momenta is called the phase space or momentum state space of the system. The
space formed by all the generalized coordinates and their corresponding velocities is called
the velocity state space of the system.

11.3 Poisson Brackets

Observables in the Hamiltonian description will consist of functions of the coordinates,
momenta and time, A = A(qi, pi, t). Given two observables A and B we define the Poisson
Brackets of A and B as

{A,B}PB
def
=

∑
k

(
∂A

∂qk

∂B

∂pk
− ∂A

∂pk

∂B

∂qk

)
(11.3.1)

The Poisson brackets have several features of considerable interest. In particular, if we
take A = qi and B = pj , we find that

{qi, pj}PB =
∑
l

δilδlj = δij

{qi, qj}PB = 0 = {pi, pj}PB (11.3.2)

These are called the “fundamental” Poisson brackets. Again, if we consider the time rate
of change of any observable A,

dA

dt
=
∂A

∂qi
q̇i +

∂A

∂pi
ṗi +

∂A

∂t
(11.3.3)

and insert the canonical equations of motion, we find that

dA

dt
=
∂A

∂qi

∂H
∂pi

− ∂A

∂pi

∂H
∂qi

+
∂A

∂t
(11.3.4)

or
dA

dt
= {A,H}PB +

∂A

∂t
. (11.3.5)

An observable that satisfies dA/dt = 0 is called a constant of the motion. We see that
for an observable not explicitly dependent on time to be a constant of the motion it must
have vanishing Poisson brackets with H. On the other hand, if A is a constant of the
motion but does explicitly depend on time then ∂A/∂t = −{A,H}PB.
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We might take A to be just qi or pi, to find an alternative description of the canonical
equations of motion

q̇i = {qi,H}PB, ṗi = {pi,H}PB, (11.3.6)

in terms of Poisson brackets. Although the Poisson Bracket appears to be merely a
convenient notation, one should really think of it as a binary operation between observables
which turns out to be of central importance in analytical mechanics. This will become
clearer as we go along.

From now on, we will drop the subscript “PB” on the curly brackets unless they are
required for clarity. Let’s list some of the properties of the Poisson Bracket. Each of these
can be proved by starting from definition (11.3.1).

1. It is antisymmetric,

{A,B} = −{B,A} (11.3.7)

2. It is linear: if a and b are constants then

{aA+ bB,C} = a{A,C}+ b{B,C} (11.3.8)

3. For any constant, c, and any observable A, {c, A} = 0.

4. It satisfies the Jacobi Identity,

{A, {B,C}}+ {C{A,B}}+ {B{C,A}} = 0 (11.3.9)

(cyclic permtations of the observables).

5. It obeys the following product rule,

{AB,C} = {A,C}B +A{B,C} (11.3.10)

If only the first four conditions are obeyed by some binary operation between observables
then it is called a “generalized Poisson Bracket”.

Two facts concerning observables are worthy of note. The first has to do with the
construction of new invariants of the motion from old ones and the second has to do with
the approximate solution of the evolution equations for any function on phase space.

• Knowing any two constants of the motion, it is possible in principle to construct new
constants of the motion as follows: take C = H in the Jacobi identity,

{{A,B},H}+ {{H, A}, B}+ {{B,H}, A} = 0

⇒ {{A,B},H}+ {∂A
∂t
,B} − {∂B

∂t
,A} = 0
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⇒ {{A,B},H}+ {∂A
∂t
,B}+ {A, ∂B

∂t
} = 0

⇒ {{A,B},H}+ ∂

∂t
{A,B} = 0 (11.3.11)

showing that {A,B} is also a constant of the motion.1 In practice this method is
not very useful because the Poisson brackets of A and B often give trivial functions
or even constants.

• If an A does not depend explicitly on time and is well behaved, one can use the
Poisson brackets to find a formal solution to its evolution equation

dA

dt
= {A,H}. (11.3.12)

Expand A as a Taylor series

A(t) =
∞∑
n=0

A(n)(t0)

n!
(t− t0)

n (11.3.13)

where A(n) is the nth time derivative of A, and notice that

A(1)(t0) = {A,H}(t0)

A(2)(t0) = {A(1),H}(t0) = {{A,H},H}(t0)

A(3)(t0) = {A(1),H}(t0) = {{{A,H},H},H}(t0)

. . .

A(n)(t0 = {. . . {{A,H},H}, . . . n times}(t0) (11.3.14)

giving the following (formal) solution for the observable A

A(t) =
∞∑
n=0

1

n!
{. . . {{A,H},H}, . . . n times}(t0)(t− t0)

n. (11.3.15)

In all but the simplest cases, this method cannot be applied to obtain exact solutions.
However, it is quite useful in perturbation theory.

1Problem: Prove that

{∂A
∂t
,B}+ {A, ∂B

∂t
} =

∂

∂t
{A,B}
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11.4 Examples

Consider the one dimensional system whose Hamiltonian is

H =
p2

2
− 1

2q2
(11.4.1)

which you can think of as a particle of unit mass moving in the potential of a central,
inverse cube force. The equations of motion for the particle are

q̇ = {q,H} = p, ṗ = {p,H} = − 1

q3
(11.4.2)

which also give the (Euler) equation

q̈ = − 1

q3
. (11.4.3)

The quantity D = pq/2−Ht is a constant of the motion 2

dD

dt
= {D,H}+ ∂D

∂t
=
p

2

{
q,
p2

2

}
+
q

2

{
p,− 1

2q2

}
−H = 0, (11.4.4)

whose origin lies in the invariance of the system under a scale transformation,

q → Q = λq, t→ τ = λ2t, p→ P =
p

λ
. (11.4.5)

Invariance can be verified either from the canonical equations of motion, which remain
unchanged in form,

dq

dt
= λ

dQ

dτ
= p = λP ⇒ dQ

dτ
= P

dp

dt
= λ3

dP

dτ
= − 1

q3
= − λ3

Q3
⇒ dP

dτ
= − 1

Q3
(11.4.6)

or from the action for this system

S =

∫ 2

1
dtL(q, q̇, t) =

∫ 2

1
dt

(
q̇2

2
+

1

2q2

)
. (11.4.7)

2Problem: Generalize this: show that

D =
p⃗ · r⃗
n

−Ht

is a constant of the motion for a Hamiltonian of the form H = |p⃗|n − ar−n where a is any constant.
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where now only the transformations of q and t need be specified. Noether’s first theorem
then implies that

j =

(
L − ∂L

∂q̇
q̇

)
δt

δλ
+
∂L
∂q̇

δq

δλ
= p

δq

δλ
−H δt

δλ
(11.4.8)

is conserved. Taking an infinitesimal scaling, λ = 1 + δλ, and evaluating j, we find

j = pq − 2Ht = 2D. (11.4.9)

The simple harmonic oscillator is such a simple physical system that the iterative
method that was described in the previous section can actually be used to obtain an exact
solution. We have

L =
1

2
(mẋ2 − kx2)

p =
∂L
∂ẋ

= mẋ⇒ ẋ =
p

m

H = pẋ− L =
p2

m
− p2

2m
+

1

2
kx2 =

p2

2m
+

1

2
kx2 (11.4.10)

The equations of motion are

ṗ = {p,H} =
k

2
{p, x2} = −kx

ẋ = {x,H} =
1

2m
{x, p2} =

p

m
(11.4.11)

To find x = x(t), we need to compute

x(2) = {ẋ,H} = {{x,H},H} =
1

m
{p,H} = − k

m
x

x(3) = {x(2),H} = − kp

m2

x(4) = {x(3),H} = +
k2x

m2

... (11.4.12)

and so on. If we call set t0 = 0 and let x0 = x(0) and p0 = p(0) then (11.3.15) will give
the series solution

x(t) = x0 +
p0
m
t− kx0

m
t2 − kp0

m2
t3 +

k2x0
m2

t4 + . . .
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Figure 11.1: Particle on a cylinder acted upon by a central force.

= x0

[
1− k

m
t2 +

k2

m2
t4 + . . .

]
+

p0√
mk

[(
k

m

)1/2

t−
(
k

m

)3/2

t3 + . . .

]
= x0 cosωt+

p0√
mk

sinωt (11.4.13)

where ω =
√
k/m is the angular frequency of the oscillator. We can put this in standard

form by letting
x0 = A cosϕ, p0 =

√
mkA sinϕ (11.4.14)

which gives
x(t) = A cos(ωt− ϕ), (11.4.15)

where

ϕ = tan−1

(
p0

x0
√
mk

)
, A =

√
x20 +

p20
mk

(11.4.16)

are respectively the initial phase and amplitude of the oscillations.
Next, consider a particle acted upon by an attractive central force, which proportional

to its distance from the origin, but moving on a cylinder as shown in figure (11.1) It is not
difficult to see that

T =
m

2
(ρ2θ̇2 + ż2)

U =
1

2
kr⃗2 =

1

2
k(ρ2 + z2)
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L =
m

2
(ρ2θ̇2 + ż2)− k

2
(ρ2 + z2) (11.4.17)

and there are no constraints, because they have been solved by using cylindrical coordi-
nates and treating ρ as a constant. The Lagrangian equations of motion are

mρ2θ̈ = 0

mz̈ = −kz (11.4.18)

whose solutions are clearly

z = A cos(ωt+ ϕ), θ = θ0 +
Lt

mρ2
(11.4.19)

where A and ϕ are respectively the amplitude and initial phase of an oscillation along the z
axis with angular frequency

√
k/m, and L is the angular momentum of the motion around

the cylinder. To compute the Hamiltonian of this system, we determine the generalized
momenta

pz =
∂L
∂ż

= mż, pθ =
∂L
∂θ̇

= mρ2θ̇, (11.4.20)

invert them to get the velocities as functions of the coordinates and momenta

ż =
pz
m
, θ̇ =

pθ
mρ2

(11.4.21)

and then use (11.1.8) to get the Hamiltonian

H =
p2z
2m

+
p2θ

2mρ2
+
k

2
(ρ2 + z2) (11.4.22)

(The term kρ2/2 is just a constant which may be discarded by resetting the standard fixed
point which determines the zero of energy.) The Hamilton equations are

ż = {z,H} =
pz
m
, ṗz = {pz,H} = −kz,

θ̇ = {θ,H} =
pθ
mρ2

, ṗθ = 0 (11.4.23)

(the last says that pθ is the conserved angular momentum). From our previous example,
we recognize the structure of the Poisson brackets for (z, pz) and can write the solution
for z(t) directly. It is precisely what we had in (11.4.19). To find the solution for θ(t), we
note that

θ̈ = {θ̇,H} =
1

mρ2
{pθ,H} = 0 (11.4.24)
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and it follows that all higher derivatives of θ(t) vanish. Therefore, calling pθ = L, the
solution is

θ(t) = θ0 +
Lt

mρ2
(11.4.25)

as in (11.4.19).3

11.5 The Dirac-Bergmann Algorithm for Singular Systems

So far we have restricted our attention to regular Lagrangian systems. However, by
Noether’s theorem we know that this excludes systems with local symmetries and other
constrained Lagrangian systems . Singular Lagrangian systems are in fact more common
(and important) than one may think, although they make their most spectacular appear-
ance in field theories as manifestations of local, internal symmetries. In this section we
examine how one can set up the Hamiltonian for singular systems with a finite number of
degrees of freedom (particle mechanics). The treatment can be extended to systems with
an infinite number of degrees of freedom (field theories) and is due to Dirac and Bergman.

What follows is an algorithm, called the Dirac-Bergman algorithm, for constructing
the Hamiltonian of constrained systems. The basic idea is to check, in a systematic
fashion, whether or not the equations of motion are consistent. In order to arrive at the
Hamiltonian we start with the definition of the momenta

pi =
∂L
∂q̇i

(11.5.1)

and if the Hessian is invertible then these relations can be solved for the velocities to give
q̇i = q̇i(q, p). However, if the Hessian is not invertible then some of the velocities cannot
be expressed in terms of the momenta and it will be possible to solve the equations only
for a subset of velocities. Suppose that there are (n− r) of these and that r velocities that
cannot be obtained in terms of the momenta. We will use letters from the beginning of the
roman alphabet to label the n − r coordinates whose velocities are expressed in terms of
momenta and letters from the beginning of the greek alphabet to label the r coordinates
whose velocities cannot be so expressed. From (11.5.1), we will have (n − r) relations of
the form

q̇a = fa(qi, pa, q̇α) (11.5.2)

corresponding to the (n − r) velocities that have been determined in terms of momenta.
Inserting these relations into (11.5.1) will give

pi = gi(qi, fa, q̇α) (11.5.3)

3Problem: Use (11.3.15) to recover the kinematical equations.
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When i = a the ga are just the momenta pa. The remaining pα cannot depend on the q̇α
because, if they did then we could solve for more of the velocities, replacing them with
momenta. Thus we will have r relations of the form

pα = gα(qi, pa) (11.5.4)

These relations will be called the primary constraints. One now defines the canonical
Hamiltonian for singular systems by

Hc = piq̇i − L (11.5.5)

where it is understood that whenever i = a, q̇a is to be replaced by fa(qi, pa, t) and
whenever i = α, pα is replaced by gα(qi, pa). It is easy to see that Hc is independent of q̇i
for all i, simply because of the definition of the momenta in (11.5.1). Therefore,

Hc = paq̇a + gαq̇α − L (11.5.6)

and we have the following derivatives

∂Hc

∂qi
=
∂gα
∂qi

q̇α − ∂L
∂qi

∂Hc

∂pa
= q̇a +

∂gα
∂pa

q̇α (11.5.7)

These are (2n − r) equations of motion in all.4 Of course, this is a consequence of the
r primary constraints in (11.5.4), which restrict the motion to a (2n − r) dimensional
subspace of the full phase space. For a solution of the Euler-Lagrange equations, ṗi =
∂L/∂qi, i.e.,

ṗi = −∂Hc

∂qi
+
∂gα
∂qi

q̇α

q̇a = +
∂Hc

∂pa
− ∂gα
∂pa

q̇α (11.5.8)

Our goal is to extend the Hamiltonian to the entire phase space in such a way that the
canonical equations of motion appear the same as they do for canonical systems. To do

4Because Hc cannot depend on the velocities and because the momenta pα can be exchanged in favor
of qi and pa, follow the same steps as before with Hc = Hc(qi, pa, ) ⇒

dHc =
∂Hc

∂qi
dqi +

∂Hc

∂pa
dpa +

∂Hc

∂t
dt

=

(
∂gα
∂pa

q̇α + q̇a

)
dpa +

(
∂gα
∂qi

q̇α − ∂L
∂qi

)
dqi −

∂L
∂t

Comparing the two expressions gives precisely the (2n− r) equations of motion listed.
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so, we first consider Hc to be a restriction to the desired subspace of another Hamiltonian
H that is defined on the entire phase space. Now H, being defined on the entire phase
space would be of the form H = H(qi, pi, t) and it cannot be uniquely defined i.e., many
Hamiltonians on the entire phase space may have the same restriction, Hc, on the subspace.
How then can we construct H?

An arbitrary function on the phase space is called weakly vanishing if it vanishes
identically on a restriction, Γp, of the phase space. One denotes a weakly vanishing
function, F , by saying that F ≈ 0, i.e.,

F |Γp
= 0 ⇔ F ≈ 0. (11.5.9)

If both F and its gradient vanish on Γp, then F is said to be strongly vanishing, i.e.,

F |Γp
= 0

∂F
∂qi

∣∣∣
Γp

= 0 = ∂F
∂pi

∣∣∣
Γp

⇔ F ≃ 0 (11.5.10)

where the symbol ≃ has been used to denote “strongly” vanishing. Suppose F (qi, pi) is a
weakly vanishing function, then

δF |Γp
=

∂F

∂qi
δqi +

∂F

∂pi
δpi

∣∣∣∣
Γp

=
∂F

∂qi
δqi +

∂F

∂pa
δpa +

∂F

∂pα
δpα

∣∣∣∣
Γp

=

(
∂F

∂qi
+
∂F

∂pα

∂gα
∂qi

)
δqi +

(
∂F

∂pa
+
∂F

∂pα

∂gα
∂pa

)
δpa (11.5.11)

must also be (weakly) vanishing, which means that

∂F

∂qi
+
∂F

∂pα

∂gα
∂qi

≈ 0

∂F

∂pa
+
∂F

∂pα

∂gα
∂pa

≈ 0 (11.5.12)

For gα now substitute Gα = pα − gα(qi, pa). Then, ignoring terms that are proportional
to Gα itself (which weakly vanishes), we can rewrite the conditions as

∂

∂qi

(
F −Gα

∂F

∂pα

)
≈ 0

∂

∂pi

(
F −Gα

∂F

∂pα

)
≈ 0 (11.5.13)
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where, in the last equation, we replace the index “a” by “i”, which we can do because

∂Gα
∂pβ

= δαβ.

We have proved a useful theorem: if F ≈ 0 then

F −Gα
∂F

∂pα
≃ 0. (11.5.14)

We want to apply this idea to the desired Hamiltonian, H(qi, pi).
Because H(qi, pi) is required to coincide with Hc on Γp, the function H−Hc ≈ 0 (i.e.,

is weakly vanishing) and therefore

H−Hc −Gα
∂H
∂pα

≃ 0. (11.5.15)

because Hc does not depend on pα. It follows that

∂Hc

∂qi
≈ ∂

∂qi

(
H−Gα

∂H
∂pα

)
def
=

∂H̃
∂qi

∂Hc

∂pi
≈ ∂

∂pi

(
H−Gα

∂H
∂pα

)
def
=

∂H̃
∂pi

(11.5.16)

Inserting these into (11.5.8) we find

ṗi ≈ −∂H̃
∂qi

− ∂Gα
∂qi

q̇α ≈ {pi, H̃+ q̇αGα}

q̇i ≈
∂H̃
∂pi

+
∂Gα
∂pi

q̇α ≈ {qi, H̃+ q̇αGα}. (11.5.17)

where the brackets are calculated treating the qi and pi as independent, and

H̃ =

(
H−Gα

∂H
∂pα

)
is defined on the entire phase space. The strong equivalence between H and Hc allows us
to use Hc instead of H̃ in the equations and we find

ṗi ≈ {pi,Hc + q̇αGα}
q̇i ≈ {qi,Hc + q̇αGα}. (11.5.18)

the canonical equations have been returned to their natural form in terms of Poisson brack-
ets. They show clearly how Gα, although weakly vanishing , do influence the dynamics.
The price we pay is that the equations of motion hold only weakly and the constraints
must eventually be imposed.

We will now address two issues:
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• we have assumed that the defining equations are solved so that it is possible to
express Gα = pα − gα(qi, pa) ≈ 0. In practice this may be a very tedious, if not
impossible task and sometimes it may not even be the desirable thing to do. Is it
possible to carry out the program above if the constraints are to be used instead in
some arbitrary form Φα, not necessarily Gα?

• The equations still contain the r undetermined functions q̇α. We will shortly see that
if constraints in some arbitrary form other than Gα are used then the q̇α must be
replaced by other functions, ηα (they are the analogues of the Lagrange multipliers):
in general, how many of them can be determined?

First, let us rewrite (11.5.18) in terms of arbitrary constraints Φα(qi, pi) ≈ 0, where Gα ≈ 0
is a solution. The functional form of Φα is ambiguous since, for example, if Φα ≈ 0
then Φ2

α ≃ 0, so we require that Φα is minimal in the sense that a weakly vanishing
function should be strongly equivalent to a linear combination of the constraints defining
the constraint surface. Differentiating Φα w.r.t. qi and pa,

∂Φα
∂qi

+
∂Φα
∂pβ

∂gβ
∂qi

≈ 0

∂Φα
∂pa

+
∂Φα
∂pβ

∂gβ
∂pa

≈ 0 (11.5.19)

The matrix Vαβ = ∂Φα/∂pβ must be non-degenerate, otherwise we could obtain some
constraints involving only q’s, which is impossible. This means that we could express

∂Gβ
∂qi

= V −1
βα

∂Φα
∂qi

∂Gβ
∂pa

= V −1
βα

∂Φα
∂pa

(11.5.20)

Insert these into (11.5.18) to get

ṗi = {pi,Hc} − q̇αV
−1
αβ

∂Φβ
∂qi

q̇i = {qi,Hc}+ q̇αV
−1
αβ

∂Φβ
∂pi

(11.5.21)

then, with µα = q̇βV
−1
βα and the primary Hamiltonian

Hp = Hc + µαΦα, (11.5.22)

we find that the time development of any function, A(qi, pi), on phase space is determined
by

Ȧ = {A,Hp}+
∂A

∂t
. (11.5.23)
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The µα play the role of multipliers, as the λl did in the Lagrangian theory. We will now
ask how many of them can be determined.

Consistency requires that the constraints should be preserved in time, i.e.,

Φ̇α = {Φα,Hp} = {Φα,Hc}+ µβ{Φα,Φβ} ≡ 0 (11.5.24)

Let us call Mαβ = {Φα,Φβ} and Kα = {Φα,Hc} then the µα are solutions of the r
equations

Mαβµβ = −Kα (11.5.25)

and much will depend on the matrix M̂ and the vector Kα.

• Suppose M̂ is non-degenerate and Kα ̸= 0, then

µα =M−1
αβKβ (11.5.26)

The µα are all fixed and the equations can be solved without ambiguity.

• If M̂ is non-degenerate, but Kα ≡ 0 then there are only the trivial solutions, µα = 0.

• Suppose M̂ is degenerate and Kα ̸= 0. If M̂ has rank m < r, then m of the µ’s
are determined and the remaining equations determine a certain number, l ≤ r−m,
of new relations which are all independent of the previous constraints Φα. If such
new relations appear, they further constrain the system and are called secondary
constraints. They restrict the motion to a hypersurface that is of even smaller
dimension than the original Γp.

• Finally, if M̂ is degenerate and Kα ≡ 0, non trivial solutions may exist. If m is the
rank of M̂ then r −m multipliers are weakly fixed.

What is important to bear in mind is that there are situations in which new constraints,
the secondary constraints, may emerge. If l new constraints appear, the new constraint
hypersurface is the surface defined by the r + l weak relations

Φα ≈ 0, α ∈ {1, ...r}

χρ ≈ 0, ρ ∈ {1, ...l} (11.5.27)

For consistency, we must now require that the secondary constraints are preserved in time,
which implies the new set of relations

{χρ,Hc}+ µβ{χρ,Φβ} ≈ 0 (11.5.28)

where the weak equality obviously refers to the new hypersurface determined by the r+ l
relations. in (11.5.27). Again, these relations are either fullfilled or lead to new and
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independent constraints, the tertiary constraints that, together with the primary and
secondary constraints, define a new hypersurface of even lower dimension. In the latter
case, one carries out the iterative procedure again, as before, on this new hypersurface.
The process ends after a fininte number of steps. This is the Dirac-Bergman algorithm.

11.5.1 Dirac Bracket

One of the important goals of constrained dynamics is to count the true physical degrees
of freedom. Let us distinguish between two kinds of constraints: a constraint, Ψ, is first
class if it Poisson commutes weakly with all the other constraints

{Ψ,Φα} ≈ 0 (11.5.29)

otherwise it is second class. Let Υρ denote all second class constraints on a system, then

Cρλ = {Υρ,Υλ} (11.5.30)

is non-degenerate and we may define a Dirac bracket as follows:

{F,G}∗ = {F,G} − {F,Υρ}C−1
ρλ {Υλ, G} (11.5.31)

The Dirac bracket, satisfies all the conditions of Poisson bractet, viz.,

{F,G}∗ = −{G,F}∗

{F,GH}∗ = {F,G}∗H +G{F,H}∗

{F, {G,H}∗}∗ + {H, {F,G}∗}∗ + {G, {H,F}∗}∗ = 0 (11.5.32)

and also
{F,Υα}∗ = 0 (11.5.33)

for any F and Υα. Furthermore, the brackets are unchanged if the set {Υλ} is replaced
by any {Υ′

λ} for which the equations Υλ ≈ 0 and Υ′
λ ≈ 0 define the same constrained

hypersurface.
We state without proof the following result: if there are n coordinate functions, r first

class constraints and s second class constraints, the true dynamical degrees of freedom of
the system are

f = n− r − s

2
(11.5.34)

This reflects the fact that two second class constraints are required to eliminate one degree
of freedom. It can be proved that the Dirac bracket is equivalent to the Poisson bracket
calculated using a (reduced) set of unconstrained canonical variables. It is the Dirac
bracket that gets turned into the commutator upon quantization.
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11.5.2 Examples

For our first example, let us examine a simple system described by the Lagrangian

L = a(xẏ − yẋ)− V (x, y), (11.5.35)

where a is a positive, real constant. The configuration space consists of the coordinates
(x, y), but there is no term that is quadratic in the velocities. This does not prevent us
from writing the Euler-Lagrange equations of motion,

−2aẏ +
∂V

∂x
= 0 = 2aẋ+

∂V

∂y
. (11.5.36)

However, if we compute the momenta,

px =
∂L
∂ẋ

= −ay, py =
∂L
∂ẏ

= ax (11.5.37)

we find that they do not contain the velocities and therefore neither ẋ nor ẏ can be
eliminated from the Lagrangian. Therefore the two relations above should be thought of
as primary constraints, Φ1 = px + ay ≈ 0 and Φ2 = py − ax ≈ 0. We have the canonical
Hamiltonian,

Hc = pxẋ+ pyẏ − L = V (x, y) (11.5.38)

and the primary Hamiltonian must be defined with the help of two Lagrange multipliers,
µ1 and mu2,

Hp = Hc + µ1(px + ay) + µ2(py − ax) = µ1(px + ay) + µ2(py − ax) + V (x, y). (11.5.39)

The canonical equations of motion will now read read

ẋ = µ1, ẏ = µ2

ṗx = aµ2 −
∂V

∂x
, ṗy = −aµ1 −

∂V

∂y
, (11.5.40)

but consistency of our primary constraints requires that

Φ̇1 = ṗx + aẏ = 2aµ2 −
∂V

∂x
≈ 0 (11.5.41)

and

Φ̇2 = ṗy − aẋ = −2aµ1 −
∂V

∂y
≈ 0. (11.5.42)
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These are not, however, secondary constraints because they can be solved to determine
µ1,2. We find

µ1 ≈ − 1

2a

∂V

∂y
, µ2 ≈

1

2a

∂V

∂x
(11.5.43)

and so we end up with a system of just two primary constraints. The Hamiltonian can be
rewritten by replacing µ1,2 for their values determined above,

Hp = − 1

2a

∂V

∂y
(px + ay) +

1

2a

∂V

∂x
(py − ax) + V (x, y) (11.5.44)

The canonical equations are now

ẋ ≈ − 1

2a

∂V

∂y
, ẏ ≈ 1

2a

∂V

∂x

ṗx ≈ −1

2

∂V

∂x
, ṗy ≈ −1

2

∂V

∂y
(11.5.45)

and the first pair will be recognized as the Euler-Lagrange equations.

The primary constraints are not first class but second class; in fact it is easy to compute
the matrix

Cλρ = {Φλ,Φρ} = 2a

(
0 1
−1 0

)
(11.5.46)

whose inverse appears in the definition of the Dirac bracket between observables. For
instance, the non-vanishing fundamental Dirac brackets for this system are

{x, y}∗ = − 1

2a

{x, px}∗ = {y, py}∗ =
1

2
{px, py}∗ = −a

2
(11.5.47)

They are replaced by commutators in Dirac’s quantization scheme. This system had two
configuration space variables and two second class constraints, giving it f = 2 − 2/2 = 1
degrees of freedom.

Next consider the example of the pendulum described in the previous chapter by the
Lagrangian

L =
m

2
(ẋ2 + ẏ2)−mgy + λ(t)(

√
x2 + y2 − l) (11.5.48)

The configuration space consists of the three coordinates (x, y, λ). Computing the mo-
menta,

px = mẋ, py = mẏ, pλ = 0, (11.5.49)
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we see that only λ̇ cannot be determined in terms of momenta. There is one primary
constraint, i.e., Φ = pλ ≈ 0, so we define the primary Hamiltonian using a multiplier µ

Hp = Hc + µΦλ = pxẋ+ pyẏ + µpλ − L

=
p2x
2m

+
p2y
2m

+mgy + µpλ − λ(
√
x2 + y2 − l) (11.5.50)

and the canonical equations are

ẋ ≈ px
m

ẏ ≈ py
m

λ̇ ≈ µ

ṗx ≈ λx√
x2 + y2

ṗy ≈ −mg + λy√
x2 + y2

ṗλ ≈
√
x2 + y2 − l (11.5.51)

The last of course is the consistency condition on the primary constraint. We encounter
the third possibility listed before, the primary constraint pλ ≈ 0 gives rise to secondary
constraints

χ1 =
√
x2 + y2 − l ≈ 0

χ2 = xpx + ypy ≈ 0

χ3 =
p2x + p2y
m

−mgy + λl ≈ 0 (11.5.52)

and
{χ3,Hp} = χ4 = −3gpy + µl ≈ 0 ⇒ µ ≈ 3gpy/l. (11.5.53)

when consistency is required order by order according to the Dirac-Bergman algorithm.
One can check easily that all the constraints are second class. There are four of them,
so the number of dynamical degrees of freedom of this problem is f = 3 − 4/2 = 1. We
already know that this is the angle made with the vertical (or horizontal) axis.5

5Problem: Evaluate the matrix Cρλ defined earlier and compute the Dirac brackets between pairs of
{x, y, λ, px, py, pλ}.
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For a final example, consider the Lagrangian

L =
1

2
q̇21 + q̇1q2 + (1− α)q1q̇2 +

β

2
(q1 − q2)

2 (11.5.54)

The configuration space now consists of the coordinates (q1, q2) and the conjugate momenta

p1 = q̇1 + q2
p2 = (1− α)q1 (11.5.55)

so q̇2 cannot be determined in terms of the momenta. The canonical Hamiltonian is
determined to be

Hc =
1

2
(p1 − q2)

2 − β

2
(q1 − q2)

2 (11.5.56)

and the second equation in (11.5.55) is a primary constraint, Φ, so we define the primary
Hamiltonian

Hp = Hc + µΦ

=
1

2
(p1 − q2)

2 − β

2
(q1 − q2)

2 + µ[p2 − (1− α)q1] (11.5.57)

giving the canonical equations as

q̇1 = p1 − q2, q̇2 = µ
ṗ1 = β(q1 − q2) + µ(1− α), ṗ2 = (p1 − q2)− β(q1 − q2) (11.5.58)

The primary constraint then leads to the following secondary constraints,

χ1 = α(p1 − q2)− β(q1 − q2) ≈ 0

χ2 = β[(p1 − q2)− α(q1 − q2)] + (α2 − β)µ ≈ 0 (11.5.59)

If α2 = β then it is straightforward to show that all three constraints are first class and
µ cannot be determined.6 The system has no degrees of freedom. If α2 ̸= β then χ2 ≈ 0
may be used to determine µ,

µ ≈ β

(β − α2)
[(p1 − q2)− α(q1 − q2)] (11.5.60)

and the remaining two constraints have the following Poisson bracket

{Φ, χ1}P.B = α2 − β (11.5.61)

Consider two special cases:

6Problem: Work out the Poisson algebra of the constraints and show that all the constraints are first
class if α2 = β.
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• If α = 0 (β ̸= 0) then we find that µ ≈ p1 − q2 and

Hp =
1

2
(p1 − q2)

2 − β

2
(q1 − q2)

2 + (p1 − q2)(p2 − q1). (11.5.62)

Thus, from the constraints, p2 ≈ q1 and q1 ≈ q2 the equations of motion become

q̇1 ≈ q̇2 ≈ ṗ1 ≈ ṗ2 ≈ µ ≈ (p1 − q2) (11.5.63)

in this special case.

• If β = 0 (α ̸= 0) then µ = 0 and

Hp =
1

2
(p1 − q2)

2. (11.5.64)

We find the equations of motion q̇2 ≈ ṗ1 ≈ 0 and

q̇1 ≈ ṗ2 ≈ p1 − q2 ≈ 0 (11.5.65)

where the last weak equality follows because of the primary constraint.

There are two second class constraints in general and this implies that the system has one
degree of freedom.7

7Problem: Evaluate the matrix Cρλ defined earlier and compute the Dirac brackets between pairs of
{q1, q2, p1, p2} for the general case in which α2 ̸= β.



Chapter 12

Canonical Transformations

Hamilton’s equations do not simplify the problems of mechanics over Euler’s equations. It
is true that Hamilton’s equations are first order, but there are twice as many of them and
they are also coupled differential equations that tend to maintain the same level of difficulty
as their second order counterparts. Where then is the new mathematical structure useful?
We have already seen that it lends itself particularly to perturbation approaches. Its main
advantage, however, lies in the fact that it seems to provide a natural framework for the
application of mechanics in various other areas of physics. For example, it provides the
basis for the formulation of statistical mechanics and quantum mechanics. It also often
allows for a certain kind of transformation of the fundamental variables of the theory to
more transparent variables (these are the canonical transformations we will discuss in this
chapter). Often, new variables can shed new light on a problem and in some cases provide
the clues that lead to its solution.

12.1 Hamilton’s equations from a Variational Principle

Let us return to Hamilton’s 2n first order equations governing the dynamics of physical
systems. In terms of generalized coordinates and momenta, they are

ṗi = −∂H
∂qi

q̇i =
∂H
∂pi

. (12.1.1)

Recall that the generalized momenta are defined in terms of the Lagrangian

pi =
∂L
∂q̇i

(12.1.2)

263
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and the Legendre transformation leading from L to H requires the system to be regular,
i.e., that the determinant of the Hessian is non-vanishing. The Legendre transformation
can be undone and the Lagrangian expressed as

L = piq̇i −H(pi, qi) (12.1.3)

where pi are expressed in terms of the velocities. Euler’s equations are then obtained from
a variation of the action

S =

∫ 2

1
dt[piq̇i −H(pi, qi)] (12.1.4)

holding the variations of qi(t) fixed at the endpoints. This is sufficient in the Lagrangian
formulation.

At this point we may ask if it is possible to use the action in the form (12.1.3), with L
viewed as a function of coordinates and momenta, to directly obtain Hamilton’s equation
from a variational principle. Because, in Hamilton’s formulation, the momenta are à
priori independent of the coordinates (unlike the velocities in Lagrange’s formultion), the
condition that the variations should vanish at the boundary means that we must explicitly
hold both pi and qi fixed there. It is easy to see that we then get

∂L
∂pi

− d

dt

∂L
∂ṗi

= 0

∂L
∂qi

− d

dt

∂L
∂q̇i

= 0 (12.1.5)

But, since H contains no time derivatives of the coordinates and momenta, these imply
preciesly Hamilon’s equations

q̇i =
∂H
∂pi

ṗi = −∂H
∂qi

. (12.1.6)

Note, however, that it appears we have had to pay a price by enlarging the number of
coordinates whose variations are required to vanish at the boundaries from n to 2n. This
is not really so because by keeping pi also fixed at the boundaries we avoid a contribution
from a term of the form

d

dt

(
∂L
∂ṗi

δpi

)
(12.1.7)

but, because the Lagrangian does not contain derivatives of the momenta, such a term
never appears and holding pi fixed at the end points is redundant. Indeed, a careful look
at the derivation of Euler’s equation reveals that one only needs to get rid of the term

d

dt

(
∂L
∂q̇i

δqi

)
(12.1.8)
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so only qi must be held fixed at the boundaries as before.

12.2 The Generating Function

While the canonical equations of motion do not provide a simpler setting for mechanical
problems than Euler’s equations, they do suggest an alternative approach. To motivate
this approach, let us consider a system system, in which the Lagrangian does not depend
on one of the genealized coordinates (say qk), i.e., L = L(q1, . . . , q̂k, . . . qn, q̇i, t). Spatial
translation invariance of the action would then imply that the momentum, pk, conjugate
to qk is a constant of the motion, ṗk = 0. Notice that, in this case, the Hamiltonian is also
independent of qk, H = H(q1, . . . , q̂k, . . . , qn, pi). Coordinates that do not apear explicitly
in the Lagrangian (or Hamiltonian) are called cyclic. If all the coordinates are cyclic then
H = H(pi) and

ṗi = −∂H
∂qi

= 0, q̇i =
∂H
∂pi

= ωi (constants) (12.2.1)

(the ωi being functions of only the pi) and it follows that

qi(t) = qi,0 + ωi(t− t0) (12.2.2)

constitutes a complete solution to the problem.
This leads us to wonder if there always exists a set of generalized coordinates and mo-

menta that are cyclic. This amounts to turning the observation in the previous paragraph
around to ask if every solution should in fact correspond to precisely such a set. So far we
have considered only coordinate transformations (also known as point transformations),

Qi = Qi(qj , t), (12.2.3)

but the Hamiltonian formulation allows us to consider more general transformations in-
volving all of phase space,

qi → Qi = Qi(qj , pj , t)

pi → Pi = Pi(qj , pj , t) (12.2.4)

because it treats the coordinates and momenta on an equal footing, as independent vari-
ables.

Not all such transformations will preserve the form of the canonical equations of mo-
tion. We therefore define

Canonical Transformations are transformations in phase-space that preserve Hamilton’s
equations.
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To see what the definition implies, let the transformation in (12.2.4) take the Hamiltonian
to

H(qi, pi, t) → K(Qi, Pj , t). (12.2.5)

If it preserves the canoncial equations of motion, we must have

Q̇i =
∂K
∂Pi

Ṗi = − ∂K
∂Qi

. (12.2.6)

But because Hamilton’s equations are derivable from an action principle it is sufficient
(but not necessary) for both the action

S =

∫ 2

1
dt [piq̇i −H(qi, pi, t)] (12.2.7)

as well as the action

S′ =

∫ 2

1
dt
[
PiQ̇i −K(Qi, Pi, t)

]
. (12.2.8)

to be stationary under variations, i.e., δS = 0 = δS′. A sufficient (but again, not neces-
sary) condition for this to hold is that

λ[piq̇i −H(qi, pi, t)] = PiQ̇i −K(Qi, Pi, t) +
dF

dt
(12.2.9)

where λ ̸= 0 is some constant and F is any arbitrary function of the phase space variables
and time, given either in terms of the old variables or the new. It is called the generating
function of the transformation. In general λ is taken to be unity, otherwise the canonical
transformation is called an extended transformation. If a transformation is known to be
canonical, then F may be obtained simply by comparing the two sides of (12.2.9). Viewing
F as a function of the qi and pi,

λ[piq̇i −H] = Pj

[
∂Qj
∂qi

q̇i +
∂Qj
∂pi

ṗi +
∂Qj
∂t

]
−K +

∂F

∂qi
q̇i +

∂F

∂pi
ṗi +

∂F

∂t
(12.2.10)

and comparing terms we find

λpi = Pj
∂Qj
∂qi

+
∂F

∂qi

0 = Pj
∂Qj
∂pi

+
∂F

∂pi
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λH = K − Pj
∂Qj
∂t

− ∂F

∂t
(12.2.11)

These are sufficient to determine F (qi, pi, t). However, it is also true that any choice of
F will determine a canonical transformation. It turns out that F is useful only when in
can be expressed in special ways in terms of functions depending on half of the variables
from the old set and half from the new set. We now consider four particularly useful
possibilities.

(Type I) F = F1(qi, Qi, t):
Suppose that we take the generating function to depend on the old coordinates and the
new coordinates, but not the momenta (old or new). Beginning with (12.2.9), we have

λ[piq̇i −H] = PiQ̇i −K +
∂F1

∂qi
q̇i +

∂F1

∂Qi
Q̇i +

∂F1

∂t
(12.2.12)

which, upon comparison, yields

λpi =
∂F1

∂qi

Pi = −∂F1

∂Qi

λH = K − ∂F1

∂t
(12.2.13)

These are 2n equations which determine the transformations as follows. The first equa-
tion expresses pi in terms of the variables qi, Qi and t. It can be inverted to obtain
Qi = Qi(qj , pj , t). Once the new coordinates are known functions of the old phase-space
variables, the second equation gives the new momenta. The last equation returns the new
Hamiltonian, K (jokingly referred to as the “Kamiltonian”), in terms of the old. Notice
that they are equal up to a scaling and a partial time derivative of F , i.e., they are identical
upto a scale if F has no explicit time dependence.

