Evaluation of Trickle-Bed Air Biofilter Performance for Removal of Paint Booth VOCs under Stressed Operating Conditions

97th Annual Meeting and Exhibition of AWMA
Indianapolis, Indiana,
June 24, 2004

Daekeun Kim
Zhangli Cai
George A. Sorial

Environmental Chemistry Laboratory
Department of Civil and Environmental Engineering
University of Cincinnati
Background

Paint Booth Emission

- Intermittent operation
- Variable and unsteady VOC loading
- Complex mixtures of VOC
 - Hydrophobic / Hydrophilic compounds, or
 - Biodegradable / Recalcitrant compounds

Source: http://www.aecon.net/Siko.html
Source: http://www.eastwayrefurb.com
Evaluation of Trickle-Bed Air Biofilter Performance for Removal of Paint Booth VOCs under Stressed Operating Conditions

Background

Paint Booth VOC Control Technology

• Requirement
 ✓ Environmental friendly
 ✓ Economical viable
 ✓ Consistent high performance

Biofiltration !!
Evaluation of Trickle-Bed Air Biofilter Performance for Removal of Paint Booth VOCs under Stressed Operating Conditions

Background

Biofiltration

- Typical biological air treatment process

- VOCs are removed through a biologically active media

- Natural organic media (soil, compost)
 - easily exhaust nutrient & buffer capacity
 - long term operation is impractical
Evaluation of Trickle-Bed Air Biofilter Performance for Removal of Paint Booth VOCs under Stressed Operating Conditions

Background

Trickle-Bed Air Biofilter (TBAB)

- identical process to the biofilter

 - Nutrient and pH control
 - Synthetic & inorganic media

 → Optimizing the contaminant utilizing kinetics for microorganisms
 → Long term, high removal performance

VOC → Nutrient → Clean air
Evaluation of Trickle-Bed Air Biofilter Performance for Removal of Paint Booth VOCs under Stressed Operating Conditions

Objective

To investigate the performance of a TBAB under periodic stressed operating conditions (backwashing & non-use periods) as a function of Paint booth VOC loading.

- Removal characteristics of VOC in TBAB
- Comparison of TBAB performance
Experimental Methods

Target VOCs

<table>
<thead>
<tr>
<th>Target VOCs</th>
<th>Hydrophobic compounds</th>
<th>Hydrophilic compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Toluene</td>
<td>Styrene</td>
</tr>
<tr>
<td>K'_H</td>
<td>0.280</td>
<td>0.109</td>
</tr>
<tr>
<td>Log K_{ow}</td>
<td>2.58</td>
<td>3.16</td>
</tr>
</tbody>
</table>

$K'_H = \text{dimensionless Henry’s law constant, } K_{ow} = \text{Octanol–water partition coefficient}$
Evaluation of Trickle-Bed Air Biofilter Performance for Removal of Paint Booth VOCs under Stressed Operating Conditions

Experimental Methods

Reactor: Independent lab-scale TBAB

Media: pelletized biological support media
Evaluation of Trickle-Bed Air Biofilter Performance for Removal of Paint Booth VOCs under Stressed Operating Conditions

- Sampling Location

1. Electronic Air Cleaner
2. Mass Flow Controller
3. Syringe Pump
4. Nutrient Feed Control System
5. Nutrient Feed Tank
6. Spray Nozzle
7. Trickle Bed Biofilter
8. Pelletized Media
Evaluation of Trickle-Bed Air Biofilter Performance for Removal of Paint Booth VOCs under Stressed Operating Conditions

Experimental Methods

Stressed operating conditions

- **Backwashing**

- **Non-use periods**
 - Starvation
 - Stagnant
Experimental Methods

Backwashing

- Biomass control for long-term high removal performance
- Periodic in-situ upflow fluidization
- Using nutrient solution
- Frequency: 1 hour per week
Evaluation of Trickle-Bed Air Biofilter Performance for Removal of Paint Booth VOCs under Stressed Operating Conditions

Experimental Methods

Backwashing

Nutrient Solution

+ 50% Fluidized Height

Normal Packing Height
Evaluation of Trickle-Bed Air Biofilter Performance for Removal of Paint Booth VOCs under Stressed Operating Conditions

