
Without delving deeply into spe-
cific cases of how software teams fail,
we can talk about the four harbingers
of the ignominious end to a software
project. The harbingers bear a strong
resemblance to the mythological Four
Horsemen of the Apocalypse: War,
Famine, Pestilence, and Death.

When a team starts to fail, one of the
first harbingers to appear is War. Func-
tioning teams can get along—at least
in the work environment—and share
tasks, hand them off when one mem-
ber is overburdened, and generally

Dear KV,
Are there any reliable measurements
one can use to judge the health of a
software project? I have seen many
things written about the quality of
software but not very much about the
quality of a project itself. I ask this be-
cause I worry that I am stuck on a fail-
ing project, but it is difficult to know if
it is really failing. The company I work
for alternately feeds and starves the
project of resources, while also say-
ing that completing the next release
on time is the key to our success. If we
are the key to success, why would they
periodically starve the project? I keep
wondering if I am a frog in a slow boil-
ing pot of water and that I will only
know I should have left once it is too
late. If there are measures for software
quality, there must surely be measures
for project quality?

Heating Slowly

Dear Heating,
Software teams, unlike software proj-
ects, are made up of people, and inter-
actions with people are messy, which
is why some of us went into this field
in the first place: to avoid the messy hu-
mans and to work with the wonderfully
logical and exact machines. Unfortu-
nately, it is difficult to build anything in-
teresting with one person, so you wind
up working with a team, and teams are
made of people, and as Jean-Paul Sartre
wrote, “Hell is other people.”

There are plenty of books and ar-
ticles written about how software
projects live or die, the most famous
of which, The Mythical Man Month by
Fred Brooks, I recommended in these
pages long ago, and I stand by that rec-
ommendation. Brooks’s work contin-
ues to be relevant because—unlike the
technology we work on—people do not
change very quickly, and some, includ-
ing KV, would argue that people rarely
learn anything from their experiences.
If you doubt my cynicism, pick up a
newspaper and read the front page.

Kode Vicious
The Four Horsemen of
an Ailing Software Project
Don’t let the pale rider catch you with an exception.

 Article development led by
 queue.acm.org

DOI:10.1145/3567606 George Neville-Neil

22 COMMUNICATIONS OF THE ACM | DECEMBER 2022 | VOL. 65 | NO. 12

V
viewpoints

I
M

A
G

E
 B

Y
 T

J
 B

A
R

N
W

E
L

L

https://dx.doi.org/10.1145/3567606
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3567606&domain=pdf&date_stamp=2022-11-22

work in a congenial manner. As a team
starts to fail, team members become
increasingly paranoid because they do
not want to be blamed for the failure.

This paranoia often exhibits itself
as extreme defensiveness, the idea be-
ing, “It’s not my fault we’re failing. My
code works!” In a large and complex
project, once enough of the team has
hunkered down in this paranoid state,
they will lash out at anything or anyone
who might be seen to be impugning
the quality of their work. The lashing
out leads to arguments, which look a
lot like war, although one carried out
with code commits, snarky reviews,
and nasty email threads. Hardly the
stuff of immortal legend, but enough
of a drain on the team to make it fall
into a downward spiral of failure.

As teams fail and projects get de-
layed, management may decide it is
time to focus effort elsewhere and to
move developers off the team and into
other areas of work. Removing devel-
opers starves the project of resources
and leads to Famine. At this point, it
would probably make sense to kill the
project and completely reconstitute
the teams in some more productive
fashion, but managers—like devel-
opers—can often be too hopeful of a
miracle save and, therefore, continue
a project long after the team that is
developing it should have been dis-
banded. Dying of famine, like death by
a thousand cuts, is long and painful. If
you are on a project that is constantly
being deprived of resources, it is time
to find something else to work on or
somewhere else to work. Once famine
starts, recovery is difficult and it’s best
to seek sustenance elsewhere.

KV has talked about various mea-
sures of software quality in past col-
umns, but perhaps failing software
quality—in the form of increasing bug
counts—is one of the most objective
measures that a team is failing. This
Pestilence, brought about by the low
morale engendered in the team by
War and Famine, is a clear sign that
something is wrong. In the real world,
a diseased animal can be culled so that
disease does not spread and become
a pestilence over the land. Increasing
bug counts, especially in the absence
of increased functionality—which is
when code fixes cause more bugs rath-
er than actual fixes—are a sure sign of

a coming project apocalypse.
The final horseman is not a harbin-

ger of Death, but Death itself. Eventu-
ally, either management or the VCs
will be forced to see the failure for
what it is, kill off the project, and dis-
band the team. In the most extreme
cases, this will also destroy the com-
pany itself. It is a moment those of us
who have worked in the industry for
any length of time have seen—often
firsthand—and it is never pretty. When
you see War, Famine, and Pestilence
on a team, if you are not able to fix the
problem—and few of us are—then it
is time to move along to somewhere
or something else, lest the pale rider
catch you with an exception when you
are deep inside a complex function
from which you will fail to return.

KV

 Related articles
 on queue.acm.org

Velocity in Software Engineering
Tom Killalea
https://queue.acm.org/detail.cfm?id=3352692

The Hyperdimensional Tar Pit
Poul-Henning Kamp
https://queue.acm.org/detail.cfm?id=2108597

The Demise of the Waterfall Model Is
Imminent and Other Urban Myths
Phillip A. Laplante and Colin J. Neill
https://queue.acm.org/detail.cfm?id=971573

George V. Neville-Neil (kv@acm.org) is the proprietor of
Neville-Neil Consulting in Brooklyn, NY, USA, and co-chair
of ACM Queue editorial board. He works on networking
and operating systems code for fun and profit, teaches
courses on various programming-related subjects,
and encourages your comments, quips, and code snips
pertaining to his Communications column.

Copyright held by author.

Without delving
deeply into specific
cases of how
software teams fail,
we can talk about the
four harbingers of the
ignominious end to a
software project.

The Many Faces
of Resilience

A Linearizability-
based Hierarchy
for Concurrent
Specifications

ACE: Toward
Application-
Centric Edge-Cloud
Collaborative
Intelligence

Democratizing
Domain-Specific
Computing

Making Computer
Science Data FAIR

The End of
Programming

Distributed Latency
Profiling through
Critical Path Tracing

The AI Ethicist’s
Dirty Hands Problem

Actionable Auditing
Revisited

Plus, the latest news about
quantum error correction, the
future of cryptocurrencies
and energy requirements, and
using AI to fix traffic.

 C
om

in
g

N
ex

t
M

on
th

 in
 C

O
M

M
U

N
IC

A
TI

O
N

S

DECEMBER 2022 | VOL. 65 | NO. 12 | COMMUNICATIONS OF THE ACM 23

V
viewpoints