(Type II) F = F2(qi, Pi, t)− PiQi:
If we take a generating function of this form then

λ[piq̇i −H] = −K − ṖiQi +
∂F2

∂qi
q̇i +

∂F2

∂Pi
Ṗi +

∂F2

∂t
(12.2.14)

gives

λpi =
∂F2

∂qi

Qi =
∂F2

∂Pi
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λH = K − ∂F2

∂t
. (12.2.15)

They are used to obtain the transformations as follows. The first equation gives pi in terms
of qi, Pi and t. It can be inverted to obtain Pi = Pi(qj , pj , t). Once the new momenta are
known as functions of the old phase-space variables, the second equation gives the new
coordinates. As before, the new Hamiltonian is identical to the old upto a scale if F2 is
not explicitly time dependent.

(Type III) F = F3(pi, Qi, t) + λpiqi:
For a generating function of this form,

λ[−ṗiqi −H] = −K + PiQ̇i +
∂F3

∂pi
ṗi +

∂F3

∂Qi
Q̇i +

∂F3

∂t
(12.2.16)

and so

λqi = −∂F3

∂pi

Pi = −∂F3

∂Qi

λH = K − ∂F3

∂t
. (12.2.17)

Thus, the first equation allows us to obtain Qi = Qi(qj , pj , t) by inversion and the second
equation then gives Pi = Pi(qj , pj , t). The relationship between H and K is the same as
before.

(Type IV) F = F4(pi, Pi, t) + λpiqi − PiQi:
For a generating function of this form,

λ[−ṗiqi −H] = −K − ṖiQi +
∂F4

∂pi
ṗi +

∂F4

∂Pi
Ṗi +

∂F3

∂t
(12.2.18)

and so

λqi = −∂F4

∂pi

Qi =
∂F4

∂Pi

λH = K − ∂F4

∂t
. (12.2.19)

The first equation allows us to obtain Pi = Pi(qj , pj , t) by inversion, the second then gives
Qi = Qi(qj , pj , t) and the relationship between H and K is similar to what we had before.
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It’s easy to see that invertible coordinate transformations are a particular class of
canonical transformations generated by a transformation of type II with

F2(qi, Pi, t) = Pifi(qj , t) (12.2.20)

and λ = 1. Using the equations appropriate to this case, we see that

pi =
∂F2

∂qi
= Pj

∂fj
∂qi

Qi =
∂F2

∂Pi
= fj(qi, t) (12.2.21)

Clearly, the transformations of the coordinates must be invertible, i.e., the Jacobian matrix
Jij = ∂ifj must be invertible. In that case, inverting the first equation gives the new
momenta

Pi = J−1
ij (q, t)pj . (12.2.22)

In particular, the transformation generated by

F2(qi, Pi, t) = qiPi (12.2.23)

exchanges is the identity transformation. On the other hand, the following generating
function of type I,

F1(qi, Qi, t) = qiQi (12.2.24)

with λ = 1 exchanges coordinates and momenta,

pi =
∂F1

∂qi
= Qi

Pi = −∂F1

∂Qi
= −qi, (12.2.25)

thereby emphasizing the fact that the coordinates and momenta are on an equal footing
in the Hamiltonian approach.

12.3 Examples

The Harmonic Oscillator: Consider how a canonical transformation may actually help
solve a problem by taking the case of a simple harmonic oscillator, whose Hamiltonian is
given by

H =
p2

2m
+

1

2
mω2q2 (12.3.1)
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The fact that the Hamiltonian is a quandratic function of both the coordinates and the
momenta suggests a transformation of the form

p = f(P ) cosQ

q =
f(P )

mω
sinQ (12.3.2)

We want to determine f(P ) so that it this is a canonical transformation, therefore let us
find a generating function for it. Eliminating f(P ), we see that

p = mωq cotQ. (12.3.3)

Therefore the generating function must be of type I and, in fact, to recover (12.3.3) we
must have

F1(q,Q, t) =
1

2
mωq2 cotQ. (12.3.4)

The generating function will now determine f(P ). Using the equations appropriate to a
type I generating functional we find

p =
∂F1

∂q
= mωq cotQ

P = −∂F1

∂Q
=

1

2
mωq2 csc2Q (12.3.5)

From the first equation one finds that

Q = tan−1 mωq

p
, (12.3.6)

and similarly from the second,

P =
1

2mω

(
p2 +m2ω2q2

)
. (12.3.7)

Putting (12.3.6) and (12.3.7) together

cosQ =
p√

p2 +m2ω2q2
=

p√
2mωP

sinQ =
mωq√

p2 +m2ω2q2
=

mωq√
2mωP

, (12.3.8)

which may be inverted to get

q =

√
2P

mω
sinQ



12.3. EXAMPLES 271

p =
√
2mωP cosQ (12.3.9)

Clearly then, f(P ) =
√
2mωP . Because F1(q,Q, t) is time independent, the new Hamil-

tonian is no different from the original. Re-expressed in terms of the new coordinates we
find

K =
1

2m
(p2 +m2ω2q2) = ωP (12.3.10)

Q is therefore a cyclic coordinate and P is a constant related to the total energy, E, of
the oscillator. Because Q is cyclic, Q(t) = ωt+Q0 and therefore

q(t) =

√
2E

mω2
sin(ωt+Q0) (12.3.11)

is the desired solution. While the solution was obvious after the canonical transformation,
we must bear in mind that finding the transformation that leads to a maximal number of
cyclic coordinates is generally a difficult problem, which can, as in this case, be a more
difficult enterprise than obtaining a solution of Euler’s (or the canonical) equations for the
system. Nevertheless it is a novel approach to problem solving.1

Another interesting canonical transformation for the harmonic oscillator is

Q =

√
mω

2

(
q +

ip

mω

)
, P = i

√
mω

2

(
q − ip

mω

)
(12.3.12)

To verify that this is a canonical transformation it is only necessary to check the funda-
mental Poisson brackets: the only non-vanishing bracket is

{Q,P} =
imω

2

{
q +

ip

mω
, q − ip

mω

}
= {q, p} = 1 (12.3.13)

Because the transformation is time independent, the Hamiltonian for the harmonic oscil-
lator becomes

K = H = −iωQP (12.3.14)

and the equations of motion read

Q̇ = −iωQ, Ṗ = iωP. (12.3.15)

1The quantization procedure is sadly not invariant under canonical transformations and there can be
differing quantizations of the same system, depending on the phase-space variables chosen. For example,
the quantum harmonic oscillator quantized in the (q, p) variables is known to have energy eigenvalues
En =

(
n+ 1

2

)
ℏω. Consider the time independent Schroedinger’s equation for the same oscillator in the

(Q,P ) system,

Eψ = −iℏω ∂ψ
∂Q

⇒ ψ = ei
EQ
ℏω

Because Q is a compact coordinate of period 2π, the wave function is single valued only if En = nℏω for
whole numbers n, since P and therefore E is non-negative. Notice the absence of the vacuum energy 1

2
ℏω.
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It is now not clear what the Lagrangian system leading to this form of K might corre-
spond to because of the impossibility of exchanging the new momentum for a velocity.
Nevertheless, we may ask what generating function is responsible for this transformation.
Applying the conditions in (12.2.11) we find

∂F

∂q
= λp−

√
mω

2
P =

(
λ− 1

2

)
p− imωq

2
∂F

∂p
= − i√

2mω
P =

1

2

(
q − ip

mω

)
(12.3.16)

Integrating the first equation gives

F =

(
λ− 1

2

)
pq − imωq2

4
+ f(p) (12.3.17)

where f(p) is as yet undetermined. To find an equation for f(p) take a derivative with
respect to p,

∂F

∂p
=

(
λ− 1

2

)
q + f ′(p) (12.3.18)

and compare it with the second of the equations obtained using (12.2.11). They are
compatible if λ = 1 and

f ′(p) = − ip

2mω
⇒ f(p) = − ip2

4mω
+ const. (12.3.19)

and so

F (q, p) =
1

2
qp− imωq2

4
− ip2

4mω
+ const. (12.3.20)

It is not in any of the standard forms given earlier, but can be put in one of them. For
example, if we want to express the generating functional in terms of F2(q, P ), we could
eliminate p in favor of q and P . But first, recall that

F2(q, P ) = PQ+ F =
1

2
(qp+QP ) (12.3.21)

Then, by direct substitution we find that

F2(q, P ) =
√
2mωqP +

i

2
(P 2 −mωq2) (12.3.22)

generates the transformation.
It has probably become clear that while whether or not a transformation is canonical

has little to do with the physical system, the usefulness of a particular transformation
depends on the particularities of the system. Consider the transformation

Q = ln(1 +
√
q cos p), P = 2(1 +

√
q cos p)

√
q sin p (12.3.23)
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It is not difficult to show that the only non-vanishing Poisson bracket is {Q,P} = 1, so
it is a canonical transformation. To find a generating function for this transformation we
must solve

λp = P
∂Q

∂q
+
∂F

∂q
= sin p cos p+

∂F

∂q

0 = P
∂Q

∂p
+
∂F

∂p
= −2q sin2 p+

∂F

∂p
H = K (12.3.24)

(the last follows because the transformation is time independent). As before, when the
solution of the first,

F (q, p) = λpq − q sin p cos p+ f(p), (12.3.25)

is inserted into the second we get

−2q sin2 p+ λq − q cos2 p+ q sin2 p+ f ′(p) = (λ− 1)q + f ′(p) = 0 (12.3.26)

which is solved by λ = 1 and f(p) = const. The generating function is

F (q, p) = pq − q sin p cos p (12.3.27)

and we will now express it in terms of F3(p,Q) via

F3(p,Q) = F (q, p)− pq (12.3.28)

where (q, P ) have been eliminated in favor of (p,Q). It is not difficult to see that

q = (eQ − 1)2 sec2 p, P = 2eQ(eQ − 1) tan p (12.3.29)

which gives
F3(p,Q) = −(eQ − 1)2 tan p (12.3.30)

from which the transformations in (12.3.29) could be obtained by taking derivatives ap-
propriate to the type III generating function.

As a final example, consider the transformation

Q = ln

(
1

q
sin p

)
, P = q cot p. (12.3.31)

We may verify that it is a canonical transformation by simply evaluating the fundamental
Poisson brackets. We find that the only non-vanishing bracket is

{Q,P} =
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q
=

1

q
(q csc2 p)− cot2 p ≡ 1 (12.3.32)
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so the transformation is canonical. To find a generating function for this transformation
we must solve (12.2.11),

λp = P
∂Q

∂q
+
∂F

∂q
= − cot p+

∂F

∂q

0 = P
∂Q

∂p
+
∂F

∂p
= −q cot2 p+ ∂F

∂p
H = K (12.3.33)

(the last follows because the transformation is time independent). Integrating the first
equation

F (q, p) = λpq + q cot p+ f(p) (12.3.34)

where f(p) is an arbitrary function of p. Inserting this into the second equation implies
that

λq − q csc2 p+ f ′(p)− q cot2 p = (λ− 1)q + f ′(p) = 0 (12.3.35)

Evidently, λ = 1 and f(p) = const. solves this equation. Therefore the transformation is
generated by

F (q, p) = pq + q cot p (12.3.36)

Let us put this in the form F4(q,Q) by eliminating (q,Q) in favor of (p, P ). We find

q = P tan p, Q = ln
(cos p

P

)
(12.3.37)

which give

F4(p, P ) = F − pq + PQ = P
[
1 + ln

(cos p
P

)]
, (12.3.38)

from which (12.3.37) are obtained by taking the derivatives appropriate to generating
functions of type IV.

12.4 The Symplectic Approach

If a canonical transformation is independent of time it is called a restricted canonical
transformation. Let

Pi = Pi(qj , pj), Qi = Qi(qj , pj) (12.4.1)

be a restricted transformation and let K(Q,P ) be the Hamiltonian of the system ex-
pressed in terms of the new phase space coordinates. Assume that the transformations
are invertible then

Q̇i =
∂Qi
∂qj

q̇j +
∂Qi
∂pj

ṗj (12.4.2)
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and therefore

{Qi,K} =
∂Qi
∂qj

{qj ,H}+ ∂Qi
∂pj

{pj ,H} (12.4.3)

or,
∂K
∂Pi

=
∂Qi
∂qj

∂H
∂pj

− ∂Qi
∂pj

∂H
∂qj

(12.4.4)

But, because K ≡ H, we could rewrite the left hand side of the equation to get

∂H
∂qj

∂qj
∂Pi

+
∂H
∂pj

∂pj
∂Pi

=
∂Qi
∂qj

∂H
∂pj

− ∂Qi
∂pj

∂H
∂qj

(12.4.5)

This shows (by comparing terms) that

∂qj
∂Pi

= −∂Qi
∂pj

∂pj
∂Pi

= +
∂Qi
∂qj

(12.4.6)

Doing the same things for the second set of canonical equations (for Ṗi), we get2

∂pj
∂Qi

= −∂Pi
∂qj

∂qj
∂Qi

= +
∂Pi
∂pj

(12.4.7)

The conditions (12.4.6) and (12.4.7) are called the direct conditions for a restricted
canonical transformation.

We have shown that the direct conditions are necessary for a transformation to be a
canonical transformation, we now show that they are sufficient.3 Suppose that the direct
conditions hold, then

{Qi, Qj} =
∂Qi
∂qk

∂Qj
∂pk

− ∂Qi
∂pk

∂Qj
∂qk

=
∂pk
∂Pi

∂Qj
∂pk

+
∂qk
∂Pi

∂Qj
∂qk

=
∂Qj
∂Pi

≡ 0 (12.4.8)

where we have used the direct conditions. It is straightforward also that {Pi, Pj} ≡ 0. It
remains to evaluate

{Qi, Pj} =
∂Qi
∂qk

∂Pj
∂pk

− ∂Qi
∂pk

∂Pj
∂qk

.

2Problem: Do it!
3If a mathematical statement says that condition A implies the condition B (if A then B or A ⇒ B)

then A is “sufficient” for B and B is “necessary” for A. The statement A ⇔ B says that both A and B
are necessary and sufficient for each other: they are identical statements.
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=
∂Qi
∂qk

∂qk
∂Qj

+
∂Qi
∂pk

∂pk
∂Qj

=
∂Qi
∂Qj

≡ δij (12.4.9)

where use has once again been made of the direct conditions. We have thus proved that
a time independent transformation in phase space implies and is implied by the direct
conditions.

The restricted transformations can be put in a very elegant and suggestive form if we
write them out in the language of matrices. Let ξ⃗ be a “position vector” in phase space,

ξ⃗ = (q1, q2, ...qn, p1, p2, ..., pn) (12.4.10)

Let us think of it as a column matrix and designate an arbitrary component of this vector
by ξα (greek indices), where α ∈ {1, 2, ..., n, n + 1, ..., 2n}. Evidently, ξi = qi if i ≤ n and
ξn+i = pi. Consider the 2n× 2n matrix ω̂ defined by4

ω̂(2n×2n) =

[
0 +1n×n

−1n×n 0

]
, (12.4.12)

which satisfies the conditions

ω̂ · ω̂ = −12n×2n, ω̂ · ω̂T = ω̂T · ω̂ = +12n×2n, (12.4.13)

where

ω̂T =

[
0 −1n×n

+1n×n 0

]
(12.4.14)

is the transpose of ω̂. In terms of indices these properties are expressed as

ω̂αγω̂γβ = −δαγ (12.4.15)

and

ω̂αγω̂βγ = ω̂γαω̂γβ = δαβ. (12.4.16)

Acting on ξ⃗,

[ω̂ · ξ⃗]α = ω̂αβξβ, (12.4.17)

4It is sometimes more convenient to think of the matrix in terms of its components:

ω̂αβ =


δαβ β − α = n

−δαβ α− β = n

0 otherwise

. (12.4.11)
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ω̂ takes qi to pi and pi to −qi, and the direct conditions for a restricted canonical trans-
formation take on a simple form when they are written in terms of ω̂:

∂ηα
∂ξβ

= ω̂αγω̂βδ
∂ξδ
∂ηγ

. (12.4.18)

Poisson brackets can be expressed in terms of ω̂. The fundamental Poisson brackets are

{ξα, ξβ} = ω̂αβ (12.4.19)

and, in fact, given any two functions on phase space, A(ξ) and B(ξ), their Poisson brackets

{A,B} =
∂A

∂ξi

∂B

∂ξn+i
− ∂A

∂ξn+i

∂B

∂ξi
(12.4.20)

may also be expressed as

{A,B} = ω̂γδ
∂A

∂ξγ

∂B

∂ξδ
. (12.4.21)

In particular, suppose we make a time independent transformation ξ → η, then treating
the new coordinates as functions on phase space and using the above equation it follows
that

{ηα, ηβ} = ω̂γδ
∂ηα
∂ξγ

∂ηβ
∂ξδ

(12.4.22)

If the transformation is a restricted canonical transformation, then

{ηα, ηβ} = = ω̂γδ
∂ηα
∂ξγ

∂ηβ
∂ξδ

= ω̂γδω̂ασω̂γλ
∂ξλ
∂ησ

∂ηβ
∂ξδ

= ω̂ασδδλ
∂ξλ
∂ησ

∂ηβ
∂ξδ

= ω̂ασ
∂ξδ
∂ησ

∂ηβ
∂ξδ

= ω̂ασ
∂ηβ
∂ησ

= ω̂ασδβσ
= ω̂αβ (12.4.23)

where we have used ω̂ · ω̂T = 1. It follows that a restricted canonical transformation,
ξ → η preserves the form of ω̂, i.e.,

ω̂αβ = ω̂γδ
∂ηα
∂ξγ

∂ηβ
∂ξδ

(12.4.24)
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Obviously the converse also holds true because the steps in the above proof are all re-
versible.

Let us put the condition in matrix form. Call Ĵ the Jacobian matrix,

Ĵαβ =
∂ηα
∂ξβ

(12.4.25)

then our necessary (and sufficient, since it is trivial to reverse the above steps) condition
for the transformation to be canonical is that

ω̂ = Ĵ ω̂ ĴT (12.4.26)

where ĴT is the transpose of Ĵ . A restricted canonical transformation preserves ω̂. In the
theory of continuous groups, the matrix ω̂ is called the symplectic form and transfor-
mations that preserve the symplectic form are called symplectic transformations. Re-
stricted canonical transformations are therefore symplectic transformations and (12.4.26)
is called the symplectic condition. As an example, the transformation

ηα = Jαβξβ (12.4.27)

where ξ = (q, p), η = (Q,P ) and Ĵ is a two dimensional rotation matrix, satisfies the
symplectic condition and the transformation is therefore canonical.5

We have thus proved: Restricted Canonical Transformations ⇔ Direct Conditions ⇔
Symplectic Condition.

12.5 Infinitesimal Transformations

Let us now focus only infinitesimal canonical transformations,

ξα → ηα(ξ) = ξα + δξα (12.5.1)

i.e.,

qi → Qi = qi + δqi, pi → Pi = pi + δpi. (12.5.2)

A suitable generating function for the transformation, which we take for convenience to
be of type II, would be of the form

F2 = qiPi + εG(qi, Pi, t) (12.5.3)

5Problem: Prove this.
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(we are not restricting ourselves to time independent transformations but only to in-
finitesimal transformations, and ε is the small parameter of the transformation). From
the equations appropriate to type II generating functions, we have

Qi =
∂F2

∂Pi
= qi + ε

∂G
∂Pi

pi =
∂F2

∂qi
= Pi + ε

∂G
∂qi

(12.5.4)

If we restrict ourselves to the first order in ε, then we could replace Pi in G above by pi
because the difference is already of order ε. Then

Qi = qi + ε
∂G
∂pi

Pi = pi − ε
∂G
∂qi

(12.5.5)

Now we will show that any infinitesimal transformation (not simply a restricted transfor-
mation) obeys the symplectic condition. To do so, it’s convenient to return to the notation
of the previous section and rewrite these conditions as

ηα = ξα + ε ω̂αγ
∂G
∂ξγ

(12.5.6)

The Jacobian matrix of the transformation is then

Jαβ =
∂ηα
∂ξβ

= δαβ + ε ω̂αγ
∂2G

∂ξβ∂ξγ
(12.5.7)

Consider then (upto linear order in ε for consistency)

Ĵ ω̂ ĴT = Jαγω̂γδJ
T
δβ

=

(
δαγ + ε ω̂ακ

∂2G
∂ξγ∂ξκ

)
ω̂γδ

(
δβδ + ε ω̂βσ

∂2G
∂ξδ∂ξσ

)
= ω̂αβ + ε

(
ω̂ακω̂γβ

∂2G
∂ξγ∂ξκ

+ ω̂αδω̂βσ
∂2G

∂ξδ∂ξσ

)
+O(ε2)

= ω̂αβ + ε

(
ω̂ακω̂γβ

∂2G
∂ξγ∂ξκ

− ω̂αδω̂σβ
∂2G

∂ξσ∂ξδ

)
+O(ε2)

≈ ω̂αβ +O(ε2) (12.5.8)

where we have made use of the antisymmetry of ω̂ (i.e., ω̂βσ = −ω̂σβ) in the last step. We
have shown that the symplectic condition is necessary for a general, infinitesimal canonical
transformation. To show that it is sufficient we begin with the symplectic condition

ω̂αβ = Jαγω̂γδJ
T
δβ (12.5.9)
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and prove that the infinitesimal transformation is canonical. So let

ηα = ξα + ε χα (12.5.10)

and consider {ηα, ηβ} upto O(ε). We have

{ηα, ηβ} = {ξα + εχα, ξβ + εχβ} = ω̂αβ + ε({ξα, χβ}+ {χα, ξβ})

= ω̂αβ + ε

(
ω̂αγ

∂χβ
∂ξγ

− ω̂βγ
∂χα
∂ξγ

)
+O(ε2) (12.5.11)

However, for an infinitesimal transformation of the form (12.5.10),

Jαβ = δαβ + ε
∂χα
∂ξβ

(12.5.12)

so the symplectic condition implies that

ω̂αβ =

(
δαγ + ε

∂χα
∂ξγ

)
ω̂γδ

(
δβδ + ε

∂χβ
∂ξδ

)
(12.5.13)

which requires that
∂χα
∂ξγ

ω̂γβ + ω̂αδ
∂χβ
∂ξδ

= 0 (12.5.14)

or, using the antisymmetry of ω̂, and relabeling the indices

ω̂αγ
∂χβ
∂ξγ

− ω̂βγ
∂χα
∂ξγ

= 0 (12.5.15)

It follows that {ηα, ηβ} = ω̂αβ i.e., the transformation is canonical.

We have thus proved: General Infinitesimal Canonical Transformations ⇔ Symplectic
Condition. It follows that every finite transformation obtained by exponentiating an in-
finitesimal canonical transformation (i.e., a finite transformation which is connected to
the identity) is a canonical transformation.

12.6 Hamiltonian as the generator of time translations

We have just seen that an infinitesimal canonical transformation can always be written in
the form

qi → Qi = qi + δqi, δqi = ε{qi,G}

pi → Pi = pi + δpi, δpi = ε{pi,G} (12.6.1)
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where G is the generator of the transformation and ε is an infinitesimal parameter. Now
G(qi, pi, t) is just about any function of phase space and time. In particular, suppose
H(qi, pi, t) is the Hamiltonian and ε = δt, an infinitesimal shift in time. We then have the
canonical transformation

δqi = δt{qi,H}

δpi = δt{pi,H} (12.6.2)

These are just the Hamiltonian equations of motion, and we have arrived at an alternative
point of view: time evolution is just the continuous unfolding of a canonical transfor-
mation generated by the Hamiltonian. In other words, the configuration of the system
(coordinates and momenta) at any time, t, can be obtained by a series of infinitesimal
canonical transformations, which is equivalent to a single finite transformation connected
to the identity. Conversely, there is a finite transformation connected to the identity that
takes us from any configuration at t to the initial configuration at t0. This prompts us
to seek a canonical transformation to new coordinates, Qi, and momenta, Pi, that are
constants of the motion. This is the subject of the following chapter.



Chapter 13

Hamilton-Jacobi Theory

We have seen that an important objective in studying canonical transformations is the
possible simplification of a mechanical problem. We also ended the last chapter showing
that the Hamiltonian is the generator of time translations and suggested that therefore it
might be possible to find a canonical transformation that takes us from the configuration
at any time “t” to the configuration at the initial time, “t0”.This transformation would
yield Qi = αi, Pi = βi, where αi and βi are the initial conditions that we must in any
case impose upon the system. If it were possible to determine the transformation then
by inversion we would obtain the solution of the problem at any future time. This is
tantamount to solving the problem so, by conservation of difficulty, we expect that it will
be no easier a task than solving the system by any of the other means already at our
disposal.

13.1 The Hamilton-Jacobi equation

Suppose that a transformation, generated by F , does precisely what we want then the
Hamiltonian, H, is transformed into K according to

K = H+
∂F
∂t
. (13.1.1)

But because the new coordinates and momenta are constants of the motion, we must have

Q̇i =
∂K
∂Pi

= 0

Ṗi = − ∂K
∂Qi

= 0 (13.1.2)

282
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which implies that K = K(t) is a function at most of time. Now of course this dependence
on time can be removed by simply defining

F ′ = F −
∫

K(t)dt (13.1.3)

which does not change the equations of motion, so in all generality we can take K ≡ 0.
Now suppose we express F in the form

F = F2(qi, Pi, t)−QiPi (13.1.4)

so that

pi =
∂F2

∂qi

Qi =
∂F2

∂Pi
(13.1.5)

and

K = H
(
qi,

∂F2

∂qi
, t

)
+
∂F2

∂t
≡ 0 (13.1.6)

This can be viewed as an equation for the generating function F2. It is a partial differential
equation in (n + 1) variables, called the “Hamilton-Jacobi” equation. Its solution is
called “Hamilton’s principal function” and is generally denoted by “S” (we shall use
S for F2 from now on). If S can be found we obtain S = S(qi, t), which has no apparent
dependence on the new momenta! This is not true, of course, because the integration
involves (n+ 1) constants, n of which can be associated with the Pi. Indeed

S = S(qi, βi, βn+1, t) (13.1.7)

What about the last constant, βn+1. How do we know which of the (n + 1) constants
are related to the new momenta? This is easy to resolve because the Hamilton-Jacobi
equation involves only derivatives of S,

H
(
qi,

∂S

∂qi
, t

)
+
∂S

∂t
= 0 (13.1.8)

so that S′ = S + β is a solution if S is solution and β is a constant. Thus, one of the
constants, call it βn+1 is additive and we write

S = S(qi, βi, t) + βn+1 (13.1.9)

Of course, βn+1 is completely irrelevant because only derivatives of the generating func-
tional are physically meaningful. So we could take

S = S(qi, βi; t) (13.1.10)
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and call βi = Pi. This choice is completely arbitrary. One could just as well choose
Pi = γi(β1, ...βn) for the momenta and everything that follows would proceed in the same
way. All that is important is that the Pi are constants. Then

Qi =
∂S

∂βi
(13.1.11)

are the new coordinates. But they too are constants of the motion, so

Qi = αi =
∂S

∂βi
, (13.1.12)

which equations can be integrated to obtain qi = qi(αi, βi, t).
Consider

dS

dt
=
∂S

∂qi
q̇i +

∂S

∂t
(13.1.13)

and note that

pi =
∂S

∂qi
(13.1.14)

while

H = K − ∂S

∂t
= −∂S

∂t
(13.1.15)

so

S =

∫
dt[piq̇i −H] + const. (13.1.16)

We have just shown that Hamilton’s principal function differs from the indefinite integral
of the Lagrangian by at most a constant. Now the Lagrangian approach is a statement
about the definite integral leading to the Euler-Lagrange equations of motion. Likewise,
the Hamilton-Jacobi theory is a statement that the indefinite integral of the Lagrangian
leads to the Hamilton-Jacobi equation.

13.2 Two examples

Consider the free particle in one dimension. We choose this example as the simplest, most
transparent example of the application of the Hamilton-Jacobi equation. Later we’ll work
more complicated examples. The Hamiltonian is just

H =
p2

2m
(13.2.1)

so the Hamilton Jacobi equation is

1

2m

(
∂S

∂q

)2

+
∂S

∂t
= 0 (13.2.2)
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and we look for a solution of the form

S = S0(q) + βt. (13.2.3)

Inserting this ansatz into the Hamilton Jacobi equation gives

∂S0
∂q

= ±
√
2mβ (13.2.4)

so the solution is
S(q) = ±

√
2mβq − βt+ γ (13.2.5)

where γ is the (irrelevant) additive constant we mentioned before. We associate β with
the new momenta P , and

Q = α =
∂S

∂β
=

√
m

2β
q − t (13.2.6)

which can be inverted to give

q =

√
2β

m
(t+ α) (13.2.7)

Again,

p =
∂S

∂q
=
√

2mβ (13.2.8)

is a constant (the initial momentum p0) and β = p20/2m = E. On the other hand,

q =
p0
m

(t+ α) ⇒ q0 =

√
2β

m
α⇒ α =

mq0
p0

(13.2.9)

Note that β is identified with the total energy of the system.
The one dimensional simple Harmonic oscillator provides another transparent example

of the Hamilton-Jacobi approach. In this case,

H =
p2

2m
+

1

2
kq2 (13.2.10)

and the Hamilton-Jacobi equation becomes

1

2m

(
∂S

∂q

)2

+
1

2
mω2q2 +

∂S

∂t
= 0 (13.2.11)

Again, seek a solution of the form S = S0(q)− βt so that

dS0
dq

= ±
√
2mβ

√
1− mω2q2

2β
(13.2.12)
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and

S0(q) = ±
√

2mβ

∫
dq

√
1− mω2q2

2β
+ γ (13.2.13)

where γ is the additive constant we expect. Setting it to zero and soling the integral gives

S(q) =
√
mβ

[
q√
2

√
1− mω2q2

2β
+

√
β

mω2
sin−1

√
mω2

2β
q − βt

]
(13.2.14)

Now P = β and

Q = α =
∂S

∂β
= −t+ 1

ω
sin−1

√
mω2

2β
q (13.2.15)

Therefore

q =

√
2β

mω2
sin(ωt+ ϕ) (13.2.16)

where ϕ = αω. Likewise

p =
∂S

∂q
=
√

2mβ

√
1− mω2q2

2β
=
√
2mβ cos(ωt+ ϕ) = mq̇ (13.2.17)

Finally, what is the connection between the constants (α, β) and the initial conditions
(q0, p0)? we have

q0 =

√
2β

mω2
sinϕ

p0 =
√
2mβ cosϕ (13.2.18)

Therefore

α =
1

ω
tan−1 mωq0

p0
(13.2.19)

and

β =
p20
2m

+
1

2
mω2q20 = E (13.2.20)

As before, we see that β is identified with the total energy of the system.
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13.3 Hamilton’s Characteristic Function

In the previous examples we separated Hamilton’s principal function into two parts, the
first depending only on the coordinates and the second on time. This is always possible
when the Hamiltonian is does not explicitly depend on time. To see that this is so, we the
principal function as

S =W (qi, βi)− βnt (13.3.1)

and plug it into the Hamilton-Jacobi equation to get

H
(
qi,

∂S

∂qi

)
= βn (13.3.2)

which certainly admits time-independent solutions. W (qi, βi, t) is called “Hamilton’s
Characteristic Function” and, moreover, βn is the total energy of the system (recall
that dH/dt = ∂H/∂t ≡ 0). The solution is of the form

W =W (q1, ...qn;β1, ...βn−1)− βn (13.3.3)

and the equations of the canonical transformation are

pi =
∂W

∂qi
, Qi = αi =

∂W

∂βi
− tδi,n. (13.3.4)

We can ascribe a meaning to the characteristic function as well, just as we had for the
principal function:

dW

dt
=
∂W

∂qi
q̇i +

∂W

∂t
= piq̇i (13.3.5)

Thus

W =

∫
pidqi (13.3.6)

Even though we have yet again reformulated the dynamical problem in terms of a single
non-linear partial differential equation in n varaibles as opposed to the n ordinary second
order equations of the Lagrangian theory or the 2n first order equations of the Hamiltonian
theory, the Hamilton-Jacobi theory does not necessarily provide any simplificaton over
the other two approaches. However, in some problems, the Hamilton-Jacobi theory can
be useful and we will now examine two classes of problems in which it can be directly
integrated.
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13.4 Separability

A coordinate qi is separable if and only if the priciple function can be split into two parts,
one depending on qi annd the other depending on all the coordinates except qi, i.e.,

S = S(qi, β1, ...βn; t) + S′(q1, ..., q̂i, ..., qn, β1, ..., βn; t) (13.4.1)

(where the caret signifies that qi does not appear in S
′) and the Hamilton-Jacobi equation

also splits into two parts, one for qi and the other for the remaining coordinates,

Hi

(
qi,

∂S

∂qi
, β1, ..., βn, t

)
+
∂S

∂t
= 0

H′
(
q1, ..., q̂i, ...qn,

∂S′

∂qk
, ...,

∂S′

∂qn
, β1, ..., βn, t

)
+
∂S′

∂t
= 0 (13.4.2)

If all the coordinates are separable then

S =
∑
i

Si(qi, β1, ..., βn; t) (13.4.3)

where Si dependes only on qi and

H
(
q1, ..., qn,

∂S

∂q1
, ...,

∂S

∂qn
, t

)
=
∑
i

Hi

(
qi,

∂S

∂qi
, β1, ...βn; t

)
(13.4.4)

When this happens, and if the Hamiltonian does not depend explicityly on time, the
problem can be solved systematically in the following way. Let

Si =Wi(qi, β1, ..., βn−1)− βnt (13.4.5)

then

H
(
q1, ..., qn,

∂S

∂q1
, ...,

∂S

∂q1

)
=
∑
i

βi (13.4.6)

and because H splits according to our assumptions,

Hi

(
qi,

∂Wi

∂qi
, β1, ..., βn

)
= βi (13.4.7)

This is a set of uncoupled, ordinary differential equations for the Wi, which can be solved
exactly in principle. The separability of the Hamilton-Jacobi equations is both a property
of the dynamical system as well as the coordinates in which it is described. No simple
criterion can be given to indicate what coordinate system leads to a separable Hamilton-
Jacobi equation for a given system. However, if
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• the Hamiltonian is conserved and

• takes the form

H =
1

2
(pi − ai)T

−1
ij (pj − aj) + V (q)

and

• the set of coordinates form an orthogonal system, so that T̂ is diagonal

then Hamilton’s characteristic function is completely separable if and only if

• Each ai is a function only of qi,

• The potential function is a sum of potential functions of the form Vi(qi)

• there exists an n× n matrix Φ with elements Φij(qi) such that

Φ−1
1j =

1

Tjj
.

These are the “Staeckel” conditions for separability.

13.5 Periodic motion and Action-Angle Variables

A very important class of physical problems is one in which the system is periodic. Con-
sider a general, periodic, conservative system in one dimension. Since H does not depend
explicitly pn time, we will make use of the characteristic function W , and the Hamilton-
Jacobi equation reads

H
(
q,
∂W

∂q

)
= β1 (13.5.1)

Now there are two kinds of periodicities that we will consider:

• Motion in which a subset of the phase space variables, some coordinates together
with their conjugate momenta, return to their initial values after fixed time intervals,
τ . If all the phase-space variables do this, the phase-space diagram for the system
is a compact surface in phase-space and the entire state of the system is periodic, as
shown in figure (13.1). An obvious example of this kind of motion is the Harmonic
oscillator.

• A more limited situation would arise if only the momenta (or a subset of them,
instead of both the coordinates and their conjugate momenta) are periodic as shown
in figure (13.2). In the figure the momentum returns to its original value after every
coordinate interval ∆q. This is typical of a compact coordinate. The rotation of a
rigid body is a good example of this type of periodicity and it is often referred to
simply as “rotation”.
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p

q

Figure 13.1: The phase space occupied by the system is a compact surface

q

p

æ æ

q1 q2
Dq

Figure 13.2: The phase space occupied by the system is not compact
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Both kinds of periodicities can occur in the same system under diffierent initial conditions.
For example, take the pendulum. For smaller energies, the motion is periodic in the first
sense. However, if the pendulum’s energy is increased beyond 2mgl, where l is its length
and m the mass of the bob, then rotational motion will occur.

For either type of motion, introduce the “action” variable

J =

∮
pdq (13.5.2)

where the interval is to be carried out over one full period. From the Hamilton-Jacobi
equation we determine W =W (q, β1) and

p =
∂W

∂q
= p(q, β1) (13.5.3)

so we find

J =

∮
p(q, β1)dq = J(β1) (13.5.4)

i.e., the variable J depends on β1 alone and the equation can be inverted to give β1 =
β1(J). This can be reinserted into W to obtain W as a function of (q, J), i.e., W =
W (q, J). Now introduce the “angle” variable

ϕ(q, J) =
∂W

∂J
(13.5.5)

and consider the principal function S =W (q, J)−β1(J)t. We find the coordinate conjugate
to J

QJ =
∂S

∂J
= ϕ− ∂β1

∂J
t (13.5.6)

Now, by construction, Q̇J ≡ 0, so that

ϕ̇ =
∂β1
∂J

= ν(J) (13.5.7)

is constant and depends on J alone. Thus ϕ = νt+ ϕ0 and the defining equation (13.5.5)
can be inverted to recover q = q(ϕ, J), which of course is the desired solution.

In and of themselves, the variables ϕ and J give no particular advantage in solving a
given problem. They do not generally make the problem more tractable. Their merit lies
in the physical interpretation that can be given to them. Consider the change in ϕ as q
goes through a complete period: because

δϕ =
∂ϕ

∂q
δq (13.5.8)
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(J is a constant of the motion) it follows that over an entire period

∆ϕ =

∮
∂ϕ

∂q
dq =

∮
∂2W

∂J∂q
dq =

d

dJ

∮
∂W

∂q
dq ≡ 1 (13.5.9)

This means that ν is the frequency of the motion. Moreover ν is given by

ν =
dβ1
dJ

=
dH
dJ

(13.5.10)

so we can determine the frequency of the motion without actually solving the problem, if
it is known a priori that the motion is periodic.

For an example, the Hamilton-Jacobi equation for the one dimensional Harmonic os-
cillator,

1

2m

(
∂W

∂q

)2

+
1

2
kq2 = β (13.5.11)

implies that

p =
√
2mβ

√
1− kq2

2β
(13.5.12)

which gives the action variable

J =
√

2mβ

∮
dq

√
1− kq2

2β
= 2πβ

√
m

k
(13.5.13)

Thus

β = H =
J

2π

√
k

m
⇒ ν =

1

2π

√
k

m
(13.5.14)

To completely solve the problem (i.e., to determine ϕ(q, J)) we would have to solve the
Hamilton-Jacobi equation to obtain W (q, J) but, as we see, it is not necessary to do so if
our interest is simply to determine the frequency.