Experimental Methods

Backwashing
Experimental Methods

Non-use period

- Simulation of intermittent operation
 (shut down for weekend and holiday, or for repair)

 ✓ Starvation: no VOC loading,
 Only pure air with nutrient passing through the biofilter

 ✓ Stagnant: no flows (VOC, nutrient, air)

- Frequency: 2 days shut down / week
- without backwashing as biomass control
Evaluation of Trickle-Bed Air Biofilter Performance for Removal of Paint Booth VOCs under Stressed Operating Conditions

Results

- Removal capacity for single VOC
- Removal reaction kinetics for single VOC
- Biofilter response after stressed operating conditions
Evaluation of Trickle-Bed Air Biofilter Performance for Removal of Paint Booth VOCs under Stressed Operating Conditions

Results: Removal capacity

Aromatic compounds

Toluene

- Critical loading
 3.5 kg COD/m³·day
- Maximum removal capacity
 6.0 kg COD/m³·day
Results: Removal capacity

Aromatic compounds

Styrene
- Critical loading
 1.9 kg COD/m3·day
- Maximum removal capacity
 2.7 kg COD/m3·day
Evaluation of Trickle-Bed Air Biofilter Performance for Removal of Paint Booth VOCs under Stressed Operating Conditions

Results: Removal capacity

Oxygenated compounds

MEK

• Critical loading
 5.6 kg COD/m3·day

• Maximum removal capacity
 5.9 kg COD/m3·day
Evaluation of Trickle-Bed Air Biofilter Performance for Removal of Paint Booth VOCs under Stressed Operating Conditions

Results: Removal capacity

Oxygenated compounds

MIBK

• Critical loading
 4.3 kg COD/m3·day
• Maximum removal capacity
 4.9 kg COD/m3·day
Results: Critical loading vs. K_{ow}
Evaluation of Trickle-Bed Air Biofilter Performance for Removal of Paint Booth VOCs under Stressed Operating Conditions

Results

Kinetic analysis

- Removal performance as a function of bed depth
 - backwashing
 - starvation
 - stagnant

- First-order removal rates (at different loading)
Results: Removal rates

- Toluene
- Styrene
- MEK
- MIBK

Removal rate vs. VOC loading rate, kg COD/m³/day
Results: Removal rates

Toluene

<table>
<thead>
<tr>
<th>VOC loading rate, kg COD/m3/day</th>
<th>Removal rate, sec$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Styrene

<table>
<thead>
<tr>
<th>VOC loading rate, kg COD/m3/day</th>
<th>Removal rate, sec$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

MEK

<table>
<thead>
<tr>
<th>VOC loading rate, kg COD/m3/day</th>
<th>Removal rate, sec$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

MIBK

<table>
<thead>
<tr>
<th>VOC loading rate, kg COD/m3/day</th>
<th>Removal rate, sec$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Results: Removal rates

3.5

1.9

5.6

4.3
Results

Biofilter response after non-use periods

• Reacclimation period to reach the 99% removal
Results: Reacclimation periods

Toluene

- Loading rate, kg COD/m3 day

Styrene

- Loading rate, kg COD/m3 day

MEK

- Loading rate, kg COD/m3 day

MIBK

- Loading rate, kg COD/m3 day
Conclusions

1. Single paint booth VOCs were controlled very efficiently by TBAB with critical loading (kg COD/m³·day) to attain 99% removal.

 Toluene: 3.5
 Styrene: 1.9
 MEK: 5.5
 MIBK: 4.3

2. Removal capacity for VOC was a function of K_{ow} (Octanol-water partition coefficient)
Conclusions

3. Up to critical loading rate, non-use periods can be considered as another means of biomass control

4. Reaction rates decreased as loading rate was increased

5. Biofilter response after stressed operating conditions was strongly dependant on the active biomass in the bed
Evaluation of Trickle-Bed Air Biofilter Performance for Removal of Paint Booth VOCs under Stressed Operating Conditions

Acknowledgements

• National Science Foundation

• Dr. George A. Sorial

• Environmental Chemistry Lab, University of Cincinnati
Evaluation of Trickle-Bed Air Biofilter Performance for Removal of Paint Booth VOCs under Stressed Operating Conditions