13.6 Further Examples

Consider the simple projectile, described by the Hamiltonian

H =
p2x
2m

+
p2y
2m

+mgy (13.6.1)

where y is the height measured, say, from the surface of the earth. Because the Hamilton
is time independent, choose S = W (x, y) − β2t, then the equation for the characteristic
function is

1

2m

[(
∂W

∂x

)2

+

(
∂W

∂y

)2
]
+mgy = β2 (13.6.2)
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Let us now see if we can use the separation of variables, writing W =Wx(x) +Wy(y), so
that

1

2m

[(
dWx

dx

)2

+

(
dWy

dy

)2
]
+mgy = β2 (13.6.3)

Therefore,
1

2m

(
dWy

dy

)2

+mgy = β2 −
1

2m

(
dWx

dx

)2

= β1 (13.6.4)

because the left hand side depends only on x and the right hand side depends only on
y implies that they can only be each equal to a constant. The x equation is directly
integrated to give

Wx(x) =
√

2m(β2 − β1) x+ const. (13.6.5)

The y equation gives

Wy(y) =
√
2mβ1

∫
dy

√
1− mgy

β1
= −2

3

√
2mβ1

β1
mg

(
1− mgy

β1

)3/2

+ const. (13.6.6)

Our separated solution therefore reads

S(x, y, t) =
√
2m(β2 − β1) x− 2

3

√
2mβ1

β1
mg

(
1− mgy

β1

)3/2

− β2t+ γ (13.6.7)

where γ will be recognized as our trivial additive constant. We can now determine x(t)
and y(t) of course by simply using the canonical equations

Q1 = α1 =
∂S

∂β1

Q2 = α2 =
∂S

∂β2
(13.6.8)

The second equation gives the solution for x = x(t)

x(t) =

√
2

m
(β2 − β1)(t+ α2) (13.6.9)

and when this solution is inserted into the first equation, we find after a little algebra that

y(t) =
β1
mg

[
1− mg2

2β1
(t+ α1 + α2)

2

]
. (13.6.10)

We already know that the constant β2 represents the total energy of the system, so β2 =
E = 1

2mv
2
0. To extract the meaning of the constants we must apply some initial conditions:

take
r⃗0 = 0, v⃗0 = v0(cos θ, sin θ) (13.6.11)
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then

2(β2 − β1)

m
α2
2 = 0

β1
mg

(
1− mg2

2β1
(α1 + α2)

2

)
= 0√

2(β2 − β1)

m
= v0 cos θ

g(α1 + α2) = −v0 sin θ (13.6.12)

Together, the first and the third imply that α2 = 0. The last gives

α1 = −v0 sin θ
g

(13.6.13)

and the second requires that

β1 =
1

2
mv20 sin

2 θ (13.6.14)

In fact, with this value of β1, the third equation would then give precisely β2 = E as
expected. Therefore, our solution reads

x(t) = v0 cos θ t

y(t) = v0 sin θ t−
1

2
gt2 (13.6.15)

where we get the final answer after inserting the values of the constants above.
Our second example is the central force problem discussed at length in a previous

chapter. The Hamiltonian for this problem is

H =
1

2m

(
p2r +

p2θ
r2

+
p2φ

r2 sin2 θ

)
+ ϕ(r) (13.6.16)

where ϕ(r) is the potential energy. As before, we choose S =W (r, θ, φ)− β3t so that the
equation for the characteristic function becomes

1

2m

[(
∂W

∂r

)2

+
1

r2

(
∂W

∂θ

)2

+
1

r2 sin2 θ

(
∂W

∂φ

)2
]
+ ϕ(r) = β3 (13.6.17)

and we seek separable solutions, i.e., we take W (r, θ, φ) =Wr(r)+Wθ(θ)+Wφ(φ). Then(
dWr

dr

)2

+
1

r2

(
dWθ

dθ

)2

+
1

r2 sin2 θ

(
dWφ

dφ

)2

+ 2mϕ(r) = 2mβ3 (13.6.18)
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which equation we will separate as follows, writing

r2

[(
dWr

dr

)2

+ 2mϕ(r)− 2mβ3

]
= −

(
dWθ

dθ

)2

− 1

sin2 θ

(
dWφ

dφ

)2

= −β2 (13.6.19)

where we used the fact that the left hand side is a function only of r and the right is a
function only of (θ, ϕ). Thus we get the radial equation(

dWr

dr

)2

+
β2
r2

+ 2mϕ(r) = 2mβ3 (13.6.20)

The remaining equation can be expressed as(
dWφ

dφ

)2

= β1(
dWθ

dθ

)2

+
β1

sin2 θ
= β2 (13.6.21)

where β1 is another constant. We will seek a solution that lies wholly in the equatorial
plane, i.e., having Wθ =const., θ = π/2 and β1 = β2. Then

Wφ = ±
√
β2 ϕ + const. (13.6.22)

and our radial equation is solved by

Wr = ±
√
2m

∫
dr

√
β3 −

β2
2mr2

− ϕ(r) + const., (13.6.23)

giving Hamilton’s principal function,

S(r, φ, t) =
√
2m

∫
dr

√
β3 −

β2
2mr2

− ϕ(r) +
√
β2 ϕ − β3t+ const., (13.6.24)

where we have chosen the positive sign. Thus we find

α3 =
∂S

∂β3
=

√
m

2

∫
dr√

β3 − β2
2mr2

− ϕ(r)
− t

α2 = − 1

2
√
2m

∫
dr/r2√

β3 − β2
2mr2

− ϕ(r)
+

φ

2
√
β2

(13.6.25)

If we let α2 = φ0/(2
√
β2), then the second equation above reads√

2m

β2
(φ− φ0) =

∫
dr/r2√

β3 − β2
2mr2

− ϕ(r)
(13.6.26)
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which compares favorably with the second equation in (5.2.24) if β2 is identified with the
square of the angular momentum, β2 = L2. Furthermore, using the fact that β3 is just
the total energy, E, and rearranging terms we find that the first equation of (13.6.25) is∫

dr√
2
m [E − V (r)]

= t+ α3 (13.6.27)

where V (r) is the effective potential used in (5.2.17). This is then precisely the first
equation in (5.2.24) and so we have recovered the equations of motion for the central force
problem.



Chapter 14

Special Relativity

The goal of any relativity theory is to relate measurements performed in one inertial frame
of reference to those performed in any other. Galilean relativity is based on the concepts of
an universal or “absolute” space and an “absolute” time, by which is meant that measure-
ments of spatial distances and time intervals are observer (or frame) independent provided
that the spatial distances are measured by a simultaneous measurements of the endpoints.
Toward the end of the nineteenth century, however, Maxwell’s formulation of electromag-
netism, which was completed in 1865, had exposed certain fundamental inconsistencies
between the new and extremely successful electromagnetic theory and the Galilean con-
ception of space and time. Today we know that Galilean transformations cease to yield
results that agree with experiment when the relative velocity of the two frames being
compared is a significant fraction of the speed of light.

In 1887, A. Michelson and E. Morley were able to provide convincing evidence, by
means of a very clever and now famous experiment named after them, that the speed of
light is the same in all directions and that light does not require a medium in which to
travel. At the time their experiment was performed such a medium was assumed to exist
because electromagnetic waves were not considered to be different from other well-known
mechanical waves (eg. sound) and all mechanical waves were known to require a medium
in which to propagate. The putative medium in which light traveled was dubbed the
luminiferous aether and was thought to pervade all of space. When wave propagation
occurs in a medium, the frame that is at rest relative to it assumes a special place in the
theory and the “speed” of the wave is its speed as measured in this frame. Thus, the
speed of sound in air at STP is approximately c = 343 m/s in the frame of the air. An
inertial observer moving relative to the medium with velocity v⃗ in the direction of the
wave propagation or opposite it would observe that the speed of the wave is c ∓ v, in
accordance with the principles of Galilean relativity. This change in speed is responsible
for the Doppler effect for moving observers. The Earth travels at around 30 km/s around
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the sun, so its velocity relative to the aether would vary over the course of a year. The
Michelson and Morley experiment was designed to measure this relative velocity, but
the results were null and the speed of light was found to be the same for propagation
in all directions relative to the observer, indicating that the aether was absent. If no
such medium exists then the wave speed could be the same for all inertial observers,
in other words, a universal constant of nature. This agreed with Maxwell’s theory of
electromagnetism, by which electromagnetic waves propagate in a vacuum at a speed that
depends only on fundamental constants, viz., the permitivity and permeability of space.
Motivated by the Michelson-Morley result and by Maxwell’s theory, A. Einstein recognized
in 1905 that the failure of Galilean relativity at high relative velocities is a consequence of
the breakdown of the concepts of “absolute” space and “absolute” time mentioned above.
When they are abandoned and replaced by the experimental requirement that the speed
of light is the same in all inertial frames, we arrive at a dramatically new conception
of space and time and therefore of mechanics as well. This modification is known as
Einstein’s “special” theory of relativity, or simply Special Relativity and is the topic of
this chapter.

We introduce Einstein’s theory in this chapter. We will not dwell much on the ques-
tions and experiments that led up to it and we will work through only a few of the apparent
paradoxes (there are many, all of them safely resolved). It is assumed that the reader has
had some exposure to the topic, so we rather concentrate on the precise mathematical for-
mulation of the theory and on setting up a framework that will be useful for the objectives
of these notes.

14.1 The Principle of Covariance

It is a general principle that the laws of physics must be the same in all inertial frames. If
this were not true, there would be no way to compare the measurements of one (inertial)
observer with those of any other.

Mathematically, the fundamental laws of physics would be same in all inertial frames
of reference if the equations describing them have the same form in all inertial frames,
that is, if the set of transformations that relate one inertial frame to another would, when
applied to the two sides of any fundamental equation of physics, transform each side in
precisely the same way as the other. This is the principle of covariance and equations
that have this property are said to be covariant. To further elaborate on this idea,
we recall that the transformations that relate two inertial frames will in turn determine
the transformation properties of physical quantities such as velocity, acceleration, etc. If
they leave a physical quantity the same in every inertial frame then that quantity is an
invariant or a scalar. Other quantities may not remain invariant but they will transform
in a prescribed way. Covariance requires that both sides of the fundamental equations
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must have the same transformation properties. Thus a scalar quantity can only be related
to another scalar quantity, a vector to a vector and so on.

We will see below that Newton’s laws are covariant under Galilean transformations
but Maxwell’s equations are not. This signals an incompatibility between mechanics and
electromagnetism, and incompatibilities always indicate that modifications to one or both
theories are required at a fundamental level. While it is possible that both theories are
wrong, it is more fruitful at first to accept one as correct and modify the other so to
make its equations covariant under the transformations that are compatible with the first.
Given the fundamental agreement between the predictions of electromagnetism and the
experiment of Michaelson and Morley, Einstein chose the transformations that preserve the
form of Maxwell’s equations over the Galilean transformations of Newtonian mechanics.
The result is a new formulation of classical mechanics that accounts for the fact that the
speed of light is a finite and a universal constant of nature. In the end, of course, only
experiment can decide which theory is correct and, indeed, in the years that followed
Einstein’s 1905 paper, it has resoundingly confirmed his choice.

14.1.1 Galilean tranformations

We are familiar with Galilean relativity, which we may conveniently think of as two sets
of transformations viz., the “boosts”

r⃗ → r⃗′ = r⃗ − v⃗t, t→ t′ = t (14.1.1)

(provided that the frames are coincident at t = 0) and spatial rotations

r⃗ → r⃗′ = R̂ r⃗, t→ t′ = t (14.1.2)

where R̂ is a rotation matrix (see figure 2). The second of (14.1.1) expresses the abso-
luteness of time intervals, as dt′ = dt is the same for all inertial observers. To see that
spatial intervals are also absolute one must remember that the measurement of a distance
involves a simultaneous measurement of the endpoints and therefore one has

|dr⃗′|dt′=0 = |dr⃗ − v⃗dt|dt′=dt=0 = |dr⃗|. (14.1.3)

Consider a single particle within a collection of N particles with interactions between
them. If we label the particles by integers, Newton’s equations describing the evolution of
a single particle, say particle n, may be written as,

mn
d2r⃗n
dt2

= F⃗ extn + F⃗ intn = F⃗ extn +
∑
m̸=n

F⃗ intm→n, (14.1.4)

where F⃗ intm→n represents the (internal) force that particle m exerts over particle n. Assume
that the external forces are invariant under Galilean boosts, F⃗

′ext
n = F⃗ extn , and that the
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Figure 14.1: Boosts and rotations

internal forces are derivable from a potential that depends only on the spatial distance
between the particles, i.e.,

F⃗ intn = −∇⃗nΦ
int
n = −

∑
m ̸=n

∇⃗nΦnm(|r⃗n − r⃗m|). (14.1.5)

This is compatible with the third law (of action and reaction) and it also makes the
internal forces invariant under Galilean boosts. To see that this is so, specialize to just
one space dimension and write the transformations in the following form (we are making
this more complicated than it really is so as to introduce methods that will be useful in
more complicated situations) [

dt′

dx′

]
=

[
1 0
−v 1

] [
dt
dx

]
(14.1.6)

and the inverse transformations as[
dt
dx

]
=

[
1 0
v 1

] [
dt′

dx′

]
. (14.1.7)

We can now read off
∂

∂t′
=
∂t

∂t′
∂

∂t
+
∂x

∂t′
∂

∂x
=

∂

∂t
+ v

∂

∂x
(14.1.8)

and
∂

∂x′
=

∂t

∂x′
∂

∂t
+
∂x

∂x′
∂

∂x
=

∂

∂x
. (14.1.9)

Therefore
∂

∂x′n
Φnm(|x′n − x′m|) =

∂

∂xn
Φnm(|xn − xm|), (14.1.10)

as claimed and the r.h.s. of Newton’s equations are invariant. Moreover dt′ = dt and the
transformation is linear so that the l.h.s. of Newton’s equations is also invariant under
these transformations. The equations of Newtonian dynamics are therefore invariant under
Galilean boosts.



14.1. THE PRINCIPLE OF COVARIANCE 301

14.1.2 Lorentz Transformations

In electrodynamics, on the other hand, in free space one typically ends up with the wave
equation,

□xψ =
1

c2
∂2ψ

∂t2
− ∇⃗2ψ = 0, (14.1.11)

where c is the speed of light in the vacuum and ψ is the “wave function”, which can be
the electromagnetic scalar or vector potential. Now it is an experimental fact that the
speed of light in a vacuum is the same for all inertial observers. However, then (14.1.11) is
not invariant under Galilean transformations. Using the transformations in (14.1.6) and
(14.1.7) we have

∂2

∂t′2
=

(
∂

∂t
+ v⃗ · ∇⃗

)(
∂

∂t
+ v⃗ · ∇⃗

)
(14.1.12)

and

∇⃗′2 = ∇⃗2. (14.1.13)

Plugging this into the wave equation, we find

1

c2
∂2

∂t′2
− ∇⃗′2 → 1

c2
∂2

∂t2
− ∇⃗2 +

2v⃗

c2
· ∇⃗ ∂

∂t
+

1

c2
(v⃗ · ∇⃗)(v⃗ · ∇⃗), (14.1.14)

but only the first two terms on the r.h.s. correspond to the wave-equation and, moreover,
there is no known kinetic transformation of the wave-function that can return the wave
equation to its original form,1 so we must conclude that the electromagnetic wave-equation
is not invariant under Galilean transformations. This signals an incompatibility between
electromagnetism and Newtonian mechanics therefore, by the principle of covariance, one
of the two must be modified. As we now know, Maxwell’s theory was preferred over
Newtonian mechanics, which leads us to ask: what are the transformations that keep
Maxwell’s equations covariant? Once we have answered this question we will be in a
position to address the problem of constructing a theory of mechanics that is indeed
covariant under them.

To answer the first question, assume that the transformations that relate two inertial
frames continue to be linear (as the Galilean transformations are) and think of the wave-
equation as made up of two distinct parts: the second order differential operator, “□x”, and
the wave function, ψ, each transforming in its own way under the above transformations.

1Problem: Show that, on the contrary, the Schroedinger equation is invariant under Galilean transfor-
mations if they are supplemented with the following kinetic transformation of the wave-function:

ψ → ψ′ = e−
i
ℏ (p⃗·r⃗−Et)ψ

where p⃗ = mv⃗ and E = mv⃗2/2. What does this mean?
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For covariance, we will require “□x”, to transform as a scalar (invariant). Let us work
with Cartesian systems and consider some general transformations of the form

t → t′ = t′(t, r⃗),

r⃗ → r⃗′ = r⃗′(t, r⃗). (14.1.15)

They must be

1. one-to-one: so that observers may be able to uniquely relate observations, and

2. invertible: so that the transformations can be made from any observer to the other
– there is no preferred observer.

Our functions must therefore be bijective. As we have assumed that the transformations
are linear, they will have the form

t′ = − 1

c2
(L00t+

∑
i

L0ixi),

x′i = Li0t+
∑
j

Lijxj . (14.1.16)

The reason for this peculiar definition of the coefficents will become clear later. For now
let us only note that the L’s are some constants that we would like to evaluate. In matrix
form the transformations could be written as[

dt′

dx′i

]
=

[
−L00

c2
−L0j

c2

Li0 Lij

] [
dt
dxj

]
. (14.1.17)

The matrix on the r.h.s. is really a 4×4 matrix and Lij represents a 3×3 matrix of purely
spatial transformations. It must be invertible because the transformation is required to
be bijective. For example, L00 = −c2 and L0i = 0 = Li0. The resulting transformations
are purely spatial, transforming xi → x′i =

∑
j Lijxj and leaving t → t′ = t unchanged.

Clearly, therefore, the wave-operator,

□x → □′
x = ∂2t′ − ∇⃗′2 = ∂2t − ∇⃗′2, (14.1.18)

is a scalar if and only if Lij is a spatial rotation, because only then will ∇⃗′2 = ∇⃗2.
More interesting are the “boosts”, which involve inertial observers with relative ve-

locities. Now Li0 ̸= 0 ̸= L0i. Consider relative velocities along the x direction and the
transformation 

dt′

dx′1
dx′2
dx′3

 =


α β 0 0
γ δ 0 0
0 0 1 0
0 0 0 1



dt
dx1
dx2
dx3

 . (14.1.19)



14.1. THE PRINCIPLE OF COVARIANCE 303

Notice that we have set x′2 = x2 and x′3 = x3. This is because we assumed that space
is homogeneous and isotropic so that a boost in the x1 direction has no effect on the
orthogonal coordinates x2 and x3. We can consider then only the effective two dimensional
matrix [

dt′

dx′

]
=

[
α β
γ δ

] [
dt
dx

]
(14.1.20)

(where x1 := x). Thus we find the inverse transformation[
dt
dx

]
=

1

∥∥

[
δ −β
−γ α

] [
dt′

dx′

]
, (14.1.21)

where ∥∥ represents the determinant of the transformation, ∥∥ = αδ − βγ and we have

∂

∂t′
=

∂t

∂t′
∂

∂t
+
∂x

∂t′
∂

∂x
=

1

∥∥

(
+δ

∂

∂t
− γ

∂

∂x

)
∂

∂x′
=

∂t

∂x′
∂

∂t
+
∂x

∂x′
∂

∂x
=

1

∥∥

(
−β ∂

∂t
+ α

∂

∂x

)
, (14.1.22)

turning our wave-operator into

1

c2
∂2

∂t′2
− ∇⃗′2 =

1

∥∥2

(
1

c2

(
+δ

∂

∂t
− γ

∂

∂x

)2

−
(
−β ∂

∂t
+ α

∂

∂x

)2
)

=
1

∥∥2

(
(δ2/c2 − β2)

∂2

∂t2
− (α2 − γ2/c2)

∂2

∂x2

−2(αβ − γδ/c2)
∂2

∂t∂x

)
. (14.1.23)

If it is to remain form invariant, the right hand side above has to look the same in the
frame S and we need to set

δ2

c2
− β2 =

∥∥2

c2
,

α2 − γ2

c2
= ∥∥2,

αβ − γδ

c2
= 0. (14.1.24)

We have four unknowns and three constraints, so there is really just one parameter that
determines all the unknowns. It is easy to find. Note that setting

δ = ∥∥ cosh η, β =
∥∥
c
sinh η (14.1.25)
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solves the first of these equations, as

α = ∥∥ coshω, γ = c∥∥ sinhω (14.1.26)

solves the second. The last equation is then a relationship between η and ω. It implies
that

sinh η coshω − sinhω coshω = sinh(η − ω) = 0 → η = ω. (14.1.27)

Our boost in the x direction therefore looks like[
dt′

dx′

]
= ∥∥

[
cosh η 1

c sinh η
c sinh η cosh η

] [
dt
dx

]
. (14.1.28)

We notice that ∥∥ is not determined. We will henceforth take it to be unity.
What is the meaning of the parameter η? Consider a test body having a velocity u as

observed in the S frame. Its velocity as measured in the S′ frame would be (the velocity
does not transform as a vector)

u′ =
dx′

dt′
=

(cosh η)dx+ c(sinh η)dt

(cosh η)dt+ 1
c (sinh η)dx

. (14.1.29)

Dividing by (cosh η)dt we find

u′ =
u+ c tanh η

1 + u
c tanh η

. (14.1.30)

Now suppose that the body is at rest in the frame S. This would mean that u = 0. But,
if S′ moves with a velocity v relative to S, we can say that S should move with velocity
−v relative to S′. Therefore, because the test body is at rest in S, its velocity relative to
S′ should be u′ = −v. Our formula gives

u′ = −v = c tanh η → tanh η = −v
c
. (14.1.31)

This in turn implies that

cosh η =
1√

1− v2/c2
, sinh η = − v/c√

1− v2/c2
, (14.1.32)

so we can write the transformations in a recognizable form

t′ =
t− vx/c2√
1− v2/c2

,

x′ =
x− vt√
1− v2/c2

,
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y′ = y,

z′ = z. (14.1.33)

Notes:

• These are the Lorentz transformations of the special theory of relativity.2 They
reduce to Galilean transformations when v/c≪ 1.

• Because tanh η ∈ (−1, 1) it follows that the transformations are valid only for v < c.
The velocity of light is the limiting velocity of material bodies and observers. There
exists no transformation from the rest frame of light to the rest frame of a material
body.

• In general the matrix L̂ is made up of boosts and rotations. Rotations do not, in
general, commute with boosts and two boosts can lead to an overall rotation.

• Lorentz transformations keep the interval

ds2 = c2dt2 − dx2 − dy2 − dz2 (14.1.34)

invariant3 i.e., the same for all observers. The interval ds is known as the proper
distance and ds/c is known as the proper time (it’s not difficult to see that when dr⃗ =
0, ds/c = dt i.e., it is the time measured on a clock that is stationary in the frame).
Like the proper distance, the proper time is an invariant. The transformations that
keep an interval like (14.1.34) invariant form the Lie group SO(3, 1).

14.2 Elementary consequences of Lorentz transformations

Our transformations mix up space and time, so there is no way for it but to consider
both time and space as part of a single entity: “space-time”. This is a four dimensional
manifold. A point in space-time is called an event and involves not just its spatial location
but also the time at which the event occurred.

2For the very curious: Lorentz transformations can be put in four categories:

– Proper orthochronous: L↑
+ with ∥∥ = +1, L00/c

2 ≤ −1

– Proper non-orthochronous: L↓
+ with ∥∥ = +1, L00/c

2 ≥ +1

– Improper orthochronous: L↑
− with ∥∥ = −1, L00/c

2 ≤ −1

– Improper non-orthochronous: L↓
− with ∥∥ = −1, L00/c

2 ≥ +1

What we have are therefore proper orthochronous transformations.
3Problem: Prove this by direct substitution.
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14.2.1 Simultaneity

The single most important consequence of the Lorentz transformations is that the concept
of “simultaneity” is no longer absolute. Consider two events that are spatially separated,
but occur at the same time as measured in the frame of an observer, S. Thus dx ̸= 0 but
dt = 0. According to (14.1.33),

dt′ =
−vdx/c2√
1− v2/c2

̸= 0 (14.2.1)

Thus events that are regarded as simultaneous in one frame are not so regarded in another
frame, which is moving relative to the first.

14.2.2 Length Contraction

Another interesting consequence is that length measurements of objects that are moving
relative to an observer are smaller than measurements performed in the frame in which the
objects are at rest. (The rest frame of a body is called the “proper” frame of the body).
To understand how this comes about, one must recognize that to correctly measure the
spatial distance between two points, their positions must be ascertained simultaneously.
Let S be the frame in which the body is at rest and let S′ be an observer moving at
velocity v relative to S. Since a measurement of the body’s length involves a simultaneous
measurement of its endpoints, we should have dt′ = 0. By the Lorentz transformations,
this means that dt = vdx/c2 and therefore

dx′ =
dx− vdt√
1− v2/c2

= dx
√

1− v2/c2. (14.2.2)

But dx represents the length of the body as measured in its proper frame, so its length as
measured by S′ i.e., dx′, is “contracted” by a factor of

√
1− v2/c2.

14.2.3 Time Dilation

Measurements of time intervals are also naturally observer dependent. Let S be the
proper frame of a clock, which is moving relative to an observer S′ with a velocity v.
Being stationary in S, we might say that dx = 0 and dt = ds/c = dτ represents the proper
time intervals of the clock. The Lorentz transformation then tells us that time intervals
read off by S′ are related to proper time intervals according to

dt′ =
dτ√

1− v2/c2
(14.2.3)
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forbidden forbidden

t=
x/

ct=
-x/c

Figure 14.2: The light cone

This is known as “time dilation”. Physically, this may be understood by noticing that
while the time interval is measured in S colocally (at the same place), it is not so in
S′. The clock in S appears to be “running slow” to the observer S′. This was in fact
predicted in 1897 (long before Einstein’s theory) by Louis Larmor who noticed the effect
for electrons orbiting the nucleus of atoms.

It is often valuable to understand these phenomena in terms of world (space-time)
diagrams. Thus, in figure (14.2) we show a two dimensional universe with the y−axis rep-
resenting time from the point of view of some inertial observer, S. The red lines represent
the path of light rays emanating from the origin in the upper half plane and terminating
at the origin in the lower half plane. Consider a particle whose path, represented by the
black curve, passes through the origin. (This can be arranged by resetting the origin of
space and time). At no instant on this path may its slope, dt/dx, be less than or even
equal to 1/c, otherwise our particle would be traveling faster than or at the speed of light
at that instant. Therefore the path lies wholly between the boundaries provided by the
lines t = ±x/c. These paths of light form what is called the “light cone”. The region
within the light cone and above the x axis is called the future, the region within the light
cone and below the x axis is called the past and the regions on the left and right sides of
the light cone are forever forbidden to the particle, in the sense that no physical particle
can ever physically reach them (to do so would require traveling faster than the speed of
light), neither can any particle from these regions ever enter the future or past. At any
moment in time, any particle may only receive information from (and thus be influenced
by) events within its own past. Thus a fundamental role of relativity is to restrict the
domain of causal influence on any event. However, notice that as our particle travels along
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Figure 14.3: Two frames compared to each other

its world line, regions that were previously inaccessible begin to fall within its past light
cone and become accessible as shown.

Figure (14.3) shows two inertial frames drawn in the same diagram. Let the (t, x)
coordinate system represent an observer S and consider what the reference frame of an
observer moving at velocity v > 0 relative to S might look like. The t′ axis is the axis
for which x′ = 0, i.e., in the (t, x) frame it is given by the straight line t = x/v as shown
in green. On the other hand, the x′ axis is the one for which t′ = 0, i.e., it is given by
t = vx/c2, also shown in green in the figure. To calibrate the new axes, one can use the
fact that t2 − x2/c2 is invariant, i.e., t2 − x2/c2 = t′2 − x′2/c2 = ±τ2. Imagine filling
spacetime with families of hyperbolæ, t2 − x2/c2 = const. (to avoid clutter, these are
not included in the figure). These hyperbolæ face upward in the future, downward in
the past and to the right (left) in the forbidden regions. Each member of a family will
intersect either both the t and t′ axes or both the x and x′ axes at unique points. Then
the value of t′ at any point on the t′ axis (x′ = 0) is the value of t at the point on the t
axis (x = 0) intersected by the same hyperbola. Likewise, the value of x′ at any point on
the x′ axis (t′ = 0) is the value of x at the point on the x axis (t = 0) intersected by the
same hyperbola. Just as simultaneous events in the S frame lie along lines parallel to the
x axis, and events occuring at the same spatial point in S lie along lines parallel to the t
axis, so also simultaneous events in the S′ frame will lie along lines parallel to the x′ axis,
and events at the same spatial point in S′ will lie along lines parallel to the t′ axis. They
are shown as green, dashed lines in the diagram.

Now consider two events that are spatially separated but occur simultaneously in S.
These are represented by small circles on a horizontal (t = const.) line. We see immediately
that they do not fall on the same t′ = const. line. This graphically encapsulates the
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relativity of simultaneity. One can similarly visualize both length contraction and time
dilation by projecting respectively on the x and t directions.4,5

14.2.4 Velocity Addition

Let us also recall the so-called law of “composition of velocities”. Consider a particle
whose velocity is being measured in two frames S and S′. Suppose that frame S′ has a
speed v in the positive x−direction relative to S then how do the particle velocities, as
measured by S and S′ relate, to one another? By definition, the velocity measured by S′

will be

u′x =
dx′

dt′
=

dx− vdt

dt− vdx/c2
=

ux − v

1− uxv/c2

u′y =
dy′

dt′
=
dy
√
1− v2/c2

dt− vdx/c2
=
uy
√
1− v2/c2

1− uxv/c2

u′z =
dz′

dt′
=
dz
√

1− v2/c2

dt− vdx/c2
=
uz
√

1− v2/c2

1− uxv/c2
(14.2.4)

and they all reproduce the Galilean result when c→ ∞.

14.2.5 Aberration

Finally, we can compare directions in space, as measured by two different observers. For
example, if the particle is moving in the x−y plane (uz = 0), let us see how two observers
may describe its direction of motion. According to observer S′ the (tangent of the) angle
made with the positive x−axis will be

tan θ′ =
u′y
u′x

=
uy
√

1− v2/c2

ux − v
=
u sin θ

√
1− v2/c2

u cos θ − v
(14.2.5)

where θ is measured in S and u is the particle speed as measured in S. Notice that it
depends on the speed of the particle as well as the relative speed of the frames. If the
“particle” were a photon, i.e., in the case of light propagation, u = c and

tan θ′ =
sin θ

√
1− v2/c2

cos θ − v/c
(14.2.6)

4Problem: Do this.
5Problem: Are “future” and “past” absolute? Suppose event “1” occurs in the past of event “2” but

at the same spatial coordinate in some inertial frame then will “1” will occur in the past of “2” in every
inertial reference frame? What if “1” occurs in the past of “2” (but not at the same spatial coordinate)
in some inertial reference frame. Will “1” occur in the past of “2” in every inertial reference frame? Use
figure (14.3) to answer these questions.
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This is the formula for light aberration.6,7

14.3 Some Paradoxes

A “paradox” in special relativity is a thought experiment that attempts to display an
apparent flaw in the framework of the theory such that an application of the Lorentz
transformations leads to some logical contradiction or impossibility. Paradoxes must be
resolved, that is the contradiction or impossibility must be shown to come about by an
improper application of the theory. Paradoxes are very useful, first as checks on the
theory’s self consistency and second as a way to learn of its subtleties. We will briefly
consider four paradoxes here, viz., the “Twin” paradox, Bell’s, or the “Spaceship” paradox,
the “Ladder” paradox and the “Ehrenfest” paradox. The last two concern rigid bodies
and the first two are paradoxes concerning particle motion.

14.3.1 The Twin Paradox

Consider two identical twins, one of whom launches into space at a high velocity at some
time, having synchronized his clocks with his brother’s at the instant they pass one another.
His brother stays on Earth. After wandering for a while, at a constant velocity, the
traveling twin returns to Earth, again at a constant velocity, and finds that his brother,
who stayed behind, has aged more than himself. The paradox lies in the fact that one
expects the laws of physics to apply symmetrically to both twins: since each twin sees the
other as a moving inertial observer, each brother applies time dilation and the principle
of relativity to the other and concludes that the other has aged less!

The physical situation is, however, not symmetric. One brother (the traveler) has not
been inertial throughout the journey because he has required to accelerate in order to
switch from being outbound to becoming inbound in order to return to Earth. From the
point of view of the inertial (Earth bound) twin, suppose that the traveler has traveled
to a nearby star, a distance d from Earth before returning. Imagine that the change in
direction needed to return occurred with infinite acceleration over an infinitesimal time
and the return journey is carried out at the same speed. The time taken for the return

6Problem: Show that the formula can be simplified to

tan
θ′

2
= tan

θ

2

√
1− v/c

1 + v/c

7Problem: Show that for small angles, in the limit v/c→ 0 and up to first order in v/c, the aberration
angle ∆θ = θ − θ′ is given by

∆θ ≈ v

c
sin θ
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trip will be ∆t = 2d/v, which is also the Earth bound twin’s proper time and the amount
by which he will have aged. However, a Lorentz transformation to the traveler’s frame
shows that

∆t′ = γ(∆t− v∆x/c2), ∆x′ = γ(∆x− v∆t), (14.3.1)

and the traveler’s clock is at a fixed x′, i.e., ∆x = v∆t. Therefore

∆t′ = ∆t
√
1− v2/c2 =

2d

v

√
1− v2/c2 < ∆t (14.3.2)

so the twin has aged less.

We could not apply the same argument to the traveling twin because he is non-inertial.
However, we could imagine two travelers, one outbound and one inbound who pass each
other and synchronize their clocks at the turnaround point. In this way the acceleration
would play no role in the following argument: from the point of view of the two travelers,
the Earth would be moving with a velocity ∓v. If the distance between the Earth and the
turnaround point is d in the Earth’s reference frame it would be ∆x′ = d′ = d

√
1− v2/c2

in the frame of the traveler, by length contraction. The time taken for the Earth to make
the round-trip would be measured as

∆t′ =
2d′

v
=

2d

v

√
1− v2/c2 < ∆t (14.3.3)

and both observers agree on the outcome: the traveling twin (or his doppelganger, at
least) has aged less than the twin who stayed put.

Notice that the issue is really about comparing the elapsed proper time, or path lengths
traveled. Since the proper time is an invariant, we expect the results calculated in either
frame to agree. For example the elapsed proper time of the Earth bound clock is its own
coordinate time (∆x = 0, so ∆τ = ∆t) whereas the proper time interval of the traveler,
measured by the same observer is

∆τ ′ =
√

∆t2 −∆x2 = ∆τ
√

1− v2/c2 (14.3.4)

We cannot apply the same argument from the traveler’s point of view because his trajectory
consists of two distinct inertial frames, as illustrated in figure (14.4). Notice that there is
a gap in the simultaneity lines at the turnaround point, which implies a sudden jump in
the measured age of the Earth bound twin. This jump accounts for the age difference as
we will see below.

We must treat the twin and his doppelganger separately, then add the jump. From
the outbound twin’s viewpoint, the proper time on Earth that elapses during his trip is

∆τout =
√

∆t′2out −∆x′2 = ∆t′out
√

1− v2/c2 (14.3.5)
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x
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x/

c

Earth bound observer’s frame

d

Figure 14.4: Simultaneity lines for the traveling observer

and likewise for the inbound doppelganger,

∆τin =
√

∆t′2in −∆x′2 = ∆t′in
√
1− v2/c2. (14.3.6)

where ∆t′in/out refer to the proper time in the traveling frames. We may safely assume by

symmetry that ∆t′out = ∆t′in, so the proper time elapsed on Earth is

∆τ = ∆τin +∆τout +∆τjump = ∆τ ′
√

1− v2/c2 +∆τjump (14.3.7)

where we have called ∆τ ′ = ∆t′in + ∆t′out, which is the total proper time elapsed in the
traveler’s frame. From the spacetime diagram in figure (14.3) the two sets of simultaneity
lines in the figure (14.4) have slopes ±v/c2. It follows that the jump in the Earth’s proper
time is

∆τjump = 2dv/c2 =
2d′v/c2√
1− v2/c2

=
v2/c2∆τ ′√
1− v2/c2

(14.3.8)

where we used the length contraction formula. Putting all the pieces together we find

∆τ =
∆τ ′√

1− v2/c2
, (14.3.9)

which agrees with (14.3.4).
The jump discontinuity occurred because the turnaround point essentially involves a

delta function acceleration to the left. It is the price we pay for the privilege of treating
the traveler as two distinct inertial observers. One could imagine a smooth turnaround, in
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which case we would not be able to take the traveler’s point of view within the framework
of the special theory of relativity. We could still take the Earth bound observer’s point
of view, treating the position of the traveler as a function of time. In that case, (14.3.3)
turns into

∆τ ′ =

∫ ∆τ

0
dt
√
1− v(t)2/c2 (14.3.10)

and, because the integrand is always less than one, the central result still holds: the
traveling twin returns younger than his sibling.

14.3.2 Bell’s Paradox

Let A and B be two space-ships initially stationary in an inertial coordinate system, S,

with positions x
(0)
A and x

(0)
B > x

(0)
A respectively. The distance between them in this frame

will be l = x
(0)
B − x

(0)
A . Imagine also that they are connected by a fragile, inextensible and

taut string, of length L, from the rear of B to the front of A. At some time, t = 0 (in S),
both ships begin to accelerate with the same acceleration (as measured in S) so that they
have the same velocity (measured in S) at all times. Will the string break?8

Because all the distances involved will be subject to the same Lorentz contraction, one
might expect that the string will not break during the acceleration. Paradoxically, this
conclusion would not be correct because it does not take correctly into account the way
in which the acceleration is defined, i.e., that it is relative to the inertial system, S. Thus,
for both ships,

a(t) =
d2x

dt2
⇒ x(t) = x(0)(t) +

∫ t

0
dt′
∫ t′

0
a(t′′)dt′′ (14.3.11)

and the coordinate distance between the ships, by definition remains the same, i.e., l(t) =

xB(t) − xA(t) = x
(0)
A − x

(0)
B = l. However, in the frame S, the string length would be

Lorentz contracted and therefore less than l. From the point of view of S the string will
snap.

We can arrive at the same conclusion if we take the point of view of an inertial frame
that is instantaneously at rest relative to the trailing spaceship (A) at some time t0,
measured in S. From the point of view of this frame (say SA, also called the comoving
frame), l is a Lorentz contraction of the measured distance, L(t0), between the ships, i.e.,
the distance between the ships as measured in SA is approximately

L(t0) =
l√

1− v20/c
2
> l. (14.3.12)

8Although named after Bell, this paradox was first introduced by Dewan and Beran, Am. J. Phys., 27
(7) 517.
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Figure 14.5: Simultaneity lines for accelerating spaceships

where v0 = v(t0) is the instantaneous velocity of A at time t0. As the speed increases
because of the acceleration, the leading ship appears to be at an ever greater distance
from the trailing ship in the frame SA. The string, of proper length l, must snap.

The inertial frame that is instantaneously at rest relative to B (say SB) at t0 coincides
with the frame SA at t0, but S and SA do not agree on what is simultaneous, as indicated
in figure (14.5). As a result, the leading spaceship appears to the trailing one to have
undergone an acceleration over a greater time interval. At no time in either SA or SB
do the two spaceships share a single comoving inertial frame, so they cannot agree on
what events are simultaneous: in the figure, events A and B′ are simultaneous in SA but,
B′ and C are simultaneous in SB. The lengths of the string measured in S and SA are,
respectively, l(AB), and l(AB′) = L but, because the path from B to B′ is curved, the
Lorentz contraction used to arrive at (14.3.12) is only an approximation.

Is there a way for the rockets to be accelerated while sharing comoving inertial frame
at all times?

14.4 Tensors on the fly

One lesson that we learn is that we must work with the position vectors of events and
these are “four-vectors”, i.e., vectors having one time and three space components. It is
no longer useful or even correct to think of space and time as separate entities because
the Lorentz transformations mix the two. Continuing with a Cartesian system, label the



14.4. TENSORS ON THE FLY 315

coordinates as follows:

xµ = (x0, xi) : µ ∈ {0, 1, 2, 3}, x0 = t, xi = xi. (14.4.1)

Let us be particular about the position of the indices as superscripts, distinguishing be-
tween superscripts and subscripts (soon we will see that this is important) and consider a
displacement, dxµ, in frame S letting the corresponding displacement in frame S′ be dx′µ.
By our transformations we know that

dxµ → dx′µ =
∑
ν

Lµνdx
µ, (14.4.2)

where Lµν is precisely the matrix we derived earlier for the special case of boosts in the x
direction. In that case

L0
0 = −L00/c

2 = cosh η,
L0

1 = −L01/c
2 = sinh η/c, L0

i = 0 ∀ i ∈ {2, 3},
L1

0 = L10 = c sinh η, Li0 = 0 ∀ i ∈ {2, 3},
L1

1 = L11 = cosh η, Lij = δij ∀ i, j ∈ {2, 3}, (14.4.3)

where δij is the usual Kronecker δ̂ (unit matrix),

δij =

{
1 i = j
0 i ̸= j

(14.4.4)

In spacetime, we may set up a vector space V by defining a set of four unit vectors,
{û(µ)}, called a tetrad frame, spanning V , so that an arbitrary proper displacement in
space-time can be expressed as ds⃗ =

∑
µ dx

µû(µ). Since the displacement itself should not
depend on the observer, it follows from (14.4.2) that under a Lorentz transformation

û(µ) → û′(µ) =
∑
α

û(α)(L
−1)αµ (14.4.5)

A vector is any object of the form A⃗ =
∑

µA
µû(µ), with four “contravariant” components,

Aµ, each of which transforms as dxµ (so that A⃗ is also observer independent), i.e.,

Aµ → A′µ =
∑
ν

LµνA
ν . (14.4.6)

It is both customary and useful to think of a vector in terms of its components, but it
is somewhat inconvenient to explicitly write out the summation (Σ) every time we have
sum over components. We notice, however, that only repeated indices get summed over;
therefore we will use Einstein’s convention and drop the symbol Σ, but now with the
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understanding that repeated indices, occurring in pairs in which one member appears
“up” (as a superscript) and the other “down” (as a subscript), automatically implies a
sum. Thus, for example, we would write the above transformation of contravariant vectors
as

Aµ → A′µ = LµνA
ν . (14.4.7)

Notice that the derivative operator does not transform as dxµ, but according to the inverse
transformation. In other words:

∂

∂xµ
:= ∂µ → ∂

∂x′µ
:= ∂′µ =

∂xα

∂x′µ
∂α. (14.4.8)

But since ∂x′µ/∂xα = Lµα, and

∂xα

∂x′µ
∂x′µ

∂xβ
= δαβ = (L−1)αµL

µ
β, (14.4.9)

it follows that

∂′µ =
∂xα

∂x′µ
∂α = ∂α(L

−1)αµ, (14.4.10)

so the derivatives of a scalar function, ∂µϕ(x), are not the components of a vector. Nev-
ertheless, we see that

dx′µ∂′µϕ
′(x′) = (L−1)βµL

µ
αdx

α∂βϕ(x) = δβαdx
α∂βϕ(x) = dxµ∂µϕ(x) (14.4.11)

is invariant.

Given any vector space, V , one can one can consider the space of all linear maps from
V to the real numbers, i.e., maps of the form ω⃗ : V → R,

ω⃗(A⃗)
def
= ω⃗ · A⃗ ∈ R

satisfying

ω⃗(aA⃗+ bC⃗) = aω⃗(A⃗) + bω⃗(C⃗) (14.4.12)

where A⃗ and C⃗ are in V , and a and a are real numbers. One may now define the sum of
two linear maps by

(aω⃗ + bη⃗)(A⃗) = aω⃗(A⃗) + bη⃗(A⃗) (14.4.13)

then it is easy to see that these maps themselves form a vector space, called the dual
vector space, ∗V . Given the tetrad {û(µ)}, spanning V , we could introduce a basis for the

dual vector space, {θ̂(µ)}, by requiring that

θ̂(ν)(û(µ)) = θ̂(ν) · û(µ) = δνµ (14.4.14)



14.4. TENSORS ON THE FLY 317

For the inner product to remain invariant, it must hold that, under a Lorentz transforma-
tion,

θ̂(µ) → θ̂′(µ) = Lµαθ̂
(α). (14.4.15)

Any member of the dual vector space, ω⃗ can now be expressed as ω⃗ = ωµθ̂
(µ). ωµ are

called the “covariant” components of ω⃗. They will transform as

ωµ → ω′
µ = ωα(L

−1)αµ, (14.4.16)

so that, given any vector, A⃗, and any dual vector, ω⃗, one forms a scalar

−ω⃗ · A⃗ = −ωµAµ. (14.4.17)

This is the four dimensional dot product, the analogue of the three dimensional dot product
we are familiar with. The simplest example of a dual vector is the gradient of a scalar
function:

∇ = θ̂(µ)∂µϕ(x), (14.4.18)

as we saw earlier.
We could generalize the concept of vectors to tensors by simply defining a rank (0, n)

tensor to be an multilinear map from a tensor product (an ordered collection) of vectors
to R, i.e., T : V ⊗ V . . . ⊗ V (n times) → R.9 A basis for T will evidently be θ̂(µ1) ⊗
θ̂(µ2) . . .⊗ θ̂(µn) and we could express T as

T = Tµ1µ2...µn θ̂
(µ1) ⊗ θ̂(µ2) . . .⊗ θ̂(µn), (14.4.19)

Its covariant components will transform as n copies of a dual vector,

T ′
µνλ... = Tαβγ...(L

−1)αµ(L
−1)βν(L

−1)γλ . . . (14.4.20)

Similarly, we could define a rank (m, 0) tensor to be an multilinear map from a tensor
product of dual vectors to R, i.e., T : ∗V ⊗∗V . . .⊗∗V (m times) → R. Following the same
reasoning as before, a basis for T will be û(µ1) ⊗ û(µ2) . . .⊗ û(µm) and we could express T
as

T = Tµ1µ2...µm û(µ1) ⊗ û(µ2) . . .⊗ û(µm) (14.4.21)

so that its contravariant coponents will transform as m copies of a vector,

Tµνλ... = LµαL
ν
βL

λ
γT

αβγ... (14.4.22)

More generally, we define “mixed” tensors as multilinear maps from a tensor product of
vectors and dual vectors, T : ∗V ⊗ ∗V . . .⊗ ∗V (m times)⊗ V ⊗ V . . .⊗ V (n times) → R
and express it as

T = Tµν...λκ...û(µ) ⊗ û(ν) . . .⊗ θ̂(λ) ⊗ θ̂(κ) . . . , (14.4.23)

9A multilinear map acts lineraly on all its arguments.
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with V and ∗V appearing in any order in the product (the above is simply one example).
In this case, the tensor is said to have rank (m,n). Thus vectors and dual vectors are but
special cases of tensors: vectors are tensors of rank (1, 0) and dual vectors are tensors of
rank (0, 1). Just as we think of vectors and dual vectors in terms of their components, we
will also think of tensors in terms of their components. Thus we will speak of contravariant,
covariant and mixed tensors according to their components.

There is a one to one relationship between the covariant and contravariant tensors: for
every covariant tensor we can find a contravariant tensor and vice-versa. To see how this
comes about, let us rewrite the proper distance (14.1.34) in a slightly different way, using
matrix notation as follows:

ds2 = −ds⃗ · ds⃗ = −(û(µ) · û(ν))dxµdxν = −ηµνdxµdxν , (14.4.24)

or
û(µ) · û(ν) = ηµν (14.4.25)

where, according to (14.1.34), ηµν is the matrix: diag(−c2, 1, 1, 1) i.e.,

η̂ = ηµν =


−c2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (14.4.26)

It is a covariant tensor of rank two as we see from its transformation properties and is
called the Minkowski metric. Given that ds2 is invariant, we must have

−ds2 = ηµνdx
µdxν → η′αβdx

′αdx′β = η′αβL
α
µL

β
νdx

µdxν = ηµνdx
µdxν , (14.4.27)

which implies that
ηµν = LαµL

β
µη

′
αβ, (14.4.28)

or, by taking inverses,
η′αβ = (L−1)µα(L

−1)νβηµν . (14.4.29)

However, ηµν is required to be an invariant tensor in Special Relativity, η′µν ≡ ηµν , and this

can be used in conjunction with (14.4.28) to derive expressions for the matrices L̂. It is an
alternative way of deriving the Lorentz transformations through the so-called generators
of the transformation (see Appendix B). Now the metric is invertible (∥η̂∥ ̸= 0), with
inverse

η̂−1 = ηµν =


− 1
c2

0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (14.4.30)
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and, by construction, ηµαηαν = δµν . (It may be easily shown that the inverse metric ηµν

transforms as

η′αβ = LαµL
β
νη
µν = ηαβ, (14.4.31)

i.e., according the rule for a contravariant tensor of rank two.)

In (14.4.24), ηµν acts upon two contravariant vectors (two factors of dxµ) to create a
scalar, the proper distance between two events. But we had seen that invariants are con-
structed from the product of contravariant tensors and covariant tensors. Thus we expect
that ηµνdx

ν should transform as a covariant vector. In general, consider a contravariant
vector Aµ and construct the quantity

Aµ = ηµνA
ν . (14.4.32)

How does it transform? We see that

Aµ → A′
µ = ηµνL

ν
αA

α = ηµνL
ν
αη

αγηγλA
λ = (ηµνL

ν
αη

αγ)(ηγλA
λ), (14.4.33)

where we have used ηαγηγλ = δαλ. But notice that (14.4.28) implies the identity

ηαβ = ηµνL
µ
αL

ν
β → ηγαηαβ = ηµνη

γαLµαL
ν
β

→ δγβ = (ηνµL
µ
αη

αγ)Lνβ = (L−1)γνL
ν
β

→ (L−1)γν = ηνµL
µ
αη

αγ . (14.4.34)

Therefore (14.4.33) reads

A′
µ = Aγ(L

−1)γµ, (14.4.35)

which is the transformation of a covariant vector. The Minkowski metric therefore maps
contravariant vectors to covariant vectors. In the same way it maps contravariant tensors
to covariant tensors:

Tα1,α2,...αn = ηα1β1ηα2β2 ...ηαnβnT
β1,β2,...βn . (14.4.36)

Likewise, the inverse metric ηµν maps covariant vectors to contravariant vectors, i.e., the
quantity Aµ defined by

Aµ = ηµνAν , (14.4.37)

transforms as a contravariant vector.10 Therefore, it maps covariant tensors to contravari-
ant tensors:

Tα1,α2,...αn = ηα1β1ηα2β2 ...ηαnβnTβ1,β2,...βn . (14.4.38)

10Problem: Show this!
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This relationship between covariant tensors and contravariant tensors is why we originally
defined the boosts as in (14.1.17). Thus, Lµν = ηµαLαν which gives

L0
0 = η00L00 = −L00/c

2,

L0
i = η00L0i = −L0i/c

2,

Li0 = ηijLj0 = Li0,

Lij = ηikLkj = Lij . (14.4.39)

Moreover, there is a natural way to define the (invariant) magnitude of a four-vector, Aµ.
It is simply

A2 = −AµAµ = −ηµνAµAν = −ηµνAµAν , (14.4.40)

which is the equivalent of the familiar way of defining the magnitude of an ordinary three-
vector.11 For example, the familiar operator □x can be written as

□x = −ηµν∂µ∂ν = −∂2, (14.4.41)

in which form it is manifestly a scalar. We see once again that the basic difference between
Newtonian space and Lorentzian space-time is that, in the case of the former, space and
time do not mix and both are absolute. In this case it is sufficient to consider only
spatial distances and Pythagoras’ theorem ensures that the metric is just the Kronecker δ
(with three positive eigenvalues), so there is no need to distinguish between covariant and
contravariant indices. In the case of a Lorentzian space-time an observer’s measurements
of space and time are not independent, neither is absolute and so one is forced to consider
the “distance” between events in space-time. The metric, ηµν , for space-time has signature
(−1, 3) i.e., it has one negative eigenvalue and three positive eigenvalues.

For an arbitrary boost specified by a velocity v⃗ = (v1, v2, v3) = (v1, v2, v3), we find the
following Lorentz transformations:

L0
0 =

1√
1− v⃗2/c2

= γ,

Li0 = −γvi,

L0
i = −γvi

c2
,

11When A2 < 0 the vector points within the light cone and is said to be “time-like”. When A2 > 0 it
points outside the light cone and is called “space-like” and when A2 = 0 the vector A is “light-like” or
“null”, pointing along the light cone.
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Lij = δij + (γ − 1)
vivj
v⃗2

. (14.4.42)

These are most easily derived using (14.4.28) and the fact that η′µν = ηµν . They reduce to
the transformations we had earlier for a boost in the x− direction, for then v⃗ = (v, 0, 0)
and

L̂ =


γ −γv

c2
0 0

−γv γ 0 0
0 0 1 0
0 0 0 1

 , (14.4.43)

which leads to precisely the transformations in (14.1.33). A more compact way to write
(14.4.42) is

t′ = γ[t− (v⃗ · r⃗)
c2

]

r⃗′ = r⃗ − γv⃗t+ (γ − 1)
v⃗

v2
(v⃗ · r⃗) (14.4.44)

for a general v⃗.

Spatial volume elements are not invariant under Lorentz transformations. We can
make a rough argument for this as follows: suppose that the volume measured by the
proper observer is dV then the observer moving relative to this observer with a velocity
v⃗ will observe the length dimension in the direction of motion contracted according to
(14.2.2) and all perpendicular length dimensions will remain unchanged, so we expect
dV ′ = dV/γ. A more precise treatment follows by mimicking the argument for length
contraction. Consider the transformation form (t, x) → (t′x′)

dt′ = L0
0dt+ L0

jdx
j , dx′i = Li0dt+ Lijdx

j (14.4.45)

with dt′ = 0 because length measurements must be made subject to a simultaneous mea-
surement of the endpoints in every frame. Therefore dt = −L0

jdx
j/γ and

dx′i =

(
−1

γ
Li0L

0
j + Lij

)
dxj =

(
δij +

(1− γ)

γ

vivj
v2

)
dxj , (14.4.46)

so taking the Jacobian of the transformation gives

d3r⃗ → d3r⃗′ = d3r⃗

∣∣∣∣∂x′i∂xj

∣∣∣∣ = d3r⃗/γ. (14.4.47)

The four dimensional volume element, d4x, is invariant for proper Lorentz transformations.
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A consequence of the Lorentz transformation of volume is that the three dimensional
δ function, δ(3)(r⃗ − r⃗0), which is defined according to∫

d3r⃗δ(3)(r⃗ − r⃗0) = 1 (14.4.48)

cannot be invariant either. If we require the defining integral to remain invariant then

δ(3)(r⃗ − r⃗0) → δ′(3)(r⃗′ − r⃗′0) = γδ(3)(r⃗ − r⃗0). (14.4.49)

The four dimensional delta function, δ(4)(x− x0), will, however, be invariant.

14.5 Waves and the Relativistic Doppler Effect

Maxwell’s equations for the electromagnetic field, Aµ, in Lorentz gauge read

□xAµ = jµ. (14.5.1)

In the absence of sources, this is just the wave equation with c being the speed of propa-
gation; in one spatial dimension[

∂2

∂t2
− c2

∂2

∂x2

]
Aµ(t, x) = 0 (14.5.2)

and a typical solution will look like a linear combination of plane waves of varying ampli-
tudes and frequencies,

A(k)
µ (t, x) = A(0)

µ (k, ω)ei(kx−ωt), (14.5.3)

subject to k2−ω2/c2 = 0. Because Aµ transforms as a vector, the exponent must transform
as a scalar, i.e., kx − ωt must be an invariant. This is only possible if kµ = (−ω, k)
transforms as a covariant vector,

ω′ = γ(ω − vk), k′ = γ(k − vω/c2) (14.5.4)

i.e., kµ = (ω/c2, k) transforms as xµ = (t, x). In particular, the first relation tells us that

f ′ = f

√
1− v/c

1 + v/c
, (14.5.5)

which is the expression for the Doppler shifting of light in the frame of an observer moving
with a velocity v, taken as positive when the observer is traveling in the direction of the
propagating light wave. Thus an observer moving “away from” the source sees a red-
shifting of the light, i.e., a shifting toward lower frequencies, and an observer moving
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toward the source sees a blue-shifting, i.e., a shifting toward higher frequencies. If
the observer’s speed is small compared to the speed of light, the linear approximation of
(14.5.5) gives

f ′ ≈
(
1− v

c

)
f, (14.5.6)

which should be compared with the Doppler shifting for ordinary mechanical waves that
propagate in a medium. We get the observed wavelengths either directly, by requiring
λf = c = λ′f ′, or by using the second relation in (14.5.4),

λ′ = λ

√
1 + v/c

1− v/c
. (14.5.7)

The “redshift” factor is defined as

z =
λ′ − λ

λ
=

√
1 + v/c

1− v/c
− 1. (14.5.8)

and z ≈ v
c when v ≪ c. Because all inertial observers are equivalent in special relativity

there is no separate effect for “moving sources” as there is in the case of mechanical waves.
Yet, one may wonder why there is an effect at all, considering that light requires no medium
in which to travel and its speed in all reference frames is the same. The Doppler effect for
light originates in time dilation.

14.6 Dynamics in Special Relativity

The relativistic point particle extremizes its “proper time” (this can be thought of as a
generalization of Fermat’s principle, which was originally enunciated for the motion of
light “corpuscles”),

Sp = −mc2
∫
dτ = −mc

∫ 2

1

√
−ηµνdxµdxν = −mc2

∫ 2

1
dt

√
1− v⃗2

c2
(14.6.1)

where dτ = ds/c = 1
c

√
−ηµνdxµdxν is the proper time and the constant “mc2” is chosen

so that Sp has the dimension of action (or angular momentum: J·s). One sees quite easily
that this action principle reduces to Hamilton’s principle (with zero potential energy,
V = 0) when the velocity of the particle relative to the observer is small compared with
the velocity light, for then √

1− v⃗2

c2
≈ 1− 1

2

v⃗2

c2
(14.6.2)
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which, when inserted into (14.6.1) gives

Sp ≈
∫ 2

1
dt

[
1

2
mv⃗2 −mc2

]
(14.6.3)

The second term is, of course, just a constant (later to be identified with the rest mass
energy of the particle) and can be dropped without affecting either the equations of motion
or the conservation laws. The first term is the non-relativistic kinetic energy of the particle
and the action is therefore just that of a free non-relativistic point particle.

The momentum conjugate to xi is

pi =
∂L
∂ẋi

=
mvi√

1− v⃗2/c2
= γmvi, (14.6.4)

which reduces to pi = mvi when |v⃗| << c, and Euler’s equations give

dp⃗

dt
=

d

dt
(γmv⃗) =

d

dt

mv⃗√
1− v⃗2/c2

= 0 (14.6.5)

which are the equations of motion of the particle. The Lagrangian does not depend
explicitly on time, so we expect that the Hamiltonian is the total energy and is conserved,

E = H = piẋ
i − L =

mv⃗2√
1− v⃗2/c2

+mc2
√

1− v⃗2/c2 =
mc2√

1− v⃗2/c2
(14.6.6)

The quantity

mR =
m√

1− v⃗2/c2
(14.6.7)

is generally called the “relativistic mass” or simply “mass” of the particle, whereas the
parameter m we used initially is called the “rest” mass of the particle and can be thought
of as its mass when measured in its proper frame (v⃗ = 0). We have just obtained the
popular Einstein relation,

E = mRc
2. (14.6.8)

Notice that the energy of the particle is not zero in the rest frame. In this frame the
particle possesses an energy, E = mc2, which is exclusively associated with its proper
(rest) mass. Furthermore, expanding E in powers of v⃗ we find

E = mc2 +
1

2
mv⃗2 +

3

8
m
v⃗4

c2
+ . . . (14.6.9)

The second term is the Newtonian kinetic energy and the higher order terms are all
corrections to the Newtonian expression. The kinetic energy, K, in special relativity is
defined via the relation

E = K +mc2, (14.6.10)
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so it is what remains after its rest mass energy is subtracted from its total energy.
The Hamiltonian is obtained by a Legendre transformation of the Lagrangian and is

expressed in terms of the momenta and coordinates but not the velocities. This is easily
accomplished by noting that (14.6.4) gives

p⃗2 =
m2v⃗2

1− v⃗2/c2
→ v⃗

c
=

p⃗√
p⃗2 +m2c2

(14.6.11)

Thus we get

1− v⃗2

c2
=

m2c2

p⃗2 +m2c2
, (14.6.12)

which, when inserted into (14.6.6), gives another well known result,

H = E =
√
p⃗2c2 +m2c4. (14.6.13)

Again we recover the rest mass energy, E = mc2 when we set p⃗ = 0.
Let us note that the momentum

pi = mγvi = m
dt

dτ

dxi
dt

= m
dxi
dτ

(14.6.14)

is quite manifestly the spatial component of the four-vector12

pµ = m
dxµ
dτ

≡ mUµ. (14.6.15)

where Uµ = dxµ/dτ is the “four velocity” of the particle. The quantity pµ is called its
“four momentum”. Its time component is

p0 = −mc2 dt
dτ

= − mc2√
1− v⃗2/c2

= −E (14.6.16)

so we see that the spatial momentum and the energy are components of one four-vector
momentum,

pµ = m
dxµ

dτ
, p0 =

E

c2
, pi =

mvi√
1− v⃗2/c2

(14.6.17)

Formula (14.6.13) for the energy is now seen to result from a purely kinematic relation,
because

p2 = ηµνp
µpµ = m2ηµν

dxµ

dτ

dxν

dτ
= −m2

[
ds

dτ

]2
= −m2c2 (14.6.18)

12Problem: Convince yourself that pµ = mdxµ/dτ is indeed a four-vector under Lorentz transformations.
Remember that the proper time, τ , is a scalar.
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(the kinematic relation being, of course UµU
µ = −c2, remember it). Therefore, expanding

the l.h.s.,

p2 = −E
2

c2
+ p⃗2 = −m2c2, ⇒ E2 = p⃗2c2 +m2c4 (14.6.19)

Interestingly, taking the square root allows for both positive and negative energies but we
have chosen the positive sign, thereby excluding negative energy free particles by fiat.

Euler’s equations as given in (14.6.5) are not in a manifestly covariant form. They
can, however, be put in such a form if we multiply by γ, expressing them as

γ
dp⃗

dt
=
dt

dτ

dp⃗

dt
=
dp⃗

dτ
= 0 (14.6.20)

This is the equation of motion for a free particle, so the r.h.s. is zero. The l.h.s. transforms
as the spatial components of a four-vector and we need not worry about the transforma-
tion properties of the r.h.s., since it vanishes. In the presence of an external force the
r.h.s. should not vanish and the principle of covariance requires that both sides of the
equations of motion should transform in the same way under Lorentz transformations.
Let us tentatively write a covariant equation of motion as

dpµ

dτ
= fµ (14.6.21)

where fµ is a four-vector. It must be interpreted as the relativistic equivalent of Newton’s
force. If m is constant then

fµ = m
dUµ

dτ

and, because U2 = −c2, the “four force” must satisfy one constraint, i.e.,

f · U = fµUµ = 0, (14.6.22)

which means that not all its components are independent. But what is the connection
between fµ and the familiar concept of the Newtonian force, which we will call F⃗N? To
find it consider the proper frame, S, of the particle (quantities in this instantaneous rest
frame will be represented by an over-bar). In this frame τ = t, p0 = m and pi = 0. It
follows that the time component of the l.h.s of (14.6.21) is zero (assuming m is constant)

and therefore so is f
0
. The spatial part of the force equation then reads

dpi

dt
= mai = f

i
, (14.6.23)

where ai is the particle’s acceleration relative to S, generally referred to as its proper ac-

celeration. Naturally, we identify F iN with f
i
or, equivalently, with mai. We will discuss
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the connection between the proper acceleration, ai, and the acceleration as measured in
S,

ai =
d2xi

dt2

in a later section. For the present take

f
µ
= (0, F⃗N ). (14.6.24)

To determine fµ in an arbitrary frame we only need to perform a boost because fµ is
a genuine four-vector. Therefore, in a frame in which the instantaneous velocity of the
particle is v⃗, we find in particular that

f0 = γ
v⃗ · F⃗N
c2

(14.6.25)

i.e.,
dE

dt
= v⃗ · F⃗N (14.6.26)

The equation says that the rate of energy gain (loss) of the particle is simply the power
transferred to (or from) the system by the external Newtonian forces. The same boost
also gives the spatial components of the relativistic force in an arbitrary frame as

f⃗ = F⃗N + (γ − 1)
v⃗

v2
(v⃗ · F⃗N ) (14.6.27)

and we notice that the component of f⃗ perpendicular to the velocity is equal to the
corresponding component of the Newtonian force, f⃗⊥ = F⃗N⊥. However the component of
the force in the direction of motion is enhanced over the same component of the Newtonian
force by the factor of γ, i.e., f⃗∥ = γF⃗N∥. Our expression also has the non-relativistic limit

(γ ≈ 1) f⃗ ≈ F⃗N , as it should.
We have given two forms of the action for the massive point particle in (14.6.1) although

we have concentrated so far on the last of these. The first form is actually quite interesting,

Sp = −mc
∫ 2

1

√
−ηµνdxµdxν . (14.6.28)

If λ is any parameter describing the particle trajectories then we could write this as

Sp = −mc
∫ 2

1
dλ
√

−ηµνUµ(λ)U
ν
(λ) (14.6.29)

where

Uµ(λ) =
dxµ(λ)

dλ
(14.6.30)
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is tangent to the trajectories xµ(λ) and λ is an arbitrary parameter. The action is therefore
reparameterization invariant and all that we have said earlier corresponds to a particular
choice of λ (= t). This is like fixing a “gauge”, to borrow a term from electrodynamics.13,14

The relativistic Hamilton-Jacobi equation is obtained by replacing the momenta, pµ,
by ∂S/∂xµ in (14.6.19),

ηµν
(
∂S

∂xµ

)(
∂S

∂xν

)
= −m2c2 (14.6.31)

We could define S = S′ −mc2t and write the equation in terms of S′,

1

2m
(∇⃗S′)2 −

(
∂S′

∂t

)
− 1

2mc2

(
∂S′

∂t

)2

= 0 (14.6.32)

In this form the limit c → ∞ compares directly with the expected Hamiltonian-Jacobi
equation for the free non-relativistic particle.

14.7 Conservation Laws

We will now consider a system of relativistic particles and define the total particle mo-
mentum as

pµ =
∑
n

pµn =
∑
n

mn
dxµn
dτn

=
∑
n

mnγnv
µ
n (14.7.1)

The rate at which each particle’s four-momentum changes will depend on the net force
acting upon it, according to

dpµn
dτn

= fµn , (14.7.2)

13Problem: Starting from (14.6.28), treat all the coordinates of an event, xµ, on the same footing (instead
of singling out one of them – time – as a parameter) and define

p(λ)µ =
∂L
∂Uµ

(λ)

.

Show that
H = p(λ)µ Uµ

(λ) − L = 0.

This is a consequence of reparameterization invariance.
14Problem: The square-root Lagrangian in (14.6.28) is inconvenient for the quantization of the free

particle (or working out the statistical mechanics of free, relativistic particles) and a quadratic form,
similar to the non-relativistic one, is preferable. This can be achieved by introducing an auxiliary function,
χ, together with the action,

S = −
∫
dλ

[
χηµνU

µ
(λ)U

ν
(λ) + χ−1m2

]
and treating xµ and χ as independent functions with respect to which the action is to be extremized. Show
that one obtains the expected equations of motion.
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but this is an inconvenient form of the equation of motion, particularly when dealing with
many particles, because it describes the rate of change with respect to the proper time of
the particle, which itself depends on its motion. Making use of the fact that γn = dt/dτn,
let’s rewrite this equation in the form

dpµn
dt

= γ−1
n fµn (14.7.3)

and therefore also
dpµ

dt
=
∑
n

dpµn
dt

=
∑
n

γ−1
n fµn . (14.7.4)

Concentrate, for the moment, on the spatial components only and, as before, let f⃗n be
made up of two parts, viz., (i) an “external” force, f⃗ extn , acting on the particle and (ii) an
“internal” force, f⃗ intn acting on it due to its interactions with all the other particles within
the system. Then

f⃗ intn =
∑
m ̸=n

f⃗m→n (14.7.5)

and it follows that

dp⃗

dt
=

d

dt

∑
n

p⃗n =
∑
n,m ̸=n

γ−1
n f⃗m→n +

∑
n

γ−1
n f⃗ extn (14.7.6)

For low particle velocities γn ≈ 1 for all n and f⃗n ≈ F⃗Nn , where F⃗N is the Newtonian
force. Conservation of particle momentum in the absence of external forces then follows
in this limit by Newton’s third law.

What about the internal forces in a fully relativistic scenario? In principle, no effect
experienced at any world point x can have originated at a world point x′ outside its past
light cone, i.e., at a time earlier than t−|r⃗− r⃗′|/c15 because the speed of light is assumed to
be the maximal speed at which information or influence can travel. Instantaneous particle
interactions, in particular forces that depend only on the spatial distances between the
particles (which are typically employed in Newtonian physics), cannot have the desired
Lorentz transformation properties and therefore are impossible in the context of special
relativity. This, of course, becomes relevant only for very high particle velocities because
the change in position of one particle can influence another particle only after the infor-
mation has had the time to propagate through the distance that separates the particles,
which itself changes appreciably during this time if the relative velocities are high, making
the interactions of particles depend in a complicated way on their motions. This is already
evident from the expression

∑
n,m ̸=n γ

−1
n f⃗m→n describing the effects of the internal forces.

15This is called retardation.
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One gets around this difficulty by imagining that the particles are immersed in a set of
dynamical fields whose disturbances propagate in spacetime with a speed not exceeding
the speed of light.

A “field” should be thought of as a potential (or set of potentials) associated with
each point of spacetime. Disturbances in these potentials transfer energy and momentum
from one event to another. Every field is realized by a function (or set of functions)
with definite Lorentz transformation properties and one can have many kinds of fields, eg.
scalar fields, vector fields, etc., depending on how the field transforms. Particle-particle
interactions are then described in terms of local interactions of the particles with the
fields, which involve an exchange of energy and momentum between the two at the world
point of the particle. This exchange causes disturbances in the fields, which then propagate
through spacetime and, at a later time, exchange energy and momentum (locally) with
other particles in the system. In this way fields act as mediators of inter-particle forces.
A familiar example of this would be electrically charged particles in an electromagnetic
field. The electromagnetic field is responsible for energy and momentum transfer between
the particles via their electromagnetic interaction.

This picture is only consistent if the field that is responsible for mediating the in-
teraction carries energy and momentum in its own right. We then define the total four
momentum of the system by

Pµ = pµ + πµf (14.7.7)

where πµf represents the field momentum and assert the following:

• In the absence of external forces the total four momentum of the system, which
consists of the momentum of the particles and the field, is conserved.

This is a natural generalization of the non-relativistic statement about momentum conser-
vation and, in fact, follows from Noether’s theorem by space-time translation invariance,
as we will see later. It is worth understanding why any generalization of the conservation
law for momentum must involve the entire four-vector momentum if it is to be a covariant
statement. It can be argued as follows: let ∆E and ∆P⃗ represent the change in energy
and momentum respectively of the system in some inertial frame S. In some other frame,
S′, we represent these quantities by ∆E′ and ∆P⃗ ′ respectively. Being components of a
four vector, they are connected by the Lorentz transformation,

∆P ′i =
γvi

c2
∆E +

(
δij + (γ − 1)

vivj
v2

)
∆P j

∆E′ = γ
(
∆E + v⃗ ·∆P⃗

)
. (14.7.8)

It follows that if ∆P⃗ vanishes (the spatial momentum is conserved) in S then it will vanish
in S′ if and only if ∆E vanishes as well and if ∆E vanishes (the total energy is conserved)
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in S then it will vanish in S′ if and only if ∆P⃗ also vanishes. Therefore energy and
momentum conservation go hand in hand in Einstein’s theory of relativity and one cannot
be had without the other. This is a most remarkable fact. In Newtonian mechanics the
two conservation laws are distinct: momentum conservation requires the absence external
forces and a sufficient condition for the conservation of energy is that all forces acting on
the system are conservative. No such condition appears in the relativistic version of the
conservation law, which must therefore always hold provided that the momentum of the
particles and fields are consistently taken into account.

Note that neither the total field momentum nor the total particle momentum is sepa-
rately conserved since momentum may be exchanged between the two. This implies that
the interaction forces between the particles do not satisfy Newton’s third law i.e., action
is not equal and opposite to reaction.

It is often convenient to define the center of momentum frame in complete analogy
with the non-relativistic case by setting the spatial components of the total momentum in
that frame to zero, i.e.,

Pµcm =

(
Ecm

c2
, 0⃗

)
= (Mcm, 0⃗), (14.7.9)

which also defines the total rest mass, Mcm, of the system. The rest mass energy, Mcmc
2,

contains all the rest energies of the particles that make up the system. It also contains their
kinetic energy relative to the center of mass as well as the energies of their interactions
with one another and of the fields involved in these interactions. In other words, the rest
mass of the system contains the entire internal energy of the system and it is conserved.
We know of four kinds of elementary fields, each with its characteristic interactions. From
weakest to strongest they are the gravitational field, the fields associated with the weak
interaction, the electromagnetic field and the fields associated with the strong interaction
or chromodynamics. The gravitational field is associated with spacetime itself and its
description is unique. All the other fields are special cases of a single family of theories
called “gauge theories”. These will be discussed in a following chapters. The momentum
in a generic frame, S, can be obtained by a Lorentz transformation and will involve only
Mcm and the velocity of the center of mass relative to the Laboratory, v⃗cm,

P 0 =Mcmγcm, P⃗ =Mcmγv⃗cm. (14.7.10)

Thus in every physical system consisting of interacting particles, the center of mass will
behave as a single particle with an effective mass (equal to Mcm).

14.8 Relativistic Collisions

The preceding discussion leads directly to the topic of collisions between relativistic par-
ticles. In this section we will briefly examine such collisions, assuming that whatever
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fields are present diminish rapidly enough to zero that the field contribution to the total
momentum can be ignored when the particles are sufficiently far apart. We will then con-
sider “free” incoming particles and “free” outgoing particles as we did earlier and conserve
momentum according to

∑
n p

µ
ni =

∑
n p

µ
nf as before, but this time taking care with the

relativistic factors.
First consider a collision in which two incoming bodies with momenta

p1i =

(
m1 +

K1

c2
, p⃗1

)
, p2i =

(
m2 +

K2

c2
, p⃗2

)
(14.8.1)

stick together to form a body of mass mf , with momentum

pf =

(
mf +

Kf

c2
, p⃗f

)
, (14.8.2)

where we used the definition of the Kinetic energy, E = mc2 + K. Conservation of
momentum means that

m1 +m2 +
K1

c2
+
K2

c2
= mf +

Kf

c2

p⃗1 + p⃗2 = p⃗f , (14.8.3)

which three equations (the collision is planar) are sufficient to determine mf and p⃗f in
terms of the initial data. Such a collision is best viewed in the center of momentum frame
in which p⃗f = 0 and mf =Mcm. Then, in this frame pµcm = (Mcm, 0⃗)

m1 +m2 +
K ′

1

c2
+
K ′

2

c2
=Mcm, p⃗′1 = −p⃗′2 (14.8.4)

where we used primes to denote quantities measured in the c.m.s. The first equation gives
the effective mass, i.e., the mass-energy in the center of momentum frame. The second
simply defines the center of momentum frame. If the velocity of the center of momentum
frame as measured in the the Laboratory frame is vcm, then

v⃗cm =
p⃗cmc√

p⃗2cm +M2
cmc

2
=

(p⃗1 + p⃗2)c√
(p⃗1 + p⃗2)2 +M2

cmc
2

(14.8.5)

and an appropriate boost recovers the solutions in that frame.
Consider a collision in which two incident particles, “1” and “2”, give rise to two

outgoing particles, “3” and “4” (we label the particles differently because, in relativis-
tic collisions, particle physics processes may cause one set of incoming particles to be
transformed into a wholly different set of outgoing particles and we wish to allow for this
possibility) and suppose particle “2” is at rest in the Laboratory frame. Let the x− axis
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q

f

v1i

v1f

v2f

Figure 14.6: Two dimensional collision

lie along the motion of “1” and let θ and ϕ be the angles made by “3” and “4” respectively
with the x−axis, as in 14.6. Conserving the four momentum gives

m1 +m2 +
K1

c2
= m3 +m4 +

K3

c2
+
K4

c2

p1 = p3 cos θ + p4 cosϕ

p3 sin θ − p4 sinϕ = 0 (14.8.6)

Note that in general

p2c2 +m2c4 = E2 = (mc2 +K)2 ⇒ p2 = 2mK +
K2

c2
(14.8.7)

so these equations are to be solved for p3, p4 and one of the angles. As before, the other
angle must be specified. Our strategy will be similar to the one we followed for non-
relativistic collisions. Multiply the third equation in (14.8.6) by cosϕ and use the second
to find

p3 sin θ cosϕ = p4 sinϕ cosϕ = p1 sinϕ− p3 cos θ sinϕ. (14.8.8)

This gives

p3 sin(θ + ϕ) = p1 sinϕ⇒ p3 =
p1 sinϕ

sin(θ + ϕ)
(14.8.9)

and inserting the result into the second equation of (14.8.6)

p4 =
p1 sin θ

sin(θ + ϕ)
. (14.8.10)
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z

z

v1i v2i

v1f

v2f

Figure 14.7: Two dimensional collision from the center of momentum frame

Finally, to determine θ, we must insert the above two formulae into the energy equation,
but the energy equation is much more complicated than its non-relativistic counterpart! A
welcome algebraic simplification occurs if the outgoing two particles fly off symmetrically,
i.e., with θ = ϕ in the laboratory frame. If, moreover, the incident and outgoing particles
have the same mass, m, then

p3 =
p1

2 cos θ
= p4 (14.8.11)

and

E1 +mc2 = 2mc2 + 2K, K =

√
p21c

2

4 cos2 θ
+m2c4 (14.8.12)

yields, after a little bit of algebra,

cos2 θ =
E2

1 −m2c4

c2[(E1 −mc2)2 − 4m2c4]
(14.8.13)

It is interesting to notice that in the extreme relativistic case, i.e., when E1 ≫ mc2,
cos θ → 1 and the separation angle approaches zero whereas, in the limit that the rest
mass energy is much greater than the incident kinetic energy, cos θ → 0 and the separation
angle approaches π/2 radians. This, as we know, is the non-relativistic case.

The view from the center of momentum frame is different. Now the two particles
scatter as shown in figure 14.7 because both the initial and final total spatial momentum
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must vanish,

E′
1 + E′

2 = E′
3 + E′

4 =Mcmc
2

p⃗′1 + p⃗′2 = 0 = p⃗′3 + p⃗′4 ⇒ p⃗′1 = −p⃗′2, p⃗′3 = −p⃗′4 (14.8.14)

Let the initial momenta lie along the x−axis and let the masses (initial and final) all be
the same, say m as before. Then, because of the second equation above, E′

1 = E′
2 = E′

i

and E′
3 = E′

4 = E′
f and because of energy conservation 2E′

i = 2E′
f = Mcmc

2. Therefore
all momenta have the same magnitude. Since the final velocities are anti-parallel, there
is only one final angle, ξ, between the outgoing particles and the x−axis, but there is
not enough information to determine it. However, we can relate ξ to the angle θ in the
Laboratory frame discussed earlier by performing a Lorentz transformation.16

In general, a good amount of information about any collision in any frame is obtained
directly from the Lorentz invariants. For example, if, in the Laboratory frame, our incom-
ing particles had momenta p1i and p2i then, because p

2 is a Lorentz invariant, p2 = p2cm
or

(p1i + p2i)
2 = p21i + p22i + 2p1i · p2i = p2cm (14.8.15)

and therefore
(m2

1 +m2
2)c

4 + 2(E1iE2i − c2p⃗1i · p⃗2i) =M2
cmc

4. (14.8.16)

Using Ei = mic
2 +Ki in each case, we arrive at

(m1 +m2)
2c4 + 2(m1c

2K2i +m2c
2K1i +K1iK2i − c2p⃗1i · p⃗2i) =M2

cmc
4. (14.8.17)

so if particle “2” (say) is initially at rest in the Laboratory frame, then p⃗2i = 0, E2i = m2c
2,

E1i = m1c
2 +K1i where K1i is the initial kinetic energy of particle “1” and

M2
cmc

4 = (m1 +m2)
2c4 + 2m2c

2K1i (14.8.18)

Thus the available center of momentum energy increases as the square root of the incident
kinetic energy. Equation (14.8.16) holds whenever two particles collide whether or not the
collision is inelastic and no matter how many the end products of the collision.

14.9 Accelerated Observers

A question of interest is how to relate an accelerated frame to an inertial one in the context
of the special theory of relativity. Naturally this cannot be done directly because the

16Problem: Determine the relationship between the angle of scattering, ξ, in the center of momentum
frame and the angle θ in the Laboratory frame, assuming that particle “2” is initially at rest in this frame
and that particles “3” and “4” leave the collision center symmetrically, as discussed.
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Lorentz transformations only relate inertial frames. However, it can be done by considering
a special one parameter family of inertial frames each of which is at rest relative to and
coincident with the accelerated frame at one particular instant of time. Geometrically,
this is equivalent to replacing the accelerated observer’s curved world line in Minkowski
space by a set of infinitesimal straight line segments along her world line. Each of the
infinitisimal segments corresponds to an inertial frame over an infinitesimal path length.
In this section we consider this problem in general and then specialize to one particular
case: the “Rindler observer”. Rindler observers, named after Wolfgang Rindler who first
considered this problem, undergo a constant proper acceleration (recall that the proper
acceleration is the acceleration of the detector w.r.t. a frame that is instantaneously at
rest relative to it).

First we analyze the problem in two dimensions. Let S be an inertial frame and let S̃
be the frame of the Rindler observer. S̃ is not an inertial frame and cannot be directly
connected to S within the context of the special theory, so introduce a one parameter
family of inertial frames, {S(s)}, each of which is instantaneously at rest relative to S̃ and
coincides with it at proper time s/c. If S̃ possesses an acceleration, α(s), at s/c relative
to the frame S(s) then α(s) is the proper acceleration of the Rindler observer,

α(s) =
d2x

dt
2 . (14.9.1)

To begin with, we’ll let α(s) be arbitrary. Now S and every member of the family S(s)
are inertial frames and therefore they are related by Lorentz transformations. For a fixed
s, we have

t = γ(t− vx/c2)
x = γ(x− vt). (14.9.2)

where v = v(s) is the velocity of frame S(s) relative to S. Defining the velocity u = dx/dt,
we find

u =
dx

dt
=

(u− v)

1− uv/c2
(14.9.3)

and therefore (remember that we must keep v(s) fixed because it represents the velocity
of S(s) relative to S and S(s) is inertial)

du =
du

1− uv/c2
− (u− v)(−v/c2du)

(1− uv/c2)2
=

du

γ2(1− uv/c2)2
. (14.9.4)

This gives

a =
du

dt
=

a

γ3(1− uv/c2)3
(14.9.5)
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Now, because the frame S(s) is instantaneously at rest relative to the the Rindler observer
S̃ at proper time s/c, it follows that u(s) = 0 and a(s) = α(s). Therefore u = v(s) and17,18

a(
1− u2

c2

) 3
2

= a = α(s). (14.9.6)

But

a =
du

ds

ds

dt
=
c

γ

du

ds
(14.9.7)

Therefore, integrating we find that∫ s

0

du(
1− u2

c2

) = c tanh−1(
u

c
)
∣∣∣s
u0

=
1

c

∫ s

0
dsα(s) (14.9.8)

so

u = c tanh

(
1

c2

∫ s

0
dsα(s) + tanh−1 u0

c

)
= c tanh η (14.9.9)

where we’ve called the argument of the hyperolic tangent on the right η. Again

u =
dx

dt
=
dx

ds

ds

dt
=
c

γ

dx

ds
=

c

cosh η

dx

ds
⇒ dx

ds
= sinh η (14.9.10)

therefore

x− x0 =

∫ s

0
ds sinh η

t− t0 =
1

c

∫ s

0
ds cosh η (14.9.11)

Without loss of generality choose u0 = 0. Further, specialize to the case of a constant
proper acceleration and let α(s) = a, where a = const., then η = as/c2 and

x− x0 =
c2

a

[
cosh

as

c2
− 1
]
, t− t0 =

c

a
sinh

as

c2
. (14.9.12)

17Problem: Consider the same problem in four dimensions. We have seen that the relationship between
the longitudinal component (i.e., in the direction of the motion) of the acceleration in S and the cor-
responding component of the proper acceleration, is a∥ = γ3a∥. What is the relationship between the
transverse component of the acceleration in S and the transverse component of the proper acceleration?
Show that a⊥ = γ2a⊥.

18Problem: Using the result of the last problem together with equation (14.6.27), show that

dp⃗

dt
= γ3ma⃗∥ + γma⃗⊥

Then obtain this result directly by differentiating p⃗ = mγv⃗ w.r.t. t.
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Figure 14.8: Trajectory of the Rindler observer

This gives the trajectory of the accelerated observer as viewed by the inertial observer, S.
Convenient initial conditions would be x0 = c2/a at t0 = 0 and we find that the trajectory
may be expressed in the form

x2 − c2t2 =
c4

a2
. (14.9.13)

It is a hyperbola, shown in figure (14.8). Notice that the path of the accelerated observer
may never cross the lines x = ±ct. These lines represent “horizons” (past and future)
that mark the boundaries of that portion of Minkowski space that is accessible to the
accelerating observer. Not all of Minkowski space will be accessible to her, as is evident
from the diagram in figure 14.8, where one sees that she can never receive information
from events A and B and, while she will receive information from C, she will be unable to
ascribe a time to it! The lines x = ±ct are called “Rindler horizons” because they apply
only to accelerating observers. They divide Minkowski space into four causal wedges,
called “Rindler wedges”, defined by x > c|t| (right), x < c|t| (left), ct > |x| (future) and
ct < |x| (past).

Let us consider one of these wedges. Define the coordinates

ξ =
c2

2a
ln

[
a2

c4
(x2 − c2t2)

]
, η̃ =

c

a
tanh−1 ct

x
(14.9.14)

then, because a is an acceleration it follows that ξ has dimension of length and η̃ has di-
mension of time. Both ξ and η range over the entire real line even though these coordinates
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do not cover all of Minkowski space. The inverse transformations are

x =
c2

a
eaξ/c

2
cosh

aη̃

c
, t =

c

a
eaξ/c

2
sinh

aη̃

c
(14.9.15)

If a > 0, the new coordinates (η̃, ξ) cover only the right wedge in the (t, x) plane, i.e.,
x > c|t|. They are called “Rindler” coordinates and define the “Rindler frame”. In this
frame, lines of constant ξ are hyperbolæ in the Minkowski frame and represent curves
of constant proper acceleration equal to ae−aξ/c

2
. The hyperbola ξ = 0 describes the

trajectory of our particular accelerating observer and lines of constant η̃ (time) are straight
lines through the origin as shown in figure 14.8. The metric is

ds2 = e2aξ(c2dη̃2 − dξ2), η̃ ∈ (−∞,∞), ξ ∈ (−∞,∞) (14.9.16)

and the horizons are located at ξ → −∞. Another coordinatization that is often used is
obtained by defining y = c2eaξ/c

2
/a (or, in terms of the original Minkowski coordinates:

y =
√
x2 − c2t2) then

ds2 =
a2

c2
y2dη̃2 − dy2, η̃ ∈ (−∞,∞), y ∈ (0,∞) (14.9.17)

gives another parametrization of Rindler space. In these coordinates, the Rindler observer
is located on the (vertical) line y = c2/a and the horizons are located at y = 0. Notice that
in both coordinatizations the horizons get defined by setting the time-time component of
the metric to zero. This is a generic feature of time independent metrics.

But what exactly is a Rindler horizon and why does the coordinate system break
down there? Notice that the definition of y is quite independent of a, but the definition
of η̃ depends on it therefore the proper time intervals of the observer will scale with her
acceleration although proper distance does not. Thus consider Rindler observers with
different proper accelerations living on vertical lines given by y′ = c2/a′. Notice that the
greater the proper acceleration the smaller the value of y and, vice versa, the smaller the
proper acceleration the greater the value of y. Now it should be clear that the proper
distance between our observer and some other observer with y = c2/a will be fixed at
c2|a′−a|/(aa′). Think of this distance as the length of a rod connecting the two observers.
If a′ > a then the observer with a′ lies on the trailing end of the rod and, vice-versa,
if a′ < a then the observer with a′ is on the leading edge. Whereas in Galilean physics
the two ends of a rod must have equal acceleration to keep the same length, in special
relativity the trailing end must accelerate a little bit faster to keep up! This is because of
length contraction: as the speed increases along the rod’s length, its length also shrinks
a little and the trailing end has to increase its velocity a little bit more in the same time
interval to account for the shrinkage. Therefore observers on the “trailing end” i.e., toward
the horizon must accelerate more to “keep up”. The horizon marks the stage at which the
observer would need an infinite acceleration to keep up with the others.



Chapter 15

More general coordinate systems*

15.1 Introduction

As we have seen, very often the symmetries of a given physical system make Cartesian
coordinates cumbersome because it may turn out to be difficult to implement the boundary
conditions suited to the system in these coordinates. In that case, as we know well, we
turn to coordinate systems that are better adapted to the given symmetries. The new
coordinates are not usually Cartesian (for example, think of the problem of determining
geodesics on a sphere). A generic feature of such systems – and one that is exploited in the
physical problem – is that the coordinate surfaces are curved. They are therefore called
“curvilinear” systems. In this chapter we will develop some machinery to work with such
systems.

Suppose that we perform a coordinate transformation from a set of Cartesian coordi-
nates to a set of curvilinear coordinates that are given by ξµ. Imagine that the Cartesian
coordinates extend over the entire spacetime and let them be given by xa. We will as-
sume that the new coordinates are invertible functions of the Cartesian coordinates, i.e.,
ξµ = ξµ(x) and xa = xa(ξ). In the Cartesian system, the distance between two spatial
points is given by the 4-dimensional equivalent of Pythagoras’ theorem:

ds2 = −ηabdxadxb (15.1.1)

But the distance could just as well be expressed in terms of the new coordinates, ξµ(x), so,
exploiting Pythagoras’ theorem, which is given in a Cartesian frame, we write (Einstein’s
summation convention used throughout)

ds2 = −ηabdxadxb = −ηab
∂xa

∂ξµ
∂xb

∂ξν
dξµdξν = −gµν(ξ)dξµdξν (15.1.2)

340
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where we have made use of the chain rule:

dxa =
∂xa

∂ξµ
dξµ (15.1.3)

and called

gµν(ξ) = ηab
∂xa

∂ξµ
∂xb

∂ξν
(15.1.4)

This is the metric (it gives the distance between infinitesimally separated points) and it
is, in general, a function of the new coordinates. Henceforth throughout this section,
we’ll use the following notation: indices from the beginning of the alphabet, a, b, c, ..., will
represent a Cartesian basis and greek indices µ, ν, ... will represent a general (curvilinear)
basis. This will serve to distinguish indices that originate in the Cartesian system from
those whose origin is in the curvilinear system.

Let us define the matrix

eaµ(ξ) =
∂xa

∂ξµ
(15.1.5)

It is a function of position and is called the “vielbein”. A useful way is to think of it as
a collection of four vectors, {e⃗µ} = (e⃗0, e⃗1, e⃗2, e⃗3), whose Cartesian components are given
by [e⃗µ]

a = eai . These are the basis vectors of the new coordinate system ξµ(x). They are
(generally) functions of the position because the new basis is not (generally) rigid. If we
consider the identity transformations, for example, i.e., ξµ = (t, x, y, z) then it’s easy to
see that e⃗0 = (1, 0, 0, 0), e⃗1 = (0, 1, 0, 0), e⃗2 = (0, 0, 1, 0) and e⃗3 = (0, 0, 0, 1) or, said in
another way, eaµ = δaµ.

The metric in (15.1.4) can be thought of as the matrix whose components are the
(Cartesian) inner products of the e⃗µ, i.e.,

1

gµν(ξ) = ηabe
a
µe
b
µ = e⃗µ · e⃗ν (15.1.6)

and it is manifestly a scalar under Lorentz transformations. Also, gij is invertible, if the
transformation x→ ξ is invertible, in which case we can define the inverse metric by

gµνgνκ = δµκ (15.1.7)

and it’s easy to see that

gµν = ηab
∂ξµ

∂xa
∂ξν

∂xb
= E⃗µ · E⃗ν (15.1.8)

where E⃗µ is the vector with (covariant) Cartesian components

[E⃗µ]a = Eµa =
∂ξµ

∂xa
(15.1.9)

1Problem: check that the identity transformation leads to gµν = ηµν
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It is called the inverse vielbein because, clearly,

eaµE
µ
b =

∂xa

∂ξµ
∂ξµ

∂xb
= δab , eaµE

ν
a =

∂xa

∂ξµ
∂ξν

∂xa
= δνµ (15.1.10)

where we have repeatedly used the chain rule from elementary calculus.

15.2 Vectors and Tensors

Now the set {e⃗µ} forms a complete basis in which any four vector can be expanded, i.e.,

A = Aµe⃗µ (15.2.1)

and Aµ are the contravariant components of the vector in the directions given by the e⃗µ.
We can think of the r.h.s. as giving the contravariant Cartesian components of the vector
according to

Aa = Aµeaµ (15.2.2)

in the original frame, while the contravariant components, Aµ, in the basis e⃗µ, are given
in terms of its Cartesian components by the inverse relation

AaEµa = AνeaνE
µ
a = Aνδµν = Aµ (15.2.3)

Any vector can be specified by specifying either the components Aa or the components
Aµ. Naturally, there is also a description in terms of the covariant components of the
vector using the inverse vielbeins:

A = AµE⃗
µ (15.2.4)

and the r.h.s. may be thought of as specifying the covariant Cartesian components of A,

Aa = AµE
µ
a , (15.2.5)

its covariant components, Aµ, in the basis E⃗µ being given by

Aµ = eaµAa (15.2.6)

in keeping with the relations for contravariant vectors.

We must next consider the transformation properties of the components, Cartesian
or curvilinear. Note that there are two kinds of transformations to think about, viz.,
Lorentz transformations, which concern the original Cartesian basis and general coordinate
transformations, which concern the new (curvilinear) basis.
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• Lorentz transformations act on the Cartesian coordinates, xa, so, when xa → x′a,

e′aµ =
∂x′a

∂ξµ
= Lab

∂xb

∂ξµ
= Labe

a
µ (15.2.7)

showing that eaµ transforms as a contravariant vector w.r.t. Lorentz transformations.
On the other hand, Eµa will transform as a covariant vector

E′µ
a =

∂ξµ

∂x′a
= (L−1)ba

∂ξµ

∂xb
= (L−1)baE

µ
b (15.2.8)

w.r.t. the same transformations

• Under general coordinate transformations, ξµ → ξ′µ,

e′
a
µ =

∂xa

∂ξ′µ
=
∂ξν

∂ξ′µ
∂xa

∂ξν
=
∂ξν

∂ξ′µ
eaν = (Λ−1)νµe

a
ν (15.2.9)

or

e⃗′µ =
∂ξν

∂ξ′µ
e⃗ν = (Λ−1)νµe⃗ν (15.2.10)

and

E′µ
a =

∂ξ′µ

∂xa
=
∂ξ′µ

∂ξν
∂ξν

∂xa
=
∂ξ′µ

∂ξν
Eνa = ΛµνE

ν
a (15.2.11)

or

E⃗′µ =
∂ξ′µ

∂ξν
E⃗ν = ΛµνE⃗

ν (15.2.12)

Note that Λ̂, unlike L̂, is not necessarily a constant matrix. These transformation
properties imply that the metric in (15.1.4) transforms (under coordinate transfor-
mations) as

g′µν = (Λ−1)αµ(Λ
−1)βνgαβ (15.2.13)

and

g′µν = ΛµαΛ
ν
βg

αβ (15.2.14)

but is a Lorentz scalar.

It should be clear that the Cartesian components, Aa (Aa) transform only under Lorentz
transformations (they are “coordinate scalars”) and the components Aµ (Aµ) transform
only under general coordinate transformations (they are “Lorentz scalars”). How do they
transform? They follow the same rules as the Cartesian components, but transform under
Λ̂ instead of L̂. As a vector does not depend on the basis in which it is expanded,

A = A′µe⃗′µ = A′µ(Λ−1)νµe⃗ν = Aν e⃗ν (15.2.15)
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implying obviously that

A′µ = ΛµνA
ν (15.2.16)

and a completely analogous argument shows that

A′
µ = (Λ−1)νµAν (15.2.17)

is the transformation property of the covariant components. The contravariant compo-
nents and the covariant components transform inversely to one another, so they must be
related by the metric

Aµ = gµνA
ν

Aµ = gµνAν (15.2.18)

because the metric and it’s inverse have precisely the transformation properties required.
Moreover, it’s easy to see now how we might construct scalars (under both Lorentz and
general coordinate transformations):

A2 = A · A = (Aµe⃗µ) · (Aν e⃗ν) = AµAν e⃗µ · e⃗ν = gµνA
µAν = AµAµ (15.2.19)

That A · A is really a scalar follows from

gµνA
µAν = ηabe

a
µe
b
νA

µAν = ηabA
aAb = AaAa (15.2.20)

or directly from

A′µA′
µ = Λµα(Λ

−1)βµA
αAβ = δβαA

αAβ = AαAα (15.2.21)

As usual we will define tensors as copies of vectors, their components in any basis being
given by

T = Tµνλ...e⃗µ ⊗ e⃗ν ⊗ e⃗λ... = Tµνλ...E⃗
µ ⊗ E⃗ν ⊗ E⃗λ... (15.2.22)

where Tµνλ... and Tµνλ... are the contravariant and covariant components of T respectively.
Then their transformation properties are given by

T ′µνλ... = ΛµαΛ
ν
βΛ

λ
γT

αβγ... (15.2.23)

and

T ′
µνλ... = (Λ−1)αµ(Λ

−1)βν(Λ
−1)γλTαβγ... (15.2.24)

respectively. Just as for vectors, the covariant and contravariant components of a tensor
are related by the metric (tensor):

Tµνλ... = gµαgνβgλγ ... Tαβγ... (15.2.25)
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and
Tµνλ... = gµαgνβgλγ ... T

αβγ... (15.2.26)

and one can interpolate between components in the original Cartesian basis and in the
curvilinear basis by simply applying the vielbein and its inverse, just as we did for vectors

T ab... = eaµe
b
ν ... T

µν..., Tµν... = EµaE
ν
b ... T

ab...

Tab... = EµaE
ν
b ... Tµν..., Tµν... = eaµe

b
ν ... T

ab... (15.2.27)

15.3 Differentiation

In differentiating a tensor, we are generally interested in measuring the rates of change
of the tensor as we move from point to point on the manifold. To do so we measure the
difference between the values of the tensor at infinitesimally close points, finally taking
the limit as the points approach each other. However, depending on what differences
we measure, the resulting rate of change may not have definite transformation properties
under general coordinate transformations. Below we will consider two ways to define the
“derivative” of a tensor so that the derivative is itself a tensor.

15.3.1 Lie Derivative

Often we may be interested in how the components of a given vector or tensor or even
just a function change(s) as we move along some curve, ξµ(λ), parametrized by λ, from
a point p to another point p′. To define the Lie derivative, we consider a special set of
curves, which are constructed from coordinate transformations. Consider a one parameter
family of coordinate transformations ξ′µ(λ, ξ) so that the λ = 0 transformation is just the
identity transformation, ξ′(0, ξ) = ξ. Let the coordinates of point p be ξµp . Holding ξp fixed,
ξ′µ(λ, ξp) represents the a curve passing through p at λ = 0. Suppose that we have chosen
our one parameter family of transformations so that the curve ξ′µ(λ, ξp) passes through p

′

at δλ. Let Uµ(λ, ξp) be tangent to the curve. The point p′ is therefore represented by

ξ′µ = ξ′µ(δλ, ξp) = ξµp + δλUµ(ξp) (15.3.1)

This is the “active” view of coordinate transformations, where they are used to actually
“push points around”. If T is a tensor, it transforms as

T ′µ1µ2...
ν1ν2...(ξ

′) =
∂ξ′µ1

∂ξα1
...
∂ξβ1

∂ξ′ν1
...Tα1α2...

β1β2...(ξ) (15.3.2)

and therefore the left hand side of the above should give the value of T at p′ from its value
at p. The Lie derivative of T is then defined as

[£UT]µ1µ2...ν1ν2... = lim
δλ→0

1

δλ

[
Tµ1µ2...ν1ν2...(ξ)− T ′µ1µ2...

ν1ν2...(ξ)
]

(15.3.3)
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It measures the rate of change of the functional form of the components of a tensor field
by a coordinate transformation, in the direction of U .

For scalar functions, we see immediately that this is just the directional derivative, for
if T is a scalar function, f(ξ), then f ′(ξ′) = f(ξ) ⇒ f(ξ)− f ′(ξ) = δλUµ∂µf (to order λ),
therefore

£Uf(x) = lim
δλ→0

1

δλ

[
f(ξ)− f ′(ξ)

]
= Uµ∂µf(ξ) (15.3.4)

If T is a vector field, V µ(ξ), then

[£UV ]µ = lim
δλ→0

1

δλ

[
V µ(ξ)− V ′µ(ξ)

]
= lim

δλ→0

1

δλ

[
∂ξµ

∂ξ′α
V ′α(ξ′)− V ′µ(ξ)

]
= lim

δλ→0

1

δλ

[
∂ξµ

∂ξ′α
(V ′α(ξ) + δλUκ∂κV

α + ...)− V ′µ(ξ)

]
= lim

δλ→0

1

δλ

[
(δµα − δλ∂αU

µ + ...)(V ′α(ξ) + δλUκ∂κV
α + ...)− V ′µ(ξ)

]
= Uκ∂κV

µ − V κ∂κU
µ (15.3.5)

Finally, for a co-vector field, Wµ(ξ)

£UW = lim
δλ→0

1

δλ

[
Wµ(ξ)−W ′

µ(ξ)
]

= lim
δλ→0

1

δλ

[
∂ξ′α

∂ξµ
W ′
α(ξ

′)−W ′
µ(ξ)

]
= lim

δλ→0

1

δλ

[
(δαµ + δλ∂µU

α + ...)(W ′
α(ξ) + δλUκ∂κWα + ...)−W ′

µ(ξ)
]

= Uκ∂κWµ +Wα∂µU
α (15.3.6)

and so on for tensors of higher rank.2 If £UT = 0, then T does not change as we move
along the integral curve of U . In this case, the vector U is called a “symmetry” of T. Note
that the Lie derivative of a tensor field T is of the same rank as T itself.

2Obtain the Lie derivative of second rank contravariant, covariant and mixed tensors. In general, the
Lie derivative of a mixed tensor takes the form

[£UT]µ1µ2...
ν1ν2...

= Uσ∂σT
µ1µ2...

ν1ν2... − Tσµ2...
ν1ν2...∂σU

µ1 − ...

+ Tµ1µ2...
σν2...∂ν1U

σ + ...

where the ellipsis means that we repeat the terms of each index of the same type.
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15.3.2 Covariant Derivative: the Connection

The Lie derivative can be thought of as an operator that acts upon a tensor to yield another
tensor of the same rank. However, when we think of a derivative, we think of the operator
∂a (say), which has the effect of increasing the rank of the tensor. Thus, for example,
if T is a rank (m,n) tensor (m contravariant indices and n covariant indices) then ∂T is
a tensor of rank (m,n + 1), if the partial derivative is applied in a Cartesian coordinate
system. However, ∂T is not a tensor in a general coordinate system, as we will see below.
We would like to obtain a derivative operator, ∇, in general curvilinear coordinates that
plays the role of ∂ in Cartesian coordinates, i.e., an operator which acts on an (m,n)
tensor to give an (m,n + 1) tensor. So let us begin with vectors. Imagine transporting
a vector from some point p to some other point p′. The basis vectors (the vielbeins) and
their inverses are not necessarily constant during this transport – they would be constant
only if the coordinate system is not curviliear. Instead of asking about changes in the
components of a vector A, let’s ask instead how the vector as a whole changes as we move
from p to p′. We find

δA = (δAµ)e⃗µ +Aµ(δe⃗µ) (15.3.7)

Assume that the change in e⃗µ is a linear combination of the e⃗µ themselves. This is a
reasonable assumption because the basis at p is complete. Then

δe⃗µ = (δΓνµ)e⃗ν (15.3.8)

and Γνµ ≡ Γνµ(x) will be in general a function of the position. In fact we can obtain δΓνµ in

terms of e⃗µ and E⃗µ as follows: begin with

e⃗µ · E⃗σ = δσµ ⇒ (δe⃗µ) · Eσ = −e⃗µ · (δE⃗σ) (15.3.9)

but, using (15.3.8), we see that

δΓνµ(e⃗ν · E⃗σ) = δΓσµ = −e⃗µ · (δE⃗σ) = (δe⃗µ) · Eσ (15.3.10)

We can write
δA = (δAµ)e⃗µ +Aµ(δΓνµ)e⃗ν (15.3.11)

and we see that the change in A is made up of two parts: (i) the change in its components
and (ii) the changing the basis, as we move from one point to another. The term δΓ takes
into account the change in basis. The difference, δA, is also a vector and is expandable in
the basis e⃗µ. If we consequently write it as δA = (DAµ)e⃗µ, we find

DAµ = δAµ + (δΓµν )A
ν (15.3.12)

but what does DAµ represent? Notice that if the basis is rigid then δe⃗µ = 0 = δΓνµ and
there is no difference between the variations DAµ and δAµ. This equality fails in a general
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coordinate system, however, and the second term is important. The derivative corre-
sponding to the infinitesimal change given in (15.3.12) is called the “covariant derivative”
of Aµ,

DνA
µ ≡ ∇νA

µ = ∂νA
µ + (∂νΓ

µ
λ)A

λ = ∂νA
µ + ΓµνλA

λ (15.3.13)

and the 3-index object Γµνλ = ∂νΓ
µ
λ is called a “connection”. Using (15.3.10), it can be

written as
Γµνλ = (∂ν e⃗λ) · E⃗µ. (15.3.14)

It is interesting to see that the ordinary derivative, ∂νA
µ of a contravariant vector does

not transform as a (mixed) tensor, but the covariant derivative, ∇νA
µ, does. The fact

that the covariant derivative transforms as a tensor is of great importance. As we have
mentioned, the laws of physics should not depend on one’s choice of coordinates. This
means that they should “look the same” in any system, which is possible only if the two
sides of any dynamical equation transform in the same manner, i.e., either as scalars,
vectors or tensors under transformations between coordinate systems. Thus, covariant
derivatives and not ordinary derivatives are more meaningful in physics.

First let’s see that ∂νA
µ is not a tensor:

∂A′µ

∂ξ′ν
=
∂ξλ

∂ξ′ν
∂

∂ξλ

(
∂ξ′µ

∂ξκ
Aκ
)

=
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξκ
∂Aκ

∂ξλ
+
∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλξκ
Aκ (15.3.15)

The first term on the r.h.s. corresponds to the tensor transformation, but the second term
spoils the transformation properties of ∂νA

µ. Let us then examine the transformation
properties of ∇νA

µ:

∇′
νA

′µ = ∂′νA
′µ + Γ′µ

νκA
′κ

=
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξγ
∂Aγ

∂ξλ
+
∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλξγ
Aγ +

∂ξ′κ

∂ξγ
Γ′µ
νκA

γ (15.3.16)

If we can show that
∂ξ′κ

∂ξγ
Γ′µ
νκ =

∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ
Γσλγ −

∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλξγ
(15.3.17)

then we will have

∇′
νA

′µ =
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ

[
∂Aσ

∂ξλ
+ ΓσλγA

γ

]
=
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ
∇λA

σ = (Λ−1)λνΛ
µ
σ∇λA

σ (15.3.18)

and we will have accomplished the task of showing that ∇νA
µ is a tensor. It is not so

difficult to show (15.3.17). First put it in the form

Γ′µ
νκ =

∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ
∂ξγ

∂ξ′κ
Γσλγ −

∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλξγ
∂ξγ

∂ξ′κ
(15.3.19)
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To show (15.3.19), write

Γ′µ
νκ = ∂′νΓ

′µ
κ = (∂′ν e⃗

′
κ) · E⃗′µ = −e⃗′κ(∂′νE⃗′µ) (15.3.20)

where we have used the fact that Γµνκ = (∂ν e⃗κ) · E⃗µ, which follows from the definition of
δΓ in (15.3.8), and e⃗′κ · E⃗′µ = δµκ . Then

Γ′µ
νκ = − ∂ξγ

∂ξ′κ
∂ξλ

∂ξ′ν
e⃗γ ·

∂

∂ξλ

(
∂ξ′µ

∂ξσ
E⃗σ
)

= − ∂ξγ

∂ξ′κ
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ
e⃗γ · (∂λE⃗σ)−

∂ξγ

∂ξ′κ
∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλ∂ξσ
e⃗γ · E⃗σ

=
∂ξγ

∂ξ′κ
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ
Γσλγ −

∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλ∂ξγ
∂ξγ

∂ξ′κ
(15.3.21)

which is the desired result. Again, notice that without the second term the above would
correspond to a tensor transformation, but the second term spoils the transformation
properties. In fact it is precisely because of the presence of the second term that ∇νA

µ

transforms as a tensor. Note also that if the unprimed coordinates were Cartesian,
(σ, λ, γ) ≡ (a, b, c), then Γabc ≡ 0 and

Γµνκ = −∂x
b

∂ξν
∂2ξµ

∂xb∂xc
∂xc

∂ξκ
(15.3.22)

which shows that Γµνκ is symmetric in (ν, κ).

In the Cartesian basis, the derivative of a vector is just ∂aA
b. If we now transform to

the curvilinear coordinates,

∂aA
b =

∂ξµ

∂xa
∂

∂ξµ
(Aνebν) = Eµa (∂µA

ν)ebν + EµaA
ν(∂µe

b
ν) (15.3.23)

so that

eaσE
λ
b ∂aA

b = eaσE
λ
b E

µ
a (∂µA

ν)ebν + eaσE
λ
b E

µ
aA

ν(∂µe
b
ν)

= ∂σA
λ + EλbA

ν(∂σe
b
ν) = ∂σA

λ + ΓλσνA
ν (15.3.24)

If we think of ∂aA
b as the components of a (mixed) tensor in the Cartesian system then,

in a general coordinate system, its components should be given by eaσE
λ
b ∂aA

b. The above
equation shows that its components in the general coordinate basis are given by the com-
ponents of the covariant derivative. In other words, derivatives of vectors in the Cartesian
coordinate system must be replaced by covariant derivatives in general coordinate systems.
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The connection measures the rate of change of the basis as we move from point to
point and is computed from the metric gµν as we will now see. Consider the change in
metric as we move from x to x+ dx,

δgµν = δe⃗µ · e⃗ν + e⃗µ · δe⃗ν = (δΓκµ)e⃗κ · e⃗ν + e⃗µ · e⃗κ(δΓκν)

→ ∂γgµν = Γκγµgκν + Γκγνgµκ (15.3.25)

If we take the combination

∂γgµν + ∂νgγµ − ∂µgνγ = Γκγµgκν + Γκγνgµκ + Γκνγgκµ + Γκνµgγκ − Γκµνgκγ − Γκµγgνκ
(15.3.26)

and use the fact that ∂[γΓ
κ
ν] ≡ 0 according to (15.3.22), then

∂γgµν + ∂νgγµ − ∂µgνγ = 2Γκγνgµκ (15.3.27)

and

Γκγνgµκg
µρ = Γκγνδ

ρ
κ = Γργν =

1

2
gρµ [∂νgµγ + ∂γgµν − ∂µgγν ] , (15.3.28)

where we have used the symmetry of gµν throughout.
It should be clear that the covariant derivative of a tensor copies the covariant deriva-

tive of the vector. Setting,

T = Tµν...e⃗µe⃗ν ... (15.3.29)

we get

δT = δTµν...e⃗µe⃗ν ...+ Tµν...(δe⃗µ)e⃗ν ...+ Tµν...e⃗µ(δe⃗ν)...+ ... (15.3.30)

from which it follows that

∇γT
µν... = ∂γT

µν... + ΓµγλT
λν... + ΓνγλT

µλ... + ... (15.3.31)

We have defined the covariant derivatives of a contravariant vector. How about the co-
variant derivative of a covector? We should find

δA = (δAµ)E⃗
µ +Aµ(δE⃗

µ) (15.3.32)

and we want to know what δE⃗µ is. Use the fact that

eaµE
µ
b = δab → (δeaµ)E

µ
b + eaµ(δE

µ
b ) = 0 (15.3.33)

Therefore

eaµ(δE
µ
b ) = −(δeaµ)E

µ
b = −(δΓκµ)e

a
κE

µ
b (15.3.34)
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and, multiplying the l.h.s. by Eνa gives

Eνae
a
µ(δE

µ
b ) = δνµ(δE

µ
b ) = δEνb = −(δΓκµ)E

ν
ae
a
κE

µ
b = −(δΓκµ)δ

ν
kE

µ
b = −(δΓνµ)E

µ
b (15.3.35)

Thus we have found simply that

δE⃗µ = −(δΓµκ)E⃗
κ (15.3.36)

which should be compared with (15.3.8) for the variation of e⃗µ. Therefore

δA = (DAµ)E⃗
µ = (δAµ)E⃗

µ − (δΓµκ)AµE⃗
κ (15.3.37)

and we could write the covariant derivative of the covector, Aµ

∇νAµ = ∂νAµ − ΓκνµAκ (15.3.38)

and of a co-tensor, Tµνκ...

∇γTµν... = ∂γTµν... − ΓλγµTλν... − ΓλγνTµλ... + ... (15.3.39)

in complete analogy with the covariant derivative of contravectors and tensors. In partic-
ular we see that

∇γgµν = ∂γgµν − Γκγµgκν − Γκγνgµκ ≡ 0 ≡ ∇γg
µν (15.3.40)

by (15.3.25). This is called the “metricity” property.3

15.3.3 Absolute Derivative: parallel transport

Having defined the covariant derivative operator, in a general coordinate system, we may
now define the absolute derivative of a tensor, T, along some curve with tangent vector U
as the projection of the covariant derivative on the tangent, i.e., if the curve is specified
by ξµ(λ),

DT
Dλ

= U · ∇T (15.3.41)

The absolute derivative measures the total rate of change of the vector along the curve
ξµ(λ) and is a tensor of the same rank as T itself. It is also called the directional derivative
of T.

3Using the Lie derivative of the metric (a rank two co-tensor) show that if U is a symmetry of the
metric then it must satisfy

∇(µUν) = ∇µUν +∇νUµ = 0

The symmetry vectors of the metric are called Killing vectors. In Minkowski space there are 10 of them
and they generate the Poincaré group: translations, spatial rotations and boosts.
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A tensor T will be said to be “parallel transported” along a curve ξµ(λ) if and only if

DT
Dλ

= f(λ)T (15.3.42)

where f(λ) is an arbitrary function of the curve’s parameter. Let Aµ be parallely trans-
ported along the curve, then

U · ∇Aµ = Uσ(∂σA
µ + ΓµσκA

κ) =
dAµ

dλ
+ ΓµσκU

σAκ = f(λ)Aµ (15.3.43)

This is the condition for parallel transport. In particular, if Aµ is the tangent (velocity)
vector of the curve itself, we see that

dUµ

dλ2
+ ΓµσκU

σUκ =
d2ξµ

dλ2
+ Γµσκ

dξσ

dλ

dξκ

dλ
= f(λ)

dξµ

dλ
(15.3.44)

This is a second order equation for ξµ(λ). We notice that if the coordinates were Cartesian,
the connections would vanish and with f(λ) = 0 we would find simply

d2xa

dλ2
= 0 (15.3.45)

which we recognize to be the equation of a straight line, the shortest distance between
two points (the geodesic). The equation (15.3.44) generalizes this equation for geodesics
to arbitrary curved coordinate systems and is called the geodesic equation.

15.3.4 The Laplacian

A very important operator in physics is the Laplacian. It is an invariant under coordinate
transformations being defined, in an arbitrary system of coordinates, as □x = ∇µ∇µ.
Because it involves the covariant derivative its action will depend on whether it operates
on a scalar, a vector or a tensor. Consider its operation on a scalar function, ϕ (remember
that ∇µϕ = ∂µϕ is a vector)

□xϕ = ∇µ∇µϕ = ∂µ∇µϕ+ Γµµκ∇κϕ = ∂µg
µν∂νϕ+ Γµµκg

κν∂νϕ (15.3.46)

where we have used the fact that the covariant derivative operating on a scalar function
is just the partial derivative. But

Γµµκ =
1

2
gµρ[∂κgρµ + ∂µgρκ − ∂ρgµκ] (15.3.47)

Interchanging (µρ) in the middle term shows that it cancels the last, so

Γµµκ =
1

2
gµρ∂κgρµ (15.3.48)
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This expression may be further simplified: let g be the determinant of gµν , then

ln g = tr ln ĝ → δ ln g =
δg

g
= trĝ−1δĝ = gµρδgµρ (15.3.49)

and therefore
1

g
∂κg = gµρ∂κgµρ, Γµµκ = ∂κ ln

√
g (15.3.50)

which means that

□xϕ = ∂µ(g
µν∂νϕ) + gµν(∂µ ln

√
g)∂νϕ =

1
√
g
∂µ

√
ggµν∂νϕ (15.3.51)

This is a very compact formula. Life is not so easy if the Laplacian, □x, operates on a
vector (worse, on a tensor), instead of a scalar. Then we have

□xA
µ = ∇ν∇νAµ = gνκ∇ν∇κA

µ = gνκ[∂ν∇κA
µ − Γλνκ∇λA

µ + Γµνλ∇κA
λ]

= gνκ[∂ν(∂κA
µ + ΓµκλA

λ)− Γλνκ(∂λA
µ + ΓµλγA

γ)

+ Γµνλ(∂κA
λ + ΓλκγA

γ)] (15.3.52)

which is certainly more complicated. Let’s see how this works through some common
examples. Only the results will be given, the details are left to the reader.

15.4 Examples

Spherical Coordinates

Take the following coordinate functions: ξµ = (t, r, θ, ϕ) where

t = t
r =

√
x2 + y2 + z2

θ = cos−1

(
z√

x2 + y2 + z2

)
φ = tan−1

(y
x

)
(15.4.1)

and the inverse transformations: xa = xa(ξ)

t = t
x = r sin θ cosφ
y = r sin θ sinφ
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Figure 15.1: Spherical coordinates

z = r cos θ (15.4.2)

Let’s compute the vielbein

e⃗t = (
∂t

∂t
,
∂x

∂t
,
∂y

∂t
,
∂z

∂t
) = (1, 0, 0, 0)

e⃗r = (
∂t

∂r
,
∂x

∂r
,
∂y

∂r
,
∂z

∂r
) = (0, sin θ cosφ, sin θ sinφ, cos θ)

e⃗θ = (
∂t

∂θ
,
∂x

∂θ
,
∂y

∂θ
,
∂z

∂θ
) = r(0, cos θ cosφ, cos θ sinφ,− sin θ)

e⃗φ = (
∂t

∂φ
,
∂x

∂φ
,
∂y

∂φ
,
∂z

∂φ
) = r(0,− sin θ sinφ, sin θ cosφ, 0) (15.4.3)

and its inverse

E⃗t = (
∂t

∂t
,
∂t

∂x
,
∂t

∂y
,
∂t

∂z
) = (1, 0, 0, 0)

E⃗r = (
∂r

∂t
,
∂r

∂x
,
∂r

∂y
,
∂r

∂z
) = (0, sin θ cosφ, sin θ sinφ, cos θ)

E⃗θ = (
∂θ

∂t
,
∂θ

∂x
,
∂θ

∂y
,
∂θ

∂z
) =

1

r
(0, cos θ cosφ, cos θ sinφ,− sin θ)



15.4. EXAMPLES 355

E⃗φ = (
∂φ

∂t
,
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
) =

1

r
(0,− sin θ sinφ, sin θ cosφ, 0) (15.4.4)

It is easy to check that e⃗m · E⃗n = δnm and that eamE
m
b = δab . Now compute the inner

products to get the metric function: gtt = −1, grr = 1, gθθ = r2 and gφφ = r2 sin2 θ (all
other components vanish). In matrix notation,

gµν =


−c2 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 (15.4.5)

and the distance function is given explicitly by,

ds2 = c2dt2 − (dr2 + r2dθ2 + r2 sin2 θdφ2) (15.4.6)

Next compute the connections using either Γµνκ = (∂ν e⃗κ) · E⃗µ or (15.3.28) to get the
non-vanishing components

Γrθθ = −r, Γrφφ = −r sin2 θ

Γθrθ = Γθθr =
1

r
, Γφrφ = Γφφr =

1

r

Γθφφ = − sin θ cos θ, Γφφθ = Γφθφ = cot θ (15.4.7)

(all others vanish). What is the action of of the Laplacian, □x, on a scalar function?

□xϕ =
1
√
g
∂µ(

√
ggµν∂νϕ) = − 1

c2
∂2t ϕ+

1

r2
∂r(r

2∂rϕ) +
1

r2 sin θ
∂θ(sin θ∂θϕ) +

1

r2 sin2 θ
∂2φϕ

(15.4.8)
the spatial part of which will be recognized as the standard result from ordinary vector
analysis. Its action on vectors is quite a bit more complicated but can be written out,

□xA
0 =

[
− 1

c2
∂2tA

0 +
1

r2
∂r(r

2∂rA
0) +

1

r2 sin θ
∂θ(sin θ∂θA

0) +
1

r2 sin2 θ
∂2φA

0

]
□xA

r =

[
− 1

c2
∂2tA

r +
1

r2
∂r(r

2∂rA
r) +

1

r2 sin θ
∂θ(sin θ∂θA

r) +
1

r2 sin2 θ
∂2φA

r

− 2

r2
(Ar + r cot θAθ + r∂θA

θ + r∂φA
φ)

]
□xA

θ =

[
− 1

c2
∂2tA

θ +
1

r4
∂r(r

4∂rA
θ) +

1

r2 sin θ
∂θ(sin θ∂θA

θ) +
1

r2 sin2 θ
∂2φA

θ

+
2

r3
(∂θA

r − 1

2
r cos 2θAθ − r cot θ∂ϕA

φ)

]
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Figure 15.2: Cylindrical coordinates

□xA
φ =

[
− 1

c2
∂2tA

φ +
1

r4
∂r(r

4∂rA
φ) +

1

r2 sin3 θ
∂θ(sin

3 θ∂θA
φ) +

1

r2 sin2 θ
∂2φA

φ

+
2

r3 sin3 θ
(sin θ∂φA

r + r cos θ∂φA
θ)

]
(15.4.9)

We see that the Laplacian acts on the time component, A0, of Aµ, just exactly as it does
on a scalar. This is because the coordinate transformation was purely spatial. On the
other hand, its action on the space components mixes them.

Cylindrical coordinates

Take the following coordinate functions: ξµ = (t, ρ, φ, z) where

t = t
ρ =

√
x2 + y2

φ = tan−1
(y
x

)
z = z (15.4.10)

and the inverse transformations: xa = xa(ξ)

t = t
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x = ρ cosφ
y = ρ sinφ
z = z (15.4.11)

Let’s compute the vielbein

e⃗t = (
∂t

∂t
,
∂x

∂t
,
∂y

∂t
,
∂z

∂t
) = (1, 0, 0, 0)

e⃗ρ = (
∂t

∂ρ
,
∂x

∂ρ
,
∂y

∂ρ
,
∂z

∂ρ
) = (0, cosφ, sinφ, 0)

e⃗φ = (
∂t

∂φ
,
∂x

∂φ
,
∂y

∂φ
,
∂z

∂φ
) = ρ(0,− sinφ, cosφ, 0)

e⃗z = (
∂t

∂z
,
∂x

∂z
,
∂y

∂z
,
∂z

∂z
) = (0, 0, 0, 1) (15.4.12)

and its inverse

E⃗t = (
∂t

∂t
,
∂t

∂x
,
∂t

∂y
,
∂t

∂z
) = (1, 0, 0, 0)

E⃗ρ = (
∂ρ

∂t
,
∂ρ

∂x
,
∂ρ

∂y
,
∂ρ

∂z
) = (0, cosφ, sinφ, 0)

E⃗φ = (
∂φ

∂t
,
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
) =

1

ρ
(0,− sinφ, cosφ, 0)

E⃗z = (
∂z

∂t
,
∂z

∂x
,
∂z

∂y
,
∂z

∂z
) = (0, 0, 0, 1) (15.4.13)

Again, it’s easy to check that e⃗m · E⃗n = δnm and that eamE
m
b = δab . Now compute the inner

products to get the metric function: gtt = −1, gρρ = 1, gφφ = ρ2 and gzz = 1 (all other
components vanish). In matrix notation,

gµν =


−c2 0 0 0
0 1 0 0
0 0 ρ2 0
0 0 0 1

 (15.4.14)

and the distance function is given explicitly by,

ds2 = c2dt2 − (dρ2 + ρ2dφ2 + dz2) (15.4.15)

The non-vanishing components of the connections, obtained by using either Γµνκ = (∂ν e⃗κ) ·
E⃗µ or (15.3.28) are just

Γρφφ = −ρ,
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Γφρφ = Γφφρ =
1

ρ
(15.4.16)

(all others vanish), while the action of the Laplacian, □x, on a scalar function is

□xϕ =
1
√
g
∂µ(

√
ggµν∂νϕ) = − 1

c2
∂2t ϕ+

1

ρ
∂ρ(ρ∂ρϕ) +

1

ρ2
∂2φϕ+ ∂2zϕ (15.4.17)

the spatial part of which being, as before, the standard result from ordinary vector analysis.
Its action on vectors can be written out and we leave this as a straightforward exercise.4,5

15.5 Integration: The Volume Element

When passing from Cartesian coordinates to general coordinates one must also take care
to account for the change in the integration measure, which follows the usual rule,∫

d4x→
∫
d4ξ

∥∥∥∥∂x∂ξ
∥∥∥∥ (15.5.1)

where ||∂ξ/∂x|| represents the Jacobian of the transformation. Now notice that under the
coordinate transformation that took xa → ξµ, the metric also underwent a transformation

ηab → gµν = ηab
∂xa

∂ξµ
∂xa

∂ξµ
= ηabe

a
µe
b
µ (15.5.2)

It follows, upon taking determinants, that

||ĝ|| = ||η̂||
∥∥∥∥∂x∂ξ

∥∥∥∥2 = −c2
∥∥∥∥∂x∂ξ

∥∥∥∥2 (15.5.3)

where we have used ||η̂|| = −c2. Therefore,∥∥∥∥∂x∂ξ
∥∥∥∥ =

1

c

√
−||ĝ|| (15.5.4)

We have previously used the notation g for the determinant of the metric, ĝ. Continuing
with this notation we notice that (15.5.1) can be written as∫

d4x→ 1

c

∫
d4ξ

√
−g (15.5.5)

4Problem: Write out □xA
µ for each component of Aµ in cylindrical coordinates.

5Problem: Work out the details of the Rindler spacetime.
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Again, we see that if the transformation is just a Lorentz transformation,∫
d4x→

∫
d4x′ (15.5.6)

because the metric gµν then continues to be just the Lorentz metric. Thus we are led to
define

1

c

∫
d4ξ

√
−g (15.5.7)

as the correct volume integration measure in any system of coordinates. Simple examples
are spherical coordinates:

1

c

∫
d4ξ

√
−g =

∫
dt

∫
dr r2

∫ π

0
dθ sin θ

∫ 2π

0
dφ (15.5.8)

and cylindrical coordinates:

1

c

∫
d4ξ

√
−g =

∫
dt

∫
dz

∫
dρ ρ2

∫ 2π

0
dφ (15.5.9)

but (15.5.7) has general applicability.



Chapter 16

Ideal Fluids

16.1 Introduction

According to the atomic theory of Leucippus and his student Democritus, matter is dis-
tinguished from space by the fact that it is not infinitely divisible. If we accept this atomic
theory, a truly “continuous” medium, defined as matter that is infinitely divisible, cannot
really exist in nature. Yet, there are situations in which a system of particles may be
treated as though it were a “continuous medium”. To understand what these situations
are, let R represent a typical length scale over which observations are carried out on a
system of particles, let a be the characteristic size of the particles and let N be the number
of particles within a volume determined by R. The length scale R could be, for example,
the size of a body immersed in the system of particles or the size of an imaginary volume
element within the system. Suppose we are interested in describing the motion of the
immersed body, or, more generally, of an imaginary volume element, without regard to
the individual motions of the molecules. We will treat a medium as “continuous” if the
mean free path, ⟨l⟩, of the particles is much smaller than the scale R. For example, air can
be considered a continuous medium for the propagation of sound waves provided that the
wavelength of the wave is large compared with the mean free path of the air molecules.
At shorter wavelengths the air stops behaving as a continuous medium. More precisely,
in terms of the Knudsen number

K =
⟨l⟩
R
, (16.1.1)

the collection of particles is deemed continuous if K ≪ 1 at all times. The number density
of particles in a spherical volume of radius R being roughly N/R3, the mean free path of
the particles is given by the Clausius relation,

⟨l⟩ ≈ R3

√
2πa2N

, (16.1.2)

360
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where a is a typical atomic or molecular size, from which it follows that for the system of
particles to be treated as constituting a continuous medium, we should require that

√
N ≫ R

a
(16.1.3)

Typically the distance scales over which a classical experiment is carried out is very much
larger than the molecular size, so the condition implies that both N and R/a are much
greater than unity.

If an equation of state is available, the condition (16.1.1) may be framed in terms of
the state variables of the system. For example for a classical, ideal gas the equation of
state p = nkT , where n is the number density of molecules and p is the pressure of the
gas, implies that

K =
kT√

2πa2pR
≪ 1 (16.1.4)

should hold at all times. An equivalent way to define the continuum approximation is to
say that a typical molecule undergoes a very large number of collisions in traversing the
experimental distance scale R.

When (16.1.1) holds it it no longer necessary to concern oneself with the individual
motions of the molecules. One concentrates instead on the motion of the medium as a
whole, thereby gaining relative simplicity but losing the ability to describe the medium
microscopically. Thus we consider volumes of the fluid that are “microscopically large but
macroscopically small” i.e., small enough to be treated as infinitesimal volume elements
but large enough to contain a very large number of particles. In the process the molecular
size is essentially shrunk to zero and the molecules are treated as if they are point-like.
This is the continuum approximation.

Continuous media can be divided into solids, liquids and gases, the latter two being
generally classified as “fluids”. The essential difference between them is the strength
of the interaction between the particles (molecules) that consitute the medium. These
interactions are very strong in solids and weak in differing degrees for fluids, being weakest
for gases. When we say “strong” and “weak” we are of course referring to the ratio between
the binding energy of the constituents, ⟨Eb⟩, and the typical thermal excitation energy
kT . If ⟨Eb⟩/kT ≫ 1 the medium is solid, but if ⟨Eb⟩/kT ≲ 1 the medium is a liquid
or gas because thermal excitations or relatively weak mechanical forces are able to break
the inter-particle bonds and cause the medium to flow. For this reason, solids turn into
liquids and gases at high enough temperatures, according to our common experience. In
this chapter we concentrate on fluids.

A fluid is described by five fields, viz.,

• The three components of a velocity vector field, v⃗(r⃗, t), which gives the average
velocity of a molecule at any point, r⃗, within the fluid at any time, t,
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n

Figure 16.1: A fluid volume element

• the pressure field, p(r⃗, t), which gives the pressure within the fluid at any point in
space and at any time, and

• the density field, ρ(r⃗, t), which gives the density of the fluid at any point and at any
time.

Thus we need five equations to completely determine the evolution of the fluid. Notice
that the last two variables are thermodynamic in character leading us to expect that the
thermodynamic equation of state is one of the required equations. Another equation will
express the conservation of mass (in a relativistic treatment, this turns into the conserva-
tion of mass-energy) and the remaining equations will be the analogues of the Newtonian
equations of motion. We will address these equations in the following sections.

16.2 Equation of Continuity

The principle of mass conservation is expressed by the equation of continuity. If ρ(r⃗, t)
represent the density of a fluid at a given time t then, by definition, the mass contained
within a volume V of the fluid at any time t is given by

M(t) =

∫
V
d3r⃗ρ(r⃗, t) (16.2.1)

Let the volume be bounded by the closed surface S as shown in figure (16.1), where
n̂ represents the normal to an infinitesimal surface element. Consider the flow of fluid
particles into and out of the surface S. To do so, first imagine the simple situation
illustrated in figure (16.2), in which a beam of particles, each of velocity v⃗, is incident
perpendicularly on a surface of area A. In an interval of time δt a volume vAδt of fluid
crosses the surface A, so that per unit time the volume of fluid that has crossed the area
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A

Figure 16.2: Fluid flow perpendicular to an area A

A is simply vA. Now if A is infinitesimal, say dS then the infinitesimal mass δm = ρvdS
crosses the surface element per unit time. Again, if v⃗ is not perpendicular to the surface,
but makes an angle of θ with the normal n̂ then the fluid mass that crossed the surface
would be ρv⃗ · n̂dS. Returning to the our volume V , shown in figure 16.1, we see that the
mass that enters the volume by crossing the surface element shown must be −ρv⃗ · n̂dS per
unit time. The negative sign is necessary because of our convention that n̂ is the outward
normal to the surface. The fluid entering our volume must contribute to the increase of
mass within it. Integrating over the entire surface,

d

dt

∫
V
d3r⃗ρ(r⃗, t) = −

∮
S
ρv⃗ · n̂dS (16.2.2)

Using Gauss’ theorem to convert the integral on the right to a volume integral, we find
that ∫

V
d3r⃗

[
∂ρ

∂t
+ ∇⃗ · (ρv⃗)

]
≡ 0 (16.2.3)

and, since our volume is arbitrary it must hold that

∂ρ

∂t
+ ∇⃗ · (ρv⃗) ≡ 0. (16.2.4)

This is the continuity equation. It upholds the conservation of mass (matter cannot
be created nor destroyed) and is not an equation of motion but a conservation law. It is
kinematical in nature and is therefore true for all fluids and in all flows. The quantity
j⃗ = ρv⃗ is called the three current density.
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16.3 Ideal Fluids

An ideal fluid will be one in which there is no dissipation of energy within the fluid. Micro-
scopically, internal energy dissipation occurs via inelastic collisions between the molecules
of the fluid, so an ideal fluid is one in which the intermolecular collisions are elastic. We
will also assume for the present that there is no energy transfer between the fluid and its
environment through its boundaries. The absence of heat exchange between the various
parts of the fluid and between the fluid and its boundaries implies that the flow is isen-
tropic, i.e., that the flow is such that the entropy per particle is constant throughout its
evolution. The entropy, like the pressure, will depend on the spatial position within the
fluid as well as on time. Let s be the entropy per unit mass. An isentropic flow requires
that

ds

dt
=
∂s

∂t
+ (v⃗ · ∇⃗)s = 0 (16.3.1)

and if we combine this with the continuity equation, we find that

∂

∂t
(ρs) =

∂ρ

∂t
s+ ρ

∂s

∂t

= −∇⃗ · (ρv⃗)s− ρ(v⃗ · ∇⃗)s

= −∇⃗ · (ρsv⃗) (16.3.2)

where we have used (16.2.4). Thus,

∂(ρs)

∂t
+ ∇⃗ · (ρsv⃗) ≡ 0, (16.3.3)

which is the continuity equation expressing entropy conservation in the same terms as
(16.2.4) expresses mass conservation. The quantity ρs is the entropy density and σ⃗ = ρsv⃗
is the entropy current three density.

16.4 Euler’s equation for an Ideal Fluid

Euler’s equations are the precise analogues for a fluid of Newton’s equations for a particle.
They therefore define the dynamics of the ideal fluid and will need to be modified when
we want to take into account energy dissipation and heat transfer within the fluid and
between the fluid and its environment.

Consider a volume V of fluid as shown in (16.1) and recall that this volume lies within
the fluid. Due to the surrounding medium, which exerts a pressure on the surface bounding
the volume, there will be a net force on the volume which is given by

F⃗ = −
∮
S
pn̂ · dS (16.4.1)
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Again, it can be expressed in terms of a volume integral by Gauss’ theorem

F⃗ = −
∫
V
d3r⃗ ∇⃗p. (16.4.2)

The total force on the volume V is the force due to the rest of the fluid as well as the
force exerted by the environment on the volume, which we will simply refer to as F⃗ ext. It
is preferable, however, to work in terms of force densities, so let us define f⃗ ext as

F⃗ ext =

∫
V
d3r⃗ f⃗ ext (16.4.3)

To apply Newton’s second law, we must ask what constitutes the left hand side. For the
rate of change of momentum associated with the volume we have

d

dt

∫
V
d3r⃗(ρv⃗). (16.4.4)

but we must add to this a term that accounts for the rate of change of momentum asso-
ciated with the surface deformations. This is1∮

S
dS ρv⃗(n̂ · v⃗) (16.4.5)

Newton’s second law of motion then takes the form

d

dt

∫
V
d3r⃗(ρv⃗) +

∮
S
dS ρv⃗(n̂ · v⃗) = −

∫
V
d3r⃗ ∇⃗p+

∫
V
d3r⃗ f⃗ ext (16.4.6)

where ρv⃗ is the momentum density of the fluid in our volume element. The first term on
the left hand side is ∫

V
d3r⃗

[
ρ
∂v⃗

∂t
+ v⃗

∂ρ

∂t

]
=

∫
V
d3r⃗

[
ρ
∂v⃗

∂t
− v⃗∇⃗ · (ρv⃗)

]
(16.4.7)

where we used the equation of continuity. Let us consider the second term in components
(Einstein’s summation convention is assumed throughout). We have

−vi∂j(ρvj) = −∂j(ρvivj) + ρvj∂jvi

⇒ −v⃗∇⃗ · (ρv⃗) = −∇⃗ · (v⃗ ⊗ v⃗) + ρ(v⃗ · ∇⃗)v⃗ (16.4.8)

Upon integrating over the volume V and applying Gauss’ theorem, the first term on the
right turns into

−
∮
S
dS ρv⃗(n̂ · v⃗) (16.4.9)

1This comes from the theory of elasticity and here we shall take it as given.
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and cancels the second term on the left of (16.4.6) leaving∫
V
d3r⃗

[
ρ
∂v⃗

∂t
+ ρ(v⃗ · ∇⃗)v⃗

]
= −

∫
V
d3r⃗ ∇⃗p+

∫
V
d3r⃗ f⃗ ext. (16.4.10)

Again, because the volume we are considering is arbitrary, it follows that

ρ
∂v⃗

∂t
+ ρ(v⃗ · ∇⃗)v⃗ = −∇⃗p+ f⃗ ext (16.4.11)

These are Euler’s equations for an ideal fluid. Notice that the left hand side is nothing
but the total derivative of v⃗(r⃗, t), in terms of which the equations could be written as

ρ
dv⃗

dt
= −∇⃗p+ f⃗ ext. (16.4.12)

The left hand side is called the “total” acceleration of the fluid. It is made up of two parts,
one of which, ∂v⃗/∂t, measures the rate of change of velocity at a fixed point and is called
the local acceleration. The other is the term (v⃗ · ∇⃗)v⃗ and represents a contribution to
the rate of change of velocity from a change in location within the fluid. It is called the
convective acceleration.

The external force in equation (16.4.12) is expected from a näıve application of New-
ton’s second law to a unit volume of fluid, without explicitly taking into account the surface
terms. As an example of an external force, consider a fluid in a constant gravitational
field g⃗(r⃗, t). Euler’s equations would read

ρ
∂v⃗

∂t
+ ρ(v⃗ · ∇⃗)v⃗ = −∇⃗p+ ρg⃗. (16.4.13)

The five equations governing the motion of an ideal fluid are therefore

• an equation of state, f(p, T, ρ) = 0,

• the continuity equation in (16.2.4) and

• Euler’s equations in (16.4.11)

For an isentropic flow one can trade the pressure for the enthalpy per unit mass. This
simplifies Euler’s equations. Because the enthalpy,

H = U + pV, (16.4.14)

where U , the internal energy of the system, is an extensive quantity. Define the enthalpy
per unit mass by h = u+ p/ρ, where u is the internal energy per unit mass and v = 1/ρ
is the volume occupied by a unit mass. Then

dh = du+
dp

ρ
− p

ρ2
dρ (16.4.15)
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and because the internal energy per unit mass obeys the first law of thermodynamics

du = Tds− pd

(
1

ρ

)
= Tds+

p

ρ2
dρ (16.4.16)

where s is the entropy per unit mass of the fluid, it follows that

dh = Tds+
p

ρ2
dρ+

dp

ρ
− p

ρ2
dρ = Tds+

dp

ρ
(16.4.17)

i.e., the enthalpy is a function of (s, p). Since ds = 0 for an isentropic flow, we have
dh = dp/ρ⇒ ∇⃗p = ρ∇⃗h and Euler’s equations can be written in terms of h

dv⃗

dt
= −∇⃗h+

f⃗ ext

ρ
. (16.4.18)

This is the second form of Euler’s equations. Taking the curl of this equation we get

∂

∂t
(∇⃗ × v⃗) + ∇⃗ × (v⃗ · ∇⃗)v⃗ = −∇⃗ ×

(
f⃗ ext

ρ

)
(16.4.19)

where we have used the fact that the curl of a gradient vanishes identically. Now2

∇⃗ × [v⃗ × (∇⃗ × v⃗)] = ∇⃗ ×
(
1

2
∇⃗v⃗2 − (v⃗ · ∇⃗)v⃗

)
= −∇⃗ × (v⃗ · ∇⃗)v⃗ (16.4.20)

and therefore
∂

∂t
(∇⃗ × v⃗) = ∇⃗ × [v⃗ × (∇⃗ × v⃗)] + ∇⃗ ×

(
f⃗ ext

ρ

)
, (16.4.21)

or
∂ω⃗

∂t
− ∇⃗ × (v⃗ × ω⃗) = ∇⃗ ×

(
f⃗ ext

ρ

)
, (16.4.22)

where ω = ∇⃗ × v⃗ is called the vorticity of the flow. This is sometimes referred to as the
third form of Euler’s equations.

16.5 Waves in Fluids

The set of five equations, viz., Euler’s equations, the equation of continuity and the equa-
tion of state imply the existence of (sound) waves in fluids. Consider a simplified situation

2Problem: Prove this.
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in which the fluid is static, i.e., v⃗ = 0 and of uniform density (ρ = ρ0) and pressure
(p = p0). Now examine small perturbations about this equilibrium,

v⃗ = δv⃗(r⃗, t), ρ = ρ0 + δρ(r⃗, t), p = p0 + δp(r⃗, t), (16.5.1)

then by the continuity equation and to first order

∂δρ

∂t
+ ρ0∇⃗ · δv⃗ = 0. (16.5.2)

Likewise, by Euler’s equation,
∂δv⃗

∂t
= − 1

ρ0
∇⃗δp (16.5.3)

To complete the set we need to exploit the equation of state. Imagine that the propagation
of the perturbations occurs under certain conditions (eg. isothermal or adiabatic), and
take it to be of the form p = p(ρ), so that p0 = p(ρ0) and δp = p′(ρ0)δρ. Taking a second
time derivative of the continuity equation and using Euler’s equations,

∂2δρ

∂t2
− c2∇⃗2δρ = 0, c2 = p′(ρ0), (16.5.4)

which is the equation for sound waves traveling at

c =

√
∂p

∂ρ

∣∣∣∣∣
ρ=ρ0

. (16.5.5)

For example, consider an ideal gas in which waves propagate under isothermal conditions.
Then p′(ρ0) = kT/m, where m is the molecular mass of the gas, and we recover (8.2.22).
If we consider adiabatic propagation instead then the equation of state, p = const. × ργ ,
implies that p′(ρ0) = γkT/m, where γ is the ratio of heat capacities, γ = Cp/CV , and this
reproduces (8.2.21).

16.6 Special Flows

We now consider some special flows for which Euler’s equations become greatly simplified.

16.6.1 Hydrostatics

For static fluids the velocity field is vanishing everywhere at all times and Euler’s equations
reduce to

∇⃗p = f⃗ ext (16.6.1)

This is the “equation of hydrostatics”. It must be supplemented by the condition (from
the continuity equation) that ρ does not depend explicitly on time, i.e., ∂ρ/∂t = 0.
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16.6.2 Steady Flows

A steady flow is one for which the velocity does not depend explicitly on time, i.e., one
for which ∂v⃗/∂t = 0. In this case Euler’s equations become

ρ(v⃗ · ∇⃗)v⃗ = −∇⃗p+ f⃗ ext (16.6.2)

and using

v⃗ × (∇⃗ × v⃗) =
1

2
∇⃗v⃗2 − (v⃗ · ∇⃗)v⃗ (16.6.3)

we find
1

2
∇⃗v⃗2 − v⃗ × (∇⃗ × v⃗) + ∇⃗h =

f⃗ ext

ρ
(16.6.4)

Taking the inner product with the unit vector that points in the direction of v⃗ we get

v̂ · ∇⃗
[
1

2
v⃗2 + h

]
=
v̂ · f⃗ ext

ρ
(16.6.5)

where we made use of the fact that the term v⃗ × (∇⃗ × v⃗) is perpendicular to both v⃗ and
∇⃗× v⃗. Now if the force per unit mass is derivable from a potential per unit mass according
to the usual relation

f⃗ ext

ρ
= −∇⃗Φ (16.6.6)

then (16.6.5) turns into

v̂ · ∇⃗
[
1

2
v⃗2 + h+Φ

]
≡ 0 (16.6.7)

This takes a bit of interpreting. Notice that v̂ ·∇⃗ represents the directional derivative along
a curve whose tangent at any point is the velocity. Such curves are called streamlines
and (16.6.7) says that the directional derivative along a streamline vanishes, or along
streamlines

1

2
v⃗2 + h+Φ = const. (16.6.8)

This is Bernoulli’s equation and expresses the conservation of energy. It is very im-
portant to emphasize that this holds only along streamlines because the constant on the
right hand side may vary from streamline to streamline. To appreciate the significance of
a streamline, notice that because the velocity has no explicit dependence on t therefore at
any point P (r⃗P ) it is always constant. The typical (average) molecule at P would have
velocity v⃗P , so its displacement in a time interval δt would be

δr⃗P = v⃗P δt (16.6.9)
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However, at point r⃗P + δr⃗P its velocity is once again fixed, which would then determine
its further development. Thus molecules that find themselves at P would, on the average,
follow the same trajectory. This trajectory is unique to molecules that pass through P and
is called a streamline. Two streamlines may not cross one another. If they did then, at the
intersection point, the velocity field would not be single valued. Neither can a streamline
bifurcate at any point. If it did then, at the bifurcation point, the acceleration would not
be single valued. Mathematically, streamlines are the integral curves of the velocity vector
field,

dr⃗

dt
= v⃗ ⇒ dx

vx
=
dy

vy
=
dz

vz
. (16.6.10)

When v⃗ does depend explicitly on t the concept of a streamline is no longer useful as the
molecules passing through P would have, on the average, different velocities depending on
the time at which they passed through P .

Bernoulli’s equation is further simplified when the fluid is incompressible, i.e., when
ρ(r⃗, t) is constant. In this case, the continuity equation requires that

∇⃗ · v⃗ = 0 (16.6.11)

Furthermore, dh = dp/ρ = d(p/ρ) allows us to write Bernoulli’s equation in the form

v̂ · ∇⃗
[
1

2
ρv⃗2 + p+ ρΦ

]
≡ 0 (16.6.12)

or

p+
1

2
ρv⃗2 + ρΦ = const. (16.6.13)

along streamlines. For example, if Φ represents a constant gravitational potential then

p+
1

2
ρv⃗2 + ρgz = const. (16.6.14)

where we have assumed that the gravitational field is oriented in the negative z direction.
In general incompressibility implies that the velocity field is derivable from a vector

potential, v⃗ = ∇⃗ × V⃗ , because the divergence of a curl is identically zero. However, in
two dimensional flows incompressibility implies that v⃗ is derivable from a scalar potential,
ψ(x, y), according to

vx = ∂yψ, vy = −∂xψ. (16.6.15)

The equation ψ(x, y) = const. gives the streamlines.3

3This follows because, according to (16.6.10),

vxdy − vydx = ∂xψdx+ ∂yψdy = 0

⇒ dψ = 0 ⇒ ψ(x, y) = const.
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16.6.3 Irrotational or Potential Flows

The vorticity ω⃗ of a flow is defined by ω⃗ = ∇⃗ × v⃗. If the vorticity is everywhere zero
then the flow is said to be “irrotational”. Irrotational flows are also called potential
flows because the condition ∇⃗× v⃗ = 0 implies that the velocity vector is derivable from a
potential, i.e., v⃗ = ∇⃗ψ for some scalar function ψ(r⃗, t). Let us see what Euler’s equations
turn into when we demand that the flow be irrotational. From the third form of Euler’s
equations we see immediately that irrotational flows can exist only if the external force per
unit mass is also irrotational. Let Φ be the potential energy per unit mass, then inserting
v⃗ = ∇⃗ψ in the first form of the equations we have

∇⃗∂ψ

∂t
+ (∇⃗ψ · ∇⃗)∇⃗ψ = −∇⃗(h+Φ) (16.6.16)

Now in components

[(∇⃗ψ · ∇⃗)∇⃗ψ]i = ∂jψ∂j(∂iψ) = ∂jψ∂i(∂jψ), (16.6.17)

where we have applied the integrability condition, so that

(∇⃗ψ · ∇⃗)∇⃗ψ =
1

2
∇⃗(∇⃗ψ)2 (16.6.18)

and therefore

∇⃗
[
∂ψ

∂t
+

1

2
(∇⃗ψ)2 + h+Φ

]
≡ 0 (16.6.19)

or
∂ψ

∂t
+

1

2
(∇⃗ψ)2 + h+Φ = f(t) (16.6.20)

where f(t) is an arbitrary function of t. This function can be set to be constant, however,
because from the definition of v⃗ in terms of ψ it is clear that

ψ → ψ +

∫
f(t)dt+ const. (16.6.21)

does not change v⃗ but does eliminate f(t) in (16.6.20). After all, it is not ψ that is
measured but v⃗. As for any potential, ψ is arbitrary up to some redefinition. This is
Bernoulli’s equation for irrotational flows, with one important distinction. Whereas the
constant on the right hand side of (16.6.8) is different in principle from streamline to
streamline it is the same for all streamlines in (16.6.20).
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16.6.4 Incompressible Flows

An incompressible flow is one for which dρ/dt = 0, i.e., by the equation of continuity,
∇⃗ · v⃗ = 0. The third form of Euler’s equation is seen to be an equation for the vorticity of
a flow,

∂ω⃗

∂t
− ∇⃗ × (v⃗ × ω⃗) = ∇⃗ ×

(
f⃗ ext

ρ

)
(16.6.22)

Expanding the left hand side of this equation,

∂ω⃗

∂t
− (ω⃗ · ∇⃗)v⃗ + (v⃗ · ∇⃗)ω⃗ + ω⃗(∇⃗ · v⃗)− v⃗(∇⃗ · ω⃗) = ∇⃗ ×

(
f⃗ ext

ρ

)
(16.6.23)

and since ∇⃗ · ω⃗ ≡ 0, we find a simplified equation when the fluid is also incompressible
(∇⃗ · v⃗ = 0),

dω⃗

dt
= (ω⃗ · ∇⃗)v⃗ + ∇⃗ ×

(
f⃗ ext

ρ

)
(16.6.24)

or just
dω⃗

dt
= (ω⃗ · ∇⃗)v⃗ (16.6.25)

in the absence of external force fields. If an incompressible fluid undergoes irrotational
flow then v⃗ = ∇⃗ψ and Euler’s equations are automatic. Moreover the incompressibility
condition, ∇⃗ · v⃗ = 0, turns into the equation ∇⃗2ψ = 0.

16.7 Elementary Applications

16.7.1 Hydrostatics

We will now look at some simple applications of the above types of flow, beginning with
the simplest of all: hydrostatics. In this case, because v⃗(r⃗, t) is constrained to be vanishing
we have just

∇⃗p = f⃗ ext (16.7.1)

which expresses the fact that the force per unit volume is balanced by the pressure within
the fluid. If the external force density is due to a homogeneous external gravitational field
g⃗ in, say, the negative z direction then

∂p

∂x
=
∂p

∂y
= 0,

∂p

∂z
= −ρg (16.7.2)

and the first two equations imply only that p = p(z). The last equation will have different
solutions depending on whether or not the fluid is compressible.
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If the fluid is incompressible then the solution is trivially

p(z) = p0 − ρg(z − z0) = p0 + ρg(z0 − z) (16.7.3)

where p0 is the pressure at z = z0. The quantity z− z0 will be referred to as the “height”
and z0−z as the “depth”. The formula gives the variation of pressure with height (depth)
assuming that the fluid is effectively incompressible. This approximation is generally
reasonable in liquids up to a certain depth (depending on the liquid) but is not very useful
in treating gases.

If the fluid is compressible, the density is a non-trivial function of the pressure and
temperature. Consider a column of an ideal gas at a fixed absolute temperature T . Using
the equation of state

p = nkT =
ρkT

m
⇒ ρ =

mp

kT
(16.7.4)

where m is the molecular mass, we find

dp

p
= −mg

kT
dz ⇒ p = p0e

−mg
kT

(z−z0) (16.7.5)

where p0 is the pressure at z0. Now if the absolute temperature is also a function of z, the
solution will be more complex. For example, if T (z) = T0− γ(z− z0) where γ is a positive
constant called the “lapse rate” the equation to be solved is

dp

p
= − mg

k[T0 − γ(z − z0)]
dz ⇒ p = p0

[
1− γ(z − z0)

T0

]mg
kγ

(16.7.6)

In this solution T0 and p0 represent the temperature and pressure respectively at z = z0.
It may also turn out that the fluid is not in a constant, homogeneous external gravi-

tational field as we have examined. For example a star can be thought of as a very large
mass of gass that is held together by its own gravitational attraction. In the simplest
case of a star that is not rotating we can think of it as made up of spherical shells, each
shell being subject to the gravitational potential due to all the shells within it. The force
density is then f⃗ ext = −ρ∇⃗Φ where Φ represents this potential energy and from Gauss’
law

∇⃗2Φ = −4πGρ (16.7.7)

Inserting Φ, dividing throught by the density and taking a divergence of the hydrostatic
equation (16.6.1) gives

∇⃗ ·

(
∇⃗p
ρ

)
= −∇⃗2Φ = 4πGρ (16.7.8)

This equation must then be solved subject to some equation of state relating (p, ρ, T ) and
some assumptions regarding the variation of T with the radius r.
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Liquid

small piston

large piston

Figure 16.3: A hydraulic press

The hydraulic press is an application of the hydrostatic equation that is of considerable
engineering importance. This is a device whose function is to increase an applied force
many fold. To see how this comes about, consider the force exerted by the fluid on any
external bounding surface,

F⃗ =

∫
S
p n̂dS (16.7.9)

where n̂ is the outward normal to the surface. This force depends on the area of the
surface and this feature is exploited by hydraulics to generate huge forces by the actual
application of comparatively small ones as shown in the figure (16.3) of a basic hydraulic
press. Imagine that the space between the pistons is filled with an incompressible fluid,
at least at the pressures for which the press is functional. Let the area of the small piston
be A1 and of the large piston be A2, so that A2 ≫ A1. Suppose that the small piston
is pushed forward with a force F1 and the piston displaced by ∆x1. Now the pressure in
the fluid, due to an application of the force F1 will be p1 = F1/A1 and, in equilibrium,
this pressure will be constant throughout the fluid. As a consequence a force F2 = p1A2

is exercised on the large piston by this pressure and we find that this force

F2 =
A2

A1
F1 (16.7.10)

may be many times the original applied force, depending on the ratio A2/A1. However,
the work done by the applied force is the same as the work done by the large piston. To
show that this must be so, note that the volume of liquid displaced at the small piston is
A1∆x1 and, because the fluid is incompressible, this volume of fluid will displace the large
piston by a distance ∆x2 = A1∆x1/A2. The work done by F2 is therefore

W2 = F2∆x2 =

(
A2

A1
F1

)
×
(
A1

A2
∆x1

)
= F1∆x1 =W1 (16.7.11)

In this example, the calculation of the force exercised on the large piston was simple
because the fluid was considered to be incompressible and the surface of the piston was
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Figure 16.4: Schematic of a Dam

planar. We will now consider two further examples. In the first the pressure will not be
constant and in the second, the surface will not be planar.

Consider a dam of height H, i.e., the height of the water on one side of it is a height
H above the water on the other side as shown in figure (16.4). Let’s calculate the net
force on the dam. To a very good approximation over the height of a normal dam, the
water may be considered to be incompressible and we can write the pressure as a function
of depth,

p(z) = p0 + ρg(z0 − z) (16.7.12)

so that the force on the dam itself to the right, due to the water on the left, is

FR =

∫ L

0
dx

∫ z0

0
dz[p0 + ρg(z0 − z)] (16.7.13)

The force to the left, due to the water on the right is

FL =

∫ L

0
dx

∫ z0−H

0
dz[p0 + ρg(z0 −H − z) +

∫ L

0
dx

∫ z0

z0−H
dz p0 (16.7.14)

With z1 = z0 −H, the net force on the dam (clearly, to the right) is therefore

F = ρgL

[∫ z0

0
dz (z0 − z)−

∫ z1

0
dz (z1 − z)

]
=

1

2
ρgLH(H + 2z0) (16.7.15)

In this example, the surface over which the integration is carried out is trivial.
Let us now consider an example in which the surface is not planar. Suppose we want

to to determine the force on the side ABC of a tank shaped as shown in figure (16.5).
Assume that the tank is rectangular, apart from the curved portion of the base. Again,
we will treat the water as incompressible. It is a simple affair to calculate the force on the
portion BC of the tank wall, which can be written as

F⃗BC =

∫ L

0
dx

[∫ H

R
dz[p0 + ρg(H − z)]−

∫ H

R
dzp0

]
ŷ
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Figure 16.5: Force on one wall of a water tank

=
1

2
ρgL(H −R)2(0, 1, 0) (16.7.16)

directed to the right. Now to calculate the force on the curved portion, AB of the tank we
must first recognize that the pressure depends only on the height and the height can be
written as z = R cosα. The unit normal is −r̂ (r̂ is the unit radial vector) since it must
be outgoing. Therefore

F⃗AB = −
∫ L

0
dx

∫ R

0
dz ρg(H − z) r̂(z)

= −ρgLR
∫ 0

π/2
dα(H −R cosα)(0,− sinα, cosα)

= ρgLR

(
0, H − R

2
,
πR

4
−H

)
(16.7.17)

Combining both results we find

F⃗ABC = ρgL

[
1

2
(H −R)2 +R(H − R

2
)

]
ŷ + ρgLR

[
πR

4
−H

]
ẑ (16.7.18)

It should be obvious that realistic problems, even in hydrostatics, can quickly get very
complicated.

Archimedes’ principle is a direct consequence of the hydrostatic equations. It states
that when a body is immersed in a fluid it suffers a loss of weight equal to the weight of
the fluid displaced by it. Equivalently, the body experiences an upward force equal to the
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weight of the fluid displaced. The upward force is called the buoyancy and is the reason
boats and ships float. To understand how this comes about, suppose that the density of
the fluid is ρf and that the density of the body itself is ρ. Let S be the surface bounding
the body, so that the net force on the body is

F⃗ = −
∮
S
pdS⃗ +

∫
V
d3r⃗f⃗ ext (16.7.19)

where f⃗ ext is the external force density which we take to be due to an external, homo-
geneous gravitational field, i.e., f⃗ ext = ρg(0, 0,−1) directed in the negative z direction.
Now, if the fluid is incompressible then p = p0 + ρfg(H − z) where H − z represents the
depth from the surface of the fluid and p0 represents the atmospheric pressure. Thus

∇⃗p = (0, 0,−ρfg) (16.7.20)

and therefore, applying Gauss’ theorem,

F⃗ = −
∫
V
d3r⃗[0, 0, (ρ− ρf )g] = (ρf − ρ)gV ẑ (16.7.21)

Now ρfV is the mass of liquid having the same volume as the immersed body itself and is
therefore the mass of the fluid displaced by the body. The first term therefore represents
the buoyancy. Naturally a body will float so long as the buoyancy can overcome its weight
i.e., ρf ≥ ρ. If ρf > ρ only a portion of the body, of volume V ′ < V , is immersed. The
fraction of the body’s volume that is immersed is given by the condition ρfV

′ = ρV or

V ′ =
ρ

ρf
V (16.7.22)

16.7.2 Steady Flows

Let us now examine some examples of steady flows. In this case, Euler’s equation reduces
to

ρ(v⃗ · ∇⃗)v⃗ = −∇⃗p+ f⃗ ext (16.7.23)

a first integral of which is the Bernoulli equation

1

2
v⃗2 + h+Φ = const. (16.7.24)

along any streamline. Let us assume that ρ also does not depend explicitly on time. In
other words, that the system is in equilibrium. By continuity, this is only possible if

∇⃗ · (ρv⃗) = 0 (16.7.25)
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Figure 16.6: Streamlines

and therefore, integrating over an arbitrary closed volume and applying Gauss’ theorem,∮
S
dS⃗ · (ρv⃗) = 0 (16.7.26)

Now, take a special volume made up of a collection of streamlines and let the edges of the
tube be sections of streamlines (i.e., everywhere perpendicular to them) as shown in figure
(16.6). Because the velocity is everywhere tangent to the streamlines, it is perpendicular
to the sections and we have (keeping in mind the directions of the outgoing normals)∮

S
dS⃗ · (ρv⃗) = −

∫
S1

ρvdS +

∫
S2

ρvdS = 0 (16.7.27)

The integrals on the right are called the mass fluxes of the fluid across the surfaces A1

and A2 respectively. They represent the quantity of matter entering the volume (this can
only happen via the end sections because the walls of our volume are streamlines). The
condition says that the matter entering our volume equals the matter leaving, which is
necessary for the density of fluid within the tube to stay constant.

There are several simple yet powerful applications of Bernoulli’s equation, some of
which we will now consider. Consider the lift experienced by an airfoil (an airplane wing,
for example) that is positioned at an angle relative to the direction of fluid flow as shown in
figure (16.7). The velocity of the air at the bottom of the wing is less than that at the top.
The reason is simply that molecules of air collide with the airfoil losing kinetic energy in
the process. Because the change in gravitational potential between the streamlines passing
over the wing and those passing under it is negligible (the airfoil is “thin”), Bernoulli’s
equation asserts that

pA +
1

2
ρAv

2
A = pB +

1

2
ρBv

2
B (16.7.28)

From this we find

∆p = pA − pB =
1

2
ρBv

2
B − 1

2
ρAv

2
A (16.7.29)
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Figure 16.7: An airfoil positioned at an angle relative to the airflow
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Figure 16.8: A simplified rocket

To a good approximation we may set ρA ≈ ρB ≈ ρair. Then the pressure differential
between the lower and upper surfaces of the wing approximates to

∆p ≈ 1

2
ρair(v

2
B − v2A) (16.7.30)

The “lift” is the total (upward) force

F = ∆pAwing ≈
1

2
ρairAwing(v

2
B − v2A) (16.7.31)

where Awing is the “wingspan”, i.e., the area of the wing.

Another example of a direct use of Bernoulli’s equation is thrust of a rocket which,
in our simplified considerations, will consist of a gas confined within a chamber. The gas
is able to escape through a small hole at one end. Let v be the speed of the gas inside
the chamber abd v0 its speed outside. Once more neglecting the gravitational potential
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difference, Bernoulli’s equation reads

p+
1

2
ρv2 = p0 +

1

2
ρv20 (16.7.32)

where p0 is the atmospheric pressure. Furthermore, if A is the cross-section of the chamber
and A0 is the cross-sectional area of the hole, continuity implies that

ρAv = ρA0v0 ⇒ v =
A0

A
v0 (16.7.33)

The pressure differential is

p− p0 =
1

2
ρ

[
1−

(
A0

A

)2
]
v20 (16.7.34)

whence it follows that

v0 = A

√
2(p− p0)

ρ(A2 −A2
0)

(16.7.35)

Now if the rocket is designed so that A0 ≪ A then

v0 ≈

√
2(p− p0)

ρ
(16.7.36)

The mass of gas flowing out per unit time is ρA0v0 = dm/dt so, according to (2.10.5), the
upward thrust on the rocket is

v0
dm

dt
= 2A0(p− p0) (16.7.37)

16.7.3 Potential flows of Incompressible fluids

We have seen that if the flow is irrotational then by definition ∇⃗× v⃗ = 0 and therefore the
velocity may be expressed as the gradient of a scalar potential, ψ. The velocity vector is
everywhere normal to the equipotential surfaces. If, moreover, the flow is incompressible
then v⃗ must also satisfy ∇⃗ · v⃗ = 0 and therefore the scalar function ψ obeys Laplace’s
equation

∇⃗2ψ = 0 (16.7.38)

As is customary, this equation must be solved subject to externally specified conditions
at the boundaries of the fluid. The boundary conditions are fairly straightforward to
determine. If the boundary is fixed then the component of the velocity normal to the
boundary must vanish there. On the other hand, if the boundary is moving in a specified
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way then the normal component of the fluid velocity must equal the normal component
of the velocity of the bounding surface. In either case, the normal component of v⃗ is
a specified function at the boundaries. Notice that (16.7.38) does not contain a time
derivative so that the time dependence of ψ enters the solution only through the boundary
conditions.

The simplest possible flow occurs if the velocity is constant everywhere, then the
streamlines are parallel straight lines and the potential is time independent and given by

ψ(t, x, y, z) =
∑
i

v0ixi + const. (16.7.39)

More intersting potential flows occur when sources are present. Consider first a point-like
source and assume the trivial boundary condition that the velocity vanishes at infinity.
Spherical symmetry requires that the velocity is radially directed, v⃗ = vr(r)r̂ and depends
only on r. In spherical coordinates,

1

r2
d

dr

(
r2
dψ

dr

)
= 0 (16.7.40)

gives

ψ(r) = −Q
r
+ const., v⃗ = ∇⃗ψ(r) = Q

r2
r̂ (16.7.41)

where Q is a constant which determines both the flow rate and its direction.
Again, because Laplace’s equation is linear, for the same boundary conditions we may

treat extended sources by summing over infinitesimal point like sources. For instance for
a one dimensional source of arbitrary shape

ψ(r) = −
∫
C

Q(s)ds

|r⃗ − r⃗′(s)|
+ const. (16.7.42)

where the integral is over the source, parameterized by s as shown in figure (16.9).
As an example, consider a line source of length L located along the x−axis, as shown

in figure (16.10). We have

ψ(x) = −Q
∫ L/2

−L/2

dx′√
(x− x′)2 + y2 + z2

(16.7.43)

assuming that Q is constant over the length of the source. Now, letting (x − x′) =√
y2 + z2 sinh η and performing the resulting integration, we find

ψ(x, y, z) = Q

[
sinh−1 x− L/2√

y2 + z2
− sinh−1 x+ L/2√

y2 + z2

]
(16.7.44)
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Figure 16.11: Potential flow past a sphere

The potential is singular on the x−axis and the velocity components are given by v⃗ = ∇⃗ψ.

Consider the potential flow around a sphere of radius R held fixed with its center at
the origin of coordinates. The equation of motion for an incompressible fluid, ∇⃗2ψ = 0
must be solved subject to certain boundary conditions. As x→ ∞ we we will require that
v⃗∞ = (0, 0, v∞), where v∞ is a constant. At the surface of the sphere, we require that the
normal component of the velocity vanishes. Now in spherical coordinates

∂rr
2∂rψ +

1

sin θ
∂θ sin θ∂θψ +

1

sin2 θ
∂2φψ = 0 (16.7.45)

Let us assume a solution in which the variables are separated, i.e., take

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ). (16.7.46)

The separation leads in the usual way to the radial equation

r2
d2Rl
dr2

+ 2r
dRl
dr

− l(l + 1)Rl = 0 (16.7.47)

and gives the solution as a linear combination of

ψ(r, θ, φ) = Rl(r)Ylm(θ, φ) (16.7.48)

where Ylm are the spherical harmonics (l = 0, 1, 2, . . . andm = ±1,±2, . . . ,±l). The radial
equation is furthermore a linear superposition of the solutions

Rl(r) = rω± , ω± =
1

2

[
−1±

√
1 + 4l(l + 1),

]
(16.7.49)
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so4

ψ(r, θ, φ) = A0+B0r
−1+(A1r+B1r

−2) cos θ+(A2r
2+B2r

−3)(3 cos2 θ−1)+. . . (16.7.50)

Now if our solution is to reduce to (0, 0, v∞) as r approaches infinity, we should have
A1 = v∞ and Aj = 0 ∀ j ≥ 2. Furthermore, the term B0r

−1 would represent a sphere that
is a source, so we must also set B0 = 0 and, finally, a vanishing radial velocity at r = R
is possible if and only if Bj = 0 ∀ j ≥ 2. We conclude that

ψ(r, θ, φ) = A0 + v∞r cos θ +B1r
−2 cos θ (16.7.51)

Applying the boundary condition at r = R,

vr(R) = ∂rψ|r=R = 0 ⇒ v∞ = 2B1R
−3 (16.7.52)

we find the solution

ψ(r, θ, φ) = v∞

[
1 +

R3

2r3

]
r cos θ (16.7.53)

which, taking derivatives, gives the velocity field everywhere.

16.8 The Circulation

Define the circulation of a flow, Γ, by the line integral

Γ =

∮
C
v⃗ · dr⃗ (16.8.1)

about an arbitrary contour drawn in the fluid at some instant. A vortex is a flow in which
the circulation is non-vanishing in some region. The circulation of an isentropic flow is
independent of time! To prove note that using Euler’s equation we have

dΓ

dt
=

∮
C

dv⃗

dt
· dr⃗ = −

∮
C

∇⃗p
ρ

· dr⃗ (16.8.2)

and, if the flow is isentropic, ∇⃗p/ρ = ∇⃗h⇒

dΓ

dt
= −

∮
C
∇⃗h · dr⃗ ≡ 0 (16.8.3)

4Note that

l = 0 ⇒ ω± = 0,−1
l = 1 ⇒ ω± = 1,−2
l = 2 ⇒ ω± = 2,−3

...
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Figure 16.12: Two dimensional space is not simply connected when an object is present.

and Γ is a conserved quantity. Note that an ideal fluid is one for which all flows are
isentropic and therefore the circulation is always conserved for ideal fluid flows. Moreover,
the circulation is clearly related to the vorticity by Stokes theorem,

Γ =

∮
C
v⃗ · dr⃗ =

∫
S
(∇⃗ × v⃗) · dS⃗ (16.8.4)

It follows that if the flow is irrotational then the circulation must be zero provided that the
space is simply connected. In two dimensional flows, the presence of any object makes the
space not simply connected. As shown in figure (16.12), the presence of an object prevents
the closed curve surrounding it to be shrunk to zero. In three dimensions the curve can
be shrunk to zero by deforming it along the third dimension as shown in figure (16.13).
However, situations in which space is not simply connected because of the presence of an
object do occur in three dimensions. An example is provided in figure (16.14). When the
space is not simply connected, Stokes theorem does not apply and one may have circulation
even though the flow itself is irrotational.

An example in two dimensions by is the vortex given by the potential flow5

ψ(r, θ) =
Λ

2π
θ (16.8.5)

where Λ is constant. We find

vθ =
1

r
∂θψ(r, θ) =

Λ

2πr
, vr = 0 (16.8.6)

so, taking a curve around the origin,

Γ =

∮
C
vθrdθ = Λ, (16.8.7)

5Problem: Verify that this solves Laplace’s equation.
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surface

Figure 16.13: In three dimensions the surface can be deformed in the third dimension.

Object: torus

non-contractible loop

Figure 16.14: Example of a non-simply connected space in three dimensions.
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D
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A

B

Figure 16.15: A line vortex.

whereas ∇⃗ × v⃗ ≡ 0. Therefore, the circulation does not vanish even though the vorticity
does. This is because the potential is not defined at the origin, where θ is meaningless.

In three dimensions, one can have a line vortex, i.e., a line about which the circulation
is non-zero. If the flow is irrotational, the line must extend from boundary to boundary,
for if not then by deforming the surface as before, one can apply Stoke’s theorem to show
that the circulation is also vanishing. We can show that the circulation is constant along
the line, for consider the line integral ADCBA, as shown in figure (16.15). The curve is
obviously closed and if, moreover, tythe flow is irrotational then∮

v⃗ · dr⃗ =
∫

∇⃗ × v⃗ · dS⃗ ⇒∫ D

A
v⃗ · dr⃗ +

∫ C

D
v⃗ · dr⃗ +

∫ B

C
v⃗ · dr⃗ +

∫ A

B
v⃗ · dr⃗ = 0 (16.8.8)

But now, bringing the split pieces close together gives∫ D

A
v⃗ · dr⃗ +

∫ B

C
v⃗ · dr⃗ = 0 ⇒∮

CD
v⃗ · dr⃗ =

∮
AB

v⃗ · dr⃗ = Γ (16.8.9)

i.e., the circulation, taken anywhere along the line vortex, is the same.



Chapter 17

Energy and Momentum in Fluids

We now turn to the conservation of energy and momentum in fluids. This will lead us
to the concept of the stress energy tensor, which will, in turn, serve as our guide as we
move to modify Eulerian dynamics in such a way as to take into account non-ideal fluids
in which energy and momentum is lost by the effects of friction. For incompressible fluids,
Euler’s equations will then turn into the Navier-Stokes equations.

17.1 The Energy Flux Density Vector

If u represent the internal energy of a unit mass of fluid and v⃗ its velocity, then one can
write the energy per unit volume (or energy density) of fluid as

ε =
1

2
ρv⃗2 + ρu (17.1.1)

and thus its rate of change with time will be

∂ε

∂t
=
∂ρ

∂t

(
1

2
v⃗2 + u

)
+ ρ

(
v⃗ · ∂v⃗

∂t
+
∂u

∂t

)
(17.1.2)

Now we can use the equation of continuity to replace ∂ρ/∂t by spatial gradients of the
density and velocity and we can use the Euler’s equation to do the same with ∂v⃗/∂t. When
this is done, the above equation will take the form

∂ε

∂t
= −∇⃗ · (ρv⃗)

(
1

2
v⃗2 + u

)
− ρ

(
v⃗ · (v⃗ · ∇⃗)v⃗ +

1

ρ
v⃗ · ∇⃗p− ∂u

∂t

)
. (17.1.3)

However, because

v⃗ · (v⃗ · ∇⃗)v⃗ =
1

2
(v⃗ · ∇⃗)v⃗2

388
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this may be re-expressed as

∂ε

∂t
= −∇⃗ · (ρv⃗)

(
1

2
v⃗2 + u

)
− ρ

(
1

2
(v⃗ · ∇⃗)v⃗2 +

1

ρ
v⃗ · ∇⃗p− ∂u

∂t

)
. (17.1.4)

Now apply the first law of thermodynamics to a unit mass of fluid,

du = Tds− pdV = Tds+
p

ρ2
dρ (17.1.5)

which gives

∂u

∂t
= T

∂s

∂t
+

p

ρ2
∂ρ

∂t
= T

∂s

∂t
− p

ρ2
∇⃗ · (ρv⃗) (17.1.6)

upon using the equation of continuity. Further,

dh = Tds+
dp

ρ
⇒ ∇⃗p = ρ∇⃗h− ρT ∇⃗s (17.1.7)

and inserting (17.1.6) and (17.1.7) into the time evolution equation for the energy density,
we find

∂ε

∂t
= −∇⃗ · (ρv⃗)

(
1

2
v⃗2 + u+

p

ρ

)
− ρv⃗ · ∇⃗

(
1

2
v⃗2 + h

)
(17.1.8)

and, since h = u+ p/ρ,

∂ε

∂t
= −∇⃗ · (ρv⃗)

(
1

2
v⃗2 + h

)
− ρv⃗ · ∇⃗

(
1

2
v⃗2 + h

)
= −∇⃗ ·

(
ρv⃗

[
1

2
v⃗2 + h

])
(17.1.9)

and integrating both sides over a volume of the fluid enclosed by a surface S, we find using
Gauss’ law,

d

dt

∫
d3r⃗ ε(t, r⃗) = −

∮
S
ρv⃗

[
1

2
v⃗2 + h

]
· dS⃗ (17.1.10)

The left hand side of the equation represents the change of energy of the volume V , so
the right hand side must represent the energy flux density across the bounding surface S.
Thus we call

E⃗ = ρv⃗

[
1

2
v⃗2 + h

]
(17.1.11)

the energy flux density vector of the flow.
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17.2 Momentum Flux Density Tensor

Let us follow the same procedure we applied to the energy density, now applying it to the
momentum density, which can be defined as P⃗ = ρv⃗. Its time rate of change will obey

∂P⃗

∂t
=
∂ρ

∂t
v⃗ + ρ

∂v⃗

∂t
(17.2.1)

and, using the continuity equation together with Euler’s equations we find

∂P⃗

∂t
= −∇⃗ · (ρv⃗)v⃗ − ρ(v⃗ · ∇⃗)v⃗ − ∇⃗p (17.2.2)

It is better to rewrite this equation in components as follows

∂tP⃗i = −∂j(ρvj)vi − ρvj∂jvi − ∂ip

= −∂j (ρvivj + pδij) (17.2.3)

and integrating over a volume bounded by the surface S we find

d

dt

∫
d3r⃗ Pi = −

∮
S
(ρvivj + pδij) dSj (17.2.4)

where we once again used Gauss’ law. As the right hand side represents the rate at which
the momentum of volume V of the fluid is changing, the right hand side must represent
the rate at which momentum is carried enters (or leaves) the volume by flowing into (or
out of) the surface S. The tensor

Π
(0)
ij = pδij + ρvivj (17.2.5)

is the momentum flux density tensor of the flow.

17.3 The Stress Tensor

Let us note that (17.2.3) is just another way to express Euler’s equations. This follows, of
course, by symply performing the derivatives,

(∂tρ)vi + ρ(∂tvi) = −∂ip− ρvi∂jvj − ρvj∂jvi − vivj∂jρ (17.3.1)

or, in vector notation,

∂ρ

∂t
v⃗ + ρ

∂v⃗

∂t
+ ∇⃗p+ ρ(∇⃗ · v⃗)v⃗ + ρ(v⃗ · ∇⃗)v⃗ + (v⃗ · ∇⃗ρ)v⃗ (17.3.2)
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Now the first term together with the fourth and sixth give the combination[
∂ρ

∂t
+ ∇⃗ · (ρv⃗)

]
v⃗, (17.3.3)

which vanishes by the continuity equation and we are left with

ρ
∂v⃗

∂t
+ ρ(v⃗ · ∇⃗)v⃗ = −∇⃗p (17.3.4)

which is simply (16.4.11) in the absence of external forces.

We have considered ideal fluids, i.e., fluids in which there is no energy loss by friction
and no heat transfer either within the fluid or between the fluid and its environment.
Unfortunately, the ideal fluid does not exist in nature and it is necessary to think of how
Euler’s equations must be modified so as to allow for both of the above possibilities. One
approach would be to modify the right hand side of (17.2.3) by adding a term to Πij

Π
(0)
ij → Πij = pδij + ρvivj − σ′ij

def
= ρvivj − σij (17.3.5)

The tensor

σij = σ′ij − pδij (17.3.6)

is called the stress tensor of the fluid and σ′ij is the viscosity tensor. Thus σij gives
the portion of momentum flux that is not due to the direct transfer of momentum with
the fluid mass.

The viscosity tensor must be obtained phenomenologically.

• First we note that internal friction between the molecules will occur when there is
an average relative velocity between different portions of the fluid, specifically when
∂ivj ̸= 0.

• Next, if the velocity gradients are not too large we may suppose that the effects of
viscosity depend only linearly upon them.

• Thirdly, all terms in the viscosity tensor must depend on velocity gradients, and

• finally, the stress tensor must vanish when the fluid as a whole rotates, i.e., when v⃗
is given as v⃗ = ω⃗ × r⃗.

For a velocity flow whose components are of the form vi = [ω⃗× r⃗]i = ϵilmωlxm, its spatial
gradients would be ∂jvi = −ϵijlωl, which is antisymmetric in (i, j). Therefore the sum

λij = ∂jvi + ∂ivj (17.3.7)
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vanishes identically and a viscosity tensor defined as

σ′ij = aλij + bδij∂kvk (17.3.8)

would satisfy all the stated conditions. We write the stress tensor as

σij = −pδij + ξ(∇⃗ · v⃗)δij + η

(
∂jvi + ∂ivj −

2

3
(∇⃗ · v⃗)δij

)
(17.3.9)

after rearranging terms and redefining constants so that the term proportional to η is
traceless. The coefficients η and ξ could in principle depend on position within the fluid,
but we will take them to be constant. η is called the shear viscosity and ξ the bulk
viscosity. Now putting everything together,

Πij = pδij + ρvivj − ξ(∇⃗ · v⃗)δij − η

(
∂jvi + ∂ivj −

2

3
(∇⃗ · v⃗)δij

)
(17.3.10)

and the modified Euler equations now read

∂t(ρvi) + ∂jΠij = 0, (17.3.11)

which, in the more traditional form, reads

ρ
∂v⃗

∂t
+ ρ(v⃗ · ∇⃗)v⃗ = −∇⃗p+ η∇⃗2v⃗ +

(
ξ +

η

3

)
∇⃗(∇⃗ · v⃗). (17.3.12)

If the fluid is incompressible so that ∇⃗ · v⃗ = 0,

ρ
∂v⃗

∂t
+ ρ(v⃗ · ∇⃗)v⃗ = −∇⃗p+ η∇⃗2v⃗. (17.3.13)

External forces may be taken into account by adding f⃗ ext to the right hand side of this
equation,

ρ
∂v⃗

∂t
+ ρ(v⃗ · ∇⃗)v⃗ = −∇⃗p+ η∇⃗2v⃗ + f⃗ ext. (17.3.14)

These are the Navier-Stokes equation for an incompressible fluid, a very good approxi-
mation when working with liquids to the extent that they can be treated as incompressible,
but not so good for gases. On the other hand, for gases the shear viscosity can often be
so low as to be negligible and only the bulk term survives. Sometimes the ratio η/ρ is
denoted by ν and called the kinematic viscosity, as opposed to “dynamic” or “absolute”
viscosity.

The equation may be reformulated in terms of the vorticity directly if we take the curl
of (17.3.14),

ρ
∂ω⃗

∂t
+ ρ∇⃗ × (v⃗ · ∇⃗)v⃗ = η∇⃗ × ∇⃗2v⃗ + ∇⃗ × f⃗ ext. (17.3.15)
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Then using

v⃗ × (∇⃗ × v⃗) =
1

2
∇⃗v⃗2 − (v⃗ · ∇⃗)v⃗, (17.3.16)

we see that
∇⃗ × (v⃗ · ∇⃗)v⃗ = −∇⃗ × (v⃗ × (∇⃗ × v⃗)) = −∇⃗ × (v⃗ × ω⃗) (17.3.17)

and therefore

ρ
∂ω⃗

∂t
− ρ∇⃗ × (v⃗ × ω⃗) = η∇⃗2ω⃗ + ∇⃗ × f⃗ ext, (17.3.18)

which is the desired equation.

17.4 Energy Dissipation

Because of the viscosity, a flowing fluid will eventually lose its mechanical energy to thermal
energy. For a fixed volume, V , of the fluid the kinetic energy content may be given as

K =
1

2

∫
V
d3r⃗ρv⃗2 (17.4.1)

so we consider the kinetic energy density, k = ρv⃗2/2 and its time derivative, assuming
that the fluid density is constant throughout,

∂k

∂t
= ρv⃗ · ∂v⃗

∂t
. (17.4.2)

Then using the Navier-Stokes equation we find

∂k

∂t
= ρv⃗ ·

[
−(v⃗ · ∇⃗)v⃗ − ∇⃗p

ρ
+ ν∇⃗2v⃗

]
, (17.4.3)

which may be put in the form ((v⃗ · ∇⃗)v⃗ = 1
2∇⃗v⃗

2)

∂k

∂t
= −ρv⃗ · ∇⃗

(
1

2
v⃗2 +

p

ρ

)
+ ηv⃗ · ∇⃗2v⃗ (17.4.4)

or, using the condition for incompressibility, ∇⃗ · v⃗ = 0,

∂k

∂t
= −∇⃗ ·

(
1

2
ρv⃗2 + p

)
v⃗ + ηv⃗ · ∇⃗2v⃗. (17.4.5)

It’s worth examining the last term a bit more. Since v⃗ · ∇⃗2v⃗ = vi∂
2
j vi, consider

1

2
∂2j v⃗

2 = ∂j(vi∂jvi) = vi∂
2
j vi + (∂jvi)

2 (17.4.6)
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and so

v⃗ · ∇⃗2v⃗ =
1

2
∇⃗2v⃗2 − (∂jvi)

2

⇒ ∂k

∂t
= −∇⃗ ·

[(
1

2
ρv⃗2 + p

)
v⃗ − 1

2
η∇⃗v⃗2

]
− η(∂jvi)

2 (17.4.7)

Integrating over the volume, V ,

dK

dt
= −

∫ [(
1

2
ρv⃗2 + p

)
v⃗ − 1

2
η∇⃗v⃗2

]
· dS⃗ − η

∫
V
d3r⃗ (∂jvi)

2 (17.4.8)

The first term represents an energy flux across the bounding surface. It is made up of two
parts, the first corresponding to that of an ideal fluid and the second proportional to η
and representing the flux due to processes of internal friction. The last term represents
the rate of decrease in kinetic energy due to dissipation. If the integral is extended over
the entire volume of the fluid then the surface integral vanishes and we see that the rate
of change of total kinetic energy is just

dK

dt
= −η

∫
V
d3r⃗ (∂ivj)

2 (17.4.9)

17.5 Boundary Conditions

Ideal fluids are required to satisfy the requirement that the normal component of the
velocity field vanishes at the boundaries. For real fluids, depending on the situation
encountered, various other conditions may be appropriate. The most common of these are
the following

• No-slip walls: If a boundary is rigid and if the forces between the molecules of
the fluid and the molecules of the walls of the boundary are strong enough to stop
the tangential motion of the fluid molecules closest to the walls then not only is the
normal component of the velocity field vanishing but also its tangential component,
assuming that the boundary is static. The two components (normal and tangential)
can only vanish if the velocity itself vanishes at the boundary, i.e., for a real fluid
v⃗ = 0 at the (static) boundaries. More generally, if such a “sticky boundary” moves
with a velocity u⃗ then the fluid velocity would equal u⃗ at the boundary in this case.
Rigid, “sticky” boundaries are called “no-slip” walls.

• Fluid-Fluid interface: To motivate the boundary conditions at the interface of
two immiscible fluids (eg., oil and water) it is worth asking what force is exerted
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by a fluid (assumed incompressible) on its boundary. If S represents the bounding
surface, the total force will be

Fi =

∮
S
ΠikdSk (17.5.1)

so that the force per unit area on the boundary is

fi = Πiknk,= ρ(n̂ · v⃗)vi − σiknk, (17.5.2)

where n̂ is the outgoing normal to the surface. If in addition the fluid velocity
vanishes at the boundary then the only contribution to the force per unit area comes
from the second term above,

fi = −σiknk = pni − σ′iknk. (17.5.3)

The first term on the right hand side is the fluid pressure and acts normal to the
surface. The second term, due to viscosity, is the force of friction acting on the
surface. Now, another condition that should be met at the interface is Newton’s
third law of action and reaction, in other words, the force per unit area due to one
fluid should exactly balance out the force per unit area due to the other, or

n
(1)
k σ

(1)
ik + n

(2)
k σ

(2)
ik = 0 (17.5.4)

where n
(1,2)
k are the unit outgoing normals for the two fluids, labeled by (1) and (2)

and satisfy n
(1)
i = −n(2)i .

• Free boundaries: If one of the fluids is inviscid (η = 0), or if the boundary is a
free surface of the fluid, shear cannot be supported and we must require the stress
to vanish there. This is the condition that

pni − σ′iknk = 0, (17.5.5)

at a free boundary, where nk is the (outgoing) normal.

17.6 Reynolds and Froude Numbers

It is worthwhile reconsidering the significance of each term in the Navier-Stokes equation,

ρ
∂v⃗

∂t
+ ρ(v⃗ · ∇⃗)v⃗ = −∇⃗p+ η∇⃗2v⃗ + f⃗ ext. (17.6.1)
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Beginning with the left hand side, the first term defines a “local” acceleration of the fluid
and the second a “convective” acceleration depending, as it does, on the spatial change in
the velocity field. Combined the two terms form the “total” derivative

dv⃗

dt
=
∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗ (17.6.2)

in terms of which the Navier-Stokes equations is sometimes written as

ρ
dv⃗

dt
= −∇⃗p+ η∇⃗2v⃗ + f⃗ ext. (17.6.3)

The first term on the right hand side represents a normal surface force due to pressure. The
second term is the “viscous” force and is of great importance, being the single property
unique to the concept of a “flow” and therefore to fluids. We have already seen that
viscosity is connected with a transport of momentum between adjoining layers of a fluid,
moving at different velocities and that because of it a viscous fluid dissipates energy at a
rate that is proportional to η, according to (17.4.9). The interaction between adjoining
layers in a fluid arises either (i) because of the intermolecular forces (which are weak in
gases) or (ii) by thermal agitation that causes diffusion of molecules from faster moving
layers to slower moving ones. In either case the net result is that mechanical energy is
dissipated in the fluid and ends up reappearing as thermal energy. As a result, the flow of
real fluids is never isentropic – the entropy rises – and always results in the loss of usable
energy. Therefore external forces are always required to maintain fluid motion.

We have five non-linear, coupled differential equations viz., the Navier-Stokes equations
above, the continuity equation and an equation of state, with which to determine the flow
velocity, the pressure and the density. This is an extremely difficult system to solve and
therefore not many exact solutions are actually available (we will obtain the simplest of
them here). However, progress in understanding the physical properties of solutions can
be made by some fairly simple considerations based in dimensional analysis.

Now every set of equations will involve a set of variables and a set of parameters, and
these will, in general, be dimensionful. For instance, the independent variables appearing
in the Navier-Stokes equations are r⃗ and t, having mechanical dimensions of length and
time respectively. The mechanical dimension of the dependent variables are

[v⃗] =
l

t
, [ρ] =

m

l3
, [p] =

m

lt2
(17.6.4)

and the mechanical dimension of the viscosity coefficient is

[η] =
m

lt
. (17.6.5)

(There may be other parameters present in the external force, eg. the acceleration due to
gravity or Newton’s universal constant of gravitation).
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As in any mechanical system, the number of fundamental physical quantities or di-
mensions is three, viz., mass, length and time. We would like to have “typical” values
for these quantities, that is, values that characterize the system we are studying. What
is “typical” would depend on the system of course; for example, if the problem is flow
through a pipe then we may want to set the “typical” length scale to be the diameter
or radius, R, of the pipe. While the length scale is often obvious from the geometry and
symmetries of a given problem, it is difficult to determine a time scale directly. Instead
one picks a “typical” or characteristic velocity scale. Thus, continuing with the example
of flow in a pipe, we may take the “centerline velocity” i.e., the speed in the center of the
pipe, vc, to set the velocity scale. Having a length scale and a velocity scale implies that
we have a time scale according to

tc = R/vc, (17.6.6)

but what are we to do about a “mass” scale? We will deal with this indirectly as before:
if we had a characteristic pressure, pc, instead, then a characteristic mass would be (from
dimensional analysis)

mc = pcRt
2
c =

pcR
3

v2c
(17.6.7)

and a characteristic density,

ρc =
mc

R3
=
pc
v2c
, (17.6.8)

Now let’s define the dimensionless quantities

τ =
t

tc
, R⃗ =

r⃗

R
, u⃗ =

v⃗

vc
, ℘ =

p

pc
, ϱ =

ρ

ρc
(17.6.9)

and re-express the Navier-Stokes equations in terms of them. We find

ϱ
du⃗

dτ
= −∇̃℘+

ηvc
pcR

∇̃2u⃗ (17.6.10)

where ∇̃ is the gradient operator defined with respect to the scaled, dimensionless coordi-
nates and

du⃗

dτ
=
∂u⃗

∂τ
+ (u⃗ · ∇̃)u⃗. (17.6.11)

The dimensionless quantity

R =
pcR

ηvc
(17.6.12)

is called the Reynolds number of the flow. It is sometimes expressed in terms of the
kinematic viscosity, ν, as

R =
Rvc
ν
, (17.6.13)
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where we used the relation ρcv
2
c = pc and the fact that u⃗ is defined to be η/ρc. All solutions

will now depend on the dimensionless independent variables and this single dimensionless
parameter, i.e., in particular, u⃗ = u⃗(R⃗, τ,R), ℘ = ℘(R⃗, τ,R) and ϱ = ϱ(R⃗, τ,R). Had
we included an external force term of the form f⃗ ext = ρg⃗, describing a fluid in a constant
gravitational field, then we would find another dimensionless parameter, 1

F =
vc√
gR

, (17.6.14)

which is called the Froude number and we find

ϱ
du⃗

dτ
= −∇̃℘+

1

R
∇̃2u⃗− 1

F2
ϱ ĝ (17.6.15)

where ĝ is the unit vector pointing in the direction of g⃗. The Reynolds number is relevant
only for viscous flows whereas the Froude number is relevant only for flows occurring in
a (constant) gravitational field. In general, in any particular problem, if a length scale
L and a velocity scale V can be identified then the Reynolds and Froude numbers are
respectively

R =
V L

ν
and F =

V√
gL

. (17.6.16)

All solutions of the Navier-Stokes equations would depend on the geometry, the boundary
and initial conditions and these two dimensionless parameters. In particular, two systems
having the same geometry, obeying the same boundary conditions and possessing identical
Reynolds and Froude numbers would possess identical scaled velocity, pressure and density
fields and therefore behave identically, their actual velocity fields, pressures and density
differing only in scale from one another. Such flows are said to be similar and this is called
the law of similarity.

So what do the Reynolds number and the Froude number tell us and how are we to
interpret them? Consider the Reynolds number and notice that it is proportional to the
characteristic speed and length scales but inversely proportional to the kinematic viscosity.
Now suppose we wish to test out a new design for an airplane wing with the help of a “wind
tunnel”. Of course we will want to scale down the wing so that it may fit into our wind
tunnel, so we construct a smaller but geometrically similar model of the real airplane wing.
However, scaling down the wing (i.e., decreasing the characteristic length, L) will lead to
a different behavior from the one that describes the real wing unless we keep R the same.
Therefore, to truly replicate the behavior of the original wing, the scaling down of the wing
span must be accompanied by a scaling up of the ratio V/ν. This can be accomplished
(i) by increasing the characteristic flow speed in the wind tunnel commensurately, while
keeping the kinematic viscosity the same or (ii) decreasing the kinematic viscosity while

1Problem: Show this and check that F is indeed dimensionless.
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Figure 17.1: Plane Poiseuille Flow

keeping the flow velocity the same or (iii) a combination of both so as to keep the expected
value of R for the conditions under which the original wing is required to function. Similar
considerations apply to the Froude number.

17.7 Applications of the Navier-Stokes equation

We shall now consider some examples of the use of the Navier-Stokes equation. These
examples are simple enough to possess analytical solutions, but it should be kept in mind
that this is rare in fluid dynamics and that the most interesting solutions are generally
obtained via the application of computational methods (“Computational Fluid Dynamics”
or CFD) that are far beyond the scope of these notes. Furthermore, the mere existence
of solutions, whether analytical or computational, does not guarantee their stability and,
indeed, stability must be dealt with as a separate issue à posteriori.

17.7.1 Plane Poiseuille Flow

Plane Poiseuille flow is a steady flow occurring between two infinite planes, which we take
to be parallel to the x − z plane and situated at y = 0 and y = h respectively. This
represents is pressure driven flow in a duct and we will assume that it is defined by the
following conditions:

• the density of the fluid is constant,

• the velocity field varies only in the y direction (since the x and z directions are
allowed to be infinite in extent there is no way to impose boundary conditions that
can support dependencies on x and z),

• the pressure is independent of z and

• the velocity field vanishes on the planes (no slip boundary conditions).
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Accordingly, the continuity equation, ∇⃗ · v⃗ = 0, implies that ∂yvy = 0 and therefore vy
must be a constant, which we must take to be zero so as to satisfy the boundary conditions.
Under these conditions the Navier-Stokes equations collapse into the Stokes equations,

η∇⃗2v⃗ = ∇⃗p (17.7.1)

and its y−component tells us that ∂yp = 0, so the pressure does not depend on y. Its
z−component implies that ∂2yvz = 0 and therefore vz = ay+b where a and b are constants.
However, requiring vz to vanish at the boundaries forces both a and b to vanish as well.
The x−component of the Stokes equations is

η
d2vx
dy2

=
dp

dx
(17.7.2)

Now we notice that the left hand side of the above equation depends only on y whereas
the right hand side depends at most on x. This is only possible if each side is equal to the
same constant,

dp

dx
= λ, η

d2vx
dy2

= λ, (17.7.3)

where λ represents the constant pressure gradient in the direction of the flow and the
pressure as a function of position is

p(x) = λx+ p0 (17.7.4)

where p0 represents the pressure at x = 0. The second equation just as easily solved and
subjected to the requirement that vx vanish at the boundaries and we find

vx =
λ

2η
(y2 − hy) (17.7.5)

which is positive for λ < 0 because y < h. This implies that the pressure gradient is
negative in the direction of the flow. The velocity profile is parabolic with its maximum
in the middle of the flow, at h/2.

17.7.2 Couette Flow

We can introduce a non-trivial moving boundary into the plane Poiseuille flow by requring
the no slip conditions v⃗(0) = 0 and v⃗(h) = V x̂, where V is the assumed velocity of the
plane situated at y = h.2 Now we consider a flow which is not be pressure driven but
shear-driven, produced by the plate at y = h moving in the positive x direction with speed

2This is generally called the Couette Flow after Maurice Couette, who discovered the solution in the
late nineteenth century.
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V . We will retain all the assumptions of the Poiseuille flow, but one: instead of requiring
that p remain independent only of z we also require that it remain independent of x, since
both the x and z directions are of infinite extent and the flow is not driven by the pressure.
Once again the continuity equation will require that vy is constant, which can only satisfy
the boundary conditions if it vanishes. The y−component of the effective Stokes equation
in (17.7.1) then reads ∂yp = 0, which of course implies that p is independent of y as well
and therefore it is constant throughout the fluid. The z−component of the same equation
yields ∂2yvz = 0, whose solution, as before, only satisfies the boundary conditions if vz = 0.
Finally the x component of the Stokes equation reads

η
d2vx
dx2

= 0 ⇒ vx =
V

h
y (17.7.6)

is the solution satisfying the no-slip conditions. Here the velocity profile is linear and,
not surprisingly, the maximum fluid velocity occurs in the layer adjoining the moving
boundary. It is independent of the viscosity. This simple flow is particularly useful in the
analysis of lubrication.

17.7.3 Hagen-Poiseuille Flow

We consider the conditions of the Poiseuille flow, but this time in a cylindrical pipe of
infinite length and radius R, whose axis we take to be the z−axis. The symmetry makes
it most convenient to work in cylindrical coordinates. Thus we take ρ to be constant as
before, we assume the flow is steady, depending only on the radial coordinate and we
impose no slip boundary conditions, v⃗(R) = 0. Moreover, we assume that the pressure
does not depend on the azimuthal coordinate so that p = p(r, z).

This provides an excellent opportunity to use the methods of Chapter 15. Thus the



402 CHAPTER 17. ENERGY AND MOMENTUM IN FLUIDS

continuity equation reads3

∇⃗ · v⃗ = 0 = ∇jv
j = ∂jv

j + Γjjlv
l (17.7.7)

and using the Christoffel symbols derived in (15.4.16) we find

∂rv
r +

vr

r
= 0 ⇒ vr =

a

r
, (17.7.8)

which can only vanish because of the boundary conditions. Next, the Navier-Stokes equa-
tions read

ρ(v⃗ · ∇⃗)v⃗ = −∇⃗p+ η∇⃗2v⃗ (17.7.9)

which, in components, becomes

ρ(vj∂jv
i + Γijkv

jvk) = −gij∂jp+ ηgjk∇j∇kv
i (17.7.10)

The first term on the left vanishes because all velocity components depend only r and
vr = 0. Thus

gij∂jp = ηgjk∇j∇kv
i − ρΓijkv

jvk (17.7.11)

This turns into a complicated expression, but it is immensely simplified if we recall that
the flow velocity may depend only on r. One eventually finds the following equations

∂rp = ρrvφ2

0 = η

(
d2vφ

dr2
+

3

r

dvφ

dr

)
∂zp = η

(
d2vz

dr2
+

1

r

dvz

dr

)
(17.7.12)

The second equation above has the solution

vφ =
a

2

R2 − r2

r2R2
(17.7.13)

but, even though it satisfies the boundary conditions, it is ill behaved on the axis and so
must be set to zero by taking a = 0. By the first equation of (17.7.12) this means that
the pressure is a function only of z. The last equation of (17.7.12) can be written as

dp

dz
= η

(
d2vz

dr2
+

1

r

dvz

dr

)
= λ (17.7.14)

3We must be careful to distinguish between covariant and contravariant quantitites since we are now
working in a changing basis.
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where λ is a constant representing the pressure gradient in the the z−direction. The
solution that obeys the boundary conditions and is well behaved on the axis is

p = λz + p0, vz = vz =
λ

4η
(r2 −R2) (17.7.15)

The velocity profile, as in the planar case, is parabolic and its maximum is achieved when
r = 0, at which vz,max = −λR2/4η. Blood flow through the arteries, for example, can
be modeled by the Hagen-Poiseuille solution above. The volume of fluid delivered can be
shown to be proportional to the fourth power of the pipe radius,4 which means that a
condition like arteriosclerosis, which is the accumulation of fatty material on the walls of
the arteries, can very rapidly block the flow of blood to cells.

17.8 Relativistic Fluids

We have seen that the dynamics of ideal fluids in the absence of external forces is suitably
expressed by the continuity equation, the three Euler equations,

∂t(ρvi) + ∂jΠ
(0)
ji = 0, (17.8.1)

where Π
(0)
ji = pδji + ρvjvi represents the momentum flux density tensor and one equation

of state relating the pressure to the energy density. Clearly, the continuity and Euler
equations are valid only in the regime in which Galilean relativity applies, i.e., when the
flow velocity is much less than the speed of light. We seek a generalization of this equation
that is valid even when the flow velocity is close to the speed of light. This essentially
means that we want to construct a second rank tensor, Tµν , that reduces to the momentum
flux density tensor at low flow velocity. We go about this in the same way as we went
about deducing the structure of the relativistic force four vector in Chapter 13.

17.8.1 Perfect Fluids

Consider therefore a frame in which the fluid is instantaneously at rest, i.e., vi = 0. In
this frame Πij = pδij , and we must identify this with the spatial part of T

µν
,5 but what

can be said about the temporal part? Since all terms in the trace of T

ηµνT
µν

= T
µ
µ = T

0
0 + 3p (17.8.2)

4Problem: Compute the total volume of fluid that flows through a cross section of the pipe per second.
5We write everything in contravariant form for ease of calculation. In a Cartesian frame there is no

difference between covariant and contravariant three tensors.
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must have the same mechanical dimension, it follows that

[T
0
0] = [p] =

m

lt2
(17.8.3)

and again, because T
00

= η00T
0
0, the mechanical dimension of T

00
must be

[T
00
] =

m

l3
(17.8.4)

Thus we take T
00

= ρ, the mass density of the fluid. Finally, because we are in the

instantaneous rest frame we set T
0i
= T

i0
= 0 and we get the energy-momentum flux

density tensor – or energy-momentum tensor for short – in the instantaneous rest frame,

T
µν

=


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (17.8.5)

To find the energy momentum tensor in an arbitrary frame, we simply perform a Lorentz
transformation with boost parameter vi,

Tµν = LµαL
ν
βT

αβ
(17.8.6)

and get the expressions

T 00 = L0
αL

0
βT

αβ
= γ2

(
ρ+

v⃗2

c4
p

)
= − p

c2
+
(
ρ+

p

c2

)
γ2

T 0i = L0
αL

i
βT

αβ
= L0

0L
i
0T

00
+ L0

jL
i
kT

jk
=
(
ρ+

p

c2

)
γ2vi

T ij = LiαL
j
βT

αβ
= Li0L

j
0T

00
+ LimL

j
nT

mn
= pδij +

(
ρ+

p

c2

)
γ2vivj

(17.8.7)

where we have used the expressions in (14.4.42). Recall that U0 = γ and U i = γvi are the
components of the four velocity vector as defined in (14.6.15). With these definitions, the
components above can be integrated into the single symmetric tensor

Tµν = pηµν +
(
ρ+

p

c2

)
UµUν (17.8.8)

Just as the conservation of fluid momentum yields Euler’s equations for a non-relativistic
fluid, so also the motion of the relativistic fluid is governed by energy-momentum conser-
vation,

∂µT
µν = 0. (17.8.9)
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This is a set of four equations so let’s see what they mean, first in the non-relativistic
limit: we are interested in the limit of small velocities so take U0 = γ ≈ 1 and U i ≈ vi,
and find that indeed

T 00 ≈ ρ

T 0i ≈ ρvi

T ij ≈ pδij + ρvivj (17.8.10)

where we have taken c → ∞. The time component of the conservation of energy and
momentum then gives in this limit

∂tT
00 + ∂iT

i0 = 0 = ∂tρ+ ∂i(ρv
i) (17.8.11)

or, in vector form,
∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0, (17.8.12)

which we recognize as the continuity equation. Likewise the space components of the
equation yield

∂tT
0i + ∂jT

ji = 0 = ∂t(ρv
i) + ∂ip+ ∂j(ρv

ivj) (17.8.13)

This can be rewritten as

(∂tρ)v
i + ρ∂tv

i + ∂ip+ ∂j(ρv
j)vi + ρvj∂jv

i = 0 (17.8.14)

and, using the continuity equation above, it can be expressed in vector form as

ρ
∂v⃗

∂t
+ ρ(v⃗ · ∇⃗)v⃗ = −∇⃗p, (17.8.15)

which, of course, are Euler’s equations.
Energy and momentum conservation yields more complicated equations at high flow

velocities. The continuity equation in vector form is now

∂

∂t

(
pv⃗2/c4 + ρ

1− v⃗2/c2

)
+ ∇⃗ ·

(
(p/c2 + ρ)v⃗

1− v⃗2/c2

)
= 0 (17.8.16)

and, using this condition, the relativistic Euler equations get simplified to6

∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗ = −1− v⃗2/c2

p/c2 + ρ

[
∇⃗p+ v

c2
∂p

∂t

]
(17.8.17)

6To arrive at the Euler equations from energy momentum conservation, begin with the space components
of the conservation law,

∂t
[( p
c2

+ ρ
)
γ2vi

]
+ ∂j

[
pδji +

( p
c2

+ ρ
)
γ2vjvi

]
= 0
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17.8.2 Conserved Currents

A fluid may carry other conserved quantities (such as electric charge) besides energy and
momentum, so what does the conservation law for such quantities look like? In this section,
we address this question for conserved scalars. Let A be one such conserved quantity and
let a represent its comoving density, i.e., its density in a frame that moves with the fluid
at each point (the comoving frame). We define a current density, Aµ, associated with this
quantity, by requiring it to have the form

A
0
= a, A

i
= 0 (17.8.18)

in the comoving frame. In any other frame, its form will be given by a boost

A0 = L0
0A

0
= γa, Ai = Li0A

0
= γavi (17.8.19)

or, more concisely, Aµ = aUµ. The statement that the quantity whose comoving density is
“a” is conserved is then equivalent to the Lorentz covariant statement that the associated
current density is divergence free,

∂µA
µ = 0. (17.8.20)

This equation generalizes (16.2.4). It can be put into integral form if we integrate the
equation over a volume V bounded by the surface S,∫

V
d3r⃗∂µA

µ =
d

dt

∫
V
d3r⃗A0 +

∫
V
d3r⃗ ∇⃗ · A⃗, (17.8.21)

and use Gauss’ theorem for the second term on the right to get

d

dt

∫
V
d3r⃗A0 = −

∮
S
A⃗ · dS⃗, (17.8.22)

which is a generalization of (16.2.2).
For example, if the total number, N , of fluid particles in a given volume is conserved,

let n represent the number density of particles. The conservation of particle number can

Expanding and collecting terms, it is straightforward to put this equation in the form

∂tv⃗ + (v⃗ · ∇⃗)v⃗ = −1− v⃗2/c2

p/c2 + ρ

[
∇⃗p+ v⃗

(
∂t

[
(p/c2 + ρ)

1− v⃗2/c2

]
+ ∇⃗ ·

[
(p/c2 + ρ)v⃗

1− v⃗2/c2

])]
Now

pv⃗2/c2 + ρ = (p/c2 + ρ)− p/(γ2c2) ⇒ (p/c2 + ρ)γ2 = (pv⃗2/c2 + ρ)γ2 + p/c2

and so
∂t[(p/c

2 + ρ)γ2] = ∂t[(pv⃗
2/c2 + ρ)γ2] + 1/c2∂tp

Problem: Complete the steps leading to the Euler equations.
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be expressed as the statement that the number density current, Nµ = nUµ is divergence
free,

∂µ(nU
µ) = 0. (17.8.23)

If the fluid is charged then, lettingN+ represent that number of positively charged particles
and N− the number of negatively charged particles, conservation of charge would require
that N+ − N− remains constant throughout the motion. We can construct the charge
density, ρq = q(n+−n−), where q is the magnitude of the elementary charge, and the charge
current density, jµq = ρqU

µ. Conservation of charge is then embodied in the requirement
that ∂µj

µ
q = 0.

The conservation of energy and momentum together with the conservation of particle
number leads naturally to the second law of thermodynamics as we now show. Energy-
momentum conservation requires that

Uβ(∂αT
αβ) = 0 = Uβ

[
∂βp+ ∂α

( p
c2

+ ρ
)
UαUβ

]
(17.8.24)

and, using UβU
β = −c2, we may re-express this in the form

Uβ∂βp− ∂β[(p+ ρc2)Uβ] = 0 (17.8.25)

or
−U · ∂(ρc2)− (p+ ρc2)∂ · U = 0 (17.8.26)

but, if the particle number is also conserved, then

∂β(nU
β) = 0 ⇒ ∂ · U =

U · ∂n
n

(17.8.27)

and, inserting this relation into (17.8.26), we find

U ·
[
−∂(ρc2) + 1

n
p∂n+

ρc2

n
∂n

]
= 0 (17.8.28)

and therefore

−nU ·
[
p∂

(
1

n

)
+ ∂

(
ρc2

n

)]
= 0 (17.8.29)

or

pd

(
1

n

)
+ d

(
ρc2

n

)
= 0. (17.8.30)

Now 1/n is simply the specific volume, v, or the volume per particle of the fluid and ρc2/n
is the energy per particle, which we call ε, so the conservation of energy, momentum and
particle number for a perfect fluid imply the relation

dε+ pdv = 0. (17.8.31)



408 CHAPTER 17. ENERGY AND MOMENTUM IN FLUIDS

This has the form of the first law of thermodynamics,

Tdσ = dε+ pdv, (17.8.32)

where σ represents the specific entropy (or entropy per particle) and says that the flow is
isentropic, i.e., dσ = 0. Since nσ represents the comoving entropy density of the fluid, we
can form the entropy current four vector Sµ = nσUµ, which is conserved during the flow.

17.8.3 Imperfect Fluids

The energy momentum tensor describing non-ideal fluids must include terms involving the
shear and bulk viscosity. We assume that these terms add to the stress energy tensor and
collect all of them in the tensor ∆Tµν writing

Tµν = Tµν(0) +∆Tµν (17.8.33)

where T
(0)
µν represents the ideal fluid tensor and ∆Tµν purports to contain the effects of

dissipation. Likewise, for the number density current we write

Nµ = Nµ
(0) +∆Nµ = nUµ +∆Nµ, (17.8.34)

where ∆Nµ represents the particle drift. However, correction terms of this kind introduce
an ambiguity in the definition of the fluid four velocity because heat transfer makes it
necessary to specify whether Uµ represents the four velocity of energy transport (the
energy frame) or of particle transport (the particle frame).7

Before commiting ourselves to a particular frame and considering what specific form
∆Tµν might take, let’s examine some of the consequences of dissipation. As before, energy
conservation and the balance equation for the particle number will take the form8

∂αT
αβ = 0 = ∂αN

α (17.8.35)

Following the same steps as for a perfect fluid, energy momentum conservation is seen to
require that

Uβ(∂αT
αβ) = −nU ·

[
p∂

(
1

n

)
+ ∂

(
ρc2

n

)]
+
p+ ρc2

n
∂ ·∆N + Uβ∂α∆T

αβ = 0 (17.8.36)

7The energy frame is attributed to Landau and Lifshitz, Fluid Mechanics, 2nd ed., Pergamon Press, NY
(1987), and the particle frame is attributed to Eckart, Phys. Rev. D 58 (1940) 919.

8Here, we will always assume that there are no external sources or sinks and no particle creation
or annihilation by chemical processes within the fluid. If this does not hold then the particle number
conservation law must be modified by the addition of a term which allows for a change in the fluid
composition,

∂αN
α = Ψ.
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Now the first term is given in terms of the specific entropy according to the first law of
thermodynamics, so

−TnUµ∂µσ +
p+ ρc2

n
∂ ·∆N + Uν∂µ∆T

µν = 0 (17.8.37)

and using the conservation of particle number, ∂α(nU
α +∆Nα) = 0, we find

∂µ(nσU
µ) =

µ

T
∂ ·∆N +

1

T
Uν∂µ∆T

µν . (17.8.38)

where

µ =

(
p+ ρc2

n
− σT

)
(17.8.39)

is Euler’s relation. In the absence of the dissipation terms we had identified Sµ = nσUµ

as the entropy current four vector but (17.8.38) says that when dissipation is present this
current is not conserved. This is to be expected in the presence of dissipation, so let
us evaluate the right hand side of this equation. If we continue to interpret ρ and n as
the energy density and particle number density respectively in the comoving frame, then

∆T
00

= 0 = ∆N
0
. With this interpretation, evaluating the right hand side of (17.8.38) in

the comoving frame9 we find

∂µ(nσU
µ) =

µ

T
∂i∆N

i − c2

T
∂i∆T

i0
, (17.8.40)

which may be negative for arbitrary flows and could violate the second law of thermody-
namics if we continued to interpret Sµ = nσUµ as the entropy current four vector. This is
not surprising since we must allow for the possibility that Sµ is modified by the dissipation
terms.

How then should the entropy current four vector be defined? One proceeds as follows:
first define Sµ so that (i) its divergence contains no gradients of ∆Tµν and (ii) the entropy

density is S
0
= nσ in the local rest frame, then (iii) determine ∆Tµν and ∆Nµ by

requiring that the divergence of the entropy current is non-negative in any process. The
last condition is justified by the second law of thermodynamics and can be accomplished
by setting

Sµ = nσUµ − µ

T
∆Nµ − 1

T
Uν∆T

µν , (17.8.41)

which leads to

∂µS
µ = −∂µ

(µ
T

)
∆Nµ − ∂µ

(
Uν
T

)
∆Tµν . (17.8.42)

9It is most straightforwardly evaluated in a comoving frame. Because we are evaluating a scalar we
expect that the result will hold in any frame.
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We take (17.8.41) as a definition of the entropy current and determine ∆Tµν by requiring
that its divergence never decreases for any flow. Then (17.8.42) gives the rate of entropy
production per unit volume in the presence of dissipation.

Now we must address the question of what form ∆Nµ and ∆Tµν can take. Since we
have required ∂µS

µ to be non-negative, let us expand the right hand side of (17.8.42) in
a local comoving frame, keeping in mind our interpretation of n and ρ and setting U i and
all gradients of U0 equal to zero,10

∂µS
µ = −∂i

(µ
T

)
∆N

i −
(
1

T
U̇i +

c2

T 2
∂iT

)
∆T

i0 − 1

T
(∂iUj)∆T

ij
(17.8.43)

In order for the right hand side to be non-negative for all fluid configurations each term
must be a perfect square. This leads to

∆N
i

= −αηij (T∂jµ− µ∂jT ) ,

∆T
i0

= ∆T
0i
= −χ

(
TU̇ i + c2ηij∂jT

)
(17.8.44)

and

∆T ij = −η
(
∂iUj + ∂jUi −

2

3
(∂ · U)ηij

)
− ξ(∂ · U)ηij (17.8.45)

where α, χ, η and ξ are non-negative, possibly temperature dependent, coefficients. By
direct comparison with the non-relativistic momentum flow tensor we immediately identify
η and ξ with the shear and bulk viscosity coefficients respectively. The new quantities are
the diffusion coefficient, α, and the coefficient of heat conduction, χ.11

17.9 Scaling behavior of fluid flows

A class of particular solutions to the Hydrodynamic equations have the form f(r⃗, t) =
g(t)F [r⃗/h(t)], where g(t) and h(t) are time dependent scales of the spatial coordinate and
f(r⃗, t) is any of the unknown functions appearing in the Navier-Stokes equations. Such
solutions are called self-similar because the spatial distribution of these solutions remains
similar to itself at all times during the motion.

10Problem: Show this.
11The distinction between the Eckart and Landau-Lifshitz pictures arises as follows: If Uµ is taken to be

the velocity of particle transport (Eckart) then comoving observers do not see any particle drift, ∆N
µ
= 0,

which implies that the diffusion coefficient vanishes. If Uµ is taken to be the velocity of energy transport
(Landau and Lifshitz) then comoving observers do not observe any contribution to the energy flux, so

∆T
0µ

= 0, i.e., the coefficient of heat conduction must vanish.
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To understand how such solutions come about, let us return to the non-relativistic
Navier-Stokes equation in (17.3.14) and ask how the variables and parameters behave
under a multiplicative change in the spatial and temporal scales,

r⃗ → r⃗′ = σr⃗

t→ t′ = σαt (17.9.1)

where σ is the “scale factor”. The scaling dimension of a variable or parameter is the
power of σ in the transformation

f → f ′ = σbf. (17.9.2)

Thus r⃗ has scaling dimension unity and t has scaling dimension α. If the Navier-Stokes
equation is to be scale invariant then all terms in the equation must have the same scaling
dimension. Dividing throughout by ρ we find that for the two terms on the left hand side
of the equation to have the same scaling dimension the velocity must scale as

v⃗ → v⃗′ = σ1−αv⃗ (17.9.3)

and the scaling dimension of the left hand side becomes 1− 2α. This requires p/ρ to have
scaling dimension 2(1 − α) and the kinematic viscosity to have scaling dimension 2 − α,
i.e.,

p/ρ→ p′/ρ′ = σ2(1−α)p/ρ

ν → ν ′ = σ2−αν (17.9.4)

Suppose that the viscosity has scaling dimension β, then we will have the following scaling
behavior for all our variables

r⃗ → r⃗′ = σr⃗

t→ t′ = σαt

v⃗ → v⃗′ = σ1−αv⃗

η → η′ = σβη

ρ→ ρ′ = σβ+α−2ρ

p→ p′ = σβ−αp (17.9.5)
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and we recognize that the Reynolds number remains invariant provided that the charac-
teristic values of the parameters and variables that determine R also scale as above.

The self-similarity relations above may be regarded as special cases of a more general
relation of the form

f(r⃗, t) → f(σr⃗, σαt) = σbf(r⃗, t) (17.9.6)

where σ is a function of t. Now we have the following theorem: a necessary and sufficient
condition for a function f(r⃗, t) to satisfy the above condition is that

f(r⃗, t) = tb/αF (r⃗/t1/α) (17.9.7)

That it is necessary follows because if we take σ = t−1/α then

f(σr⃗, σαt) = σbf(r⃗, t) ⇒ f(r⃗/t1/α, 1) = t−b/αf(r⃗, t) ⇒ f(r⃗, t) = tb/αF (r⃗/t1/α), (17.9.8)

where F (x) = f(x, 1). Of course, σ is constant in (17.9.5), therefore the condition is not
in fact a necessary one in our particular case. However, that it is sufficient even for a
constant scaling parameter is straightforward since

f(r⃗, t) = tb/αF (r⃗/t1/α) ⇒ f(σr⃗, σαt) = σbtb/αF (r⃗/t1/α) = σbf(r⃗, t) (17.9.9)

and so, according to (17.9.5), the velocity function

v⃗(r⃗, t) = t(1−α)/αv⃗(r⃗/t1/α) (17.9.10)

will represent a self-similar flow. We therefore have a one parameter family of self-similar
solutions. For example, the solution with α = 1 will have

v⃗(r⃗, t) = u⃗(r⃗/t) (17.9.11)

and with α = 2 we should find

v⃗(r⃗, t) =
1√
t
u⃗(r⃗/

√
t). (17.9.12)

Self-similar solutions are interesting from a theoretical point of view because the Navier
Stokes equations are reduced to ordinary differential equations. However, the equations
obtained are non-linear and so it is often not clear that much by way of simplification
has in fact been gained. In practical terms these solutions appear to be applicable when
the effects of boundaries can be ignored or when the boundaries have only a local effect
so that in most of the fluid domain the self-similar solution remains valid. This must be
verified independently before a given self-similar solution is taken to be relevant to any
real situation.



17.10. AN EXAMPLE 413

17.10 An Example

Similar arguments can be made for relativistic hydrodynamics as well and we leave that as
an exercise for the reader.12 Let us close our discussion of fluid dynamics by considering
a special self-similar solution to the hydrodynamic equations for a relativistic, imperfect
fluid, first in two and then in four space-time dimensions. This will serve to put together
the concepts of the last two sections in a single problem, which also turns out to be
physically interesting in its own right because it is believed to describe the evolution of
very hot (ultra-relativistic) hadron matter produced in extreme relativistic nucleus-nucleus
collisions as well as in the very early universe.

The solutions we seek will be of the following form: if qi ∈ {1, 2, 3} compose some
arbitrary, orthogonal coordinate system in which hi are the corresponding scale factors so
that

ds2 = c2dt2 − h2i dq
i2, (17.10.1)

then we assume that the velocity along any non-compact dimension is

vi(qi, t) =
si
hit

(17.10.2)

where si is the spatial distance,

si =

∫
hidqi, (17.10.3)

and it is zero along any compact dimension.

We will begin with a two dimensional version of this problem. In order to generate
such a flow in two dimensions with

ds2 = c2dt2 − dx2 (17.10.4)

and v(x, t) = x/t, we first seek the local comoving frame of the fluid. Let (τ, y) represent
the coordinates in this frame, then by definition U τ = 1 and Uy = 0. To determine (τ, y)
we simply note that

U τ =
∂τ

∂t
U t +

∂τ

∂x
Ux = 1, Uy =

∂τ

∂t
U t +

∂τ

∂x
Ux = 0 (17.10.5)

Now because v(t, x) = x/t

Ux =
cx√

c2t2 − x2
, U t =

ct√
c2t2 − x2

(17.10.6)

12Problem: Repeat the scaling arguments above for the relativistic hydrodynamic equations. Argue that
the only Lorentz invariant scaling solution has α = 1.
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and it is easy to see that the solutions of the two linear, first order equations for τ and y
are

τ =
1

c

√
c2t2 − x2 + f

(x
t

)
,

y = y
(x
t

)
(17.10.7)

where f and y are arbitrary functions of their argument. Given this coordinate transfor-
mation, we can construct the inverse vielbein as follows

Eτt =
∂τ

∂t
=

ct√
c2t2 − x2

− x

t2
f ′(x/t)

Eτx =
∂τ

∂x
= − x

c
√
c2t2 − x2

+
1

t
f ′(x/t)

Eyt =
∂y

∂t
= − x

t2
y′(x/t)

Eyx =
∂y

∂x
=

1

t
y′(x/t) (17.10.8)

where the prime refers to a derivative with respect to the argument x/t and we find the
metric components in the new system according to

gµν = ηabEµaE
ν
b (17.10.9)

Carrying out the algebra yields

gττ = − 1

c2
+
c2t2 − x2

c2t4
f ′(x/t)2

gτy =
c2t2 − x2

c2t4
f ′(x/t)y′(x/t)

gyy =
c2t2 − x2

c2t4
y′(x/t)2 (17.10.10)

Since f and y are arbitrary functions and y is not allowed to vanish, we choose f = 0.
This rids us of the off-diagonal component of gµν . We see also that

gyy =
τ2

t4
y′(x/t)2 ⇒ y′(x/t)2 =

t4

τ2
gyy (17.10.11)

and, because y′ must also be a function of x/t, we take gyy = 1/τ2. This gives

y′(v) =
t2

τ2
=

c2

c2 − v2
(17.10.12)
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where v = x/t, along with the solution

y(x/t) = c tanh−1
( x
ct

)
+ const. (17.10.13)

y(x/t) is called the “rapidity”.
To sumarize our progress so far: for the fluid flow v(t, x) = x/t, we have determined a

comoving frame, in which U τ = 1 and Uy = 0, whose space-time metric is

ds2 = c2dτ2 − τ2dy2. (17.10.14)

In this frame the ideal fluid energy momentum tensor has the form

Tµν =

(
ρ 0
0 p

τ2

)
(17.10.15)

and it is a simple matter to solve the Euler equations,

∇µT
µτ =

∂ρ

∂τ
+
ρ

τ
+

p

c2τ
= 0

∇µT
µy =

∂p

∂y
= 0. (17.10.16)

The last equation says that p = p(τ) and the first can only be solved after specifying
equation of state. Let us use the equation of state for an extremely relativistic (flow
velocity close to the speed of light) bosonic fluid, which we know from statistical mechanics
to be

p =
1

3
ρc2 =

1

3
γT 4, (17.10.17)

where T is the fluid temperature and γ is the Stefan-Boltzmann constant. With this,
Euler’s equations are solved by

ρ = ρ0

(τ0
τ

)4/3
, (17.10.18)

where ρ0 is the mass density at the time τ0, which we understand as the time required to
achieve the initial thermal equilibrium. The temperature behavior as a function of τ then
follows directly.

We’ll now include the effects of dissipation, but take the fluid to be incompressible so
that ξ = 0. Let Uµ represent the velocity of particle transport. To simplify matters still
further, suppose also that the temperature dependence of both χ and η are given by the
power laws,

η(T ) = η0T
a

χ(T ) = χ0T
b (17.10.19)
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and that the flow is extremely relativistic so that (17.10.17) holds. The components of the
full energy momentum tensor in our comoving frame are

T 00 = ρ

T 0i = T i0 = −c
2χ0T

b

τ2
∂yT

T ij =
p

τ2
− 4η0T

a

3τ3
(17.10.20)

where the prime refers to a derivative with respect to y. The conservation equation

∇µT
µy = ∂yp−

4η0
3τ

∂yT
a − χ0c

2

[
T b

τ
∂yT + ∂τ (T

b∂yT )

]
= 0, (17.10.21)

once again implies that the temperature does not depend on the rapidity, i.e., T = T (τ)
and, after dropping all derivatives with respect to the rapidity, the other equation becomes

∇µT
µτ = ∂τρ+

ρ

τ
+

p

c2τ
− 4η0T

a

3c2τ2
= 0, (17.10.22)

which is seen to be a Bernoulli equation when rewritten in terms of the temperature,

∂τT +
T

3τ
− η0

3γ

T a−3

τ2
= 0. (17.10.23)

It has the solutions

T = T0

(τ0
τ

)1/3
exp

[
− η0
3γ

(
1

τ
− 1

τ0

)]
, if a = 4

T = T0

(τ0
τ

)1/3 [
1− η0

γ

T−3
0

τ0
ln
(τ0
τ

)]1/3
, if a = 1 (17.10.24)

and

T = T0

η0
γ

(
a− 4

a− 1

)
T a−4
0

τ− (a−1)
3 − τ

− (a−1)
3

0

τ−
(a−4)

3

+
(τ0
τ

)−a−4
3

− 1
a−4

(17.10.25)

otherwise. Thus there is no energy loss via heat conduction for this type of flow.
For completeness, let us also compute the entropy production for this one dimensional

flow. Continuing in the comoving frame we have,

Sτ = nσ, Sy = 0 (17.10.26)
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and (17.8.43), which reduces to

∂τ (nσ) +
nσ

τ
=

4η0
3

T a−1

τ2
. (17.10.27)

Once again we arrive at a Bernoulli equation, this time for the rate of entropy production.
With Q(τ) = 4η0T

a−1/3τ2, we find the entropy density to be

S(τ) =
τ0
τ

[
S(τ0) +

1

τ0

∫ τ

τ0

dτ ′τ ′Q(τ ′)

]
(17.10.28)

Now the entropy contained in any interval dy will be

dS = S(τ)τdy (17.10.29)

and therefore

∂τ (∂yS) = τQ(τ) (17.10.30)

showing that the rapidity density of the entropy is not a constant of the motion but
increases as a consequence of the dissipation.

Four dimensional expansion with the velocity distribution specified in the introduction
to this section may similarly be described in arbitrary, orthogonal frames. An interesting
feature of these solutions is that the effects of dissipation vanish exactly. This is a conse-
quence of the velocity distribution and the fact that there are no constraints on the system
due to external boundaries, hence no shear viscosity. We will consider separately the cases
of co-ordinate systems with no compact co-ordinate and one compact co-ordinate.

If none of the co-ordinates are compact (for example Cartesian or parabolic cylindrical
co-ordinates) we can generate a self-similar solution for the velocity distribution (17.10.2)
in a manner similar to that employed before i.e. by introducing comoving coordinates. It
can easily be shown that these coordinates are quite generally given by

τ =

√√√√c2t2 −
3∑
i=1

s2i

u =
1

2
ln


√
c2t2 −

∑2
i=1 s

2
i + s3√

c2t2 −
∑2

i=1 s
2
i − s3


v =

1

2
ln

[√
c2t2 − s21 + s3√
c2t2 − s21 − s3

]
y =

1

2
ln

[
ct+ s1
ct− s1

]
(17.10.31)
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With the same equation of state that we have been using, the temperature will be a
function only of τ and we find a remarkably simple equation for the temperature evolution

∂τ ϵ+
3

4τ
(ϵ+ p) = 0 (17.10.32)

whose solution is trivially

T (τ) = T0

(τ0
τ

)
. (17.10.33)

and so, as mentioned before, the dissipation terms play no role in the evolution. The same
holds when there is one or more compact coordinate. In the case that only one of the
coordinates is compact, for definiteness say q3, we let

τ =

√√√√c2t2 −
2∑
i=1

s2i

u =
1

2
ln

[√
c2t2 − s21 + s2√
c2t2 − s21 − s2

]
v =

1

2
ln

[
ct+ s1
ct− s1

]
y = q3 (17.10.34)

The fact that y = q3 is compact means that ∂τh3 = h3/τ which implies

T (τ) = T0

(τ0
τ

)
(17.10.35)

and all dissipation effects vanish exactly, as before. We leave it as exercise to show that,
in four dimensions, the entropy density is also a function only of τ

s(τ) = s(τ0)
(τ0
τ

)3
(17.10.36)

and that the rapidity density of entropy is a constant of the motion.



Appendix A

The δ−function

A.1 Introduction

Let x ∈ (a, b) and define the object δ(x′ − x) by

∫ b

a
dx′ δ(x′ − x) =


0 x /∈ (a, b)

1 x ∈ (a, b)

∫ b

a
dx′ f(x′)δ(x′ − x) =


0 x /∈ (a, b)

f(x) x ∈ (a, b)
(A.1.1)

Normally, we’ll be concerned with all of space, so the limits will be from −∞ to ∞. Let
us consider some examples.

A.1.1 An example

Consider the sequence of functions (see figure A1)

δn(x) =


0 x < − 1

2n

n x ∈ (− 1
2n ,

1
2n)

0 x > 1
2n

(A.1.2)

and note that ∫ ∞

−∞
δn(x)dx =

∫ 1
2n

− 1
2n

ndx = 1, ∀ n ∈ N (A.1.3)

i
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Figure A.1: The sequence of functions in (A.1.2)

while ∫ ∞

−∞
dx δn(x)f(x) =

∫ 1
2n

− 1
2n

nf(x)dx =
[g(1/2n)− g(−1/2n)]

1/n
(A.1.4)

where g(x) is the primitive of f(x). Calling ϵ = 1
n and taking the limit as n→ ∞ (ϵ→ 0)

we have

lim
n→∞

∫ ∞

−∞
dx δn(x)f(x) = lim

ϵ→0

[g(ϵ/2)− g(−ϵ/2)]
ϵ

= g′(0) = f(0) (A.1.5)

Thus we may define the δ−function as

δ(x) = lim
n→∞

δn(x) (A.1.6)

because in this limit both conditions in (A.1.1) are obeyed.

A.1.2 Another example

Consider a slightly more complicated sequence of functions

δn(x) =
n√
π
e−n

2x2 (A.1.7)

and again note that ∫ ∞

−∞
dx δn(x) = 1, ∀ n ∈ N (A.1.8)

Now let us consider ∫ ∞

−∞
dx δn(x)f(x) =

n√
π

∫ ∞

−∞
dx e−n

2x2f(x). (A.1.9)
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Figure A.2: The sequence of functions in (A.1.7)

Expanding f(x) about the origin in a Taylor series

f(x) =
∞∑
j=0

f (j)xj

j!
(A.1.10)

our integral becomes
n√
π

∑
j

f (j)

j!

∫ ∞

−∞
dx xje−n

2x2 . (A.1.11)

where f (j) is the jth derivative of f(x) at x = 0. Clearly, the only non-vanishing contri-
butions come from even j.∫ ∞

−∞
dx δn(x)f(x) =

n√
π

∑
j

f (2j)

(2j)!

∫ ∞

−∞
dx x2je−n

2x2

=
∑
j

f (2j)

(2j)!

Γ(j + 1
2)√

π
n−2j . (A.1.12)

We see that the limit as n→ ∞ of the r.h.s. is just f(0). Thus we also have

lim
n→∞

∫ ∞

−∞
dx δn(x)f(x) = f(0) (A.1.13)

and we could define

δ(x) = lim
n→∞

δn(x), δn(x) =
n√
π
e−n

2x2 , (A.1.14)

thereby getting an alternative representation for the δ−function.
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Figure A.3: δn(x) =
n
π

1
1+n2x2
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Figure A.4: δn(x) =
sinnx
πx

A.1.3 Properties

We may likewise analyze expressions such as

δ(x) = lim
n→∞

δn(x), δn(x) =
n

π

1

1 + n2x2

δ(x) = lim
n→∞

δn(x), δn(x) =
sinnx

πx
=

1

2π

∫ n

−n
dt eixt

δ(x) = lim
n→∞

δn(x), δn(x) =
sin2 nx

nπx2
(A.1.15)

with the same results.

Here is a list of some of the more interesting properties of the δ−function. They can
be proved by simply applying the defining equations.
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Figure A.5: δn(x) =
sin2 nx
nπx2

1. δ(cx) = 1
|c|δ(x) (therefore, δ(−x) = δ(x)), or more generally,

δ(g(x)) =
∑
j

δ(x− xj)

|g′(xj)|
(A.1.16)

where xj is a simple zero of the function g(x), i.e., g(xj) = 0 and g′(xj) ̸= 0,

2. g(x)δ(x− xo) = g(xo)δ(x− xo),

3.
∫∞
−∞ dx δ(x− y)δ(x− z) = δ(y − z) and

4. Θ′(x) = δ(x), where Θ(x) is the Heaviside Θ−function.

Note, however, that the limits of the defining sequences themselves do not exist on the
real line, i.e., the δ−function has no meaning independently. The only meaning that can
be given the object is via its defining integrals. It is a distribution.

A.2 The δ−function in curviliear coordinates

Beginning with the δ−function in a cartesian system, we can deduce its form in a general
curvilinear coordinate system by using its defining properties. By definition∫

dnx′δn(x′ − x) = 1 =

∫
dnξ′

∥∥∥∥∂x′∂ξ′

∥∥∥∥ δn(x′ − x)∫
dnx′δn(x′ − x)f(x′) = f(x) =

∫
dnξ′

∥∥∥∥∂x′∂ξ′

∥∥∥∥ δn(x′ − x)f(x′) (A.2.1)
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where ∥∥ is the Jacobian of the transformation, f is a scalar function and, on the r.h.s.,
x = x(ξ). But we have seen in Chapter 15 that the Jacobian can be replaced by the
determinant of the metric, i.e.,

1 =

∫
dnξ′

∥∥∥∥∂x′∂ξ′

∥∥∥∥ δn(x′ − x) =
1

c

∫
dnξ′

√
−g(ξ′)δn(x′ − x). (A.2.2)

Now we define the n dimensional δ−function in a general coordinate system in the same
way as we had before: ∫

dnξ′δn(ξ′ − ξ) = 1∫
dnξ′f(ξ′)δn(ξ′ − ξ) = f(ξ). (A.2.3)

Then, simply comparing the expressions above, we find

δn(x′ − x) =
c√

−g(ξ)
δn(ξ′ − ξ) (A.2.4)

Thus cg−
1
2 (ξ)δn(ξ′− ξ) is a scalar under general coordinate transformations and δn(ξ′− ξ)

is a scalar density. As examples let’s write the three dimensional δ−function in spherical
coordinates (in three dimensions, the factor of c does not appear of course):

δ(3)(r⃗′ − r⃗) =
1

r2 sin θ
δ(r′ − r)δ(θ′ − θ)δ(φ′ − φ) (A.2.5)

and in cylindrical coordinates:

δ(3)(r⃗′ − r⃗) =
1

ρ
δ(ρ′ − ρ)δ(φ′ − φ)δ(z′ − z). (A.2.6)

Notice the density factors in each case.


	Vectors
	Displacements
	Linear Coordinate Transformations
	Vectors and Scalars
	Rotations in two dimensions
	Rotations in three dimensions
	Algebraic Operations on Vectors
	The scalar product
	The vector product

	Vector Spaces
	Some Algebraic Identities
	Differentiation of Vectors
	Time derivatives
	The Gradient Operator

	Some Differential Identities
	Vector Integration
	Line Integrals
	Surface integrals
	Volume Integrals

	Integral Theorems
	Corollaries of Stokes' Theorem
	Corollaries of Gauss' theorem


	Newton's Laws and Simple Applications
	Introduction
	The Serret-Frenet description of curves
	Galilean Transformations
	Newton's Laws
	Newton's Laws and the Serret Frenet Formulæ
	One dimensional motion
	Motion in a resisting medium
	Drag and the projectile
	Perturbative expansions: an example

	Harmonic motion
	Harmonic motion in one dimension
	One dimensional oscillations with damping
	Two dimensional oscillations
	Trajectories in the plane
	Lissajou's figures

	One dimensional free fall
	Systems with variable mass: the rocket

	Conservation Theorems
	Single Particle Conservation Theorems
	Conservation of momentum
	Conservation of angular momentum
	Work and the conservation of energy

	Frictional forces and mechanical energy
	Examples of conservative forces
	The damped and driven oscillator
	Fourier Expansion
	Green's Function

	Systems of many particles
	Conservation of momentum.
	Conservation of angular momentum.
	The Work-Energy theorem

	Collisions
	One Dimensional Collisions
	Two Dimensional Collisions

	The Virial Theorem

	Newtonian Gravity
	The force law
	Two properties of the gravitational field
	Simple Applications of Gauss' Law
	Point mass.
	Spherical charge distribution.
	Spherical shell.
	Infinite line of constant linear mass density (cosmic string).
	Infinite sheet of constant areal mass density: (domain wall)

	The Poisson and Laplace Equations

	Motion under a Central Force
	Symmetries
	Spherical Coordinates
	Cylindrical coordinates

	Central Forces
	Inverse square force
	Conic sections
	Analysis of solutions
	Kepler's laws

	Other examples of central forces
	Stability of Circular Orbits
	Bertand's Theorem

	Scattering by a Central Force
	Differential Cross-Section
	Dynamical ``Friction'' (Chandrashekar)*


	Motion in Non-Inertial Reference Frames
	Newton's second law in an accelerating frame
	Rotating Frames
	Motion near the surface of the earth.
	Deflection of a freely falling particle
	Motion of a projectile
	The Foucault Pendulum


	Rigid Bodies
	Equations of motion
	The Inertia Tensor
	Computing the Inertia Tensor: examples
	Homogeneous sphere
	Homogeneous cube

	The parallel axis theorem
	Dynamics

	Mechanical Waves
	The Wave Equation
	The Wave Equation from Dynamics
	Waves in Strings
	Sound Waves in Media

	Energy Transfer
	Waves in Strings
	Sound Waves

	Solutions of the Wave Equation
	Boundary Conditions and Particular Solutions
	Standing Waves
	Traveling Wave at an Interface

	The Doppler Effect
	Stationary Source, Moving Observer
	Moving Source, Stationary Observer
	Generalizations

	Superposition
	Interference
	Beats
	Wave Packets


	The Calculus of Variations
	Functionals
	Euler's equation for extrema
	Examples
	Geodesics
	Minimum surface of revolution
	The rotating bucket
	The Brachistochrone

	Functional Derivatives
	An alternate form of Euler's equation
	Functionals involving several functions
	Constraints

	The Lagrangian
	Fermat's least time principle
	The variational principle of mechanics
	Examples
	Symmetries and Noether's theorems

	The Hamiltonian
	Legendre Transformations
	The Canonical equations of motion
	Poisson Brackets
	Examples
	The Dirac-Bergmann Algorithm for Singular Systems
	Dirac Bracket
	Examples


	Canonical Transformations
	Hamilton's equations from a Variational Principle
	The Generating Function
	Examples
	The Symplectic Approach
	Infinitesimal Transformations
	Hamiltonian as the generator of time translations

	Hamilton-Jacobi Theory
	The Hamilton-Jacobi equation
	Two examples
	Hamilton's Characteristic Function
	Separability
	Periodic motion and Action-Angle Variables
	Further Examples

	Special Relativity
	The Principle of Covariance
	Galilean tranformations
	Lorentz Transformations

	Elementary consequences of Lorentz transformations
	Simultaneity
	Length Contraction
	Time Dilation
	Velocity Addition
	Aberration

	Some Paradoxes
	The Twin Paradox
	Bell's Paradox

	Tensors on the fly
	Waves and the Relativistic Doppler Effect
	Dynamics in Special Relativity
	Conservation Laws
	Relativistic Collisions
	Accelerated Observers

	More general coordinate systems*
	Introduction
	Vectors and Tensors
	Differentiation
	Lie Derivative
	Covariant Derivative: the Connection
	Absolute Derivative: parallel transport
	The Laplacian

	Examples
	Integration: The Volume Element

	Ideal Fluids
	Introduction
	Equation of Continuity
	Ideal Fluids
	Euler's equation for an Ideal Fluid
	Waves in Fluids
	Special Flows
	Hydrostatics
	Steady Flows
	Irrotational or Potential Flows
	Incompressible Flows

	Elementary Applications
	Hydrostatics
	Steady Flows
	Potential flows of Incompressible fluids

	The Circulation

	Energy and Momentum in Fluids
	The Energy Flux Density Vector
	Momentum Flux Density Tensor
	The Stress Tensor
	Energy Dissipation
	Boundary Conditions
	Reynolds and Froude Numbers
	Applications of the Navier-Stokes equation
	Plane Poiseuille Flow
	Couette Flow
	Hagen-Poiseuille Flow

	Relativistic Fluids
	Perfect Fluids
	Conserved Currents
	Imperfect Fluids

	Scaling behavior of fluid flows
	An Example

	The -function
	Introduction
	An example
	Another example
	Properties

	The -function in curviliear coordinates


